
A Session-Based Architecture for Internet Mobility

by

Mark Alexander Connell Snoeren

S.M. Computer Science, Georgia Institute of Technology (1997)
B.S. Applied Mathematics, Georgia Institute of Technology (1997)

B.S. Computer Science, Georgia Institute of Technology (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003

c© Massachusetts Institute of Technology 2002. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

December 12, 2002

Certified by .
Hari Balakrishnan

Associate Professor of Computer Science and Engineering
Thesis Supervisor

Certified by .
M. Frans Kaashoek

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

A Session-Based Architecture for Internet Mobility
by

Mark Alexander Connell Snoeren

Submitted to the Department of Electrical Engineering and Computer Science
on December 12, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The proliferation of mobile computing devices and wireless networking products over the past
decade has led to an increasingly nomadic computing lifestyle. A computer is no longer an immo-
bile, gargantuan machine that remains in one place for the lifetime of its operation. Today’s personal
computing devices are portable, and Internet access is becoming ubiquitous. A well-traveled laptop
user might use half a dozen different networks throughout the course of a day: a cable modem from
home, wide-area wireless on the commute, wired Ethernet at the office, a Bluetooth network in the
car, and a wireless, local-area network at the airport or the neighborhood coffee shop.

Mobile hosts are prone to frequent, unexpected disconnections that vary greatly in duration. De-
spite the prevalence of these multi-homed mobile devices, today’s operating systems on both mo-
bile hosts and fixed Internet servers lack fine-grained support for network applications on inter-
mittently connected hosts. We argue that network communication is well-modeled by a session
abstraction, and present Migrate, an architecture based on system support for a flexible session
primitive. Migrate works with application-selected naming services to enable seamless, mobile
“suspend/resume” operation of legacy applications and provide enhanced functionality for mobile-
aware, session-based network applications, enabling adaptive operation of mobile clients and allow-
ing Internet servers to support large numbers of intermittently connected sessions.

We describe our UNIX-based implementation of Migrate and show that sessions are a flexible, ro-
bust, and efficient way to manage mobile end points, even for legacy applications. In addition,
we demonstrate two popular Internet servers that have been extended to leverage our novel notion
of session continuations to enable support for large numbers of suspended clients with only min-
imal resource impact. Experimental results show that Migrate introduces only minor throughput
degradation (less than 2% for moderate block sizes) when used over popular access link technolo-
gies, gracefully detects and suspends disconnected sessions, rapidly resumes from suspension, and
integrates well with existing applications.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor of Computer Science and Engineering

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science and Engineering

3

4

To my dad. I read the book.

5

6

It takes a village to raise a child.

- African proverb

Acknowledgments

I cannot hope to enumerate, let alone repay, all those to whom I am indebted for assistance not
only in preparing this manuscript, but in helping me to survive and prosper during my years at MIT.
Despite the unavoidable omissions, I still insist on mentioning a few in print.

First, I thank my advisors, Hari Balakrishnan and Frans Kaashoek, for providing an incredibly
exciting and energizing work environment. I could not have asked for more supportive and engaging
mentors. Each sports a razor-sharp mind and wit, and an amazing ability to apply both in just the
right amount with impeccable timing. I remain astounded by their intuition, thoughtfulness, and
capacities for comprehension, synthesis, and presentation. Despite the dozens of other students
they advise, I have no doubt they understand the context and ramifications of the material presented
here better than I.

John Guttag, the final member of my thesis committee, was always ready with interested and en-
thusiastic counsel. While I fell victim to the all-too-common temptation to not solicit his advice on
this dissertation until far later than I should have, his career guidance and succinct comments on
countless practice talks throughout my graduate career have been invaluable.

The implementation described in this dissertation was built on top of TESLA, a toolkit built by
Jon Salz while working on his M.Eng. with me. I’ve undoubtedly pestered him with more bug
reports and feature requests than he could possibly have anticipated. I owe him for his unflagging
commitment to address each of them. Thanks also to Ken Steele and Jason Waterman at MIT,
and Dan Aguayo and Dimitris Kalofonos at Nokia for their willingness to try out not-quite-ready-
for-prime-time versions of Migrate and share their experiences with me. Much of the inspiration
for this dissertation came out of discussions with Brian Noble. Some of the material included in
Chapter 7 was co-authored with David Andersen, and Kyle Jamieson and Ken Steele assisted with
measurements of power consumption. My mother, in her least-significant role in my life as chief
copy editor, lovingly revised each and every chapter.

This dissertation reports on only a portion of my work at LCS. Several other faculty and staff as-
sisted me with the all-too-frequent distractions that made my stay enjoyable and rewarding. Thanks
to John Wroclawski, Karen Sollins, and David Clark for taking me in when I first arrived at MIT
without an advisor, office, research project, or direction. Victor Zue, Dorothy Curtis, and Ty Sealy
were instrumental in my early Hummer exploits. David Gifford’s boundless generosity, sympa-
thetic ear, and insightful guidance set me on a course to graduation. David Karger’s open door and
uncanny algorithmic insights were invaluable.

Day-to-day graduate student life would be quite monotonous were it not for the constant interac-
tions with my office mates, without whom I no doubt would have gone insane. Our spontaneous
discussions on topics technical and otherwise provided needed inspiration, analysis, and comic re-
lief. Thanks especially to Alex Hartemink, Dina Katabi, Jo Kulik, Allen Miu, and Stan Rost. Dave
Andersen deserves special note; despite our constant technical arguments, political rants, and oc-
casional personal outbursts—in fact, precisely because of them—he was in every way the perfect

7

office mate. I’ll miss his big yellow ball. Jeremy De Bonet, my lifting partner and constant compan-
ion for the few years we overlapped at MIT, provided a sounding board for crazy ideas, implausible
theories, and general sophistry.

While we never shared an office, I learned a lot from the PDOS crew, particularly Eddie Kohler,
David Mazières, Chuck Blake, John Jannotti, Benjie Chen, Doug De Couto, Kevin Fu, and Emit
Witchell. Similarly, my fellow NMS students were always ready and willing with helpful feed-
back. After hours, I appreciated being welcome at the various activities of the AI Lab, including
GSL, GSB, and Tuesday-night hockey. My erstwhile roommates, Chris Conklin, Matt Lau, Sam
Pearlman, and Bradley Weill provided much-needed escapes from my MIT world.

Graduate study is fraught with feelings of helplessness and self-doubt. Several students that went
before me provided guiding lights, reminding me it was possible to make it out the other end. They
likely never knew it, but David Wetherall, Dawson Engler, Danny Lewin and Charles Isbell were
each role models I strove to emulate. While I have doubtless fallen short, their examples instilled
confidence when it seemed I’d never finish.

I am indebted to my colleagues at BBN, especially Craig Partridge and Tim Strayer, for providing
me with an avenue of technical exploration outside the confines of MIT and exposing me to the
commercial realities of networking research in the private sector. I hope they found our years
together as rewarding as I. I also thank my future colleagues at the University of California, San
Diego, for their understanding in allowing me to take a leave of absence to finish this dissertation.

Finally, I cannot begin to properly thank Christine Alvarado, who was a continual source of joy in
my life as I suffered through the final stages of graduate school. Instead, I offer the pronouns in this
dissertation in deference to the women in computer science, of whom she is my favorite example.

8

Contents

1 Introduction 19
1.1 The challenges . 20
1.2 A motivating example . 22
1.3 Supporting session-based mobility with Migrate 23
1.4 Contributions . 25
1.5 Organization . 27

2 Background & Related Work 29
2.1 Internet basics . 29
2.2 Network-layer mobility . 30
2.3 Connection migration . 37
2.4 Session abstraction . 40
2.5 Disconnection . 45

3 A System Session Abstraction 49
3.1 A session layer . 49
3.2 Attack-equivalent security . 55
3.3 An example: Host mobility using DNS . 58

4 Connection Migration 61
4.1 Connection virtualization . 61
4.2 Migrate TCP: A rebinding approach . 65
4.3 Securing the migration . 71
4.4 Unconnected sockets . 72
4.5 Deployment issues . 74

5 Session Continuations 77
5.1 Continuations . 77
5.2 Continuation API . 82
5.3 Resource continuations . 85
5.4 Garbage collection . 89
5.5 Summary . 91

6 Implementation 93
6.1 Migrate daemon . 93
6.2 Session-layer library . 99
6.3 Policy engine . 101
6.4 Connectivity monitoring . 102

9

6.5 Connection migration . 105
6.6 Cryptography . 108

7 Evaluating Migrate 115
7.1 Overhead . 115
7.2 Migration . 121
7.3 Session continuations . 133

8 Conclusions 143
8.1 Contributions . 143
8.2 Guidelines . 145
8.3 Open questions . 146

A Policy File 149
A.1 Commands . 149
A.2 Chaining . 151

B Application Session Continuations 153
B.1 FTPd . 153
B.2 SSHd . 166

10

List of Figures

1-1 SSH establishes a TCP connection between the client and server application end
points. The system instantiates this connection by binding the application end points
to their current network attachment points as specified by an 〈IP address, port〉 pair. 22

2-1 The hourglass model of the Internet protocol stack. A network attachment point is
an interface between the network layer and a link layer. Anything above the network
attachment point can be construed as an end point. 30

2-2 Triangle routing in Mobile IP without route optimization. Correspondent nodes
send packets destined for a mobile node to its home address on its home network,
where a home agent intercepts the packets and tunnels them to the mobile node at
its care-of address in the foreign network. In some cases, a mobile node can send
packets directly to the correspondent node, avoiding the need to tunnel outgoing
packets back through the home agent. 32

2-3 An Internet transport layer connection. In this example, a TCP connection has been
established between applications at IP address 169.229.60.64 and 18.31.0.139; the
connection uses port 2345 on the former and 22 on the later. 37

3-1 A session between end points A and B containing three separate connections: two
TCP connections, TCP1 and TCP2, and an RTP/UDP stream. 50

3-2 A sample Migrate-aware application using the session abstraction 52
3-3 The C type signature of a Migrate LookupFunc structure 53
3-4 The session Finite State Machine (FSM). Sessions cannot be migrated or suspended

until they are successfully established. 54
3-5 A man-in-the middle attack. A masquerades as D to S and vice versa. A can then

impersonate D to S and bind D to a new network attachment point, A′. 56
3-6 Supporting Internet host mobility using DNS as the naming system. 1) The appli-

cation uses a DNS server to resolve the desired end point (host) name to a network
attachment point on the mobile node. The local end point is bound implicitly by the
host. 2) The application establishes a session between itself and an application run-
ning on the mobile node. 3) If the mobile node moves, it notifies the correspondent
node with a binding update, and 4) updates the DNS server with its new network
attachment point. 59

4-1 A virtualized connection. The virtual socket is dynamically re-mapped to ephemeral
network sockets by an indirection layer. A new network connection is established
for each change in attachment point. Here, the indirection layer has created a new
network connection to attachment point two, and destroyed the old connection to
attachment point one. 62

11

4-2 A double buffer . 63
4-3 TCP Connection Migration. Time flows downward. The migrating end point ini-

tiates migrateable TCP connection in message 1. The server accepts the Migrate-
Permitted option in message 2. The client completes the three-way handshake with
message 3, an ACK. The connection then proceeds until message 4, the last packet
from the remote end point to the migrating end point at its current attachment point.
At some time later the migrating end point sends a Migrate SYN (message 5) from
a new attachment point, including the previously computed connection token. The
sequence number of the Migrate SYN is the same as the last acknowledged byte
of data. The server responds in message 6 with a SYN/ACK using the sequence
number of its last acknowledged byte of data. 67

4-4 Partial TCP state transition diagram with Migrate transitions (adapted from [123,
Figure 18.12]) . 69

5-1 Three separate continuations make up a complete session-continuation: a base con-
tinuation, C∅, an internal continuation Cint, and one that restarts the entire applica-
tion, Capp. 80

5-2 A Migrate continuation structure contains a set of file descriptors that must be pre-
served (commonly pipes to other applications), an attribute/value store, and the con-
tinuation function itself. Complete continuations also specify several parameters
used when restarting the application process. 83

5-3 A sample Migrate-aware application that exports a complete session continuation
upon disconnection but handles instantaneous mobility events directly. 86

5-4 The power consumption of common 802.11b and Bluetooth network interfaces. The
values shown are currents measured across the PCMCIA bus of an IBM ThinkPad
T21 when using a Cisco Aeronet 350 802.11b and a Brainboxes BL-500 Bluetooth
interface, respectively. 89

6-1 The components of the Migrate architecture. Applications export sessions, which
are managed by the Migrate system daemon in collaboration with various connec-
tivity monitors and policy engines. 94

6-2 The Migrate daemon’s internal session structure. 94
6-3 The Migrate daemon’s internal connection structure. 95
6-4 The library functions wrapped by TESLA. UDP (SOCK_DGRAM) sockets require

extra care, as they may demand per-datagram processing (e.g., address rewriting).
The current TESLA implementation does not yet support scatter/gather I/O. 100

6-5 Dynamic library interposition for transparent operation with legacy applications.
When the session-layer library is interposed between a legacy application and the
system (either through relinking or TESLA’s run-time library interposition), the Mi-
grate handler transparently encapsulates network connections in Migrate sessions.
These sessions are managed according to local system policy. 102

6-6 A sample policy file. In this example, eth0 is preferred to other eth interfaces,
which are preferred to ppp interfaces, which are preferred to all others. Sessions
containing TCP SSH connections to remote attachment points with IP addresses in
the 18.31.0 subnet have an increased affinity for eth interfaces, and TCP connec-
tions on local ports 3001–3010 actually prefer eth0 less than other eth interfaces.
Finally, sessions containing TCP connections to HTTP or FTP server ports are never
migrated. 103

12

6-7 Connection status message format. Connectivity monitors use this message to in-
form Migrate of changes in connectivity status for an individual connection. The ad-
dresses and ports are the current connection end points. ConnUp specifies whether
the connection currently appears to have connectivity. IfUp indicates whether the
local network interface being used by the connection is currently available. 104

6-8 Interface connectivity monitor message format. The Interface Name is a 16-character
ASCII string reported by the kernel (e.g., lo, eth0, etc.). 104

6-9 A directory listing showing open Migrate-capable TCP connections. There are cur-
rently three connections: A local SSH connection, a remote SSH login, and an
HTTP download. 106

6-10 TCP Migrate-Permitted option . 107
6-11 One possible set of TCP options. Our Linux Migrate TCP implementation sends

these forty bytes of TCP options by default in TCP SYN segments. Four options
are requested: maximum segment size (MSS) (four bytes), window scaling (three
bytes), selective acknowledgments (SACK) (two bytes), and Migrate (20 bytes).
The fields used to store the 200 bits of Migrate-Permitted keying material—64
bits of the Timestamp option and 136 bits from the Migrate-Permitted option—
are shaded. One byte of padding is inserted (a NOP option) to preserve 32-bit word
alignment. 108

6-12 Migrate session migration with virtualized connections. Time flows downward. The
migrating end point establishes a TCP session control channel (step 1) over which
it sends a session resumption request (step 2). The remote end point responds with
a cryptographic challenge (step 3). The migrating end point authenticates itself by
decrypting the challenge (step 4). Upon validation of the response, the remote end
point sends a port mapping message for each connection included in the session
(step 5). The migrating end point then initiates new data connections as described
in Chapter 4 (step 6); virtualized TCP connections require further synchronization
(step 7). 110

6-13 TCP Migrate option . 111

7-1 Mean TCP throughput with and without Migrate on a shared 100-Mbps Ethernet
segment, as measured with ttcp. The receiver is an Intel 1.5-Ghz P4 running
FreeBSD 4.6-STABLE while the sender is an Intel 2.26-Ghz P4 running Linux
2.4.18. Each point represents the average of at least sixteen runs; error bars rep-
resent one standard deviation. 116

7-2 Mean TCP throughput with and without Migrate on a shared 802.11b wireless LAN,
as measured with ttcp. The receiver is an IBM ThinkPad T21 (600-Mhz P3)
running Linux 2.4.16 while the sender is an Intel 2.26-Ghz P4 running Linux 2.4.18.
Each point represents the average of at least sixteen runs; error bars represent one
standard deviation. 117

7-3 Mean TCP throughput across the loopback interface of an IBM ThinkPad T21 (600-
Mhz P3) running Linux 2.4.16, as measured with ttcp. Results are presented with
and without Migrate, as well as for a dummy TESLA handler and a receiver that
touches every byte received. Each point represents the average of at least sixteen
runs; error bars represent one standard deviation. 118

7-4 Cumulative distribution of the connection establishment latency of a TCP connec-
tion on the loopback interface of a 600-Mhz Intel P3 running Linux 2.4.1. Each
distribution results from 100 independent trials. 120

13

7-5 Cumulative distribution of the session migration latency of a session with a vary-
ing number of TCP connections on the loopback interface of a 850-Mhz Intel P3
running Linux 2.4.2. Each distribution results from 100 independent trials. 122

7-6 Median session migration latency of a session with one TCP connection between
two 850-Mhz Intel P3s running Linux 2.4.2 with varying RTTs. 123

7-7 Network topology used for virtualized connection synchronization and TCP con-
nection migration experiments. DummyNet [107] is used to emulate 1-Mbps access
links with 20ms of delay for the experiments in Section 7.2.2; actual 19.2-Kbps
serial lines were used in Section 7.2.5. 123

7-8 Mean connection synchronization latency and throughput degradation of a 524,288-
byte virtualized TCP transfer between two 850-Mhz Intel P3s running Linux 2.4.2
over a 1-Mbps link with a RTT of 40 ms. The connection iss migrated to a loss-free
link after one second. The initial link loss rate varies from zero to 20 percent. Each
point is the average of fifty trials; error bars represent one standard deviation. . . . 124

7-9 Mean number of bytes required to synchronize a virtualized TCP connection over a
1-Mbps link between two 850-Mhz Intel P3s running Linux 2.4.2 over the topology
in Figure 7-7. The initial link loss rate varies from 0 to 10 percent. Each point is the
average of fifty trials; error bars represent one standard deviation. 125

7-10 Network topology used to measure handoff performance for both virtualized TCP
connections (Section 7.2.3) and the Migrate TCP options (Section 7.2.5). Dum-
myNet is used to emulate 128-Kbps links with a one-way delay of 20 ms between
the attachment points. 126

7-11 Throughput vs. hard-handoff oscillation rates of a virtualized TCP connection.
Throughput measured at the receiver by timing the transfer of a 947,570-byte file.
A transfer conducted entirely from one attachment point achieves a throughput of
119.4 Kbps. 127

7-12 Hard session handoff performance. Progress of a virtualized TCP transfer of a
947,570-byte file subjected to varying rates of receiver attachment-point oscillation.
The TCP receive buffer is 64 KB. 128

7-13 Soft session handoff performance. Progress of a virtualized TCP transfer of a
947,570-byte file subjected to varying rates of sender attachment-point oscillation.
The TCP receive buffer is 64 KB. 129

7-14 A TCP connection sequence trace showing the migration of an established con-
nection transferring data from a fixed server to a mobile client. The Migrate SYN
is generated by the migrating receiver; its value is unrelated to the sequence space
shown in this graph and is depicted as a dashed vertical line. The Migrate SYN/ACK
appears as the first data segment sent after migration. 130

7-15 A TCP Migrate connection (with SACK) sequence trace with losses just before
migration. As before, the Migrate SYN is depicted as a dashed vertical line, and the
SYN/ACK is shown as the first data segment after migration. 131

7-16 Throughput vs. oscillation rate with the TCP migrate options on a TCP connection
without SACK. A download conducted entirely from one attachment point achieves
a throughput of 119.48 Kbps. 133

7-17 Connection ACK traces for varying rates of server attachment point oscillation using
the go-back-n policy. The TCP receive buffer is 64 KB. 134

7-18 Sequence traces of oscillatory TCP migration behavior under the go-back-n policy.
These are the same traces shown in Figure 7-17. 135

14

7-19 The memory footprints of sample Migrate-aware servers. We report values observed
using gcc version 2.96 with the -O2 option on a Linux 2.4.1 system with 256 MB
of RAM and 512 MB of swap. 137

7-20 Complete continuation sizes. The sizes reported here include persistent application
state, buffered network connection data, and all associated Migrate control data
necessary to invoke the communication. 137

7-21 The instantaneous power consumption of a Compaq iPAQ 3600 over a ten-second
interval. Each grid line on the horizontal axis represents one second; the vertical
grid marks are 200 mA. Zero is marked on the vertical axes by the arrow on the left
hand side. Initially, the iPAQ is downloading a TCP stream using a Cisco Aeronet
350 802.11b interface. At time t ≈ 5 s, the transfer is migrated to a Brainboxes
BL-500 Bluetooth interface, and the 802.11b interface is powered down. The solid
horizontal line was manually placed to illustrate the average power consumption
after migration; it corresponds to 456 mA as shown in the upper right. Similarly,
the dashed horizontal line roughly corresponds to the average power consumption
before migration. The difference between the two lines, as also shown in the upper
right, is 328 mA. 140

7-22 The connection and resumption latency for sample Migrate-aware applications. The
resumption latency measures the time to invoke a complete continuation and restore
all suspended network connections. As in Figure 7-5, it does not include the time
necessary to resynchronize those connections. 141

15

16

List of Tables

3.1 Session API exported by the Migrate session layer 50
3.2 The flags that may be passed to a session_create()call. M_ALWAYSLOOKUP

and M_DONTMOVE may not be passed simultaneously. 51
3.3 The flags that may be passed to a Migrate handler function 53
3.4 Extensions to the API to support policy-based resource control 57

5.1 Extensions to the Migrate session API to support session continuations and an at-
tribute/value store. 82

5.2 The flags that may be passed to a Migrate session continuation. When a continuation
is selected for garbage collection, the continuation is invoked with the M_DISCARD
flag. The M_DISCARD flag is never set at any other time or in conjunction with any
other flags. 90

6.1 Defined Curve Name values and their corresponding mechanisms. The table shows
the corresponding elliptic curve parameters from the ANSI X9.62 standard [3]. This
list may grow to reflect further published elliptic curves with key lengths less than
200 bits. 107

7.1 The changes required to add session continuations to two popular Internet server
applications. The presented figure includes both the additional code required to
generate the continuations and any required changes to existing code. 134

7.2 The file descriptor usage of two popular Internet server applications. The first two
columns indicate the number of file descriptors used by an active session before
and after enabling Migrate support. The third column shows the number of these
descriptors corresponding to active network connections. The last two columns
present the number of file descriptors required for sessions suspended through a
continuation. The “Suspended” column indicates the number of descriptors in-
cluded within the continuation, and the “Compressed” column shows the actual
number held open by Migrate during disconnection after generating all available
resource continuations. 138

A.1 The commands available to a Migrate Tcl policy script. 149

17

18

Dimidium facti, qui coepit, habet: sapere aude.
(To have begun is half the job: dare to be wise.)

- Horace

Chapter 1

Introduction

The proliferation of mobile computing devices and wireless networking products over the past
decade has led to an increasingly nomadic computing lifestyle. A computer is no longer an immo-
bile, gargantuan machine that remains in one place for the lifetime of its operation. Today’s personal
computing devices are portable, and Internet access is becoming ubiquitous. A well-traveled laptop
user might use half a dozen different networks throughout the course of a day: a cable modem from
home, wide-area wireless on the commute, wired Ethernet at the office, a Bluetooth network in the
car, and a wireless, local-area network at the airport or the neighborhood coffee shop.

Armed with her portable computing device and readily-available Internet access, today’s user ex-
pects seamless operation for network applications. Yet her sporadic movement and occasional dis-
connection due to lack of network connectivity or device power-down place a considerable burden
on applications that communicate across the network. These network applications receive little as-
sistance from today’s operating systems or Internet protocols in managing host movement or periods
of disconnection. While a small number number of modern, mobile-aware applications have been
designed to handle these adverse conditions in an ad-hoc fashion, the vast majority of applications
have not.

This dissertation recognizes the importance of moving end points and the inevitability of periods of
disconnection, and defines a set of system primitives to assist applications in dealing with these two
challenges. We propose a solution based on the session abstraction. A session is a durable, long-
term relationship between application end points that may span multiple network connections and
application transactions; today’s network connections, on the other hand, are ephemeral relation-
ships between network attachment points. Everyday examples of sessions include interactive logins
by users of remote hosts, sets of Web transactions between browsers and servers, multimedia confer-
ences between remote peers, etc. These applications, along with many others, have found sessions a
useful construct for managing complex interactions between remote network end points. In partic-
ular, sessions afford the opportunity to amortize certain expensive operations such as authorization,
initialization, and synchronization across multiple, individual network connections. Unfortunately,
current applications cannot describe their networking needs to the operating system in terms of ses-
sions; instead, applications must describe each network connection individually and manage each
one independently.

We propose elevating the session from common application construct to first-class system abstrac-
tion: an operating system-supported building block for mobile network applications. We present

19

Migrate, an end-to-end mobility architecture that supports session-based mobility, and enables so-
phisticated disconnection management through the use of session continuations, a mechanism that
allows mobile-aware applications to efficiently suspend operation during periods of disconnection
yet adapt to changed network conditions upon resumption.

The rest of this chapter is organized as follows. In the first section, we describe the challenges
posed by portable Internet devices. The second section demonstrates, through an example, the
shortcomings of today’s network infrastructure when attempting to support Internet communication
on portable devices. The following section then gives a brief overview of our approach, and how
it ameliorates these issues. We conclude this chapter by summarizing the goals, contributions, and
organization of this dissertation.

1.1 The challenges

One of the critical realizations leading to this dissertation was the observation that portable Internet
hosts introduce two distinct, but inter-related challenges: first, end points move between network
locations during communication, and, second, end points disconnect from the network without prior
notice. Preserving communication between two moving end points on the Internet is difficult be-
cause one end point may not know to where the other end point has moved nor be able to describe
or properly authenticate it if its location is discovered. In particular, remote end points may not
know how to address packets destined for a moving end point. Furthermore, because Internet end
points are commonly referred to by their locations in the network, a mobile end point that moves
to a new location needs some way to identify itself as the node formerly at its previous location.
Unexpected disconnection is particularly problematic for session-based applications (e.g., stream-
ing media [114], file transfer applications [94], X windows [112], SSH (Secure SHell) [144], etc.)
that maintain state and consume resources on behalf of remote end points. Deciding how long to
wait for a remote end point to reconnect is not obvious; giving up too early results in a poor user
experience (e.g., aborted downloads, canceled transactions, etc.), waiting too long wastes precious
system resources such as power, memory, and bandwidth.

1.1.1 Moving end points

A requirement of Internet mobility support is the need to allow network applications to continue to
function as hosts change attachment point—the location in the network where hosts send and receive
packets. Applications on such hosts should be able to continue communication from where they left
off at previous attachment points. More generally, this problem affects not only portable hosts
but all classes of mobile end points, whether they be the hosts themselves, individual applications,
services, processes, or even users. Traditionally, researchers have categorized movement based on
the end-point being considered:

• Host or terminal mobility refers to the common case where an entire host, such as a laptop or
handheld, changes its network attachment point [49, 89].

