Semilattice (T): trait assumes PartialOrder includes GreatestLowerBound introduces \bot: -> T __\lub __: T, T -> T asserts forall x, y, z: T \bot <= x; x \lub y == y \lub x; x \glb y == y \glb x; x <= (x \lub y); (x <= z /\ y <= z) => (x \lub y) <= z implies AbelianMonoid (\lub for \circ, \bot for unit), AbelianSemigroup (\glb for \circ)[Table of Contents] [Index]