• Personal mobility ignores the computing device(s), instead, focusing on the user as she moves
between Internet hosts [65, 113]. For example, a user may start reading her email on a PDA,
but wish to continue reading from her desktop PC when she arrives at her office.

• Session mobility tracks communication sessions as they move, either coincident with one of
the above forms of mobility or not. For example, a Web server farm may wish to move a
client’s session to a different server to balance load across the available servers.

20

The third class, session-based mobility, is the most general, as the first two classes can be cast as
specific instances of the third. A host movement can be viewed as the simultaneous movement of all
sessions terminating at that host but not vice versa. For example, a user may be both reading email
and browsing the Web on her PDA but wish to move only one of the sessions (her Web browsing,
say) to her office PC. Similarly, a Web session may be moved to a new server for failover or load-
balancing concerns. Hence, this dissertation focuses on session-based mobility, but many of the
ideas apply equally well to the other two cases. For the most part, we will restrict our examples
to the case of host mobility, but the session-based approach is designed to handle migration across
hosts. Such migration, however, requires significant additional support and will be discussed only
briefly in Chapter 8.

For the purposes of this dissertation, we are concerned with movements that are evident to other
hosts on the Internet, namely, changes to the network attachment point. Such movements may
or may not be coincident with an actual physical movement in any of the above models. In fact,
there are many common reasons why Internet end points may appear to move without any physical
change whatsoever. Two common reasons are readdressing and multi-homing. Internet attachment
points may receive new addresses from time to time due to configuration changes in the network
(e.g., DHCP [31] lease expiration or NAT [122] reconfiguration). Multi-homed hosts have multi-
ple, distinct network attachment points and may communicate using different attachment points at
various instances or even multiple points concurrently.

The process of managing moving end points entails two issues: before communication can begin, a
moving end point must be located; then, once an initial location is determined, the end point must be
tracked as it moves. Both issues depend on how applications describe end points. Applications must
somehow name the remote end point they wish to locate and track. Depending on the mechanism
used to describe the end point, however, this tracking procedure may or may not rely on the initial
location mechanism.

1.1.2 Unexpected disconnection

As mobile hosts change network attachment points there are often accompanying periods of dis-
connectivity. Despite improvements in technology and the increasingly widespread deployment
of so-called 3G wireless technologies [33], we expect devices will continue to operate under non-
negligible periods of disconnection due to resource constraints. Wireless communication consumes
power, a resource that is in limited supply in untethered mobile devices and shows no signs of
dramatically improving anytime soon. Similarly, commercial wireless access costs money—a con-
strained resource for most users.

Furthermore, disconnection is frequently unexpected, from the points of view of both the user (e.g.,
the wireless interface moves out of range of a basestation) and the system (e.g., a network cable
comes unplugged). Disconnection also occurs with surprising frequency in many wire-line net-
works due to routing failures and other network instabilities [4]. Additionally, because it is often
unanticipated, the duration of disconnection—regardless of cause—is often unknown, highly vari-
able (across several orders of magnitude), and frequently long (e.g., several hours).

To manage intermittent connectivity, we adopt a “suspend/resume” model of interaction for network
applications because this model is already prevalent among laptop users. Mobile laptop users have
grown accustomed to suspending their activities at arbitrary points and being able to resume the
interaction from the points at which they were suspended, despite arbitrary periods of inactivity
during which the laptops enter a resource conservation mode. Unfortunately, as demonstrated in the

21

SSH
Client

TCP IP IP TCP
SSH

Server

<18.31.0.139, 22><169.229.60.64, 2345>

Figure 1-1: SSH establishes a TCP connection between the client and server application end points.
The system instantiates this connection by binding the application end points to their current net-
work attachment points as specified by an 〈IP address, port〉 pair.

example in the next section, today’s Internet hosts lack support for seamless operation of session-
based network applications across periods of disconnectivity. Disconnection, when discovered by
today’s Internet protocols, is considered a permanent failure and communication is aborted. Hence,
contemporary operating systems do not provide “suspend/resume” support for network applications.
Instead, disconnection events are either concealed inside the network or exposed as communication
failures to the application, which is then forced to abandon open communication sessions and begin
new ones.

1.2 A motivating example

One need look no further than interactive terminal applications like SSH [144] or telnet [98], mem-
bers of the Internet’s oldest class of applications, for a practical example of the lack of support for
mobility in the Internet. A user with an open SSH session might pick up her laptop and disconnect
from the network. After traveling for some period of time, she reconnects at some other network
location and expects that her SSH session will continue where it left off. Sadly, the user will find
the SSH application has aborted, and she is unable to resume her session. This occurs because the
remote end point (the SSH server) was unable to determine the new attachment point and unsure
that the session would continue. The following section deconstructs the technical reasons for these
limitations.

1.2.1 Current network abstraction

Most contemporary applications and operating systems use the Berkeley Sockets API [67], which
exports a connection abstraction. Figure 1-1 illustrates the connection between an SSH client and
server. A connection defines a communication channel between two network attachment points that
an application uses to transfer data packets between two remote end points. Unfortunately, since
the connection end points are specified in terms of their network attachment points, the operating
system has no way of naming or locating an application end point that changes attachment points.
Therefore, any change in attachment point at either end point terminates the connection because
the previously specified attachment points no longer correspond to the current location of the end
points. Perhaps even more frustratingly, the connection abstraction, when used in conjunction with
reliable transport protocols like the Internet-standard Transmission Control Protocol (TCP) [97],
is unable to accommodate periods of disconnection longer than a few round-trip times. Rather
than blithely consume resources while waiting for the remote end point to return, current Internet

22

protocols expose the disconnection after some period of time by aborting the connection. Hence,
unless explicit mobility and disconnection support is provided by the application, it will be unable
to survive any changes in attachment points or even a brief period of disconnection.

The inability of transport protocols to handle changes in attachment points over the duration of a
connection has led to attempts to conceal attachment-point changes and periods of disconnection
from the end points. These efforts can be broadly grouped into two categories: those that manage
changes in attachment point inside the network, and those that enable transport connections to sur-
vive periods of disconnection. While these approaches are discussed in detail in the next chapter
(“Related Work”), we briefly explain why they are inadequate for the current example.

1.2.2 Network-layer techniques

Network-layer mobility techniques that handle changes in attachment point inside the network rout-
ing layer are unable to handle the scenario described above due to the associated period of discon-
nection. For example, even if the Internet protocols allowed end points to change their attachment
points, the user would still find her SSH session aborted upon reconnection if there was any ac-
tivity at all on the session during the period of disconnectivity. This failure is due to the transport
protocol’s inability to handle the extended period of packet loss experienced during disconnection.
Furthermore, by concealing changes in attachment point from applications, network-layer tech-
niques make it difficult for applications to adapt to dynamic network conditions. For example, the
security parameters selected by SSH may have been conditioned on the user’s initial attachment
point. If she later moves to a more hostile network, SSH may wish to increase the strength of its se-
curity measures (e.g., by increasing key length or using a stronger cipher). However, if the change in
attachment point is hidden inside the network, SSH will be unaware that such a change is warranted.

1.2.3 Transport-layer techniques

A complimentary approach could equip transport connections to survive periods of disconnection.
Consider, for example, if the user’s TCP connection were to silently persevere across periods of
disconnection. The user would then be able to resume her session, but that doesn’t speak to the
server’s activity in her absence. Using this transparent approach, the remote application end point
is oblivious to the disconnection, likely resulting in a considerable waste of resources (in the form
of power, processing, memory, kernel buffers, network ports, file descriptors, etc.), decreased per-
formance, and, perhaps, even loss of data or incorrect operation depending on the application at
hand. For example, an application may invoke a default operation unless instructed otherwise by a
remote end point before some period of time elapses. If the remote end point is disconnected—and,
therefore, unable to inform the application of its desires in a timely fashion—but the disconnec-
tion is concealed by the transport layer, the application may incorrectly assume silence represents
ascension and invoke the default operation.

As discussed at length in the next chapter, network- and transport-layer proposals to handle Internet
mobility address only some of the issues, do not allow mobility-aware applications to adapt to
changes in network conditions, or require application-specific point solutions.

1.3 Supporting session-based mobility with Migrate

In this dissertation, we propose addressing both challenges—moving end points and unexpected
disconnection—in a consistent, unified fashion based on the session abstraction. We present an
overview of our approach, called Migrate, by way of describing our solution to three separate prob-
lems:

23

• Applications describe network end points and their interactions through a system session
abstraction.

• On-going connections between moving end points are preserved via connection migration.

• Applications specify desired session resumption functionality through session continuations,
enabling resource conservation during periods of disconnection and intelligent adaptation to
new network characteristics upon resumption.

While addressing each of these issues, Migrate attempts to remain neutral with respect to both se-
curity and policy. Because different applications and users have widely varying security goals and
mechanisms, Migrate provides an attack-equivalent environment, which we define to mean an envi-
ronment in which any attack that can be launched against the application can be shown to be equiv-
alent in power to one that could have been launched in an environment without Migrate. Because
this guarantee does not depend on the particular mechanisms employed by the application, it does
not suffer from the inadequacies (or benefit from the strengths) of any particular implementation—
each application is left to choose the mechanisms most appropriate for it. Similarly, Migrate allows
applications and their users to set their own mobility policy. In conjunction with system-wide rules
regarding resource usage, available network interfaces, and so on, a user’s mobility policy specifies
her preference for particular attachment points, resource consumption tolerance, network access
restrictions, and so forth.

1.3.1 Describing network end points

Migrate adopts the session abstraction, defining an Application Programming Interface (API) that
enables applications to describe their sessions to the operating system. The API is sufficiently flex-
ible to allow applications to specify remote end points using whatever naming mechanism they find
convenient, but we expect that users will typically use the Domain Name Service (DNS) [68]. Mi-
grate separates the task of end-point location from tracking, enabling applications to specify their
own naming mechanisms for location operations while leveraging system support for the straightfor-
ward tracking operation. Further, this separation often enables Migrate to preserve communication
between moving end points in the absence of an available location service.

1.3.2 Migrating open connections

One of the difficulties in preserving communication between moving end points is maintaining the
semantics of standard transport protocol connections. In particular, today’s connection-oriented
transport protocols do not support migrating connections—that is, changing attachment points mid-
connection. We propose two distinct solutions, virtualization and rebinding, each with different
advantages and disadvantages.

In the virtualization approach, an indirection layer presents the application with a virtual connection
to the remote end point. The indirection layer dynamically maps the virtual connection to ephemeral
transport connections between the current attachment points by creating and destroying transport
connections as necessary to support different attachment points; the layer creates a new connection
each time an end point moves to a new attachment point. The advantages of this approach are
that it can be applied to any transport protocol and carried out entirely at user-level, requiring no
extensions or modifications to existing operating systems; the major drawback is the virtualization
overhead.

24

The second approach involves extending transport protocols such as TCP to support rebinding the
connection to new attachment points. We modify TCP to support a set of TCP options that allow
TCP connections to continue across changes in either attachment point. This migration is transpar-
ent to an application that expects uninterrupted reliable communication with the peer. Using this
approach, there is no overhead outside of mobility events. However, since many operating sys-
tems implement TCP inside the kernel, deploying this approach will require kernel modifications to
support the new TCP options.

1.3.3 Supporting disconnection

We observe that the challenge of suspending a session upon disconnection and resuming it later
bears resemblance to the problems encountered by a compiler when handling returns from procedure
calls. In both cases, naming scopes, environment settings, and mutable state must be saved and
restored. This management can be avoided completely if procedures never return. Instead, every
procedure can maintain a notion of “the rest of the computation,” or continuation, and simply invoke
(or call) the continuation upon completion. Hence, procedure calls can be replaced by jumps, and
many of the complications of managing activation records and call stacks go away. Continuations
provide abstractions that simplify the constructions of many compilers and have been applied in
other domains [30, 36].

We propose session continuations as a generic mechanism for supporting the conservation of system
resources during periods of disconnection and the resumption of session processing upon restora-
tion of connectivity. A session continuation contains all the state and functionality necessary to
compute the “rest of the session,” including any required reconciliation between the state of the
suspended session and prevailing network conditions. Upon reconnection, a disconnected session
simply invokes its continuation. Since such continuations never implicitly depend on previous state
the system can safely discard resources consumed by disconnected sessions. When a session re-
sumes, its continuation generates all the state and resources necessary to complete it.

In Migrate, an application handles disconnection in one of two ways. In the preferred method,
applications specify a session’s resumption context as a session continuation that allows them to
conserve resources during disconnection and adapt to possibly changed network conditions present
at reconnection. When generating a session continuation is unnecessary or difficult, however, appli-
cations may choose to simply preserve the session state and system resources and rely on transparent
Migrate services to conceal periods of disconnection. This transparent support allows unmodified,
legacy applications to function in a mobile environment, but may waste resources during discon-
nection.

1.4 Contributions

This dissertation postulates that unexpected end-point movement and temporary periods of discon-
nection are unavoidable in the mobile Internet. It then explores the hypothesis that system support
for a robust session abstraction can enable mobile operation of legacy applications and provide
enhanced functionality for mobile-aware, session-based network applications, allowing servers to
support large numbers of dormant sessions. Further, this dissertation shows end-to-end protocols
are sufficient to provide adequate connectivity monitoring and graceful handling of host movement,
session suspension, and their subsequent reactivation. It demonstrates that location tracking and
session security can both be efficiently decoupled from baseline mobility support. Along the way,
this dissertation makes the following specific contributions:

25

• The development of an end-to-end approach to Internet mobility that is based on a system-
supported session abstraction, along with a specific architecture, Migrate, that implements
this approach.

• The design and implementation of Migrate options that extend TCP to support the migration
of TCP connections to new attachment points.

• Session continuations, extensions to the session abstraction that enable application-specific
suspend/resume handling. By providing system support for session continuations, hosts can
realize significant resource savings during periods of disconnection. Session continuations
also have applications to problems outside of host mobility such as load balancing and ap-
plication migration. Carefully crafted continuations can be executed in environments (hosts)
other than those that created them, enabling a form of inter-host session migration.

• An application-agnostic, attack-equivalence security model that ensures any attacks enabled
by mobility support reduce to ones already present in a non-mobile environment.

• A proposed session API that allows mobile-aware applications to specify intelligent discon-
nection handling through the use of continuation-passing style, and an understanding of how
a variety of network-based applications can use the API to provide application-specific func-
tionality.

• An evaluation of the efficiency of our prototype Migrate implementation. Our results show
that the throughput impact of connection virtualization is small (2% or less for moderate
block sizes) for sessions operating over common access link technologies. The overhead can
be considerably larger, however, when virtualizing extremely-high bandwidth (> 350-Mbps)
connections or those using small (< 200-byte) block sizes. When used in conjunction with
the TCP Migrate options, Migrate’s overhead becomes almost negligible and is restricted to
session establishment and migration events.

• A demonstration of the effectiveness, flexibility, and ease-of-use of our session continuation
abstraction. We show that servers for two popular Internet applications, SSH and FTP, require
only small modifications to support session continuations, and that suspended sessions for
both applications consume only a few tens of bytes of secondary storage and between one
and three file descriptors.

The current version of Migrate has two main limitations which arise from our restrictive definition
of a session. In particular, we consider a session to be a stateful relationship between two appli-
cation end points. While our abstraction proves useful for a large class of applications, there are
popular network applications that violate this definition in two important ways. First, some applica-
tions form sessions between three or more end points. Examples include multi-party conferencing,
gaming, and multi-cast based content distribution applications. We have restricted our definition to
sessions containing exactly two end points because the semantics of disconnection, suspension, and
resumption are straightforward. The appropriate semantics for disconnection and end-point tracking
in a group scenario are more complicated and extending our session abstraction to consider multiple
remote end points remains an area for future work.

In contrast, some popular applications do not maintain any stateful relationships between applica-
tion end points. Such so-called stateless network applications often use non-connection oriented
transfer protocols (e.g., UDP) and asynchronous remote procedure calls (RPC) [14]. (Transport

26

protocol alone does not necessarily indicate whether an application is session-oriented or not, how-
ever. We present Migrate’s support for non-connected UDP sockets used in a session-oriented
fashion in Section 4.4). These communication paradigms have little to gain from session-based
mobility handling. While Migrate does not interfere with the operation of such applications, the
additional mobility support provided by Migrate is generally extraneous and introduces unneces-
sary overhead. When used in conjunction with stateless legacy applications which do not opt-out of
Migrate support themselves, users can disable Migrate through the use of the system-wide policy
file (see Section 6.3).

1.5 Organization

The remainder of this dissertation presents the session-based mobility model and a prototype im-
plementation, Migrate. Chapter 2 motivates our work by describing related work in the fields of
network-layer Internet mobility, connection migration, disconnected operation, application check-
pointing, and resource management and adaptation. We describe our session-based approach to
mobility in Chapter 3, including the session abstraction, end-point naming, attack-equivalent se-
curity model, and details of the API. Chapter 4 presents two approaches to connection migration,
one based on virtualization and the other based on rebinding. We present session continuations
in Chapter 5, discussing their implementation in Migrate. Chapter 6 describes the implementa-
tion of Migrate, including the API, network connectivity monitors, and policy engines. We evaluate
Migrate in Chapter 7 by benchmarking its performance and showing how several well-known appli-
cations can be extended to support session continuations. Finally, Chapter 8 presents a summary of
the dissertation and concludes with a discussion of both specific contributions and general principles
that can be extracted from the work.

27

28

It is what we think we know already that often prevents us from learning.

– Claude Bernhard

Originality is nothing but judicious imitation.

– VoltaireChapter 2

Background & Related Work

Mobility has been a fertile area of research for many years. In this chapter, we provide an introduc-
tion to basic networking concepts and discuss the issues raised by mobility. By surveying previous
approaches to address these issues, we motivate the three focusing problems of this thesis: handling
changes in session attachment points, migrating open connections, and supporting disconnection in
session-based applications.

We begin in Section 2.1 with a brief tutorial on Internet concepts. Section 2.2 presents previous pro-
posals to support mobile Internet hosts and argues that network-layer solutions fail to fully address
the needs of mobile end points. We then explore alternative approaches, beginning in Section 2.3
with a discussion of connection migration. Section 2.4 describes the session abstraction and ex-
plains how it can be used to support mobile end points. Finally, the chapter concludes in Section 2.5
with a discussion of the impact of disconnection on Internet hosts and the need for session-based
suspend/resume support.

2.1 Internet basics

A packet-switched network consists of end points that can send packets to each other. Depending
on one’s perspective, end points can be variously construed to be hosts, applications, services, pro-
cesses, or even users. In most places in this dissertation, we will not distinguish among the different
kinds of end points. Instead, we will consider the general case of an application process running on a
particular host providing a service to a user. In some cases we will distinguish between applications
and hosts.

2.1.1 End-point addressing

Each end point connects to the network at one or more network attachment points. End points
without a current attachment point are said to be detached or disconnected. Network attachment
points are the locations in a network where end points send and receive packets. Each packet sent
by an end point must be addressed to a network attachment point. In the Internet, attachment
points are identified by IP addresses (e.g., 18.31.0.100). An IP address is a hierarchical name
that reflects the topological location of an attachment point in the Internet and enables the Internet
routing infrastructure to deliver packets destined to network attachment points.

29

Network
Attachment Point

IP

TCP UDP

TLS RTP . . . HTTP

ATM . . . 802.3Link

Network

Transport

Application

Figure 2-1: The hourglass model of the Internet protocol stack. A network attachment point is an
interface between the network layer and a link layer. Anything above the network attachment point
can be construed as an end point.

2.1.2 Layering

End points on the Internet communicate using a suite of composable protocols, typically referred
to as the Internet protocol stack. Within the stack, each protocol uses the lower layers to provide
a well-understood service to higher layers. Intuitively, the protocol stack is commonly pictured as
an hourglass as shown in Figure 2-1. The hourglass shape emphasizes the “layered” structure of
the protocol stack, where each protocol provides a well-defined interface to those above it, and the
simplicity of the network layer. At the lowest level of the stack are the link-layer protocols employed
by various networking devices like Asynchronous Transfer Mode (ATM), Ethernet (defined by IEEE
standard 802.3 [47]), the Point-to-Point Protocol (PPP) [117], and many others. The link layer
enables point-to-point communication between network interfaces connected to the same physical
medium. The network layer abstracts away the vagaries of actual network topology and routes
packets between any two end points regardless of whether or not they are both on the same physical
network. The Internet is defined by the use of one particular network-layer protocol: the Internet
Protocol (IP) [96].

2.2 Network-layer mobility

End points may, from time to time, associate with different attachment points; we call end points
that move from one attachment point to another mobile end points. Similarly, architectures that
support mobile end points are generally said to support end-point mobility. End points may change
attachment point for a variety of reasons:

• An Internet host may physically move to a new location

• An application may be migrated from one host to another [38, 83]

• An Internet service may fail-over from one server to another server [85]

• An end point with multiple attachment points may choose to use a new one

30

• A network interface may be assigned a new IP address (thus becoming a different attachment
point).

Regardless, the identity of a mobile end point does not change—only its attachment point to the
network does. Communicating with a mobile end point is problematic, however, as correspondent
end points—those end points currently communicating with the mobile end point—must address
packets to a particular attachment point, which may or not be the current location of the mobile end
point. Recognizing this difficulty, a number of researchers have proposed solutions focused on the
common case of portable Internet hosts that move from place to place in the network—so called
mobile hosts.

Many proposed approaches work by inserting a layer of indirection between an IP address and its
corresponding network attachment point, allowing the same IP address to refer to varying network
attachment points, depending on which attachment point is currently being used by the host [13].
We describe proposals based on six different techniques: Nimrod [18, 102], Mobile IP [49, 89],
the Host Identity Payload (HIP) [72], IP-based redirection [41, 128, 132, 143], Network Address
Translators (NATs) [128] and Virtual Private Networks (VPNs) [22], and multicast [43, 76].

2.2.1 Nimrod

Castiñeyra, Chiappa, and Steenstrup proposed the Nimrod architecture as a choice for the next-
generation of the Internet [18]. Nimrod introduces the notion of persistent end-point identifiers
(EIDs) that are separate from network attachment point addresses. In Nimrod, each host has its own
EID which can be used to address data packets; EIDs are mapped to current network attachment
points by the routing infrastructure itself. To support mobility within Nimrod, Ramanathan proposes
the concept of a Dynamic Association Module (DAM), an abstract entity that manages changes
in the mapping between EIDs and network attachment points [102]. The problem addressed by
the DAM is not unlike the standard IP mobility problem, however, and Ramanathan’s proposed
implementation is actually based upon Mobile IP.

2.2.2 Mobile IP

Mobile IP [49, 89] is the current Internet Engineering Task Force (IETF) standard for supporting
host mobility on the Internet. It provides transparent support for host mobility by inserting a level
of indirection into the routing architecture, similar to Nimrod. Unlike Nimrod, however, Mobile IP
does not require a redesign of the IP routing infrastructure. Mobile IP introduces a notion of a home
network—the network to which a mobile host “belongs” (conversely, all other networks are known
as foreign). The assumption is that whenever a host is connected to its home network, it will always
use the same network attachment point. Hence, a host using Mobile IP has a well-defined home
address, which is the IP address of the host’s network attachment point on its home network.

Mobile IP elevates the mobile host’s home address from its traditional function as a network at-
tachment point identifier to an end-point identifier. A mobile host always uses its home address as
the source address in any packets it transmits; Mobile IP ensures that packets addressed to a mo-
bile host’s home address are delivered to the host’s current network attachment point, regardless of
where that attachment point might be. Hence, correspondent end points see only the host’s home
address and have no indication that the host is mobile, or what its current network attachment point
might be.

Mobile IP manages packet delivery by placing a home agent on the local-area network correspond-
ing to the mobile host’s home address—its home network—which listens for packets destined for

31

Home Agent
(home network)

Mobile Node
(foreign network)

Correspondent node

IP Tunnel

Figure 2-2: Triangle routing in Mobile IP without route optimization. Correspondent nodes send
packets destined for a mobile node to its home address on its home network, where a home agent
intercepts the packets and tunnels them to the mobile node at its care-of address in the foreign
network. In some cases, a mobile node can send packets directly to the correspondent node, avoiding
the need to tunnel outgoing packets back through the home agent.

the mobile host and forwards them on to the host when it is attached to a foreign network. Concep-
tually, the home agent takes over the mobile host’s attachment point in its home network when the
host moves to a foreign network. A mobile host in a foreign network acquires a care-of address (the
IP address of the host’s network attachment point in the foreign network), which the home agent
uses to forward packets; a mobile host notifies its home agent of its new care-of address any time it
changes attachment points.

To forward a packet to a mobile host’s care-of address, a home agent encapsulates [88] the packet
in an IP tunnel. The home agent prepends an additional IP header to the packet; the new packet is
addressed from the home agent to the mobile host’s care-of address. Once the encapsulated packet is
received at the mobile host’s foreign attachment point, it is unwrapped and delivered to the mobile
host in its original form. The original packet is said to be tunneled since it is routed from home
agent to foreign attachment point based upon the addresses included in the encapsulating packet,
not those in the original packet itself. Hence, packets destined for a mobile host attached to a foreign
network first travel from source to the host’s home agent and then from the home agent to the mobile
host itself. This often circuitous path is referred to as triangle or dog-leg routing and is depicted in
Figure 2-2.

Further compounding the triangle routing problem is the widespread deployment of ingress fil-
ters [34], promoted by the IETF as a “Best Current Practice.” Ingress filtering was developed to
prevent address spoofing, where a network attachment point places an IP address other than its own
into outgoing packets in an attempt to obscure its identity from the packets’ recipient. Ingress filters
prevent the forwarding of packets with source addresses that are not “appropriate” for the network
from which they were received. Conceptually, an address is appropriate if it is received from a
network that is on the reverse-forwarding path for packets destined for that address. In other words,

32

from the point of view of router R, a source address S is appropriate for network N if R might route
packets destined for S to network N . Unfortunately for Mobile IP, mobile hosts use their home ad-
dresses as the source IP addresses for all packets, regardless of their current network attachment
points. In foreign networks with ingress filtering, the ingress filter will block the packets sent by a
mobile host.

To work around this problem, Mobile IP advocates the use of reverse tunneling, which tunnels pack-
ets originating at a mobile host currently in a foreign network back to the host’s home agent (using
the host’s care-of address as a source address), which then forwards them on to their destination
(using the mobile host’s home address as the source address) [69]. Thus, when a mobile host visits
a foreign network with ingress filtering, triangle routing occurs in both directions.

Route optimization

Perkins and Johnson present a secure route optimization option for Mobile IP to avoid triangle
routing [91]. Here, correspondent hosts cache the care-of addresses of mobile hosts, allowing com-
munication to proceed directly. It requires the home agent to send an authenticated update to cor-
respondent hosts [90], notifying them of the mobile host’s current care-of address. The resulting
Mobile IP scheme eliminates triangle routing in the forward direction but requires modifications to
the IP layer of all end hosts (regardless of whether they are mobile or not) and the existence of some
authentication mechanism to validate the care-of address updates—a task that Perkins and Johnson
note is far from trivial: “One of the most difficult aspects of Route Optimization for Mobile IP
in the Internet today is that of providing authentication for all messages that affect the routing of
datagrams to a mobile node” [91, pp. 23].

IPv6

The IETF has standardized the next version of the IP protocol, IPv6, which provides a number of
enhancements [26]. (The current version, which we refer to simply as IP, is properly known as IPv4.)
Because IPv6 provides native support for multiple simultaneous host addresses, route optimization
does not require further modifying IPv6 hosts—of course, IPv6 itself requires a massive overhaul of
the entire unicast infrastructure; deployment has been understandably slow. If deployed, however,
IPv6 extensions allow for the specification of a care-of address, which explicitly separates the role of
the EID (the host’s home IP address) and routing location (the care-of address). The rest of Mobile
IP stays largely the same. In particular, Mobile IPv6 continues to require a home agent, resident on
the mobile node’s home network, that intercepts packets destined to the mobile node and tunnels
them to the remote, care-of address. In addition, IPv6 does not simplify the task of securing the
care-of address update in any way.

2.2.3 Host Identity Payload

Recently, Moskowitz has proposed to name each Internet host by a cryptographic Host Identity [72].
In this scheme, every packet includes a source Host Identity, which is the public half of a pub-
lic/private key pair. When applied to host mobility, the Host Identity is similar to a home address
in Mobile IP in that it remains constant, regardless of a host’s current network attachment point.
Rather than replace the source address of an IP packet with their home addresses, however, mobile
hosts use their care-of addresses as the source, but also include their Host Identity using the Host
Identity Payload (HIP) protocol [73]. Furthermore, the payload of the packet is signed with the
corresponding private key. Hence, the recipient can discern not only the originating end point, but

33

also its current network attachment point, and verify that the packet was actually sent by the end
point. This approach obviates the need for any form of tunneling, but still requires some mechanism
for locating a mobile host’s current attachment point.

2.2.4 IP redirection

Teraoka, Yokote, and Tokoro proposed a Virtual Internet Protocol (VIP) that extends the IP protocol
to consider two distinct addresses: a virtual network address (VN) and a physical network address
(PN) [132]. The virtual network address serves as an EID, while the physical network address is
the traditional IP address. As in Mobile IP, hosts are assumed to have a home network where the
VN and PN are identical—the VN can be thought of as corresponding to the home address and
the PN the care of address. Routers within the network maintain an address mapping table (AMT)
that caches recently observed VN→PN pairs. A packet with identical destination VN and PNs (i.e.,
addressed to a mobile host on its home network) can be redirected by any router with an entry in its
AMT for the VN.

In the VIP scheme, a mobile host notifies a router on its home network of its new attachment
point (PN) when it attaches to a foreign network. This router then acts as a home agent for the host,
forwarding any packets addressed to the mobile hosts’ VN to its current PN by replacing the original
(home) PN with the current (care-of) PN. As the packet travels from the home network toward the
mobile host all the on-path routers cache the current PN of the mobile hosts VN. Hence, any of
these routers will serve as a home agent for the mobile host when they observe a packet destined
for the mobile host on its home network. AMT cache entries are expired in order to avoid routing
loops and misdirected packets. While more efficient than Mobile IP, VIP requires changes not only
to the IP layer of the end hosts, but network routers as well. Also, as the number of mobile hosts
grows large, AMTs at interior routers may grow prohibitively large.

Gupta and Reddy propose a redirection mechanism for IPv4 that can support mobility in a fashion
similar to Mobile IP with routing updates [41]. Originally proposed to support service replication,
the IP Redirection Protocol (IPRP) allows hosts to maintain and update care-of addresses for remote
hosts. A redirector performs the functions of a home agent in Mobile IP. Hosts wishing to contact the
mobile host first contact the redirector, which uses IPRP to provide the mobile host’s current care-
of address. Binding updates are accomplished by cascading redirections—after receiving a new
care-of address from the mobile host (using a mechanism not described in the original proposal),
the redirector would further redirect all correspondent end points to the new care-of address. The
proposed implementation of IPRP requires the modification of all IP stacks to support managing
care-of addresses.

Yalagandula et al. propose a similar redirection-approach that allows a mobile host to serve as
its own redirector [143]. When a mobile host moves to a new attachment point, it sends binding
updates to all of its correspondent hosts (which it tracks on an active partner list). The absence of
a home agent requires correspondent nodes to obtain a mobile node’s current attachment point on
their own, however.

2.2.5 NAT & VPN-based solutions

Standard NAT [122] software can accomplish similar redirection without modifying the IP stack.
By interposing a NAT between an end point and its network attachment point, NAT software can
translate home IP addresses into appropriate care-of addresses. This approach, termed Virtual Net-
work Address Translation (VNAT), was recently proposed by Su and Nieh [128]. VNAT does not

34

use a redirector or home agent, however, and does not discuss how the address of the mobile host’s
current network attachment point is obtained.

The indirection provided by NAT can also be provided through Virtual Private Network (VPN)
products. Several commercial products (like Columbitech’s WVPN solution [22]) use Transport
Layer Security (TLS) [27] to create secure VPN tunnels between mobile hosts and their home
agents. Rather than forward packets using IP encapsulation, as in Mobile IP, home agents in these
schemes use TLS tunnels and VPN address re-mapping to affect the same triangle routing.

2.2.6 Multicast mobility

Mysore and Bharghavan propose an approach to network-layer mobility that avoids the need for
a home agent or a new protocol for binding updates entirely [76]. They issue each mobile host
a permanent Class D IP multicast address [25] that serves as an end-point identifier. If multicast
were widely deployed, this approach might hold promise; because a multicast EID has the benefit
of being directly routable by the routing infrastructure, it removes the need for an explicit care-
of address. Instead, it places the burden of managing updates of end point bindings squarely on
the routing infrastructure. The binding issue remains the same, however. The mobile node must
send a binding update—it just takes the form of a multicast group join message. Similarly, the
home agent functionality is replaced by whatever entity is in charge of multicast tree rendezvous.
In this scenario, the multicast distribution tree for a host’s EIDs must be reconstructed each time
a node moves, requiring an extremely agile and efficient tree-building protocol. A later proposal
by Helmy [43] uses a traditional, non-multicast IP address as a mobile host’s home address, but
uses multicast for packet delivery. As noted by the designers, however, both schemes require a
secure, robust, scalable, and efficient multicast infrastructure for a large number of sparse groups—
a hypothetical protocol not yet available in the Internet.

2.2.7 Summary

Supporting changes in attachment point inside the network has one main advantage: end points need
not be concerned with the current network attachment point of remote end points—the network will
deliver packets appropriately regardless of an end point’s current location. However, these host
mobility schemes have several significant limitations:

1. Network-layer mobility schemes constrain the granularity of mobility. In particular, multi-
ple, distinct applications and services may exist on a host with only one attachment point.
Under the traditional IP addressing model, all of these end points share the same IP address;
hence, network-layer mobility schemes would require these end points to move in concert.
Increasing support for application migration [38, 63, 83] and service redirection [85, 119]
ensures that the end points may in fact move independently, however. This fine-grained
mobility requires each end point to have its own EID or home address, resulting in an in-
crease in the number of addresses that must be managed by the IP routing infrastructure and
severely stressing the scaling properties of many of the schemes. Indeed, the developers of the
Amoeba operating system—which supported process migration—cite the need to name indi-
vidual process end points as one of the main motivations for the development of FLIP [53],
a network-layer protocol that can assign location-independent EIDs to individual processes.
FLIP maps EIDs to network attachment points upon packet transmission.

35

2. Many network-layer mobility schemes incur unnecessary packet routing overhead (in terms
of increased latency, additional bandwidth usage, or end point processing). Some mobility
support schemes add additional packet addressing or routing overhead for all packets, regard-
less of their destination [18, 72, 76, 128]. In home-agent-based schemes, mobile end points
incur overhead when attached to a foreign attachment, regardless of whether or not they ever
move from that attachment point [41, 49, 89]. Ideally, overhead would only be incurred im-
mediately proceeding, during, or following a change in attachment point—once an end point
has “settled” at a new attachment point, an efficient scheme would treat it similarly to an end
point that had never moved.

3. Since network-layer mobility schemes conceal changes in attachment point inside the network
layer, it is often difficult for end points to detect mobility events, which often significantly
impact their operation. For example, a TCP sender attempts to estimate the properties of the
network path for the connection. A significant change in the network attachment point often
implies that previously discovered path properties are invalid, and need to be rediscovered.
This consequence is not limited to classical TCP congestion management. For example, many
Internet services are replicated at various locations throughout the Internet; these services
often attempt to serve clients from “near-by” servers (where “distance” is measured between
the client’s and server’s attachment points). If either a client or a server changes attachment
point, the service may wish to change the client-to-server assignments. Other applications
perform even more sophisticated adaptation to changing network conditions. For example,
Odyssey [81] demonstrated significant performance gains by allowing applications to adjust
their fidelity in response to a change in available network bandwidth—a common side-effect
of a change in attachment point.

4. Disconnection is not addressed. In particular, packets addressed to a currently disconnected
mobile host are discarded. Hence, end points must be prepared to handle extended periods of
disconnection that may accompany changes in attachment point.

In light of these limitations, many researchers continue to question whether network-layer mobil-
ity solutions are appropriate [21, 60, 83, 148] or sufficient [40, 45, 81, 128, 129, 145]. Cheshire
and Baker examined the various network-layer mobility approaches available to a mobile Internet
host [21] and noted that none were suitable for all classes of applications. Zhao, Castelluca, and
Baker implemented a system to allow mobile hosts to select between mobility schemes (i.e., utilize
Mobile IP or not) on a case by case basis through a Mobile Policy Table at a mobile host [148]; the
Mobile Policy Table specifies whether or not to employ network-layer mobility support between a
particular pair of end points.

Regardless of their strengths or limitations, none of the network-layer mobility proposals have yet
found widespread deployment. Hence, for the remainder of this dissertation, we will assume the
absence of such schemes. Instead, we explore methods that operate in the absence of network-
layer mobility and, in many cases, provide improved functionality and performance compared to
the network-layer schemes described above. In particular, this dissertation addresses all four of the
limitations listed above. Our approach:

• Allows end points to be arbitrarily fine-grained,

• Imposes minimal overhead on sessions that do not change attachment point, and almost all of
the overhead is incurred upon a change in attachment point, not afterward,

36

App TCP IP IP TCP App

<18.31.0.139, 22><169.229.60.64, 2345>

Figure 2-3: An Internet transport layer connection. In this example, a TCP connection has been
established between applications at IP address 169.229.60.64 and 18.31.0.139; the connection uses
port 2345 on the former and 22 on the later.

• Exposes changes in network attachment point to interested applications,

• Provides applications with sophisticated means of adapting to periods of disconnection, and

• Can function in conjunction with network-layer techniques when present.

2.3 Connection migration

When two end points wish to exchange data packets, they employ a transport layer protocol to
manage delivery. Connection-oriented transport protocols establish a communication channel, or
connection, between two end points and exchange packets over the connection; packets sent by
one end point are delivered to the other, and vice versa. One of the main tasks of a transport
protocol is to multiplex communication channels between end points—that is, to provide end points
with more than one channel at a time and demultiplex incoming packets onto different channels.
Some transport protocols may provide additional services such as reliability for connections. For
example, Transmission Control Protocol (TCP) connections reliably deliver packets to applications
in the order in which they were transmitted [97].

Conceptually, an application forms a connection between two end points. Due to the constraints
imposed by the layered nature of the Internet stack, transport protocols must interface with the
network layer using addresses understandable by that layer—IP addresses. Hence, connections in
the Internet are communication channels between two network attachment points, not end points.
Multiplexing is supported through the use of ports; a port is simply a tag used to separate incoming
traffic into distinct channels. Hence, an Internet transport connection end point is specified in terms
of a port on an attachment point, or 〈IP address, port〉 pair, as shown in Figure 2-3. This naming
mechanism proves problematic if an end point changes network attachment point.

Once a connection is established between two attachment points, the local end point will only accept
packets addressed from the remote attachment point. Hence, connections established by an end
point at one attachment point cannot be used at another attachment point, even by the same end
point. In order to continue communications between the same two end points, a new connection
must be established between the new attachment points. Creating a new connection gives rise to
two complications. First, each end point much discover a new attachment point and somehow
communicate it to the remote end point. Second, after both end points agree on the new attachment

37

points, the end points must abort the old connections and establish new ones. For reliable transport
protocols, the process of changing attachment points may result in the loss of packets that were not
yet successfully transmitted on the initial connections.

A number of researchers have proposed mechanisms to allow connections to adapt to changes in
attachment points. The act of moving a connection from one attachment point to another is referred
to as connection migration. Most connection migration proposals have focused on TCP, and have
either introduced a higher-level mechanism to stitch together multiple separate TCP connections
into one virtualized connection [60, 64, 82, 99, 145, 147] or extended the TCP protocol itself [37, 44,
129]. In addition, a number of recently-proposed transport protocols support connection migration
as a standard feature [57, 126]. We briefly describe the essence of these approaches below.

2.3.1 Virtualized connections

Zhang and Dao proposed a Persistent Connection model for TCP where the connection end points
are described in terms of location-independent EIDs [147]. In their model, a Persistent Connection
exists between two end points, not their attachment points. The mappings between global EIDs and
current network attachment points are stored in a global clearinghouse. When an end point changes
network attachment point, it notifies the clearinghouse, which in turn notifies all end points in the
system of the change in attachment point. To avoid unnecessary notifications, a mobile end point
can provide to the notification service the set of correspondent end points to notify. Despite this
optimization, Zhang and Dao observe that their global EID scheme continues to suffer from poor
performance and scalability properties due to its reliance on a single, centralized clearinghouse.

In the Persistent Connection model, changes in attachment point are handled by a Persistent Sup-
port Module at each end point. The support module uses the new attachment points to establish re-
placement TCP connections for existing connections invalidated by the change in attachment point.
Unfortunately, data that has not yet been delivered on previous connections is lost—violating TCP’s
reliable delivery semantics. Qu, Yu, and Brent later proposed a similar virtualization scheme that
preserves TCP’s delivery semantics [99]. In their Mobile TCP solution, end points use a proprietary
interface to the operating system to extract from the original connection any bytes that have not
yet been successfully delivered to the remote end point, which it then retransmits [100]. Okoshi
et al. proposed a functionally similar solution called MobileSocket that does not require access
to operating system buffers [82]. Implemented in Java, MobileSocket buffers all outgoing data at
user level and establishes a separate control channel between connection end points. End points
in MobileSocket exchange application-layer acknowledgments as the TCP connection progresses,
allowing both ends to remove data from their MobileSocket buffers as it is successfully received at
the correspondent end point.

In all three virtualization approaches—Persistent Connections, Mobile TCP, and MobileSocket—
connection reestablishment is managed by a software library interposed between applications and
the operating system. The library conceals the connection virtualization from the application, mak-
ing it appear as if the original connection continues uninterrupted. This interposition approach
was recently revisited by Reliable Sockets (Rocks) [145]. Similar to the previous approaches,
Rocks allow TCP connections to support changes in attachment points. In contrast, Rocks pre-
serve TCP’s reliable delivery semantics without requiring any changes to the operating system or
explicit application-layer acknowledgments, and safely inter-operates with end points that do not
support Rocks. Rocks were developed concurrently with our work, and, indeed, many of the me-
chanics of Rocks implementation bear considerable similarity to the TCP virtualization approach
described in Chapter 4. Unlike our approach, however, Rocks impose TCP-like delivery semantics

38

on connections and cannot provide unreliable, out-of-order, or unconnected delivery semantics such
as those provided by UDP.

The home agent approach has also been applied at the transport layer. MSOCKS [64] proposes using
a SOCKS proxy [61] to forward transport connections to a mobile end point. Correspondent end
points establish front-end TCP connections with the proxy; the proxy then establishes a separate,
back-end connection with the mobile end point. The proxy splices the two connections together,
copying all incoming traffic on the front-end connection to the back-end connection and vice versa.
If an end point moves, it establishes a new back-end connection with the proxy, which splices
it to the old front end connection. Hence, the mobile end point’s change in attachment point is
concealed from the correspondent end point. As before, the SOCKS library conceals the connection
virtualization from applications on the mobile end point. NetMotion has a similar commercial
product that uses a proprietary proxy to support host mobility [79].

2.3.2 Modified TCPs

Some researchers have proposed modifying TCP itself to support changes in attachment point.
Huitema proposed ETCP [44], an extended TCP protocol that includes a flow identifier in the TCP
header. By assigning each TCP connection a unique connection identifier, end points can associate
incoming packets with the appropriate connection regardless of what attachment point was used to
transmit them. Hence, while mobile hosts continue to require a home agent to forward along initial
packets from a new remote end point, route optimization can be performed implicitly by the corre-
spondent end points. Correspondent end points respond to mobile end points by simply addressing
subsequent packets to the address used most recently by the mobile end point. If the mobile host
fails to respond, packets can always be retransmitted to the home agent.

An alternative TCP extension, TCP-R sends explicit attachment point updates to correspondent
end points [37]. If a mobile end point using TCP-R changes attachment point, it sends a special
“Redirect Request” or RD_REQ message containing the IP address of its previous attachment point
and the IP address of its current attachment point. Because of TCP-R’s explicit specification of IP
addresses and inability to change port numbers, it cannot work across NATs. Furthermore, many
firewalls and stateful proxies may not properly handle redirected TCP-R connections because they
do not conduct a traditional TCP connection establishment between the new attachment points.
We present a TCP connection migration scheme in Chapter 4 that remedies these deficiencies as
well as several others. After its original development as an approach to handle host mobility [120]
and subsequent extension to support service fail-over [119], other researchers adapted (e.g., M-
TCP [129]) and extended (e.g., support for concurrent migration [136]) our approach.

2.3.3 New transport protocols

A number of proposed transport protocols have begun to incorporate rudimentary support for mobile
or even multi-homed end points but have not yet found wide-spread acceptance. The Datagram
Congestion Control Protocol (DCCP) [57] allows end points to notify correspondent end points of
a new network attachment point. An end point simply sends a special DCCP-Move packet from its
new attachment point, and the remote end point addresses all further packets on that connection to
the new attachment point; further packets from the previous attachment point are ignored. As noted
by DCCP’s authors, however, “DCCP’s support for mobility is intended to solve only the simplest
multi[-]homing and mobility problems. For instance, DCCP has no support for simultaneous moves.
Applications requiring more complex mobility semantics, or more stringent security guarantees,
should use an existing solution like Mobile IP or [the one presented in this thesis].” [57, pp. 52]

39

The Stream Control Transport Protocol (SCTP) [126] also allows end points to change attachment
points. It further allows end points to use multiple attachment points simultaneously. In its current
form, however, SCTP requires end points to specify all the attachment points they wish to use
during the duration of a connection at connection establishment. A proposed extension [125] allows
end points to introduce new attachment point bindings on-the-fly (i.e., after a change in attachment
point) in order to make SCTP more useful in mobile environments [105].

2.4 Session abstraction

Many Internet applications are architected using the notion of sessions—long-term relationships
between application end points that typically span multiple transport connections. Examples of this
approach include interactive Web sessions, file transfer applications, interactive log-in sessions, and
multi-modal conferencing sessions. Sessions typically consist of one or more transport connections
and provide a convenient abstraction with which to manage coordinated application state between
end points. In general, a session can encompass any number of end points; in this dissertation, we
will consider sessions encompassing exactly two end points.

Application-layer protocols often use the session abstraction to efficiently manage application state
relevant to multiple connections. Similar to connections, sessions create a context for packet ex-
change that allows end points to coordinate state relating to the packets they are exchanging. While
connection state is restricted to issues of sequencing and retransmissions with a particular con-
nection, applications often use session state to provide a framework for additional services that
may span multiple connections, such as checkpointing, compression, authentication and confiden-
tiality (e.g., TLS [27]), unified congestion management (e.g., the Congestion Manager (CM) [7]),
and multi-party conferencing (e.g., the Session Initiation Protocol (SIP) [108]). Some sessions last
only long enough to send a short packet in one direction; others last for much longer periods of
time during which the end points exchange a significant amount of information. As the length and
complexity of a packet exchange increases, the session abstraction becomes increasingly powerful.
Providing enhanced services via a session abstraction often results in resource savings; by defining
service parameters at session establishment, end points amortize the cost of any required negotiation
across the duration of the session. Other session services enhance the user experience. For exam-
ple, SSH agents [144] manage user credentials for the duration of an interactive session. A user
authenticates herself to the agent only once (e.g., by typing a password); the agent then performs all
further authentication requests on behalf of the user, freeing her from tedious, repeated password
entry.

The Internet protocol stack provides no explicit support for the session abstraction. The now-defunct
Open Systems Interconnection (OSI) communications model [149], however, defines an explicit
session layer to provide synchronized message exchange [48]. In addition to the setting up and
tearing down of session associations, token exchange, and duplex negotiation, the OSI session layer
allows for the definition of synchronization points within the session, the interruption of a session,
and session resumption from an agreed upon synchronization point.

2.4.1 Session-layer mobility

Because of the inability of connections to cope with changes in end point attachment point, appli-
cations have been forced to develop their own application-specific mechanisms for handling mo-
bile end points. Many applications have found it convenient to leverage the session abstraction to
coherently aggregate multiple connections from disparate network attachment points into one rela-
tionship. HTTP cookies [35] for Web-based applications is a good example of this approach: By

40

including HTTP cookies in both HTTP requests and responses, Web clients and servers exchange
session state that survives the termination of a particular HTTP exchange or transport connection.

In fact, researchers have previously proposed providing mobility as a general session-layer ser-
vice [60, 139], although the design and implementation are significantly different from our Mi-
grate architecture. One of the main issues in designing a session-layer mobility scheme—indeed,
any mobility scheme—is deciding how to identify the end points. In the Session Layer Mobil-
ity (SLM) scheme [60], end points use a new global naming service—a so-called User Location
Server—to provide an end point’s current attachment point; end points change connection attach-
ment points through an undocumented TCP-specific protocol extension, presumably similar to the
virtualization approaches described above. Other researchers have proposed extensions to the IETF-
standardized Session Initiation Protocol (SIP) [108], originally developed to help establish tele-
phone and conference sessions, to track end-point attachment points [139]. SIP uses email-like
addresses (such as snoeren@lcs.mit.edu) to define end points.

2.4.2 End-point naming

By binding end-point names to IP addresses, a naming system allows an end point to be identified by
a more descriptive name than its network attachment point [109]. An end point wishing to establish
a session with another end point must first resolve the remote end point’s name into an IP address to
use for communication. A session is said to be bound when the names of its end points are resolved
to network attachment points.

Networked applications have long eschewed IP addresses in favor of their own naming systems
to describe remote end points. For example, Internet applications often refer to end points using
Domain Name System (DNS) hostnames (e.g., www.lcs.mit.edu) [68], service records (e.g.,
DNS “MX-records”), or content-based schemes like Intentional Naming System (INS) intentional
names [1] and distributed hash table keys [127]. Each of these naming systems uses a different
namespace, but they all provide a resolution mechanism that returns the binding for a particular
name (e.g., DNS will resolve www.lcs.mit.edu to an IP address like 18.24.10.46). The naming
system resolves the end-point name used by the application to an IP address that specifies a partic-
ular network attachment point before packets are sent. The IP address can then be used to deliver
data to the network attachment point used by the end point of interest. In some cases, a name may
resolve to multiple addresses; the semantics of multiple bindings are application-specific, but in
most cases any of the addresses can be used.

The end-point binding stored in the naming system could become out of date because the named
end point is no longer located at the network attachment point specified by the naming system.
Such a binding is termed inconsistent, since it is no longer consistent with the current mapping
between the end point and its network attachment point. Dynamic naming systems like dynamic
DNS [141] allow the replacement of inconsistent bindings with new, up-to-date bindings reflecting
an end point’s current network attachment point.

Naming systems use widely varied methods to store and retrieve name bindings. Internet naming
systems usually use a distributed set of resolvers (often called name servers) that store (or are
responsible for computing) subsets of the mappings. An end point that wishes to resolve a particular
name must then contact these name servers across the network. Most end points attempt to avoid
the cost of repeated queries (both in terms of time and consumed bandwidth) by caching bindings.
Hence, multiple packets destined for the same end point are addressed using the IP address resulting
from only one resolution.

41

Cached bindings may become inconsistent in a dynamic environment. Despite the ability of a dy-
namic naming system to update its bindings to reflect changes in an end point’s network attachment
point, end points using a cached binding will remain oblivious to the change. Hence, some mech-
anism must be employed to invalidate the inconsistent cached binding and re-resolve the end point
name to its new network attachment point.

2.4.3 Avoiding inconsistency

In general, there are at least three ways to avoid binding inconsistency:

• The first approach is for applications to use a late binding technique, where the end-point
name is not resolved to a network attachment point until as late as possible—just before a
packet must be sent—and is not cached. In its simplest form, the remote end point’s name is
freshly resolved for each new packet to be sent.

• A second approach is for applications to resolve end-point names at the beginning of a session
and cache the bindings for the duration of the session. This technique introduces a window
of vulnerability when session bindings can become inconsistent, but the window can be kept
small by using only short sessions. When sessions are sufficiently short, and the interval
between them correspondingly large with respect to the frequency of changes in attachment
point, an end point is unlikely to change network attachment points during a session. Hence,
a binding obtained at the beginning of a session remains consistent throughout the session’s
lifetime.

• The third approach is for end points to asynchronously update the end-point bindings upon
changing network attachment points. Rather than periodically polling for new bindings as
described in the first approach, a binding update can be used to notify end points of the
inconsistency of the previous binding, and to provide the current, consistent binding.

Each approach is most appropriate under different conditions, depending primarily on the frequency
with which end points change attachment points. Researchers typically consider two classes of
mobility and describe them in terms physical displacement, but they correspond equally well to
frequency of change:

• Micro- or link-local mobility refers to the case when end points move inside a confined local
area, typically behind a single base station or access point, generally using the same network
technology and provider. Time scales can be quite small, even on the order of a round trip
time (RTT).

• Macro- or wide-area mobility, in contrast, deals with the more general case of movement
across subnets, providers, and network technologies. Changes typically occur on coarser
time scales (i.e., 10s of RTTs or more) than micro-mobility.

Late binding avoids end-point binding inconsistency by delaying resolution until the last possible
moment and re-resolving the binding at every possible opportunity. Hence, late binding is appropri-
ate in the micro-mobility case, when end points change attachment point frequently. Late binding
was employed by Adjie-Winoto et al. in the Intentional Naming System (INS) [1]. INS integrates

42

name resolution and message routing to track highly mobile services and nodes. The TRIAD ar-
chitecture [40]) proposes a similar approach. Similarly, wireless networks often conceal extremely
rapid changes in attachment point across a homogeneous link technology from the network layer
through late binding at the physical and link layers (e.g., via link-layer bridging and roaming [46]).

The significant polling overhead typically incurred by late binding can be avoided, however, when
changes are less frequent (i.e., multiple consecutive resolution operations return the same binding).
When attachment points are stable enough to allow bindings to remain consistent for some period of
time, end points can resolve the remote end point name only at the beginning of a session and keep
session lengths short; the likelihood of an end point changing network attachment point during the
session is low. Unfortunately, this approach eliminates much of the benefit of sessions—the shorter
the session duration, the less benefit there is to negotiating session services, as their costs will not be
favorably amortized. While there may be little penalty for those applications that do not use session
services, there remains the possibility that an end point may occasionally change attachment points
during even short sessions, leaving the session in an inconsistent state.

Studies suggest that Internet end points do not move frequently in the wide area, even when hosts
are mobile [131]. Binding updates are the best choice in this case, as they use caching to avoid
the polling overhead of late binding but enable sessions to recover from the occasional change in
attachment point. (In situations when attachment points change rapidly in a confined area, such as a
cellular network, and the binding update overhead may become excessive, binding updates may be
usefully combined with late binding micro-mobility approaches [16].)

2.4.4 Managing updates

Issues with a binding update scheme include determining when, to whom, and from where to send
updates. Clearly, end points should issue binding updates immediately following a change in attach-
ment point. With regard to whom to send updates, end points can be classified into two categories
with respect to a mobile end point: those that have cached the end point’s binding, and those that
have not. The first class must receive a binding update; the second, however, need not be notified
so long as it can be assured that any future bindings will be resolved to the new network attachment
point. If bindings are resolved by a naming system that allows dynamic updates, it is necessary only
to notify those end points that have cached the mobile end point’s binding; updating the naming
system suffices to handle the rest.

The last issue is determining from where the binding updates should be sent. Since updates need to
be sent to the set of end points currently in communication with a mobile end point, the mobile end
point itself is in the best position to generate the updates. A mobile end point can directly notify all
correspondent end points upon any change in attachment point by sending them a binding update.
Directly updating correspondent end points of changes in attachment point has two advantages:

1. The binding update shares fate with session connectivity. The binding update can be delivered
to the remote end point if and only if the session can continue. An end point may not always
have connectivity to the naming system; hence, direct binding updates ensure that established
sessions can continue if at all possible.

2. Direct binding updates can be implicit. The updates need not explicitly specify a new at-
tachment point; instead, the attachment point may be inferred from source IP address of the
binding update itself. This implicitness is especially important on the Internet when NAT is

43

used to provide global connectivity for private networks [24]. For example, packets originat-
ing from a network attachment point with an IP address from a private address space [103]
may be rewritten by a NAT to have a globally-routable address before being forwarded to the
Internet. Hence, the end point using that attachment point believes it to have one IP address
(e.g., 192.198.1.10) while remote end points must address packets to it using a different IP
address (e.g., 24.147.17.155).

Further, some network address translation schemes (e.g., AVES [80]) are not “stable,” meaning the
network attachment point used to communicate with one remote network attachment point cannot be
used to communicate with a different remote attachment point. In this case, the IP address seen by
each correspondent end point may be different from those seen by other correspondent end points.
Hence, the only way to ensure that end points determine the correct IP addresses is to send binding
updates directly between the two communicating end points.

The major limitation of direct updates is the inability to recover from concurrent changes in the
attachment points of both end points. If an end point changes attachment point before the delivery
of a binding update from the remote end point, neither end point has an up-to-date binding of the
other end point. The end points cannot recover without a third party to broker the binding updates.
While a reachable third party is strictly necessary in this case, the naming system suffices. The end
points can recover the session by re-resolving the remote end point using the same naming system
used during session establishment.

Assuming that each end point resolves a remote end point’s name at the beginning of a session and
caches the binding for the duration of the session, the set of end points that have cached a given
mobile end point’s binding is at least the set of end points currently engaged in a session with the
mobile end point. Because of a race condition between naming system updates and resolutions,
there may be additional end points that have already resolved the mobile end point’s name to its
previous attachment point but not yet succeeded in initiating a session. These end points will not
see any updates to the naming system.

When the naming update arrives after the binding has been resolved by the naming system, the
querying end point will unsuccessfully attempt to initiate a session to the remote end point’s old at-
tachment point. End points can keep the number of such cases small by performing resolution at the
last possible moment and not caching bindings across sessions. Ultimately, to ensure correctness,
end points should attempt to re-resolve a remote end point’s name if initial session establishment
fails. In practice, the trend toward dynamic naming systems has already caused such retries to find
their way into applications—for instance, current FreeBSD telnet and rsh applications try to contact
alternate network attachment points if the naming system returns multiple bindings for an end point.

2.4.5 Controlling change

So far, we have assumed that changes in attachment point were an inevitable occurrence, and have
not explored why they happen. In practice, deciding when an end point should change its attachment
point, and where it should move to, are complicated issues. Often, these decisions are based on user
policy rather than network constraints (e.g., a user may prefer a less expensive network attachment
point or one with higher bandwidth). This decision is especially complicated for multi-homed end
points, as different attachment points often have varying characteristics.

Inouye, Binkley and Walpole observe that the metrics of interest are application-dependent, and vary
greatly both in terms of dimension (e.g., bandwidth, latency, loss rate) and acceptable ranges. They

44

propose Physical Media Independence (PIM) [45], an architecture for supporting multiple physical
interfaces on multi-homed Internet hosts. PIM supports policy-based attachment point selection but
relies on Mobile IP to provide network-layer mobility support for applications unable to explicitly
handle address changes.

As an additional complication, an end point may wish to select a new remote end point when the
local network attachment point changes—perhaps because the new network attachment point is ill-
suited for continued communication with the previous remote end point (i.e., the network path has
limited bandwidth, high loss rate, or long latency). This intervention is particularly appropriate for
end points communicating with replicated servers. In such cases, clients may often select between
multiple potential remote end points, some more capable of providing efficient service to particular
network attachment points than others. Hence, a practical session abstraction must incorporate a no-
tion of connectivity quality and allow for arbitration between multiple potential network attachment
points, both local and remote.

2.5 Disconnection

One of main the challenges for applications operating in a mobile environment is an end point
that disconnects [111]. A significant amount of research has focused on allowing mobile clients
to continue to function while disconnected. Applications that do not require network connectivity
clearly require no additional support. Other applications do not explicitly utilize network resources
themselves but access files stored on a networked file system. In this case, the networked file system
must support disconnected operation. For example, the Coda file system [74] allows disconnected
clients to use locally cached copies of files and reconciles any conflicts upon reconnection. Coda
proactively hoards copies of files that are likely to be needed while disconnected, allowing most file
operations to proceed even while disconnected.

Network applications—those that explicitly communicate with remote application end points—
require a far greater level of support. In some instances, applications can defer communication
yet continue to provide a user with some level of functionality. In particular, applications based
on the Remote Procedure Call (RPC) model [14], where each communication is a request-reply
exchange, have been successfully adapted for disconnected operation using the Rover toolkit [51],
which queues RPC for later delivery. In addition to queuing RPCs, the Rover toolkit can emulate
Coda’s hoarding process; instead of copying or relocating files, Rover relocates the remote session
end point to the mobile host through the use of dynamic objects. When both end points are located
on the same mobile host, no network communication is needed. Similar ideas appear in the HTTP-
based Mobile Extensions proposed by Dahlin et al. [23], which allow HTTP session end points to
be hosted at proxies throughout the network, or in the case of disconnection, at the mobile client
itself.

2.5.1 Suspend/resume

Unfortunately, the hoarding approach does not apply when the remote end point cannot be cached
or relocated to the disconnected host. We are particularly interested in session-based applications
whose remote end points cannot be easily relocated. Hence, we focus on resuming the session once
connectivity is reestablished. In our model, sessions are suspended when the end points become
disconnected, and resumed when connectivity returns.

To enable a form of suspend/resume operation, some network-layer mobility schemes [128] and
connection migration proposals [37, 60, 82, 145] conceal periods of disconnection from applica-

45

tions. In addition to being problematic to implement, concealment often yields sub-optimal perfor-
mance, and results in significant amounts of wasted resources. In particular, concealing disconnec-
tivity becomes extremely difficult when applications require periodic communication or keep-alive
messages. Further, if concealment is successful, the application is unable to adapt to changes in net-
work conditions and continues consuming system resources (CPU, memory, kernel buffers, timers,
file descriptors, etc.) while disconnected. Many of these resources are scarce, and cannot be effi-
ciently multiplexed.

Systems like Rover and Coda assume an asymmetric resource balance between client and server,
and view “servers being the true home of data and clients merely being caches.” As an increasing
portion of Internet hosts become mobile and themselves resource-poor, and the notion of peer-to-
peer computing expands, this asymmetry assumption becomes increasingly tenuous. It is becoming
unreasonable to assume the correspondent end point of a mobile end point is neither mobile nor re-
source poor. Hence, we consider resource conservation on both of the hosts involved in the session.

Applications are traditionally suspended by creating snapshots, or checkpoints, of their process
execution state, which can later be restored in order to resume process execution from the same
state. This technique has been applied to migrate applications from one host to another [63], or to
restore applications after a system crash. Unfortunately, many applications handle several sessions
inside of one process; traditional process-based checkpointing does not allow individual sessions to
be independently suspended or resumed.

2.5.2 Session management

Researchers have proposed several specialized techniques to enable the management of individual
sessions within a process. For example, the Java Servlet Specification v2.3 [130] supports the
notion of explicitly storing application state inside session data structures, which can be individually
passivated, resumed, and shuttled between replica servers using the native Java serialization and
RMI mechanisms. Servlet sessions include only application state, however, and do not reference
any network connections or system resources (e.g., files, locks, timers, etc.) that may be needed.

In contrast, Resource Containers [10] and Scout paths [71] both provide mechanisms to associate
application and system resources, allowing system resources to be charged to individual sessions.
IO-Lite [86] goes one step further by blurring the distinction between system and application state.
Network buffers in IO-Lite are at once application and system state—only one physical copy of
transmitted data exists in memory. None of these approaches allow system resources to be sus-
pended or removed from active use. Hence, while they may be charged to a particular application
session, they cannot be safely released when a session is suspended.

2.5.3 Pervasive computing platforms

Mobility and disconnectivity support are two aspects of the larger vision of pervasive computing
in which both communication and computation migrate across heterogeneous platforms. In order
to support such powerful operations, pervasive computing platforms typically define specific pro-
gramming and inter-process communication (IPC) models. One.world [39] defines a Java-based
environment in which to build pervasive applications and supports both host and fine-grain appli-
cation or session mobility through the use of specific RPC mechanisms [38]. One.world’s tuple
spaces allow names to be dynamically bound to different values, depending on the current environ-
ment; all bindings are invalidated when end points change location and are resolved again from the
new location. This dynamic binding is similar to the concept of contextual objects, introduced by

46

Kermarrec et al., which allow one name to correspond to a variety of data objects based upon the
current context [56]. This concept also exists in Active Names, which map names to a chain of
mobile programs that can customize how a service is located [138].

The main drawback of pervasive computing platforms is that they require a complete redesign of
existing applications. This dissertation focuses on providing many of their benefits, in terms of
support for mobile and disconnected session end points, while preserving the traditional POSIX
API. By doing so, legacy applications can realize much of the benefits and programmers can design
new, mobile-aware applications in traditional, session-oriented style by leveraging our expanded
API.

47

48

A worker may be the hammer’s master, but the hammer still prevails.
A tool knows exactly how it is meant to be handled,

while the user of the tool can only have an approximate idea.

— Milan KunderaChapter 3

A System Session Abstraction

This chapter presents the first component of the Migrate mobility architecture: a system session
abstraction. Migrate elevates the session relationship from an internal application construct to a
first-class entity described by the application but managed and maintained by the system. Appli-
cations employ a novel Application Programing Interface (API) to name two session end points
using any naming system of their choice, and Migrate preserves the relationship and communica-
tions between them in the face of any changes in network attachment point. This preservation is
a two step process: First, the session relationship must be maintained by ensuring each end point
has an accurate understanding of the other end point’s current network attachment point. Second,
any established communication channels between the end points must continue to operate in the
face of changes in attachment point. This chapter focuses on maintaining the session relationship;
preserving communications is discussed in the following chapter.

The rest of this chapter is organized as follows. It begins by introducing Migrate’s session ab-
straction, its API, and accompanying control protocol in Section 3.1. Section 3.2 discusses the
additional security concerns introduced by the session layer. The chapter concludes in Section 3.3
with a demonstration of how Migrate sessions enable host mobility.

3.1 A session layer

Migrate introduces a session layer to the Internet protocol stack. This layer presents a simple
abstraction—a session—to the application to handle changes in network attachment points. In Mi-
grate, a session is an association between two communicating end points, consisting of one or more
connections. Figure 3-1 shows a session consisting of three connections. Rather than name end
points by their attachment points—as connections do with IP addresses—or prescribe some novel
naming system, Migrate allows applications to name session end points using an arbitrary nam-
ing system of their choice (e.g., Domain Name System (DNS) hostnames); they simply provide
Migrate with the names and a method to resolve them. Migrate sessions track the end points as
they change network attachment points, maintaining the end-point relationship requested by the
application.

Migrate separates the task of initial network attachment point resolution from end point tracking,
or session maintenance. Migrate employs an application-chosen naming system to initially resolve
end point names to attachment point addresses; end points adapt to changes in session attachment
points themselves. This separation is key to Migrate’s ability to support flexible end point naming

49

A
TCP2 B

TCP1

RTP/UDP

Figure 3-1: A session between end points A and B containing three separate connections: two TCP
connections, TCP1 and TCP2, and an RTP/UDP stream.

Method Description

Session session_create(int fd, int flags) Create a session
Session get_session(int fd) Retrieve a connection’s session
int session_close(Session s) Destroy a session
void set_lookupfunc(Session s, LookupFunc f) Set remote lookup function
void set_lookupname(Session s, LookupFunc f) Set local lookup identity
int register_handler(Session s, Handler h) Register a mobility handler
int migrate(Session s, struct sockaddr *addr) Migrate to new attachment point
int add_connection(int fd, Session s) Add a network connection
int remove_connection(int fd) Remove a network connection

Table 3.1: Session API exported by the Migrate session layer

while efficiently managing changes in attachment point; Migrate leverages existing dynamic naming
systems yet enables robust, efficient session maintenance—end points can change attachment points
even in the absence of a reachable naming system. Migrate performs session maintenance between
the communicating peers themselves using a novel session control protocol.

3.1.1 Session API

Applications specify their notions of a session by explicitly joining together related transport-layer
connections (or destinations in connection-less protocols). Sessions are instantiated using the ses-
sion_create() function. session_create() takes two parameters: an initial, established
connection to become part of the session, and a set of flags, which specify various default behaviors
listed in Table 3.2 and are discussed as appropriate below. Since the connection has already been
established by the application, it identifies the desired remote end point. Once established, a session
is identified by a locally-unique token or Session ID.

The session layer exports a session abstraction to the application, manages constituent connections
as a group, and adapts to changes in network attachment points as needed. These adaptations include
tracking the remote end point as it changes network attachment points, moving the local end point to
another attachment point if the current one becomes unusable, and suspending the session entirely if
it becomes disconnected. The conditions under which Migrate performs these actions on a particular
system are dictated by a policy file, discussed in Chapter 6 and detailed in Appendix A.

50

Flag Meaning

M_ALWAYSLOOKUP Rebind the remote end point on any change in attachment point
M_AUTOCLOSE Terminate the session when all constituent connections have closed
M_DONTMOVE Do not automatically adjust to changes in local attachment point availability

Table 3.2: The flags that may be passed to a session_create() call. M_ALWAYSLOOKUP and
M_DONTMOVEmay not be passed simultaneously.

The selection of local network attachment point (in the case of multi-homed end points) and con-
nection transport protocols remains completely under the application’s control. Applications retain
control over the characteristics of their transport connections (e.g., port number, protocol options,
buffer size, etc.) regardless of whether or not they are part of a session.

Figure 3-2 shows how a typical network application would use the session abstraction. Applications
tell Migrate how to name remote end points through the set_lookupfunc() call. LookupFunc
is a structure (shown in Figure 3-3) containing both a naming system resolver and an end-point
name (to be passed into the function)—e.g., gethostbyname() and foo.bar.com. Normally,
when an end point changes attachment point, Migrate resumes sessions by contacting correspondent
end points at the same IP addresses as before. Occasionally, however, both end points may move
simultaneously causing such a resumption to fail. In that case, Migrate invokes the resolution
function provided by the application to refresh the remote end point binding.

In many client-server applications, the client must be able to initially locate the server, but it is
not usually necessary for the server to asynchronously locate the client using a naming system.
Hence, such applications typically do not explicitly exchange any end point information other than
IP address. In cases when both the client and the server may change attachment points, however, this
name exchange becomes necessary as the server may need to invoke the resolution function if the at-
tachment points change simultaneously. In such instances, a client may call set_lookupname()
with its own name, which is passed to the remote end point upon session establishment. This iden-
tity is then used at the remote end point as an argument to the registered LookupFunc function if
necessary.

Some naming systems use the same name for multiple attachment points and resolve the binding
differently based upon the network attachment point of the end point requesting resolution [2].
This technique is often used to direct clients toward a particular network attachment point of multi-
homed end points; end points with network attachment points in one portion of the network receive
a binding to one network attachment point, while end points with network attachment points in
another portion of the network will receive a different binding. Typically, the naming system ar-
ranges to return a binding to the network attachment point that can provide the “best” service where
“best” is based on some particular application-specific metric. Hence, an end point may wish to
consult the naming system to reevaluate its choice of remote attachment point after any change in
local attachment point. In that case, applications can pass the M_ALWAYSLOOKUPflag to the ses-
sion_create() call. Migrate will then rebind the remote end point anytime the local attachment
point changes regardless of whether the remote end point has changed attachment point or not.

In some cases, end points may wish to take application-specific action upon changes in attachment
point, either local or remote. Hence, Migrate provides applications with the opportunity to register
a handler function, which Migrate invokes any time a session end point changes attachment point.

51

char hostname[256];
char name[] = "foo.bar.edu";
int fda, fdb;
struct hostent *dhost;
struct sockaddr in *daddr;
migrate session *sid;
migrate lookupfunc lf;
migrate handler mobhandler;

/* Deterine local hostname */
gethostname(&hostname, 256);

/* Find a remote end point */
dhost = gethostbyname(name);

/* Validate remote end point */
daddr = valid address(dhost);

/* Establish a connection */
daddr−>sin port = htons(PORTA);
connect(fda, daddr, sizeof(struct sockaddr));

/* Create a new session including connection fda */
sid = session create(fda, flags);

/* Specify end-point discovery mechanisms */
lf−>func = gethostbyname;
lf−>arg = &name;
set lookupfunc(sid, lf);
lf−>arg = &hostname;
set lookupname(sid, lf);

/* Establish a second connection */
daddr−>sin port = htons(PORTB);
connect(fdb, daddr, sizeof(struct sockaddr));
add connection(fdb, sid);

/* Register interest in changes */
register handle(sid, mobhandler);

Figure 3-2: A sample Migrate-aware application using the session abstraction

52

struct migrate lookupfunc t {
struct hostent * (*func)(const char *); /* Function to call */
const char * arg; /* Parameter to pass */

};

typedef struct migrate lookupfunc t LookupFunc;

Figure 3-3: The C type signature of a Migrate LookupFunc structure

Flag Meaning

M_LOCAL There has been a change in local attachment point
M_REMOTE The remote end point changed attachment point
M_INSTANT The change in attachment point appeared instantaneous

Table 3.3: The flags that may be passed to a Migrate handler function

Applications register a handler function with the register_handler() call. Migrate calls
a handler function with two parameters: the Session ID of the session experiencing a change in
attachment point and a set of flags. Table 3.3 lists the flags and their meaning.

The first two flags are set according to which end point experienced a change in end point—remote,
local, or both. Applications interested in learning the new location of an end point after session
resumption can do so through the standard operating system calls (e.g., getsockname() and
getpeername() on UNIX platforms). In many instances, a change in attachment point appears
instantaneous in that the first notification that the remote end point is no longer at its previous
attachment point is a binding update describing the end point’s new attachment point. In such
instances, Migrate sets the M_INSTANT flag.

In other cases, however, an end point may disconnect for some period of time, meaning it is no
longer reachable at its last known attachment point, but has yet to update either the local end point
or the naming system with its new location. Because certain applications may want to know of the
disconnection as soon as possible, Migrate invokes the registered handler as soon as Migrate detects
disconnection. For example, a streaming media server application may wish to begin buffering live
streams for later replay. Migrate provides a number of services to assist applications in dealing with
periods of disconnectivity. These extensions to the session abstraction are presented in Chapter 5.
Unless an application takes special action using these extensions, Migrate invokes the handler again
when session connectivity is restored.

Normally, Migrate manages changes in both local and remote attachment points for applications.
On occasion, however, applications may wish to explicitly move sessions from one local attach-
ment point to another. This functionality is provided through the migrate() call. Applications
can pass the name of an alternate local attachment point to use, just as they would in a standard
connection bind() call. Applications that wish to manage local end point selection entirely by
themselves may pass the M_DONTMOVE flag on session creation, which will prevent Migrate from
reacting to any changes in local attachment point availability. When the M_DONTMOVE flag is set,
Migrate suspends sessions using attachment points that no longer provide the needed connectivity.
This flag overrides the default behavior specified by system policy, which would typically migrate
such sessions to another attachment point.

53

Connecting Established Migrating Lost

Unsupported Frozen

Figure 3-4: The session Finite State Machine (FSM). Sessions cannot be migrated or suspended
until they are successfully established.

In order for the Migrate system to manage session communication, it must know which network
connections are associated with each session. Applications describe this relationship using the
add_connection() call. To support legacy applications, if a socket has not been associated
with a session before being connected, Migrate transparently instantiates an anonymous session
and associates the new connection with it.

Connections that are no longer associated with a session (either because the connection has termi-
nated or now belongs to another session) can be removed through the remove_connection()
call. Removing all of the network connections in a session does not necessarily close the session,
as application semantics may dictate that a session span multiple, non-overlapping network connec-
tions. If, however, the application desires that session share fate with its network connections, it
can pass the M_AUTOCLOSE flag to session_create() when the session is instantiated; the
session will then be terminated once all its constituent connections finish. This flag allows Migrate-
aware applications to pass network connections to non-aware applications and not need to perform
any cleanup after termination. Regardless of the M_AUTOCLOSE flag, applications may explicitly
close a session with the session_close() call. Any and all open connections contained within
the session are closed simultaneously.

3.1.2 Session control protocol

Migrate manages session establishment, tear-down, and maintenance through a session control pro-
tocol. The main task of the session control protocol is to manage changes in network attachment
point. When an end point changes attachment point, it must notify the remote end point of all open
sessions of its new network attachment point.

The main difficulty with updating the remote end points is authenticating the end points—ensuring
that the end point requesting the update is the original end point. Verifying an update is much
simpler than authenticating the end point. Migrate does not provide authentication; it relies on the
application to authenticate the original end point. Instead, Migrate ensures that update requests can
be made only by the original end point (or one authorized by that end point). Security is discussed
in detail in Section 3.2.

Sessions can be in one of several possible states (shown in Figure 3-4), depending on Migrate’s
understanding of the remote end point’s attachment point. A session starts in the connecting state

54

as the initiating end point attempts to establish a session control channel with the remote end point.
If Migrate successfully establishes a control channel, both end points exchange cryptographic keys
that will be used to secure any further updates to the session. The session then moves to the es-
tablished state, and communication between the application end points proceeds. Alternatively, if
Migrate negotiation fails, the session transitions to the unsupported state, and the session cannot
survive changes in network attachment points.

Upon notification of a change in local attachment point, Migrate moves the session into the migrat-
ing state and attempts to deliver a binding update to the remote end point. In order to assure the
remote end point of the validity of the request, Migrate signs the binding update using the previ-
ously negotiated cryptographic key. Upon receipt of the update, the remote end point first verifies
the signature. If the signature verifies, Migrate honors the request by updating the network attach-
ment point bindings and migrating the associated connections. Upon acknowledgment of its request
and successful connection migration, the mobile end point moves the session back to the established
state. Chapter 4 presents the details of connection migration.

On occasion, however, a mobile end point may be unable to contact the remote end point either
because it lacks connectivity to the remote end point’s attachment point from its new network at-
tachment point or because the remote end point is not responding. In the latter case, the session
moves into the lost state and Migrate rebinds the remote end point through the resolution mech-
anism provided by the application. Upon successful completion of the resolution operation, the
session returns to the migrating state and resumes as before. If, at any point in the process, Mi-
grate is unable to return to the established state due to lack of connectivity, failure of the supplied
naming system, or local policy restrictions, Migrate moves the session into the frozen state and
suspends it. Details of session suspension and resumption are discussed in Chapter 5.

3.2 Attack-equivalent security

A concern with any new protocol is that it may introduce new security vulnerabilities; Migrate’s
session control protocol is no exception. Due to the simplicity of our end-to-end approach, however,
there is only one function—binding an end point to a new network attachment point—that could
give rise to vulnerabilities.1 Migrate’s security model is designed to make it easy to show that any
attacks against this feature can be reduced to attacks launched in the absence of this feature. We
term this property attack-equivalence, since the set of attacks on an application using Migrate is
precisely the same as the set of attacks against that application without Migrate. The only caveats
are that Migrate may increase an application’s window of vulnerability to existing attacks or reduce
the number of times an attacker needs to launch a given attack to affect a desired result. We first
explain why this property holds and, then, discuss its implications.

Our fear is that a third-party attacker could somehow use Migrate to either impersonate a given
end point or expose otherwise confidential information being passed between two end points. Prac-
tically, this means an attacker is either able to subvert an application’s authentication scheme or
hijack an existing session and rebind an end point to itself or a co-conspirator. We claim that appli-
cations using Migrate are exposed to these vulnerabilities if, and only if, they are vulnerable without
Migrate.

The crux of our argument rests on the style of authentication mechanisms employed. Migrate uses
an anonymous authentication scheme to ensure that binding updates are in fact sent by the remote

1Mobility handlers are executed inside the application processes that provide them, so there is no danger of Mi-
grate executing foreign code in a privileged environment. See Chapter 6 for implementation details.

55

S . . . A . . . D

A′

Figure 3-5: A man-in-the middle attack. A masquerades as D to S and vice versa. A can then
impersonate D to S and bind D to a new network attachment point, A′.

end point. Initial authentication of the remote end point is performed by the application before a Mi-
grate session is even established. Because Migrate neither assists or interferes with an application’s
end-point authentication mechanism, it cannot be used to subvert initial authentication. Therefore,
all attacks that leverage Migrate reduce to those that hijack an open session, i.e., convince an end
point to direct a pre-existing session to a new attachment point.

3.2.1 Session hijacking

By design, anonymous authentication has one vulnerability: it is subject to man-in-the-middle at-
tacks. Figure 3-5 depicts an open session between S and D. Because Migrate does not authenticate
the end points, it is possible for an attacker, A, that is on the path between the two end points S
and D to masquerade as either S or D. To do so, A must be able to replace packets between S and
D with its own. (We describe the details of such an attack in Section 6.6.) If A is able to launch
such an attack, it can sign binding updates to S that appear to be signed by D, and vice versa.
These binding updates could update the session end-point bindings to any network attachment point
A chooses and trigger the migration of all constituent connections. However, since A was already
able to launch a man-in-the-middle attack (which requires the ability to read traffic, block traffic,
and insert traffic) against S and D, the ability to sign end-point binding updates (and, therefore,
migrate connections) adds no new powers to her arsenal. Traffic on the session between S and D
was already being directed to A.

Applications that wish to prevent on-path attackers like A from reading or modifying traffic that
passes through them must employ some sort of protection scheme that provides privacy and non-
malleability. This typically takes the form of encryption. If the traffic between S and D is encrypted,
it remains protected, even if it is hijacked and mis-directed to A′. While a hijacked session will not
deliver traffic from S to D, A must have been able to prevent packets from being delivered to
launch a man-in-the-middle attack, so this is no more powerful. It is the case, however, that A may
only need to prevent one packet from being delivered to launch a man-in-the-middle attack. Once
successful, A can then use Migrate to ensure any later packet is not delivered.

Similarly, Migrate may suspend sessions for varying lengths of time. Some applications may expect
sessions or individual network connections to last for only a very short time. Hence, these commu-
nications may be secured using relatively insecure cryptographic techniques. In normal operation,
the communications do not last long enough for attacks against such schemes to be effective. If,
however, communications are suspended by Migrate for a long enough period of time, an attacker
may be able to launch an off-line attack in the meantime and break the scheme by the time com-
munications resume. Hence, it is of paramount importance that the strength of any cryptographic

56

Method Description

int session_rate(Session s, int num) Allow at most num changes in remote
end point’s attachment point per minute.

int session_length(Session s, int len) Allow a session to be suspended for at most
len seconds.

Table 3.4: Extensions to the API to support policy-based resource control

technique is appropriate for the entire duration of the communication session it is securing, ac-
counting both for the time the session is active and the time it may be suspended. The next session
presents a mechanism that allows applications to tell Migrate for how long a given session may be
suspended.

3.2.2 Denial-of-service

As with any Internet service, Migrate is susceptible to denial-of-service (DoS) attacks that attempt
to prevent legitimate users from using the service by depleting server resources. These attacks can
come in several flavors:

• Invalid session requests — Attackers may send arbitrary session establishment packets to a
Migrate-capable host in an attempt to exhaust the host’s resources; a successful attack forces
a host to consume all its resources processing invalid requests, leaving no opportunity for
valid requests to be processed. This attack is analogous to a SYN flood attack against a host’s
TCP stack [20].

• Invalid migration requests — Attackers may attempt to exhaust a host’s resources by send-
ing arbitrary migration request packets that Migrate will attempt to validate. For the moment,
we assume it is cryptographically unfeasible for an attacker to actually hijack a session using
such requests. We will consider the validity of this assumption in Chapter 6.

• Abandoned (valid) sessions — One or more attackers may establish large numbers of open
sessions with a Migrate host without any intent to use them for communication in an attempt
to exhaust the host’s resources.

• Excessive (valid) migration requests — An attacker may request a large number of migra-
tions of an open session with the intent to consume resources on the remote host.

Migrate can prevent each of these attacks through judicious implementation and effective policy
control mechanisms. The practicality of the first two attacks depend greatly on the cryptographic
techniques employed by Migrate to secure the session, which are described at length in Section 6.6.
Preventing the latter two attacks requires guidance from the applications running at the end host.

DoS attacks consisting of multiple, valid requests are difficult for Migrate to defend against, since
they are in fact correct operations from the point of view of Migrate. Instead, it is up to the ap-
plications running at the end host to dictate the amount of resources that should be expended on a
particular session. Table 3.4 lists the API calls that applications can use to describe the appropriate
resource limits for a Migrate session. The session_rate() function specifies how many times
a remote end point may change attachment points in any particular minute. If a session exceeds this

57

rate, further binding updates will be ignored until the rate returns to within the allowed range. Any
non-zero rate will eventually allow further changes in attachment point, so it is never possible for
a remote end point to be disconnected due to excessive migration requests; the session may just be
suspended for some period of time.

Applications interested in controlling the length of time a session is suspended can use the ses-
sion_length() call. Sessions suspended for longer than len seconds will be considered per-
manently disconnected. This allows time-sensitive applications or those using fixed-strength cryp-
tographic techniques to bound their windows of vulnerability. It also ensures abandoned sessions
will not be preserved by Migrate for an unbounded amount of time. We will return to this point in
Section 5.4 when we discuss garbage collection of session continuations.

3.3 An example: Host mobility using DNS

As an example of how Migrate sessions can be used, we describe how mobile Internet hosts can use
Migrate in combination with a standard naming system that supports dynamic updates to provide
transparent support for host mobility—that is, when Internet hosts change physical locations in the
network. The dynamic variant of the Domain Name System (DNS) can provide the necessary level
of indirection between a host’s current attachment point and an invariant end-point identifier—
namely, its hostname. Network applications on mobile hosts can use DNS in combination with
the Migrate session abstraction to handle attachment point changes with little additional overhead
compared to the non-mobile case. Migrate takes advantage of the fact that a hostname lookup is
already ubiquitously performed by most applications that originate communication with network
hosts and uses the DNS name as session end point. This approach has two benefits: A DNS name
identifies a host and does not assume anything about the network attachment point to which it may
currently be attached, and the indirection occurs only when the initial resolution is done via name
resolution (i.e., a DNS lookup).

When attaching to a network, a mobile host uses a locally-obtained network attachment point valid
on the current network to communicate with other Internet hosts. The issue of obtaining a network
attachment point and corresponding IP address is separate from locating and communicating with
other mobile hosts. Any suitable mechanism for address allocation may be employed, such as man-
ual assignment, the Dynamic Host Configuration Protocol (DHCP) [31], or an auto-configuration
protocol [135].

3.3.1 Implementation

Applications desiring mobility support need only describe their communications in terms of ses-
sions. In other words, for each connection they open to a remote host they must create an encom-
passing session using the session_create() call. Further, they need to inform Migrate of
the name of the remote host through the set_lookupfunc() call. Since DNS is the nam-
ing system of choice, the application would pass the operating system-provided DNS resolution
function (gethostbyname() on UNIX platforms) and the remote hostname as parameters. As
mentioned previously, mobile clients should also use the set_lookupname() call to inform
the remote end point of the local hostname. Assuming the applications were content to have Mi-
grate handle all changes in attachment points, no further additions or changes are needed; passing
the M_AUTOCLOSE flag to session_create() suffices to close sessions once the connections
have terminated. Because these simple extensions are sufficient to provide mobility support for a

58

Naming System
(i.e., Dynamic DNS)

Mobile Node
(i.e., foo.bar.edu)

Name Resolution
(i.e., DNS Lookup)

Session Initiation

Correspondent node

Name Update
(i.e., DNS Update)

Binding Update

1

2

3

4

Figure 3-6: Supporting Internet host mobility using DNS as the naming system. 1) The application
uses a DNS server to resolve the desired end point (host) name to a network attachment point on the
mobile node. The local end point is bound implicitly by the host. 2) The application establishes a
session between itself and an application running on the mobile node. 3) If the mobile node moves,
it notifies the correspondent node with a binding update, and 4) updates the DNS server with its new
network attachment point.

large number of applications, we have implemented a mechanism to transparently insert these Mi-
grate calls into pre-complied legacy applications. This transparent interface is described along with
the rest of the Migrate implementation in Chapter 6.

In addition to modifying applications to use the session extraction, hosts using Migrate in concert
with DNS to handle host mobility must also ensure their DNS record is kept up-to-date as their
network attachment point changes. A mobile host must detect changes in its attachment point and
update its hostname-to-address (“A-record”) binding in the DNS accordingly. Both tasks are easy
to implement, the former through monitoring the status of local network interfaces, and the latter by
using the standard secure DNS update protocol [140, 141]; we have written a Perl script that handles
both tasks on UNIX platforms. In fact, some DHCP servers today issue a DNS update at client boot
time when handing out a new address to a known client based on a static MAC-to-DNS table; this
behavior augurs well for incremental deployment of Migrate as a solution to host mobility since
DNS update support is widely available.

Figure 3-6 illustrates how binding updates would work in conjunction with the DNS. Once a mobile
host obtains an IP address, there are two ways in which it can communicate with correspondent
hosts. First, as a client, the mobile end point actively initiates sessions to a correspondent host. In
this case, no additional tasks need to be performed initially; using the DNS as in the static case
continues to work. However, if the mobile host moves to another network attachment point during
a session, a binding update must be sent to the remote end point of each session currently active on
the host. If a mobile host is a client, then no updates need to be made to the naming system or any
third party. Second, if the mobile host functions as a server, or wishes to receive unsolicited packets
from other hosts, it must also update the DNS with the IP address of its new attachment point.

59

3.3.2 Address record caching

DNS provides a mechanism for name resolvers to cache name bindings for some period of time, as
specified in the time-to-live (TTL) field of the A-record. To prevent an inconsistent binding from
remaining in the cache, the time-to-live (TTL) field for the A-record of the name of the mobile
host should be set to zero, which prevents the record from being cached. While negating any
caching efficiency for the individual record, setting the TTL to zero does not cause a significant
scaling problem [52]; name lookups for an uncached A-record do not have to start from a root
name server because, in general, the “NS-record” (name server record) of the mobile host’s DNS
name is cacheable for a long period of time (many hours by default). Starting most name lookups
at the name server of the mobile host’s domain scales well because of administrative delegation of
the namespace and DNS server replication in any domain. Several content distribution networks
for Web server replication of popular sites use the same approach of small-to-zero TTL values
to redirect client requests to appropriate servers (e.g., Akamai [2]). There is no central hot spot
because the name server records for a domain are themselves cacheable for relatively long periods
of time [52]. We will discuss this issue in more depth in Chapter 7.

3.3.3 Benefits

The key benefit of using a naming system such as DNS to support host mobility is that doing so
preserves the topological properties of IP addresses. That is, the IP address used to send and receive
data continues to reflect the location of the network attachment point in use, which is instrumental
to the scalability of Internet routing. This approach is different from other proposals, such as Mo-
bile IP [49, 89], that suggest Internet hosts communicate using foreign IP addresses—IP addresses
that do not accurately reflect the location of the current network attachment point. In addition to
preserving the scaling properties of traditional routing protocols (without requiring home agents),
maintaining the semantics of IP addresses is also important for security reasons.

Despite the fact that IP addresses denote only a network attachment point in the Internet and say
nothing about the identity of the host that may be connected to that attachment point, IP addresses
have implicitly become associated with other properties, such as administrative domain (e.g., a
machine having an IP address 18.31.0.100 is quite likely to exist on a network managed by MIT).
For example, IP addresses are often used to specify security and access policies as in IPsec Security
Associations [55] and ingress filters used to alleviate DoS attacks [34]. A name-based approach to
host mobility works without violating these properties.

60

He said, “You gonna follow me?”
I said, “I’ve never thought about that before!”

He said, “When you’re not following me, you’re resisting me.”

- Bob DylanChapter 4

Connection Migration

One of the main difficulties in supporting mobile end points is preserving on-going communication
channels. Internet transport protocols specify connection end points in terms of their network at-
tachment points; connections cannot currently follow end points as they move from one network
attachment point to another. This chapter describes two different schemes for transport connection
migration: a protocol-agnostic connection virtualization approach, and transport protocol extension
based on rebinding. Virtualization solutions are presented for both the Transmission Control Proto-
col (TCP) and User Datagram Protocol (UDP), while rebinding is discussed only in the context of
TCP.

The remainder of this chapter is organized as follows. The first section describes how virtualiza-
tion can be used to overcome many of the shortcomings of existing Internet transport protocols by
synthesizing a logical persistent connection through the use of multiple transport connections. Sec-
tion 4.2 presents an alternative to the virtualization approach using transport-layer binding updates
to support connection migration for TCP, which allows a single TCP connection to survive a change
in network attachment point. Section 4.3 presents a mechanism to secure TCP migration and dis-
cusses new vulnerabilities introduced by connection migration. Section 4.4 is a brief sidebar on
transport protocols that do not impose a connection abstraction and discusses the issues raised when
end points using unconnected transport protocols change attachment points. Finally, the chapter
concludes in Section 4.5 with a discussion of various issues raised by the use of connection migra-
tion.

4.1 Connection virtualization

Applications bind transport protocol end points, often termed sockets, to individual ports on a net-
work attachment point during connection establishment. The resulting connection can then be
uniquely identified by a 4-tuple: <source IP address, source port, destination IP address, desti-
nation port>. Packets addressed to a different IP address, even if delivered to the appropriate port,
must not be demultiplexed to a connection established from a different address. This separation is
crucial to the proper operation of servers on well-known ports. For example, Web servers typically
serve all of their clients from the same local port—80—and use the source IP address to differentiate
between client packets.

In a mobile environment, however, an application may wish to continue an existing connection from
a new attachment point. One well-known method [60, 82, 99, 145, 147] of allowing changes in

61

App

Indirection
Layer

Kernel

Attachment
Point 2

Attachment
Point 1

Figure 4-1: A virtualized connection. The virtual socket is dynamically re-mapped to ephemeral
network sockets by an indirection layer. A new network connection is established for each change
in attachment point. Here, the indirection layer has created a new network connection to attachment
point two, and destroyed the old connection to attachment point one.

connection attachment points is to virtualize a logical connection by transparently stitching together
multiple physical connections. This section first describes connection virtualization and then shows
how Migrate virtualizes both UDP and TCP connections.

4.1.1 Indirection layer

In the virtualization approach, shown in Figure 4-1, the application is presented with a virtual socket
that is dynamically mapped to an ephemeral network socket, which is connected to the remote
attachment point. An indirection layer creates and destroys network sockets as necessary to support
different attachment points; the layer creates a new network socket and transport connection each
time a new attachment point binding is required. The advantage of this approach is that it can be
carried out entirely at the user-level, requiring no extensions or modifications to the Internet protocol
stack; the major drawback is the virtualization overhead. We present a virtualization approach in
the context of UDP connections below, and then extend the technique to handle TCP connections.

Implementing a virtualized connection requires inserting an indirection layer between applications
and the operating system kernel. When an application attempts to establish a connection, the indi-
rection layer does not directly connect the socket to the requested destination; instead, it creates a
socket pair and connects one end to the application socket. It then creates another, separate network
socket at the same end point as the original and connects it to the destination requested by the ap-
plication. Data received on the network socket is sent along, or spliced, to the application via the
socket pair, and vice versa.

When notified of a change in remote attachment point (e.g., through the session-based binding
update mechanism described in the previous chapter), the indirection layer creates a new network
socket, connects it to the new remote attachment point, and destroys the old one. Any further data
from the application (socket pair) is then spliced to the new socket; data received on the socket is
delivered to the application as before—any further data received on the old socket is ignored. This
process is symmetric—both end points must virtualize the connection in the same fashion.

4.1.2 Port mapping

A major difficulty with connection virtualization is negotiating which ports to use for the new con-
nection: Connected sockets cannot be multiplexed; hence, the current port cannot be atomically

62

KernelApp Kernel App

Session
Layer

Session
Layer

Figure 4-2: A double buffer

reused. (While the application could first close the port and then attempt to reopen it, there is a
race condition in which another application could claim the port first.) The problem is similar to the
service rendezvous required for applications based on Sun RPC, which Sun RPC addresses with the
portmapper [121].

In the particular case of Migrate, the session negotiates new ports during the session migration
process. Recall that the session migration process is not entirely symmetric—one end point actively
initiated the migration by contacting the other end point. For the purposes of discussion, consider
the first end point “active” and the latter “passive.” After the session has successfully completed a
binding update and the new network attachment points are known, the “passive” end point requests
a new port for each open connection (e.g., using the bind() system call on UNIX platforms).
Once a port is assigned, Migrate communicates it to the “active” end point, which then acquires a
new port on its current attachment point and establishes a connection between the new ports.

4.1.3 Double buffering

An additional complication is introduced by the presence of kernel socket buffers—buffers contain-
ing data that has either been sent by the application but not yet delivered to the remote end point, or
received by the local end point but not yet delivered to the application. The main difficulty arises
because of the opaqueness of these socket buffers; there is no standard way to access the buffered
data from user space—it is either successfully delivered to the receiving application or discarded
when the socket is destroyed.

Hence, when an indirection layer establishes a new connection, it is possible that outstanding data
remains buffered in the socket buffers of the previous connection. The indirection layer must,
therefore, double-buffer transport connections [60, 82, 99, 145]. In Migrate, the session layer keeps
a copy of all potentially outstanding bytes on a connection as shown in Figure 4-2. After migration,
the receiver needs only inform the sender of the last successfully received byte (assuming bytes are
delivered in-order); the sender can then replay any remaining outstanding bytes from its buffer into
the kernel, which then delivers them as before.

4.1.4 Virtualized UDP

The User Datagram Protocol (UDP) [95] provides an unreliable datagram service. Unlike most
transport protocols which impose a connection abstraction, UDP can operate in two modes: a stan-
dard, connection-oriented, mode, or an unconnected mode. Unconnected UDP sockets can be used
to send data to arbitrary attachment points and may receive datagrams from any attachment points.

63

The lack of explicit end-point relationships with unconnected UDP sockets makes them problematic
to handle in the face of mobile end points, since the appropriate semantics vary from application to
application; we discuss this issue further in section 4.4. Presently, we will assume UDP is operating
in a connection-oriented fashion.

UDP’s unreliable delivery semantics significantly ease the double-buffering requirement described
above. Because UDP connections make no attempts to ensure reliable datagram delivery, applica-
tions using UDP expect and can recover from packet loss. There is no need for Migrate to double-
buffer UDP connections—instead, any outstanding data in kernel buffers can simply be discarded;
applications requiring reliable delivery of these datagrams will provide their own retransmission
schemes.

Unfortunately, because UDP does not provide any sequencing or reliability guarantees, UDP con-
nections do not normally exchange any connection establishment messages; the act of establishing
a connection does not cause the transmission of any data between connection end points. This lack
of explicit connection establishment can complicate the port mapping process in the presence of
Network Address Translators: an end point behind a NAT cannot explicitly specify the new port to
use since NATs generally assign ports only when data is actually transmitted [24].

Hence, after both end points have created a new UDP sockets, Migrate immediately sends a short
hello packet from the “passive” end point’s socket to the “active” end point (whose new port is
addressable and communicated to the “passive” end point as described above) to complete the con-
nection binding. To ensure successful connection reestablishment, the receipt of a hello packet must
be acknowledged. Only after successful receipt of the hello packet or its acknowledgment, when
both end points have a consistent view of the other’s current attachment point, does Migrate consider
the UDP connection established and splice it through to the application.

4.1.5 Virtualized TCP

Unlike UDP, TCP requires careful double-buffering to preserve its byte-stream semantics. TCP con-
nections provide reliable, in-order delivery; the sender buffers all bytes until they are acknowledged
as being successfully received by the receiver—bytes that remain unacknowledged after a period
of time are retransmitted. Similarly, data received by an end point is buffered in the kernel until
delivered to the application. Hence, Migrate employs the double-buffering scheme described above
to preserve outstanding data on TCP connections.

The key issue, then, is determining which bytes remain outstanding. TCP itself generates acknowl-
edgments as data is received, but those are inaccessible at user level. One approach is simply to
buffer all bytes on each connection, but this technique becomes impractical as connections age and
the buffer becomes large. Another approach is to create a session-layer acknowledgment scheme,
wherein the session layer occasionally notifies the remote end point as data is received [37]. Notifi-
cation has the drawback of adding additional complexity and overhead, however.

Migrate maintains bounded double buffers without explicit acknowledgments; to do so, Migrate de-
termines the maximum amount of data that can possibly be outstanding at any one time, and then
stores bytes in a circular buffer. A circular buffer of size n stores data in a wrap-around fashion: data
is copied in starting at the beginning and wraps around to the beginning when the end is reached.
This process results in a buffer that always contains the last n bytes of data (or all of the bytes ever
transmitted, if that is less than n). Migrate can efficiently set the size of the buffer because it is
possible to bound the amount of potentially outstanding data as the sum of the transmit and receive
buffers at the end points. All data that has been transmitted by one end point and not yet delivered

64

to the application at the remote end point must exist in either the transmit buffer, the receive buffer,
or both. This observation is true because TCP does not discard data from the transmit buffer until it
has been acknowledged by the receiver (and, therefore, exists in the receive buffer). It also does not
remove data from the receive buffer until it has been delivered to the application.

Migrate exchanges the sizes of receive buffers at connection establishment and uses that in com-
bination with the current size of the local transmission buffer to size the circular buffers for each
connection. Because transmit and receive buffers can be re-sized during the connection, an end
point must notify the remote end point when it increases the size of its receive buffer (changes in the
size of the transmit buffer only affect the size of the local circular buffer and, therefore, need not be
communicated to the remote end point). Because receive buffers are generally set to a standard size
and changed only infrequently, Migrate uses a simple optimization: Rather than exchange receive
buffer sizes on every connection establishment, it instead assumes a default size, and only notifies
the remote end point if an end point extends the size of a connection’s receive buffer (reductions in
buffer size are rare, and do not affect correctness).

Despite these optimizations, there remain several inefficiencies. The most obvious is the need to
double buffer the data, which could be avoided if the contents of the transmission buffer were avail-
able at user level, as has been proposed in various unified buffering schemes such as IO-Lite [86].
Yet, even if the buffers were available, two other inefficiencies remain: the session layer needs an
additional round trip time to exchange sequence number and port information, and any received
out-of-order data must be discarded (since the new TCP connection must still deliver data in order,
it is forced to retransmit the received, out-of-order data). Both of these drawbacks could be avoided
if TCP itself were capable of rebinding the end points of an open connection; we discuss such an
extension next.

4.2 Migrate TCP: A rebinding approach

This section describes an extension to TCP to support the secure migration of an established TCP
connection across an IP address change. TCP allows the specification of options—extra header
fields—to provide extended functionality. TCP implementations can insert options without inter-
fering with the operation of connections with end points that don’t implement the option; TCP
specifies that end points that do not understand an option simply ignore it [97]. We define a new
TCP Migrate option that allows an end point to continue a TCP connection from an IP address other
than the one it used to establish the connection. This migration is transparent to an application that
expects uninterrupted, reliable communication with the peer. It requires no third party to authenti-
cate migration requests, thereby allowing the end points to use whatever authentication mechanism
they choose to establish a trust relationship. Although details are only provided for TCP migration,
the idea is general and can be implemented in a like manner for specific, connection-oriented UDP-
based protocols such as the Real-time Transport Protocol (RTP) [114] to provide migration support
for those as well. A similar mechanism can be deployed for any transport protocol that enforces a
connection-establishment handshake.

4.2.1 TCP options

TCP uses SYN segments to synchronize end points during connection establishment. We propose
a new Migrate TCP option for inclusion in SYN segments that identifies a SYN packet as part
of a previously established connection, rather than a request for a new connection. This Migrate
option contains a token that identifies a previously established connection on the same destination

65

〈IP address, port〉 pair. Connection end points negotiate the token during initial connection estab-
lishment through the use of a Migrate-Permitted option. After a successful token negotiation, TCP
connections may be uniquely identified by either their traditional 〈source IP address, source port,
destination IP address, destination port〉 4-tuple, or a new 〈source IP address, source port, token〉
triple at each end point.

An end point may restart a previously-established TCP connection from a new attachment point by
sending a special Migrate SYN packet that contains the token identifying the previous connection.
The remote end point will than re-synchronize the connection with the original end point at the new
attachment point. An ARQ protocol, TCP uses cumulative acknowledgments (ACKs) to confirm
the receipt of sequential data bytes. To facilitate this process, TCP maintains a control block that
records the sequence number of the last successfully received sequential byte of data, as well as
a significant amount of other connection control state. A migrated TCP connection maintains the
same control block and state (with a different attachment point, of course), including the sequence
number space, so any necessary retransmissions can be requested in the standard fashion. This
preservation also ensures that SACK [66] and any similar options continue to operate properly.
Furthermore, any options negotiated on the initial SYN exchange remain in effect after connection
migration and need not be resent in a Migrate SYN.1

Since SYN segments consume a byte in the TCP sequence number space, Migrate SYNs are issued
with the same sequence number as the last acknowledged byte of data. The reuse of the sequence
number results in two bytes of data in a migrated TCP connection with the same sequence number
(the new SYN and the previously-transmitted actual data). Normally, a sequence number refers
to exactly one byte of data; hence, there is no ambiguity about which bytes a cumulative ACK
is acknowledging. In this case, there are two distinct bytes, which would lead to ambiguity if
both needed to be explicitly acknowledged. Fortunately, the Migrate SYN segment need never be
explicitly acknowledged. Any packet received from the remote end point by a migrating end point
at its new network attachment point that has a sequence number in the appropriate window for the
current connection implicitly acknowledges the Migrate SYN. Similarly, any further segments from
the migrating end point provide the remote end point an implicit acknowledgment of its SYN/ACK.
Thus, there is exactly one byte in the sequence space that needs explicit acknowledgment even when
the Migrate SYN is used. Further, after the receipt of a Migrate SYN, an end point will ignore any
further packets received from the connection’s previous attachment point to insure that connection
migration is atomic despite possible packet reordering.

4.2.2 An example

Figure 4-3 shows a connection where a mobile end point connects to a remote end point and later
moves to a new attachment point. The mobile end point initiates the TCP connection in standard
fashion in message 1, including a Migrate-Permitted option in the SYN packet. The values km and
Tm are parameters used in the token negotiation, described in Section 6.5.2. The remote server with
a Migrate-compliant TCP stack indicates its acceptance of the Migrate-Permitted option by includ-
ing the Migrate-Permitted option in its response (message 2). The client completes the three-way
handshake with message 3, an ACK. The connection then proceeds as any other TCP connection
would until message 4, the last packet from the remote end point to the migrating end point at its
current attachment point.

1They can be, if needed. For example, it might be useful to renegotiate a new maximum segment size (MSS) reflecting
the properties of the new path. We have not yet explored this extension in detail.

66

SYN 531521:531521(0)〈migrateOk km〉, 〈timestamp Tm〉, . . .

SYN 083521:083521(0)

ack 531522, 〈migrateOk kf 〉, 〈timestamp Tf 〉, . . .

ack 083522

545431:545967(53
6)

ack 092398

SYN 092397:092397(0)〈migrate T ,R〉

SYN 545967:545967(0)

ack 092398

ack 545968

Mobile end point Remote end point

1

2

3

4

5

6

7

Figure 4-3: TCP Connection Migration. Time flows downward. The migrating end point initiates
migrateable TCP connection in message 1. The server accepts the Migrate-Permitted option in
message 2. The client completes the three-way handshake with message 3, an ACK. The connection
then proceeds until message 4, the last packet from the remote end point to the migrating end point
at its current attachment point. At some time later the migrating end point sends a Migrate SYN
(message 5) from a new attachment point, including the previously computed connection token. The
sequence number of the Migrate SYN is the same as the last acknowledged byte of data. The server
responds in message 6 with a SYN/ACK using the sequence number of its last acknowledged byte
of data.

67

At some time later, the mobile end point moves to a new network attachment point and notifies
the remote end point by sending a SYN packet from its new address in message 5. This SYN
includes the Migrate option, which contains the previously computed connection token as part of a
migration request. The sequence number of this Migrate SYN segment is the same as the last byte
of acknowledged data. The server responds with a SYN/ACK in message 6, also using the sequence
number of its last acknowledged byte of data. The ACK is from the same sequence space as the
previous connection. While, in this example, it acknowledges the same sequence number as the
SYN that generated it, it could be that segments were lost during a period of disconnection while
the mobile end point moved, and that the ACK will be a duplicate ACK for the last successfully
received in-sequence byte. Since it is addressed to the migrating end point’s new attachment point,
it serves as an implicit ACK of the Migrate SYN as well. Upon receipt of this SYN/ACK, the
migrating end point similarly ACKs in the previous sequence space and the connection resumes as
before. All of the options negotiated on the initial SYN, except the Migrate-Permitted option, are
still in effect and need not be replicated in this or any subsequent migrations.

4.2.3 Cascaded migration

Because end points may change attachment points multiple times during the lifetime of a TCP
connection, connections may be migrated multiple times by sending multiple Migrate SYNs—one
corresponding to each new attachment point. In the normal case, when attachment point changes
occur infrequently, the Migrate SYN exchange successfully completes at each attachment point,
and the migrations all proceed similarly to steps 5–7 in Figure 4-3. Occasionally, however, end
points may change attachment points two or more times in rapid succession, before the Migrate
SYN exchange has had time to complete.

Therefore, care must be taken to ensure that Migrate SYNs can be ordered regardless of their time of
receipt. This ordering ensures that both end points always have a consistent view of the connection’s
current attachment points. Each Migrate SYN contains a monotonically increasing Request Number.
An end point that issues a Migrate SYN from a new attachment point must increase the request
number. Duplicate Migrate SYNs (i.e., those sent due to the lack of receipt of a SYN/ACK packet)
can use the same request number. Hence, any two Migrate SYNs can be ordered, making the
migration process robust to packet reordering. Each end point records the greatest request number
it has seen so far for each open connection; any Migrate SYNs with request numbers less than that
are discarded. Migrate SYNs with the same request number are duplicates, and should be treated
appropriately (an indication that the SYN/ACK packet was lost). The receipt of a Migrate SYN
with a request number larger than all previous Migrate SYNs received on this connection should
immediately transition the connection to SYN_RECV, regardless of its current state—i.e., abort any
partially completed Migrate SYN exchange in progress. This procedure allows end points to change
attachment points repeatedly in rapid succession, without necessarily completing the migration to
any intermediate attachment point.

4.2.4 MIGRATE_WAIT state

TCP defines a RST segment, which allows a connection end point to ask the remote end point
to abort the connection. Special processing of TCP RST messages is required with migrateable
connections, since a mobile end point’s old IP address may be reassigned before the end point has
issued a Migrate SYN to the correspondent end point. TCP specifies that an end point receiving a
packet it was not expecting (i.e., that does not belong to a connection currently established at the
end point) should generate a RST segment to notify the sender of the inconsistency. In rare cases,

68

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

MIGRATE WAIT
2MSL timeout

ap
pl

:c
lo

se
or

ti
m

eo
ut

appl: passive open
send: 〈nothing〉 appl: active

open

send: SY
N

recv: SYN
send: SYN, ACK

recv: ACK

rec
v:S

YN,A
CK;se

nd
:A

CK

appl: send
data

send: SYNrec
v:

RST

rec
v:

SY
N; s

en
d:

SY
N, A

CK

recv: SYN 〈migrate
T ,R〉

send: SYN, ACK
ap

pl:
m
ig
ra
te

sen
d:

SY
N
〈migr

ate
T ,R

〉

rec
v:

RST

re
cv

:S
Y

N
〈m

ig
ra

te
T

,R
〉

se
nd

:
SY

N
,
A

C
K

Figure 4-4: Partial TCP state transition diagram with Migrate transitions (adapted from [123, Figure
18.12])

69

a new end point may assume a migrating end point’s old attachment point and receive a packet
intended for the migrating end point. Following the TCP specification, the new end point will emit
a RST segment to the correspondent host [97]. Figure 4-4 shows the modified TCP state transition
diagram for connections that have successfully negotiated the Migrate-Permitted option. The receipt
of a RST that passes the standard sequence number checks in the ESTABLISHED state does not
immediately terminate the connection because it may have been generated by a new end point that
just assumed the remote end point’s attachment point. Instead, the connection is placed into a new
MIGRATE_WAIT state.

Connections in the MIGRATE_WAIT state function as if they were in the ESTABLISHED state,
except that they do not emit any segments (data or ACKs), and are moved to CLOSED if they remain
in MIGRATE_WAIT for a specified period of time. We recommend using twice the maximum
segment lifetime (2MSL), the same period of time specified for the TIME_WAIT state. (The TCP
specification [97] defines an MSL as 2 minutes, but common implementations also use values of 1
minute or 30 seconds for MSL [123].)

Migrate TCP processes any segments received while in the MIGRATE_WAIT as if they were re-
ceived in the ESTABLISHED state, except that it does not generate ACKs. Receipt of a Migrate
SYN with the corresponding connection key is the only event (other than a timeout) that can remove
a connection from the MIGRATE_WAIT state. Upon receipt of such a segment, the connection end
point responds in the same fashion as if the connection were in the ESTABLISHED state. (A simi-
lar, but far less likely, situation can occur if a connection end point receives a RST segment while the
connection is in the FIN_WAIT1 state—the application at the end point has closed the connection,
but there remains data in the connection buffer to be transmitted. For simplicity, these additional
state transitions are not shown in Figure 4-4.)

The MIGRATE_WAIT state prevents connections from being inadvertently dropped if the address
allocation policy on the migrating end point’s previous network reassigns the end point’s old IP
address before the end point has reconnected at a new attachment point and had a chance to mi-
grate the connection. It also prevents the continued retransmission of data to an unreachable end
point. This passive approach to disconnection discovery is better than an active, mobile-initiated
squelch message—a message requesting the remote end point suspend communication on the con-
nection and await resumption from a new attachment point—because any such message could be
lost (and any guaranteed-reliable transmission mechanism could take unbounded time). Further-
more, a migrating end point may not have sufficient (if any) notice of an impending change in
network attachment point to issue such messages.

4.2.5 Performance enhancements

Several enhancements can be made by implementations to improve TCP connection throughput
during connection migration. For instance, end points can prevent the transmission of segments
to old attachment points by using a RST segment as a squelch message; end points aware of an
impending migration may transmit a RST segment to the remote end point, which will force the
connection into MIGRATE_WAIT, preventing additional packet transmissions. End points should
use RST as a squelch message with great care, however, since it invokes the strict 2MSL time bound
on the allowable delay for end point relocation and connection migration. After transmitting an RST
segment, an end point must request connection migration within 2MSL or the remote end point will
abort the connection.

Perhaps, the most obvious additional performance enhancement is for migrating end points to is-
sue three duplicate ACKs immediately after connection migration [15], thereby triggering the fast-

70

retransmit algorithm and avoiding the possibility of entering timeout. By preempting a TCP time-
out, the connection also avoids dropping into slow-start and congestion avoidance. Such techniques
should be used with care, however, since they assume the available bandwidth of the new path be-
tween the end points is on the same order-of-magnitude as the previous path. For migrations across
homogeneous link technologies this assumption may be reasonable. However, when moving from
local to wide-area wireless networks, there may be order-of-magnitude discrepancies in the avail-
able bandwidth. Hence, we do not include the duplicate ACK optimization in the TCP Migrate
specification and leave it to particular implementations to responsibly evaluate the circumstances
and provide behavior compatible with standard TCP.

4.3 Securing the migration

It is possible for an attacker to partially hijack TCP connections by guessing the sequence space
being used by the connection [70]. (Current TCP implementations take care to ensure sequence
numbers are not easily guessable to prevent such attacks [11].) Using the Migrate options, how-
ever, an attacker who can guess both the sequence space and the connection token can hijack the
connection completely. Furthermore, the ability to generate a Migrate SYN from anywhere greatly
increases the set of places from which an attack could be launched: Ingress filtering (see 2.2.2)
can normally be used to prevent connection hijacking by attackers not on the path between the end
points, but such filtering is inappropriate for Migrate SYNs.

We must, therefore, take special care to secure Migrate SYNs. We do so by requiring a Migrate
SYN to be signed by its issuing end point. Connection end points negotiate keying material during
connection establishment and use the resulting keys to sign any Migrate SYNs on that connection.
A variety of mechanisms exist for selecting keying material secretly; we describe two in Chapter 6.
Unfortunately, signing and validating Migrate SYNs are cryptographic operations that may take
non-negligible amounts of computational resources. Possible attacks against the Migrate TCP op-
tions, therefore, include both denial-of-service (DoS) attacks and methods of migrating connections
away from their appropriate attachment points. As in the previous chapter, our goal is to provide
attack-equivalent security: a TCP connection using the Migrate options should be no less and no
more secure than a normal TCP connection. We discuss these attacks below and either show why
the Migrate options are not vulnerable or explain why the attack presents no additional threat in
relation to standard TCP.

4.3.1 Denial of service

SYN flooding is a common form of DoS attack, and most modern TCP implementations have taken
great care to avoid consuming resources at the passive end point until the three-way handshake
completes [12]. To validate a Migrate SYN, the passive end point must perform a significant com-
putation, which implies we need to be especially vigilant against DoS attacks that attempt to deplete
the CPU resources of a target end point. We guard against this attack by first checking that the Mi-
grate SYN includes a valid token. An end point does not attempt to validate a Migrate SYN unless
the token is correct, implying the sender is either the original remote end point or an attacker who
succeeded in guessing—or intercepting—a valid token. Since end points generate RST messages if
the token is incorrect or the SYN did not validate, an attacker has no way to identify when it has
found a valid token. Because a would-be attacker would, therefore, have to issue roughly 263 Mi-
grate SYNs in expectation to force a SYN validation, we argue that it is infeasible for an attacker to
guess the token. More worrisome, however, is the prospect that an attacker might intercept a token

71

and replay it. End points can guard against replay attacks by changing the token after each use; we
describe such an approach in the subsequent section.

While the Migrate SYN does not create a new avenue for DoS attacks, the Migrate-Permitted option
sent on initial SYN segments may add complications to traditional protections against SYN flood-
ing. Modern operating systems do not create any connection state upon receipt of a SYN segment.
Instead, they issue a SYN cookie [12] in the SYN/ACK, which must be echoed by the remote end
point in its ACK. Only after the completion of the three-way handshake (indicating at least some
level of resources has been dedicated by the remote end point) will the passive host establish the
TCP connection. Hence, SYN-flood attacks that blindly issue SYN packets, but do not examine the
returned SYN/ACKs, will fail to reserve resources at the would-be victim.

Some methods of negotiating secret keying material using the Migrate-Permitted option (such as
Diffie-Hellman) require a passive end point to record keying material immediately upon receipt of a
SYN packet. This requirement is incompatible with SYN cookies. We examine this issue further in
Chapter 6, where we discuss alternative cryptographic mechanisms and present an approach based
on one-way functions that does not require the storage of any keying material until after the three-
way handshake completes.

4.3.2 Connection hijacking

In order to prevent replay attacks, a Migrate SYN signature covers both the SYN segment’s sequence
number and request number. A replayed Migrate SYN segment can, therefore, only be used until
either a new byte of data or another Migrate SYN is sent on the connection. If, however, a migrating
end point moves rapidly to a another new location—before completing the Migrate SYN exchange
at its current attachment point—a replayed Migrate SYN could be used to migrate the connection
back to the migrating end point’s previous attachment point, which may have been subsequently
assumed by an attacker. In order to prevent this attack, the Migrate option processing ignores the
source address and port in duplicate Migrate SYNs, since a valid request from a new attachment
point would include a higher request number.

More worrisome, however, is the fact that once a Migrate SYN has been transmitted, the token may
be observed by any nodes along the new path and DoS attacks could be launched by sending bogus
Migrate SYNs with valid tokens. This can be mitigated by computing a new token. One approach is
for migrating end points to include a new Migrate-Permitted option in their Migrate SYNs. After the
completion of the three-way handshake, the connection would be rekeyed, resulting in a new token.
The window of opportunity when the previous connection token can be used (if it was snooped) is
then quite small—only until the new three-way handshake is successfully completed.

The security of TCP connections, migrateable or not, continues to remain with the authentication
of end points, and the establishment of strong session keys to authenticate ongoing communication.
Although we have taken care to ensure the Migrate option does not further decrease the security
of TCP connections, the latter are inherently insecure, since IP address spoofing and sequence
number guessing are not very difficult. Hence, we strongly caution users concerned with connection
security to use additional application-layer cryptographic techniques to authenticate end points and
the payload traffic.

4.4 Unconnected sockets

Unconnected UDP sockets are not associated with particular remote end points; they can be used
to send datagrams to and receive datagrams from arbitrary attachment points. Hence, it would

72

appear that no additional support is required in the face of mobile end points. Unfortunately, it’s
not quite that simple. Many applications multiplex internal, application-layer sessions over a single,
unconnected UDP socket and use the remote attachment point address to internally demultiplex
received datagrams. Any change in remote end point bindings will confuse applications that depend
on a consistent remote attachment point.

4.4.1 Maintaining consistency

Migrate is capable of providing a consistent view of remote end points even for unconnected sock-
ets. When a datagram is sent to a remote attachment point, Migrate attempts to establish a session
with the end point currently using that attachment point. If successful, Migrate then employs the
mechanisms described in the previous chapter to track the remote end point’s location. If the lo-
cation ever changes, Migrate transparently redirects datagrams destined for the original attachment
point to the end point’s new attachment point. Hence, applications continue to specify the original
attachment point when sending data, but the datagram is actually directed to the current attachment
point.

Similarly, the attachment point indicated upon receipt by the remote end point is rewritten appropri-
ately. If a datagram is received from an end point that was previously communicating from another
attachment point, the datagram is supplied to the application as if it arrived from the original attach-
ment point, not the current one.

4.4.2 Name collision

The combination of these two mechanisms provides consistent end point location, assuming the ap-
plication never communicates with two distinct end points at the same remote attachment point. The
procedure is significantly complicated by the potential of attachment point reuse. Consider an end
point, A, that initiates communication to a remote end point, B, from attachment point 1. At some
point in time, A migrates to a new attachment point, 2. Afterward, a third end point, C , is assigned
attachment point 1. If C were already communicating with B, packets from C would be rewritten
and appear to come from some other attachment point. If, however, C initiates communication to B
from attachment point 1, B could become confused. From the application’s point of view, packets
received from C are indistinguishable from packets from A, as both appear to be simultaneously
occupying attachment point 1—A and C are said to collide because the application uses the same
name, 1, for them both.

The problem of name collision is quite difficult to avoid. One obvious alternative is to have Mi-
grate assign C a new, distinct attachment point 1′, and rewrite all packets appropriately. This
solution has two unfortunate side effects. First, the application may depend on knowing C’s ac-
tual attachment point, 1—providing the application some false attachment point, 1′, may lead to
unpredictable behavior. Further, introducing 1′ pollutes the address space, and C may collide later
with a legitimate end point at 1′. Finally, such forging requires Migrate to rewrite packets for end
points that have not changed attachment points. It is desirable to restrict the overhead of supporting
dynamic end points to only those connections that require it.

Similarly, as described above, Migrate must filter all incoming datagrams on the unconnected socket
for possible rewriting, adding processing overhead. To avoid this problem, Migrate uses connected
UDP sockets whenever an end point changes attachment point. In other words, once a session is
established between two end points, any ongoing UDP connections are migrated as if they were
connected, regardless of whether communication was originally through an unconnected socket

73

or not. These connected UDP sockets are multiplexed together with the original, unconnected
socket, which continues to deliver data from other end points. Hence, the application only sees
one socket, but Migrate is able to easily differentiate between those packets that require rewriting
(received on connected sockets) and those that do not (received on the original, unconnected socket).
Unfortunately, because Migrate needs to provide one virtualized socket to the application there is
no similar way to transparently avoid the multiplexing overhead on write operations.

4.5 Deployment issues

This section discusses several issues that arise when employing connection migration and how Mi-
grate copes with them.

4.5.1 Changes in local attachment point

By default, Migrate does not attempt to support changes in local attachment point for applications
that explicitly request a particular attachment point. Applications that do so have expressed an
interest in controling their own multi-homing choices. Hence, sockets that have been bound to a
specific attachment point may cease to function if the local end point changes attachment point. In
such instances, Migrate suspends the connections until the application requests their migration to
alternate attachment points. Typically, when applications bind a socket to a network port, they don’t
care what network attachment point is used. Where system calls require the application to explicitly
specify a particular attachment point, most applications indicate their ambivalence through the use
of a wild card specifier (e.g., INADDR_ANY on UNIX platforms). In some cases, however, appli-
cations go out of their way to explicitly specify a local attachment point. If, for whatever reason,
that attachment point becomes unavailable, data can no longer be received on that socket. Because
applications must go out of their way to request such behavior, it is not clear precisely what behavior
applications may desire in the face of changing local attachment points.

4.5.2 IPsec

There are several issues raised when the Migrate options are used in conjunction with IPsec [55].
While it becomes unnecessary to secure the connection migration (because IPsec authenticates all
incoming packets), IPsec’s use of IP addresses to specify Security Associations (SAs) can be prob-
lematic. When a connection with an associated SA is migrated, a new SA must be established with
the new destination address before communication is resumed. If the establishment of this new
SA conflicts with existing policy, the connection is dropped. This seemingly unfortunate result is
actually appropriate. Since IPsec’s Security Policy Database (SPD) is keyed on IP network address,
the policies specified within speak to a belief about the trustworthiness of a particular portion of the
network.

If an end point attaches to a foreign network, any security assumptions based on its normal point
of attachment are invalid. One of the limitations of home-agent schemes like Mobile IP is that
they obscure the true location of the remote end point. When communicating with a mobile host,
IPsec at a correspondent host will apply security policies based on the location of the home agent,
which may be inappropriate or insufficient for the current location of the mobile end point. We
argue that if a mobile end point continues to have sufficient credentials independent of its point of
attachment, an end-to-end authentication method should be used, and a secure tunnel established
for communication over the untrusted foreign network.

74

4.5.3 Transparency

A final issue that arises with virtualized connections is the level of transparency desired. In par-
ticular, it is normally possible for applications to discover the current local and remote attachment
points in use through standard system calls (e.g., the UNIX getsockname() and getpeer-
name() system calls). The system should provide applications capable of handling dynamic end
points with current, accurate responses; Migrate defaults to this behavior. Some legacy applications,
however, may be confused by inconsistent, dynamic responses to these calls. Hence, Migrate is ca-
pable of virtualizing these system calls as well, always responding with the initial attachment points
regardless of the current ones.

75

76

I keep renaming my motives, but continue doing the same things.

– Mason Cooley

Chapter 5

Session Continuations

One of the main challenges in a mobile environment is a host that disconnects. Frequently this
disconnection is unexpected and the duration unknown; session-based applications that rely on
connectivity to remote end points have great difficulty functioning in this environment. Previously,
we described how Migrate uses the session abstraction to seamlessly restore network connections
after connectivity is restored. Additionally, Migrate can notify mobile-aware applications about
disconnection events, facilitating applications’ adaptation to changes in connectivity. However, this
notification does not provide applications with any mechanism to conserve resources during periods
of disconnection.

In this chapter, we develop a generic mechanism that allows application sessions to gracefully pause
during periods of disconnection, adapt to changes in the environment upon resumption, and conserve
resources during disconnection. In our model, sessions are suspended when end points become dis-
connected, and resumed when connectivity returns. We present session continuations, an abstraction
that enables end points to manage the suspension and resumption of disconnected sessions while
allowing host operating systems to reclaim application and system resources during disconnection.

The rest of this chapter is organized as follows. We first motivate our design by introducing the
continuation concept in its original, programming-language context before applying it to sessions in
Section 5.1. Section 5.2 presents extensions to the Migrate API to support session continuations and
explains their use in network applications. Section 5.3 discusses how session continuations can de-
crease the utilization of several key system resources during disconnection. The chapter concludes
in Section 5.5 with a brief summary and preview of our evaluation of session continuations.

5.1 Continuations

A continuation is a conceptual representation for “the rest of a computation.” Its initial development
in the late 1960’s and early 1970’s is variously credited to van Wijngaarden, Strachey, Wadsworth,
Morris, and others [104]. Continuations were motivated by the need to formally express sophisti-
cated control structures in programming languages, such as non-local exits (e.g., break and con-
tinue in C), unrestricted jumps (e.g., goto), and various forms of exception handling (e.g., Java’s
throw and catch). These control structures had previously been difficult to express, as they
required passing the thread of control between execution contexts, such as naming scopes and time-
dependent states of various mutable entities.

77

5.1.1 Formal description

In order to understand continuations, it is helpful to first briefly examine the mathematical modeling
of programming languages through the use of abstract program elements. Denotational semantics
formally describe the meaning of a program through a calculus of elements representing various
aspects of a computer system.1 In particular, denotational semantics define an evaluation function,
E , which computes the v ∈ V alue or meaning of a given program expression, Exp. Hence, we can
define E as a function from expressions to values:

E : Exp → V alue

Most useful programming languages support identifiers, which are defined in a naming context e ∈
Environment. These identifiers are typically scoped and may have different meanings at different
points throughout the program, requiring the evaluation function to take the current environment
as a parameter. Similarly, identifiers typically refer to variables, which can often be assigned time-
dependent values. The current state, s, of these variables is recorded in the Store, which is also
a parameter to the evaluation function. Hence, for languages supporting mutable variables, the
evaluation function can be defined as:

E : (Exp × Environment × Store) → (V alue × Store)

Since an expression may have side effects, the evaluation function must return not only the value of
the expression, but the resulting possibly mutated store. Denotational semantics without a notion of
continuations are known as direct semantics.

Direct semantics have difficulty elegantly expressing the difference between the meaning of a state-
ment in different control contexts (e.g., a statement inside a loop and the same statement outside a
loop). A control context provides a mechanism to describe alternate program flows that may occur
because of control statements such as conditionals or jumps. A continuation provides exactly this
context, allowing the explicit specification of where the program goes afterwords.

Denotational semantics that include the notion of continuations are typically called standard se-
mantics. A continuation is then a function from an intermediate value and store to final value and
store:

k ∈ Continuation : (V alue × Store) → (V alue × Store)

Hence, in standard semantics, the evaluation function becomes a function from some input expres-
sion and naming, control, and state contexts to a result:

E : (Exp × Environment × Continuation × Store) → (V alue × Store).

5.1.2 Continuation passing style

Function calls are one of the most common mechanisms for passing control flow between contexts.
Compilers are charged with the task of managing the various environments such that function calls

1Operational semantics for mobile applications have been explored previously [17].

78

return to the appropriate place in the program with the correct state intact. This task is complicated,
as activation records containing the necessary mutable state must be stored and managed. Since
function calls can be nested, there may be a large number of activation records to manage at any
time.

Of course, the whole problem could be avoided if there were nothing to do after a function returned.
Calls placed at the very end of a function are known as tail calls. If a function ends with a tail call,
there is no need to record any state about the current function, as its computation is complete. In
fact, if the last statement of every function were a nested function call, there would never be a need
to return to the previous function. In such a situation, a function call is equivalent to a goto that
passes arguments.

Unfortunately, such a rigid tail-call regime requires each function to know exactly where to jump to
when it finishes. However, there are many functions that are used repeatedly in a program with dif-
ferent return points. This ambiguity can be avoided by passing the function an additional parameter,
specifying what other function to invoke when it completes. This parameter is a continuation—an
explicit representation of the rest of the computation. Hence, in continuation passing style (CPS),
all function calls, and, indeed, any control structure, can be modeled as a function call with a con-
tinuation parameter. When a function is done, it simply calls the continuation.

5.1.3 Application to sessions

CPS, where the thread of control is explicitly passed from one continuation to another along with
any necessary context, has been shown to be beneficial in several domains including process man-
agement and inter-process communication (IPC) [30, 36]. The key advantage of CPS is that any
state or context necessary for the continuation is specified explicitly, and control never returns to
the entity calling the continuation. This approach significantly simplifies state management, as con-
text must never be transparently saved and restored—all state that persists across function calls is
explicit.

Our insight is that sessions can be handled in the same way. By making the notion of the “rest
of the session” explicit, session continuations enable graceful handling of session disconnection,
reconnection, and rebinding. Upon disconnection, each session end point generates a continuation
specifying how to resume the session and includes any state and system resources necessary for the
continuation. With the continuation safely stored, the previously communicating hosts are free to
reclaim any resources previously allocated to the abandoned session. If the end points ever wish to
resume the session, they each need only invoke their continuation to continue processing.

Unlike a process checkpoint, a session continuation is not simply a snapshot of the current local state
(although we support such snapshots for legacy applications not using the continuation API). A state
snapshot is problematic to capture and restore and is likely to be inconsistent with current conditions
at the time the continuation is invoked. A session continuation is a function from the quiescent state
(i.e., the state of the end point at session resumption time) to the remainder of the session. In
order to adapt to dynamic conditions, continuations take a set of input parameters reflecting both
the current network state and optionally that of the remote end point (as discovered during session
reconnection). Specifically,

A session continuation is a function from the state of the session end points and network
conditions at reconnection time to a context sufficient for control to be returned to an
application that effectively continues the session from where it was suspended.

79

Kernel
User level

C∅

Cint

Capp

App
Session

Session
Layer

Figure 5-1: Three separate continuations make up a complete session-continuation: a base continu-
ation, C∅, an internal continuation Cint, and one that restarts the entire application, Capp.

In most cases, the required state and system resources may be a subset of or similar to the original
state and set of resources. We say similar because in some instances a continuation may provide an
application with an alternate, equivalent resource. For example, Migrate may replace the original
application process with a new copy (see the discussion of complete continuations in Chapter 6).
In other cases, changes in end point or network conditions may dictate that the session context be
different, reflecting the new network attachment point as well as current network and end point
characteristics (e.g., link bandwidth, security policies, etc.). For example, in the scenario described
in Chapter 1, a user moved her laptop from a relatively secure network to a highly insecure network.
A Migrate-aware SSH application would likely want to ignore or discard the previous session key
(stored as part of the session continuation) in favor of re-keying the connection with a much stronger
encryption key.

5.1.4 Continuation classes

We need to express a session continuation such that it can be marshaled, stored, unmarshaled, and
executed in an efficient fashion. The level of detail required by a continuation depends on the
context in which it will be evaluated. We find session continuations fall naturally into two classes,
corresponding to the architecture of the particular application:

• Internal continuations continue the session within its hosting application. For applications
that service many sessions at once, the disconnection of one session generally does not lead
to the suspension of the entire application.

• Complete continuations continue the session outside of its original application (e.g., by
starting another instance of the same application). Many applications start a new process for
each session, which can be discarded if the session suspends.

The complexity of a continuation depends greatly on the state of the system. For example, if a
continuation will execute in the same process that generated it, and no associated state has changed
during disconnection, the continuation simply needs to restore the system resources required by the
session and identify the point in the application to which control should be returned. The application
can then perform whatever additional application-specific functions are required upon resumption.
We call this simple preservation continuation the base continuation, C∅.

In more useful scenarios, the continuation will be run in the application in which it was created, but
with changes in both local and remote state. In that case, the internal continuation Cint needs to

80

contain sufficient application state to allow the session to continue, and a function that restores the
context required by the session.

Sometimes, the hosting application itself may need to be restarted. In this case, not only must
system resources be established appropriately, but the appropriate application must be continued
(through its own continuation, Capp()) before the internal continuation can be run. The session
continuation is then a composition of continuations as shown in Figure 5-1. The more complete the
state representation, the more portable the continuation. In the extreme, a continuation could be run
on a system different from the one that originated the session.

While generating a continuation, an application may also export a small amount of state to be
communicated by Migrate to the remote end point upon reconnection and passed as a parameter to
that end point’s continuation. This ability facilitates continuation of sessions whose remote state
would otherwise be difficult to determine.

The above discussion shows continuations are composable; complete continuations often depend
on several internal continuations. For example, a session whose end points moved, processing
suspended, and hosting application terminated would have a complete continuation that is the com-
position of the examples given above, where s is the current state of the network and session end
points:

C = Cint ◦ Capp ◦ C∅(s)

Evaluation order is important, as each successive continuation may depend on the previous one.
In particular, an internal continuation requires a hosting application, and a hosting application may
require an open network connection to associate with the session. Hence, the system needs to first
instantiate the appropriate network connections before calling the application continuation. While
continuations can be viewed in a layered model, where each horizontal layer of the network stack
creates its own continuation, this view is not strictly accurate. More precisely, each continuation
is a vertical swath through the stack, which depends on previous continuations to preserve any
dependencies.

5.1.5 Generation

The composable nature of continuations makes them amenable to incremental calculation, allowing
end points to generate additional continuations on demand. Because executing a complete contin-
uation as described above, where the system must invoke an entire new application to continue the
session, is quite expensive, Migrate attempts to keep the continuation overhead as small as possible
given current resource constraints. Migrate can generate session continuations in two ways, either
eagerly or lazily, depending on the particular session’s needs (as specified by the application or a
combination of user and system preference).

• Eager generation. Some applications require (nearly) immediate notification of disconnec-
tion. Examples are applications that need to begin to buffer outstanding data, claim or re-
lease locks, or reset timers. Migrate supports these applications through eager continuation
generation, where continuations are generated immediately upon disconnection detection.
Generation of the continuation may be an ongoing process, however. In particular, some con-
tinuations may contain buffered or distilled data from the disconnection period and, therefore,

81

Method Description

int freeze(Session s) Suspend a session
int register_handler(Session s, Handler h) Register a mobility handler
int return_cont(Session s, Continuation c) Provide a continuation
int store(Session s, char *a, void *v, int len) Store an attribute/value pair
int export(Session s, char *a) Export to remote end point
int store_size(Session s, char *a) Return size of a stored value
int retrieve(Session s, char *a, void *d) Restore an attribute value

Table 5.1: Extensions to the Migrate session API to support session continuations and an at-
tribute/value store.

cannot be fully generated until the resumption point is known. For example, a live stream-
ing media application needs to know the exact moment of resumption before it can finish
generating a continuation that replays only the missed portion of the stream.

• Lazy generation. In some cases, the application can persist largely unaffected during discon-
nection and the continuation can be generated at any time. In this case, to avoid unnecessary
overhead, the continuation is not generated until the system decides it needs to reclaim re-
sources currently being used by the disconnected session.

In the extreme, the continuation need not be generated until called. This situation may occur
on systems with vast amounts of resources or after extremely short periods of disconnection.
For example, in a fast handoff situation, it may be the case that a continuation is required be-
fore being generated (i.e., the mobile host moved before Migrate detected any disconnection).
In this case Migrate generates the continuation on the fly.

Fundamentally, what Migrate tries to do is release resources when necessary, but allow the session
to continue with minimal perceived delay when connectivity is restored.

5.2 Continuation API

As introduced in Chapter 3 the Migrate API allows an application to define a session by specifying
a remote end point and instantiating some number of connections between itself and the remote end
point. Migrate then ensures that the connections track the remote end point if it changes network
attachment point and uses the best available local attachment point according to system policy (see
Appendix A). Occasionally, however, the end points may become disconnected, and Migrate will
suspend the session. When Migrate suspends a session, it notifies the application and expects to
receive a continuation to call when connectivity resumes. This section presents extensions to the
Migrate API that allow applications to construct and manipulate session continuations. The indi-
vidual API calls are listed in Table 5.1.

5.2.1 Disconnection handling

As discussed in Chapter 3, sessions inform Migrate of their interest in mobility events through the
register_handler() call. The provided handler function is invoked by Migrate any time a
disconnection is detected. Applications that wish to generate a session continuation in an eager
fashion may do so inside their handler and pass it to Migrate using the return_cont() call.

82

typedef struct {
fd_set fds; /* IPC to preserve */
cont_func cont; /* Continuation function */
const char * argv[]; /* (complete only) Command line arguments */
const char * envp[]; /* (complete only) Environment variables */
const char * cwd; /* (complete only) Working directory */

} migrate_continuation;

Figure 5-2: A Migrate continuation structure contains a set of file descriptors that must be preserved
(commonly pipes to other applications), an attribute/value store, and the continuation function it-
self. Complete continuations also specify several parameters used when restarting the application
process.

Alternatively, applications may choose to generate continuations in a lazy fashion by calling re-
turn_cont() at a later time. If an application has not yet registered a continuation by the time the
session is resumed, Migrate will simply invoke the handler function again as described previously,
thereby notifying the application of restored connectivity.

The type declaration of a Migrate session continuation is shown in Figure 5-2. This structure is
composed of three classes of information. The first is a set of file descriptors that will be needed
upon resumption—corresponding to files, devices, UNIX pipes, etc.—in addition to the network
connections previously declared to make up the session (through the add_connection() call).
File descriptors included are no longer available to the application and will be restored only upon
execution of the continuation; the same is true of the session’s network connections. The second
component of the continuation structure is the continuation function itself, a function defined within
the application process that Migrate should call upon resumption of connectivity (instead of the
normal mobility handler specified through register_handler()).

Applications that handle each session in an individual process will likely provide a third class of
information in the continuation—context used to reinvoke the application itself. This context is
operating-system dependent. In our UNIX implementation it includes things like command line
arguments, environment variables, and the current directory. Continuations that specify this con-
text are termed complete, as they provide Migrate with all the information necessary to restart the
application when the session resumes.

Applications returning a complete continuation exit immediately after calling return_cont(),
thereby freeing all resources associated with the application process not explicitly preserved inside
the continuation structure—those included are preserved by Migrate during disconnection and re-
stored prior to the invocation of the application. The continuation function continues to be used
in complete continuations; Migrate calls it after restarting the application process. This approach
eases the task of supporting complete continuations—applications can simply start as they normally
would (typically by waiting for a remote end point to contact them) and perform all special handling
inside the continuation function itself. This structure also allows the same application to support
both internal and complete continuations without modifications.

Applications that handle multiple sessions in one process often do not provide complete contin-
uation information. The resulting internal continuation can, therefore, only resume a suspended
session if the application process still exists when connectivity is restored. If the application exits
before an internal continuation has been called, Migrate simply discards the continuation. Because

83

the process continues to exist after the generation of an internal continuation, it is up to the applica-
tion to discard any remaining internal state and resources associated with the suspended session. In
the interest of decreasing latency when the period of disconnection is short, applications may elect
to not eagerly free session resources when they generate a continuation, but instead schedule a time
to do so later if Migrate has not yet resumed the session. In such instances the continuation may
first check for the existence of the original session before attempting to resume it using only the
state stored in the continuation.

Similarly, some applications may have handlers that must continue to operate during the entire
period of disconnection, such as those that record data or events during disconnection. In such
instances, the handler can return an internal continuation and arrange for the continuation function
to retrieve the necessary information when it is called.

5.2.2 State management

One of the key features of session continuations is the ability to preserve state separately from the
hosting application(s). Some sophisticated applications may have internal mechanisms for recording
persistant state to secondary storage (e.g., Java serialization [130]), but many existing applications
consider session state ephemeral and store it in run-time variables. The task of retro-fitting such
applications (as demonstrated in Chapter 7) is made considerably simpler by providing a generic
attribute/value store for each session.

Migrate provides an attribute/value store for use by the continuation. Arbitrary state that must
survive periods of disconnection can be inserted in the store through the store() call. This
state is then available through the retrieve() function until the session is destroyed—either
by the application through the session_close() call or by the continuation garbage collector
(see Section 5.4). Migrate includes a session’s attribute/value store in all continuations ensuring it
remains available after session resumption. Applications that need to know how large a value is
before extracting it from the store (to allocate a sufficiently large buffer, for example) may pass the
attribute to store_size().

In certain instances, sessions build up shared state that is not readily observable from the remote
end point, but may be necessary for session resumption. Rather than require the application to
communicate this state as part of its continuation, Migrate supports the exchange of small amounts
of state during session resumption. Applications can request the exchange of any attribute in a
session’s store through the export() call. Values placed in the store and exported are then made
available to remote end upon reconnection. It is common for Handlers to export state which is then
used by remote continuations. For example, in the FTP example in Chapter 7, the server exports
a sent_size attribute (corresponding to the number of bytes it already transmitted) to the client
for use by its continuation.

5.2.3 Eliding continuations

In some instances disconnection and reconnection may appear instantaneous, in that by the time
Migrate has received notice of any disconnection, connectivity has already been restored, albeit
at a different location.2 In such instances, the Handler function is called with the M_INSTANT
flag, as described in Chapter 3 and shown here in Table 5.2. The application may then chose
whether to generate a continuation, which would be immediately executed, or to instead handle the

2Instantaneous disconnection and reconnection from the same location may occur but, by definition, has no impact on
open sessions and is, therefore, ignored.

84

instantaneous change internally without generating a continuation. This reduction in overhead can
lead to decreased handoff latency when minimal changes are necessary. An example of how an
application might conditionally generate a continuation is provided in Figure 5-3.

5.2.4 Recursive continuations

Applications often interact with external components such as helper applications. Sometimes these
components are modules inside the application itself, but many times they are separate processes.
By allowing continuations to specify IPC channels (file descriptors) corresponding to these external
entities, Migrate is able to keep the channels open during session suspension, thus hiding session
suspension from external entities. However, this mechanism is fraught with the same difficulties as
transparent network connectivity preservation: The external processes are unaware that the session
is suspended, which may lead to undesired behavior and wasted resources.

If the external processes are part of the same application and, in particular, can be modified, then
it is possible to design a session continuation that communicates with the external processes to
manage resource conservation and ensure proper behavior during disconnection. In the general
case, however, external applications are likely to be written by different authors who may have
no knowledge that they are acting in concert with other applications. This sort of arrangement is
commonplace in UNIX environments where the output of one application is piped to the input of
another. Hence, it is reasonable to expect that while both applications may be mobile-aware neither
was explicitly designed to work with the other.

If both applications are designed to work with the Migrate API, they can realize gains even when
used together. Consider an application whose input and output is being redirected over a network
channel by another application—for example, an editor being executed remotely via SSH. The
connectivity state of both applications is then shared: if the SSH session becomes disconnected,
the editor becomes disconnected from its input source. When the Migrate-enabled SSH receives
notice of disconnection, it will generate a session continuation containing the IPC channel connected
to the editor. Migrate, however, can notice that this channel is in use by another Migrate-aware
application—the editor. Migrate then notifies the editor that it, too, has been disconnected, resulting
in a second continuation. This recursive disconnection notice and resulting continuation generation
supports arbitrary process chaining.

5.3 Resource continuations

Automatic connectivity notification for chained applications is only one of the possible benefits of
the incremental nature of continuation generation. Hosts can also automatically generate continua-
tions that efficiently preserve system resources. When applications include system resources in their
continuations, the system may chose to simply maintain those resources during the disconnection,
or generate a more sophisticated base continuation that will effectively restore the resources when
called, but release them for use by other applications in the mean time. We call base continuations
that preserve system resources resource continuations. Resource continuations must preserve the
normal semantics of the resource. In other words, from the point of view of the application, the
resource must appear as if it was simply preserved across the period of disconnection. Similarly,
resource continuations must not interfere with other processes that may be sharing the resource. Be-
cause resource continuations are completely transparent, all applications can benefit from a system’s
ability to efficiently suspend and resume individual system resources when not in use.

85

/* This function will be called when connectivity resumes and the process is restarted */
static void mobcont(migrate session *session);

static migrate continuation * mhandler(migrate session *s, int flags)
{
migrate continuation * cont;
fd set * fds;

/* Only return a continuation on disconnection */
if(flags & ˜M INSTANT) {
cont = (migrate continuation *)malloc(sizeof(migrate continuation));
memset(cont, 0, sizeof(cont));
cont−>cont = mobcont;
cont−>flags = M COMPLETE;

/* Preserve stdin/out/err */
fds = (fd set *)malloc(sizeof(fd set));
FD ZERO(fds);
FD SET(STDIN FILENO, fds);
FD SET(STDOUT FILENO, fds);
FD SET(STDERR FILENO, fds);
cont.fds = fds;

/* If an application doesn’t specify an environment or command-line arguments here,
* they will be copied from the current process by default. The process will exit here. */
return cont;

} else {
/* Handle mobility event without generating a continuation here. . . */

}
}

int main(int argc, char *argv[])
{

/* . . .The application first creates a connection to a remote end point. . . */

/* Only after validating the end point does it create the session */
session = create session(sock);
/* It can then store session-related state */
store(session, "sample˙data", (const void *)dataptr, SAMPLE DATA LEN);
/* Register a continuation generation function */
register handler(session, mhandler);

/* Carry on with the session. . . */
}

Figure 5-3: A sample Migrate-aware application that exports a complete session continuation upon
disconnection but handles instantaneous mobility events directly.

86

5.3.1 File descriptors

One example of a class of system resources that can be effectively conserved while a session is
disconnected is file descriptors or file handles. In a POSIX-conformant operating system, file de-
scriptors are kernel data structures that facilitate all types of I/O, including network sockets, device
handles, file pointers, and inter-process communication. To be efficiently implemented, most oper-
ating systems are statically configured with a fixed number of file descriptors. High-end database
applications and network servers tend to run out of file descriptors under heavy load [6].

As a practical matter, the number of necessary file descriptors associated with network sockets is
currently limited by the ability of a server to handle the associated connections. That is, a given
server is able to computationally handle only a certain number of concurrent communication ses-
sions. Therefore, it suffices to configure the operation system with enough file descriptors to man-
age that number of sessions. Such a limit ensures a well-engineered application that does not accept
more concurrent client sessions than it can simultaneously process will have sufficient file descrip-
tors. This approach is the one taken by Web servers and other standard Internet servers.

When provided with the ability to suspend sessions, however, servers may be able to handle a sig-
nificantly larger number of concurrent sessions, since only a small fraction of them may be active at
any one time. Hence, it is useful to consider a mechanism that allows suspended sessions to release
their file descriptors and reclaim them upon resumption. This restores the previous requirement that
there need only be enough file descriptors available to support the maximum number of concurrent,
active sessions.

Because Migrate manages the network connections associated with open communication sessions,
it is straightforward to generate continuations that release file descriptors for network connections
while suspended. Under the connection virtualization technique described in Chapter 4, open con-
nections are remapped to new connections upon resumption, anyway, so there is no need to keep
the old ones around while suspended. Hence, when an application requests the preservation of a
network connection as part of its session continuation, Migrate disconnects the old connection and
generates a continuation that instantiates a new one before calling the application’s connection.

Forcibly aborting network connections on suspension can realize considerable resource savings in
practice. In addition to the file descriptor data structure itself, network sockets have associated send
and receive buffers containing data that has not yet been sent by the operating system or received
by the application, respectively. When operating over high-speed links, these buffers may need to
be large for maximum performance. Buffer memory in contemporary operating systems is fixed
or unpageable, meaning that a suspended sessions connection buffer may decrease the amount of
physical memory available for active sessions. By aborting connections of suspended sessions,
Migrate releases this valuable physical memory.

Recall that, in the virtual connection scheme, Migrate double-buffers reliable transport protocols in
user space so the data is not lost. If Migrate were implemented as an extension to the operating
system itself, this double buffering could be eliminated, and the socket buffers could simply be
moved to user space upon session suspension. Of course, in the best possible case, the operating
system would provide a unified buffer cache model like IO-lite [86] and socket data would be
permanently maintained in user space, avoiding the whole issue. In such a model, application data
would remain associated with the application until explicitly discarded—either by the application
itself or by the transport protocol upon receipt of an acknowledgment by the receiver. Such a
mechanism would make it easy to identify outstanding data and retransmit it over alternate channels
if appropriate.

87

5.3.2 Memory

Socket buffers are only one type of memory associated with communication systems. In many cases,
sessions have a far larger footprint in user space used to store information such as authentication
keys, ongoing computations, cached responses, etc. A memory-constrained host may be concerned
with the memory footprint of suspended sessions and wish to generate a continuation that frees
available memory.

For systems that support virtual memory, this may be unnecessary, as modern virtual memory sys-
tems do a good job of removing unused pages from core. The key issue is locality, however. In order
for page-based techniques to perform well, data related to the same session must be stored on the
same page(s). If session-related data is intermingled with data for other sessions, the suspension of
a particular session may not free any individual pages. Hence, we consider how Migrate can reduce
the memory footprint of suspended sessions regardless of the virtual memory scheme.

We first observe session-related memory can be separated into three classes:

1. Ephemeral memory. Temporary scratch space, caches, or other data that is either invalidated
by the session suspension or stored elsewhere.

2. Regenerateable memory. Data that is likely to be needed upon resumption, but can be
recomputed or regenerated at some cost.

3. Critical memory. Data that is absolutely essential to the session, and cannot be recreated or
replaced without restarting the session.

Using this taxonomy, it is clear that ephemeral memory can simply be freed upon suspension. Con-
versely, critical data must be stored and cannot be freed. Regeneratable memory could also be
freed—provided the function necessary to recompute the values was known. In the general case,
an application could explicitly declare all session-related memory as belonging to one of the three
classes upon allocation. We call such an approach colorful malloc, as data segments can be “col-
ored” according to their type. Unfortunately, such an approach would place a significant burden on
the application programmer. The approach taken by Migrate is considerably more simplistic, but
still quite effective.

In the case of complete continuations, Migrate assumes that all memory is ephemeral unless no-
tified otherwise. Applications declare data as potentially critical by including it in a session’s at-
tribute/value store. This approach also ensures locality, as Migrate is able to allocate this memory
itself. Despite the application’s claim that the memory is critical, Migrate considers the memory
regeneratable and applies a compression function to reduce it to a smaller amount of truly critical
data. This optimization follows from the observation that compressible data is a specific class of
regeneratable data. Because the compression algorithm is well known, this approach avoids the
general problem of requiring the application to specify the function necessary to regenerate data.

Using this continuation regime, Migrate stores only a compressed version of the data an application
described as critical when generating its continuation. While the memory footprint is significantly
reduced, the overhead of marshaling and compression the data is non-trivial. We observe, however,
that Migrate need not generate this memory continuation eagerly, but can generate it lazily—that is,
only when memory is scarce. The performance impact of compression is, therefore, only felt when
necessary, a trade-off previously shown to be effective in paging schemes for memory-constrained
systems [54].

88

Tx Rx Idle Inquiry
0

100

200

300

400

m
A

802.11b
Bluetooth

 N/A

Figure 5-4: The power consumption of common 802.11b and Bluetooth network interfaces. The
values shown are currents measured across the PCMCIA bus of an IBM ThinkPad T21 when using
a Cisco Aeronet 350 802.11b and a Brainboxes BL-500 Bluetooth interface, respectively.

5.3.3 Other system resources

There are a large number of other system resources that can be conserved by Migrate. Just because
a resource is not specifically enumerated in a continuation does not mean it cannot be conserved.
Consider, for example the case of energy—a very important resource in portable computing devices.
Multi-homed hosts often have redundant connectivity to a remote host; applications may prefer one
interface to another for their sessions based upon various performance characteristics. If all of the
sessions using a particular interface become disconnected, there is no need to keep the interface
powered up.

Interface usage is an important consideration when some interfaces are substantially more power
hungry than others. Figure 5-4 shows the power consumption of two popular network interfaces
technologies in various states of operation. 802.11b provides much higher bandwidth than Blue-
tooth, but consumes substantially more energy. If a multi-homed host’s 802.11b and Bluetooth
interfaces provide similar connectivity, there is no need for it to keep the 802.11b interface powered
when all sessions using it are suspended; remote end points can still notify it of restored connectivity
using the Bluetooth interface. Previous research has demonstrated significant power savings using
a similar approach [116]. Hence, a power-constrained host could be configured to power down its
802.11b interface when not in use, but Migrate could power it up as part of the base continuation
for sessions that would prefer to use it over the Bluetooth interface.

5.4 Garbage collection

While session continuations enable considerable resource savings, they incur costs as well. In par-
ticular, each individual session continuation must be stored and managed by both disconnected end
points until connectivity is restored. In some cases, however, connectivity may never be restored;

89

Flag Meaning

M_LOCAL There has been a change in local attachment point
M_REMOTE The remote end point changed attachment point
M_INSTANT The change in attachment point appeared instantaneous
M_DISCARD This continuation is being discarded

Table 5.2: The flags that may be passed to a Migrate session continuation. When a continuation
is selected for garbage collection, the continuation is invoked with the M_DISCARD flag. The
M_DISCARD flag is never set at any other time or in conjunction with any other flags.

two end points may never come in contact with each other again. Often, one end point will have
crashed or discarded its continuation, leaving the other holding a useless continuation.

Hence, session continuations must be garbage collected at some point—continuations that are
deemed useless need to be purged from the system. Garbage collection creates two complications:
First, at what point is it appropriate to discard an apparently unwanted continuation? Second, since
the application that created the continuation expected it to be invoked, how can the continuation be
disposed of while ensuring the application is not left in an inappropriate state. The first issue is quite
complicated, and remains an area for further study. Migrate currently enforces an expiration date on
session continuations (calculated by subtracting the session’s current age from the permitted lifetime
specified by the application through the set_length() call). Any continuation that has passed
its expiration date is garbage collected. An expiration date is set upon continuation generation, and
results from the combination of application (see the session_length() call in Section 3.2),
user, and system-wide policy.

In order to address the second issue, we introduce a new flag that can be passed to a session con-
tinuation. The complete set of flags that may be passed to a session continuation upon invocation
is shown in Table 5.2. When Migrate determines that a session continuation should be garbage
collected, rather than simply discard the continuation, the continuation is invoked and passed the
M_DISCARD flag. While all preserved state and IPC is restored, the session itself is placed in a
disconnected state, and no communication can be conducted on its connections: Any attempt to
read from or write to the session’s TCP connections will result in a connection timed-out error; any
transmitted UDP datagrams are discarded. The application is expected to gracefully terminate the
session and exit, thereby released any resources being held by the continuation. Since any attempted
network I/O will expose the lack of session connectivity to the application, applications that do not
observe the M_DISCARD flag will exhibit the same behavior they would have if Migrate were not
present when connectivity was lost.

As discussed previously, internal continuations are discarded immediately if the generating process
exits regardless of their expiration date since they can no longer be executed. Any included system
resources are forcibly released by Migrate. File descriptors contained within a continuation are
reference counted by the operating system in the same fashion as file descriptors held open by an
application. Hence, the closing of a file descriptor by an application or the Migrate daemon may not
necessarily completely free the associated resource—it may still be in use by another application.
Regardless, Migrate’s garbage collection procedure ensures that system resources preserved within
a continuation will eventually be released; sharing semantics are enforced by the operating system
and are not affected by Migrate.

90

5.5 Summary

By generating a session continuation, applications are able to simultaneously manage the suspension
and resumption of disconnected sessions while allowing the host operating system to reclaim ap-
plication and system resources during disconnection. Each Migrate-aware application can suspend
a session by providing its own session continuation; Migrate informs any local applications on the
host interacting with the suspended session of its suspension, allowing them to generate their own
continuations. Continuations can be generated in both an eager fashion in response to disconnec-
tion and a lazy, reactive fashion in response to resource scarcity. Migrate reclaims system resources
by additionally generating incremental resource continuations that are composed with application-
provided continuations. Chapter 7 evaluates the effectiveness of Migrate’s resource continuations
with respect to system memory, open file descriptors (both those associated with network connec-
tions and otherwise), and power consumption.

91

92

My religion consists of a humble admiration of the illimitable superior spirit who reveals himself
in the slight details we are able to perceive with our frail and feeble minds.

– Albert Einstein

Chapter 6

Implementation

Migrate is implemented as two parts: a daemon and a dynamically loadable library linked against
individual applications. The main support infrastructure for the session abstraction is implemented
in the Migrate daemon described in Section 6.1, which interacts with both local policy engines
(Section 6.3) and a suite of connectivity monitors (Section 6.4) to manage open sessions. Appli-
cations interact with Migrate using the APIs described in Chapters 3 and 5, which are exported
by the session-layer library presented in Section 6.2. Figure 6-1 depicts the various components
and their interactions. We also present the Linux implementation of the TCP Migrate options in
Section 6.5 and discuss the cryptographic primitives used in both TCP connection migration and
session migration in Section 6.6.

6.1 Migrate daemon

The Migrate daemon is responsible for managing all open sessions on an end host. Normally, a
host will run a single Migrate daemon with super-user privileges. Because this configuration is not
always feasible, however, the Migrate daemon can be run by individual users to support their own
applications. In order to co-exist with other Migrate daemons on the same system, all Migrate com-
ponents check for a MIGRATE_PORT environment variable when starting up; if it is not defined, a
default value is assumed. This value is used to differentiate one instance of Migrate from another
and affects both the local and remote ports used for all of Migrate’s control channels. Hence, each
application, connectivity monitor, and policy engine can be configured to connect to a particular
Migrate daemon on a specific port. Both local and remote end points must agree on the port, how-
ever, so a user must take care to ensure both end points involved in any sessions are configured to
use the same port. For simplicity, we will henceforth assume only one Migrate daemon is running
on an end host.

We assume the Migrate daemon is started upon system boot and runs continuously. If the host
system or Migrate daemon crashes, all active sessions are lost. In most cases, however, application
processes will not survive a system crash, either, so this does not decrease reliability. To improve
the robustness of the Migrate daemon itself, session state could be periodically logged to stable
storage and recovered when the daemon restarts. Unfortunately, this approach cannot prevent the
loss of system resources being preserved inside of continuations held by the daemon at the time of a
crash. Hence, our current implementation does not attempt to recover any sessions or continuations
lost due to a system or daemon crash.

93

Policy
Engine

Application

Session-Layer Library

Migrate Daemon

Connectivity
Monitor

Kernel

Figure 6-1: The components of the Migrate architecture. Applications export sessions, which are
managed by the Migrate system daemon in collaboration with various connectivity monitors and
policy engines.

struct migrate_session_t {
int _fd; /* TESLA-internal fd for ioctl */
int id; /* Local session ID */
int pid; /* ID at remote end point */
migrate_state state; /* Session state */
struct sockaddr_in laddr; /* Local end point */
struct sockaddr_in paddr; /* Remote end point */
void * db; /* Attribute/value store */
int flags; /* Session flags */
char dname[M_MAXNAMESIZE]; /* Local end-point name */
char pname[M_MAXNAMESIZE]; /* Remote end-point name */
migrate_lookupfunc newf; /* Function to find peer */
mig_handler handler; /* Mobility handler function */
size_t pbufsize; /* Default peer RCVBUF size */

};

Figure 6-2: The Migrate daemon’s internal session structure.

6.1.1 Session and connection management

Once operational, the Migrate daemon registers each connection associated with a Migrate session
with the available connectivity monitors and receives any changes in network availability or session
connectivity. Upon receiving an event, the daemon consults the policy engine to decide how to
handle it. Options include informing the application (the common case), forcing a migration (e.g.,
when a cheaper network attachment point becomes available), suspending the session, or delaying
or ignoring the notification—possibly to avoid excessive flapping in extremely variable conditions.

Figure 6-2 shows the data structure the Migrate daemon uses to manage individual sessions. Each
daemon issues a locally unique ID to each session. When communicating with the remote end
point, sessions are identified by combining their local and remote IDs. For example, a session may
be known as 4 on one end point and 7 on the other; the tuple 4:7 then uniquely identifies the session
on both end points. In addition to information about the session’s end points, state, and application-
defined mobility handlers, the daemon maintains additional operational information including the

94

struct migrate_connection_t {
int fd; /* Virtual file descriptor */
int rfd; /* Real file descriptor */
migrate_session * session; /* Parent session */
struct sockaddr_in saddr; /* Initial local attachment point */
struct sockaddr_in daddr; /* Initial remote attachment point */
struct sockaddr_in csaddr; /* Current local attachment point */
struct sockaddr_in cdaddr; /* Current remote attachment point */
int type; /* SOCK_STREAM | SOCK_DGRAM */
sync_state sync; /* (TCP) Current sync state */
unsigned int sndseq; /* (TCP) Current sequence number */
unsigned int rcvseq; /* (TCP) Current sequence number */
unsigned int ackseq; /* (TCP) Last received byte */
struct _ring_t * ring; /* (TCP) Ring buffer */
unsigned int refcnt; /* Connection reference count */

};

Figure 6-3: The Migrate daemon’s internal connection structure.

IDs of the user and process that own the local session end point, the session’s attribute/value store,
and the negotiated default size of the remote end point’s TCP buffer (see Chapter 4 for a discussion
of its use).

When managing a session, if either the owning application or the system policy engine informs the
daemon a session should react to an event (by suspending, migrating, or resuming), the daemon
contacts the remote end point. It does so by communicating over a separate TCP control channel
as described in Chapter 3. This control channel is created during session establishment or when
resuming previous sessions after periods of disconnection. Control channel establishment is initi-
ated by the connecting/migrating end point by sending a message to the MIGRATE_PORT on the
remote host. We assumed that contacting different ports at the same IP address results in connec-
tions with the same end point. While this assumption generally holds in the direction of connection
establishment, it may be invalidated by various esoteric forms of NAT [80].

Session resumption requires the reestablishment of open network connections, as discussed before.
The Migrate daemon’s connection data structure is shown in Figure 6-3. Connections are named
by their initial local and remote attachment points. In order to conserve system resources such as
network port space, system file descriptors, and kernel socket buffer space (in the case of TCP)
during disconnection, the daemon aborts the network connections by setting the TCP linger timer
to 0 and closing the connection [123] to ensure that the resources are freed immediately instead of
after TCP times out, which could take several minutes. This technique effectively multiplexes all
suspended network connections onto one well-known port (MIGRATE_PORT). The majority of the
state recorded about open connections exists to resume the connection after closing them in this
way.

6.1.2 NAT Challenges

The presence of Network Address Translation (NAT) [122] can make it difficult for Migrate to ex-
plicitly name individual connections inside the same session. In particular, a Port Network Address
Translator obscures not only the IP address, but the transport-layer port as well. Further, the map-
ping from port to original attachment point is known only by the NAT and not to either end point.
Therefore, multiple connections destined for the same remote attachment point that pass through a

95

PNAT are indistinguishable from each other, since the only normally distinguishing feature, the port
number, is meaningless.

This behavior causes great difficulty when Migrate attempts to resume sessions containing multiple
connections to the same remote port (as is common in Web browsing sessions, for example, where
a client has multiple TCP connections between itself and port 80 on a remote server). When at-
tempting to establish new connections to map to the old ones, Migrate is unable to specify which
connection corresponds to which local port, since there are no differentiating factors (visible out-
side of the kernel, at least), aside from what was actually transmitted on the connection. While
Rabin fingerprinting [101] or a similar approach could be used to differentiate based on the content
transmitted along each connection, it is possible that two connections may have transmitted exactly
the same thing up to a point (standard protocol headers, for example) but will transmit different
things after session resumption (meaning they are not actually interchangeable). Hence, our current
Migrate implementation does not allow multiple connections in the same session to share the same
remote port in the presence of a NAT. This shortcoming can be worked around by creating multiple
sessions—one for each connection destined to the same remote attachment point.

6.1.3 Continuation management

When an application generates a continuation, either by passing it as a return value from its mobility
handler function or through the return_cont() function, the Migrate library considers whether
the continuation should be executed immediately or passed to the Migrate daemon, where it may
be composed with additional resource continuations (see Section 5.3). If a session is connected (in
the established state) when an application generates a continuation—an infrequent occurrence—
Migrate invokes it immediately. Otherwise, the continuation is passed up to the Migrate daemon
for storage until the session connectivity is restored. Migrate currently defaults to lazy continuation
generation, and preserves continuation resources in situ. If system resources become constrained,
however, Migrate is capable of composing application continuations with various resource contin-
uations to more efficiently preserve the memory and file descriptors preserved by the continuation.
We describe resource continuations in the context of complete continuations in the Section 6.1.5.

To invoke an internal continuation, the Migrate daemon must temporarily interrupt the execution
of application process that generated the continuation and cause it to pass control to the function
specified by the continuation. We emphasize that mobility handlers and internal continuations are
always executed inside the process space of the application process that generated them, thereby
avoiding any concerns about their security or robustness. In the rare case that the continuation
was returned by a mobility handler function while the session is connected, the application process
has already been interrupted by the mobility handler. Hence, the Migrate library can immediately
execute the continuation function in the context of the same signal handler that invoked the mobility
handler. In most cases, however, process execution must be interrupted again by a signal, and the
continuation function invoked by the signal handler.

In either case, the process signal mask is set to ensure that further mobility events will be queued
until the continuation function has returned. It is further expected that continuations are not recur-
sive (i.e., they don’t call return_cont() internally). These two conditions combined ensure that
both mobility handlers and continuations are not re-entrant—freeing programmers from the need for
synchronization or mutual exclusion.

96

6.1.4 Complete continuations

Complete continuations are considerably more complicated than internal continuations. In the case
of a complete continuation, Migrate terminates the original application process after the continua-
tion is generated and instantiates a new one once session connectivity is restored. In many ways,
the challenges faced are similar to those presented in process migration [29, 93, 134], except that
the new process executes on the same host as the previous process. In both cases, the system must
do one of three things for each resource used by the application process: transfer state from the
original process to the new one, arrange for forwarding, or use similar state from the new process
and sacrifice transparency [29]. Since a complete continuation executes on the same host as the
original process, resource forwarding is straightforward to implement in Migrate.

Continuations are designed to limit the scope of the state and resources that must be transferred from
the old process to the new and are explicitly not transparent. Only critical session state (indicated
by its presence in the session’s attribute/value store) is transferred to the new process. Similarly,
only network connections and those file descriptors include in the continuation are forwarded to the
new process. All other state from the original process, including code and data segments, open files,
message channels, execution state, and the process control block, is discarded. In the interest of sys-
tem security, however, some aspects of the process control block, such as the real and effective user
ID, priority, and current working directories are transferred to the new process. We now describe
the step-by-step process followed by Migrate to generate and invoke complete continuations. This
process is believed to be fully POSIX-compliant; we have tested it on Linux and FreeBSD.

Upon receipt of a complete continuation from an application, the Migrate daemon saves the ses-
sion’s attribute/value store to stable storage (a temporary file). File descriptors contained in the con-
tinuation are preserved by using POSIX file descriptor passing to move them into the Migrate dae-
mon, where they are held for later forwarding to the new process, and may be additionally processed
by individual resource continuations as described below. Finally, various operational aspects of the
application process, such as its real and effective user IDs, priority, signal mask, etc., are recorded,
and then the process is terminated (by calling _exit(), which avoids the invocation of any clean-
up functions registered through the use of the atexit() call.

Occasionally, an application may ask to preserve a file descriptor that corresponds (unbeknownst
to the application) to a network connection that is part of a Migrate session. This situation often
occurs when applications open connections to local server applications, such as an X server, and
the Migrate library provides transparent service (as described in Section 6.2.2). In this case, if the
connection in question is the only connection in its session the Migrate daemon suspends the rele-
vant session, causing the network connection to be suspended and restored when the continuation
is executed.

To invoke a complete continuation, the Migrate daemon first forks a new process. Ideally, the pro-
cess control block of the original process would be transferred to this new process. Unfortunately,
not all attributes are recoverable without operating system support. In particular, the process ID and
parent/child relationships are nonmalleable in a POSIX system, so it is impossible to create a new
process with a particular process ID. Similarly, it is impossible to create a process that becomes
the parent of an existing orphaned child of a previous process, nor that becomes the child of any-
thing other than the process that created it. While it is possible for Migrate to trap system calls
such as getpid() and getppid() in the continuation process to provide the appearance of the
original process, doing so could result in unpredictable behavior depending on what the application
attempted to do with its process ID (e.g., signal other processes in its process group, etc). There-
fore, Migrate simply exposes the attributes of the new process to the application, regardless of their

97

relation to the properties of the previous process. Applications that depend on knowledge of such
attributes can obtain the appropriate values as part of their continuations.

Instead of preserving transparency, the Migrate daemon ensures that the new process exists on its
own and is not associated with the daemon process in any way. This separation prevents the new
process from having any impact on the Migrate daemon’s operation, despite any security faults
or bugs that may exist in the application. To separate the new process from the Migrate daemon,
the daemon forks a child process which immediately forks again. The child process then exits,
resulting in an orphaned grandchild process, which becomes its own process group leader. By
calling wait() immediately after forking, the Migrate daemon frees the resources that would
otherwise be consumed by the zombie child process. The resulting grandchild process then sets its
priority and effective user ID to be the same as those of the process that generated the continuation.
It also creates a new POSIX process session by calling setsid(). It does not, however alter its
controlling tty1. Rather than deal with the complicated issues of foreground and background process
groups, Migrate assumes resumed processes will run without a controlling tty. Processes interested
in recapturing a tty can do so in their own continuation. Recall that the continuation can preserve
arbitrary file descriptors, such as stdin and stdout, which a process may use to determine an
appropriate tty.

File descriptors preserved by the continuation are forwarded to the new process by the Migrate dae-
mon through file descriptor passing. Any file descriptors that were released during suspension are
recreated by the daemon before passing. Once passed to the new process, the descriptors are restored
to their original IDs through the use of dup2(), providing needed consistency to the application.

Finally, the new process changes the working directory to that specified in the cwd field of the
continuation. Immediately before calling execve() with the argv and envp values from the
continuation (argv[0] is treated as the executable), the process restores the signal mask in place
in the original process when the continuation was generated. To assist applications in discovering
the identity of the session being continued, the Migrate daemon adds two variables to the process’
environment: MIGRATE_CONT contains a file descriptor corresponding to a resumed connection
that is a member of the restored session; applications will likely use this value as the parameter to
get_session() to recover the session itself. The second variable, MIGRATE_PID, contains
the process ID of the previous process. Applications may wish to use the ID to communicate with
orphaned children of the previous process, which presumably assumed control of the process group
of the previous process.

6.1.5 Resource continuations

When file descriptors are passed into the Migrate daemon as part of a continuation, Migrate con-
siders generating resource-specific continuations to more efficiently preserve them. The daemon
determines what resources individual file descriptors correspond to through the use of getsock-
name() and fstat(). Once aware of the resources in question, the daemon can generate resource-
specific continuations such as those described in Section 5.3. One trivial continuation is to close
any redundant file descriptors (i.e., multiple file descriptors to the same resource). Many interactive
applications typically have three different file descriptors (stdin, stdout, stderr) that corre-
spond to the same resource (generally a tty). Similarly, depending on the locking semantics in use
(record, file, etc.), multiple file descriptors pointing to the same file can often be collapsed into one.
Closing the only file descriptor pointing to a particular resource can be dangerous, depending on the

1A tty, short for teletype, is an interactive terminal, normally corresponding to a user console.

98

semantics expected by the application. For example, closing all references to a file may allow the
file to be subsequently deleted or overwritten. In the case of NFS, however, these operations can
occur anyway, so Migrate could release all references without affecting NFS semantics. In order to
ensure the operating system semantics are never affected, however, Migrate always keeps at least
one file descriptor open for each resource contained in a continuation.

Because the Migrate daemon is an application just like any other, file descriptors maintained by the
daemon are managed by the operating system in the same way they would be if they were being
held by the application process that generated the continuation. The daemon neither reads from nor
writes to file descriptors in its possession and blocks signals associated with them, so any pending
data or events are delivered to the application process by the operating system once the continuation
is invoked. The only complication arises in operating systems that perform resource-level account-
ing [10]. In some cases, resources that should be associated with a suspended application could be
mistakenly charged to the Migrate daemon while it stores the application’s continuation. In such
environments, the daemon might need to explicitly indicate resources in its possession that should
be charged to another resource principle. We have not yet tested Migrate on an operating system
with such fine-grained resource accounting.

6.2 Session-layer library

The Migrate session-layer library provides stub routines for each of the various Migrate API calls
and communicates with the Migrate daemon using remote procedure calls (RPC) [14]. In addition
to relaying application requests, the library receives asynchronous notifications from the daemon of
mobility events, which it may either handle internally or pass on to an application-provided handler.
The asynchronous notification mechanism is implemented through the use of POSIX signals. By
default, Migrate uses SIGUSR2 for its internal notifications but could dynamically adapt to another,
unused signal, if the application process installs a handler for SIGUSR2.

6.2.1 TESLA

Migrate uses TESLA [110], an interposition agent toolkit, to implement the session-layer library.
TESLA is a framework specially designed for network interposition agents, allowing interposition
agents to expose their own extended APIs to applications. In addition to adding functionality to
applications that are linked against TESLA handler libraries at compile time, TESLA can use the
dynamic linker to insert itself between any dynamically liked application and the system C library,
libc, where it intercepts all network-related system calls and routes them to service handlers such as
Migrate. The full list of functions intercepted by TESLA is shown in Figure 6-4.

Using TESLA, Migrate support can be added to legacy applications at run time. Migrate is imple-
mented in two TESLA handlers, migrate and migrateudp for TCP and UDP sockets, respec-
tively. For example, if a user wishes to enable Migrate support when using an unmodified SSH
client to connect to nms.lcs.mit.edu, a user would simply type:

% tesla +migrate ssh nms.lcs.mit.edu

If the SSH server were Migrate-enabled, either through the use of a Migrate-aware server (like the
one presented in Chapter 7), or by wrapping the SSH server with TESLA as well (e.g., invoking the
server through “tesla +migrate sshd”), the user’s SSH session would survive changes in
client and server attachment points and arbitrary periods of disconnection.

99

/* The following socket functions are redefined by TESLA */

int accept(int s, struct sockaddr *addr, socklen t *addrlen);
int bind(int s, const struct sockaddr *addr, socklen t addrlen);
int close(int fd);
int connect(int s, const struct sockaddr *addr, socklen t addrlen);
int listen(int s, int backlog);
int socket(int domain, int type, int protocol);
int dup(int fd);
int dup2(int fd, int newfd);

int getpeername(int s, struct sockaddr *addr, socklen t *addrlen);
int getsockname(int s, struct sockaddr *addr, socklen t *addrlen);

int getsockopt(int s, int level, int optname, void *optval,
socklen t *optlen);

int setsockopt(int s, int level, int optname, const void *optval,
socklen t optlen);

/* These are overloaded by TESLA only for SOCK_DGRAM sockets */

int read(int s, void *msg, size t len);
int write(int s, const void *msg, size t len);

int send(int s, const void *msg, size t len, int flags);
int recv(int s, void *msg, size t len, int flags);

int recvfrom(int s, void *msg, size t count, int flags,
struct sockaddr *from, socklen t *fromlen);

int sendto(int s, const void *msg, size t count, int flags,
const struct sockaddr *to, socklen t tolen);

/* These should be overloaded by TESLA in the future */

int recvmsg(int s, struct msghdr *msg, int flags);
int sendmsg(int s, const struct msghdr *msg, int flags);

Figure 6-4: The library functions wrapped by TESLA. UDP (SOCK_DGRAM) sockets require extra
care, as they may demand per-datagram processing (e.g., address rewriting). The current TESLA im-
plementation does not yet support scatter/gather I/O.

100

The availability of Migrate support to an application depends on both the presence of a Migrate dae-
mon and the TESLA handlers. Because these conditions can only be validated at run time, we provide
a macro, migrate_avail(), that allows Migrate-aware applications to determine if support is
currently available. If the application is currently running with the TESLA Migrate handlers, and
they are able to communicate with a local daemon, migrate_avail() returns one; it returns
zero otherwise. The presence of local Migrate support does not ensure that the remote end point is
also Migrate capable, however. Since some applications may demand Migrate support, we provide
a special socket option that can be used to specify that a network connection must be included in a
Migrate session. Applications can use setsockopt() to enable the MIG_DEMAND option at the
SOL_MIGRATE level. When the MIG_DEMAND option is set, the connect() and accept()
system calls will fail if the remote end point does not support Migrate.

6.2.2 Transparent interface

When legacy applications are linked against the TESLA Migrate library (either through recompila-
tion or at run-time through TESLA’s dynamic linking), TESLA intercepts calls to the standard POSIX
sockets API [67] (connect(), accept(), sendto(), etc.) and invokes the Migrate handler,
which wraps each network connection in a Migrate session. While such applications cannot take
full advantage of the services available through the Migrate API, system-wide policy may specify
default session handling, including the transparent preservation of open network connections and
suspension of the application (by blocking any network-related system calls) or buffering of trans-
mitted data (by copying to stable storage) during periods of disconnection. Figure 6-5 shows how
the TESLA Migrate handler wraps connections established through the standard socket API with an
enclosing session abstraction.

One drawback of TESLA, however, is that its architecture has significant performance implica-
tions [110]. In particular, TESLA implements the vast majority of its functionality in a separate
process, so all applications using Migrate will create an additional teslamaster process that
actually contains the Migrate API functionality; only a very thin stub layer is left in the application
process. We evaluate the overhead of our TESLA-based implementation in the next chapter.

6.3 Policy engine

Ideally, Migrate-aware applications would assist the user in managing her mobility preferences and
coordinate them with Migrate through a policy API. Such an interface could allow for dynamic
adjustments to local policy based on the particular activity the application was engaged in at any
particular moment (i.e., support the suspension of important users’ sessions for longer periods of
time, etc.).

Unfortunately, most applications currently lack direct interfaces to allow users to describe mobility
handling preferences. Therefore, Migrate provides for a rule-based user policy file in which users
can express their preferences in terms of which local network attachment point to use for particular
applications. In its current incarnation, Migrate requires users to specify sessions based upon the
ports their contained transport connections. For example, if a user wished to specify policy for Web
browsing, she would insert a policy rule for the TCP protocol on the well-known HTTP server port
(80).

Migrate consults the policy file at every mobility event: the creation of a session, a change in the
set of available local attachment points, or change in the connectivity status of a particular session
end point (tracked as described in the following section). In each case, the policy file answers the

101

Legacy
Application

TESLA Migrate Handler

libc

connect() fd

connect() fd

syscall() fd

session_create()

sid

Migrate
Daemon

Session
Establishment

Kernel

Figure 6-5: Dynamic library interposition for transparent operation with legacy applications. When
the session-layer library is interposed between a legacy application and the system (either through
relinking or TESLA’s run-time library interposition), the Migrate handler transparently encapsulates
network connections in Migrate sessions. These sessions are managed according to local system
policy.

question, “Which local attachment point, if any, is best suited for a particular session?” Each session
is considered in turn. The input for each invocation is a description of the network connections
comprising the session in question—their protocols and current remote and local attachment points,
including ports. The file directs Migrate to take one of two actions: either migrate the session to
a new interface, or leave it alone. For each available attachment point, a score is computed; the
attachment point with the highest score for a particular session is selected, provided the score is
sufficiently higher than that awarded to the current attachment point. Figure 6-6 shows a sample
Migrate policy file. A full description of the policy file language and its capabilities can be found
in Appendix A.

6.4 Connectivity monitoring

To decide if an end point is connected at its current attachment point, Migrate needs to monitor
the connectivity of on-going sessions. What constitutes “connected” varies from session to session,
however. To be connected, application sessions may require a certain level of connectivity, ex-
pressed in terms of available bandwidth, maximum latency, or similar metric. Hence, Migrate em-
ploys a suite of modular connectivity monitors to assist in evaluating the current levels of connec-
tivity being experienced by each session. Ideally, applications could specify what metrics they are
interested in, and Migrate would select an appropriate connectivity monitor from the available suite
automatically on a per-session basis. Unfortunately, we have not yet implemented such a feature.

102

A sample Migrate policy file

monitor−policy {
score−interface * 1
score−interface eth* 10
score−interface eth0:1 1000
score−interface ppp* 5

on proto tcp {
on remote−ip 18.31.0.4/24

on port ssh
score−interface eth* 100

on l−port 3001−3010 {
score−interface eth* 200 ;
score−interface eth0:1 100

}
on port http, ftp

migrate never
}

}

Figure 6-6: A sample policy file. In this example, eth0 is preferred to other eth interfaces, which
are preferred to ppp interfaces, which are preferred to all others. Sessions containing TCP SSH
connections to remote attachment points with IP addresses in the 18.31.0 subnet have an increased
affinity for eth interfaces, and TCP connections on local ports 3001–3010 actually prefer eth0
less than other eth interfaces. Finally, sessions containing TCP connections to HTTP or FTP server
ports are never migrated.

Currently, connectivity monitors must be manually configured and they monitor connectivity for all
active sessions, regardless of application.

Connectivity monitors may gather information from a variety of sources, including the physical and
network layers (e.g., loss of carrier, power loss, change of address, etc.), the end point applications
themselves, or appropriately authorized external entities (e.g., [7]) that may be concurrently moni-
toring connection state. Since a session may span multiple protocols, connections, and application
processes, there may be several sources of connectivity information for any particular session. Re-
gardless of the source, Migrate handles connectivity information in the same fashion.

6.4.1 Monitoring API

Whenever a session is established, Migrate informs all connectivity monitors that have registered
ability in monitoring sessions with matching characteristics (e.g., local and/or remote attachment
point and transport protocol match). Figure 6-7 shows the format of registration messages. Each
connection is described individually; sessions without any active connections can be monitored
through their TCP session-control connection. The connectivity monitors subsequently notify Mi-
grate with any connectivity changes using the same message format. Examples of possible connec-
tivity monitors are discussed below.

103

Local Address

Remote Address

Lport Rport ConnUp IfUp

Figure 6-7: Connection status message format. Connectivity monitors use this message to inform
Migrate of changes in connectivity status for an individual connection. The addresses and ports are
the current connection end points. ConnUp specifies whether the connection currently appears to
have connectivity. IfUp indicates whether the local network interface being used by the connection
is currently available.

Interface Address

Interface Network Mask

Interface
Name

IfUp

Figure 6-8: Interface connectivity monitor message format. The Interface Name is a 16-character
ASCII string reported by the kernel (e.g., lo, eth0, etc.).

6.4.2 Physical layer

A monitor can glean connectivity information from the network interface itself. For example, most
devices report some notion of carrier presence (i.e., whether the cable is plugged in, whether the
physical device is operating properly, etc.). The absence of such a carrier indicates complete con-
nectivity failure for all attachment points on that interface. Similarly, many wireless interfaces re-
port signal strength, which a monitor might be able to use to estimate the likelihood of transmission
success—the lower the signal strength, the higher the expected loss rate on the link.

The current implementation of Migrate provides a connectivity monitor that watches the physical
status of network interfaces, and notifies the Migrate daemon as network interfaces become oper-
ational or lose connectivity due to physical factors. Because many connections often use the same
local attachment point (interface), interface monitors can use the message format shown in Figure 6-
8 to concisely describe the status of a network interface. This avoids the need for the connectivity
monitor to issue status updates for every connection using a local attachment point on the interface
in question.

6.4.3 Network and transport layers

There are a variety of ways to monitor end-to-end connectivity [4]; we will not discuss most of them
here, except to say that Migrate can accept input from any of these methods if the monitor interfaces

104

with the Migrate connectivity monitor API. One method in particular, however, is especially useful
for TCP connections.

TCP is acknowledgment-based, meaning each transmitted byte must be explicitly acknowledged
by the receiver. If a byte is not acknowledged, TCP will attempt to retransmit it after a period of
time known as the retransmission timeout (RTO).2 The lack of a response to subsequent retransmis-
sions leads to an exponential increase in the RTO [87]—a so-called exponential back-off algorithm.
Hence, the “health” of a TCP connection can be described by the value of a connection’s RTO—the
larger the value, the greater the connection’s distress. The current Migrate implementation provides
a connectivity monitor that uses this information to assess the connectivity of sessions containing
TCP connections.

Because Migrate’s handlers are interposed between the application and the transport protocol, Mi-
grate can observe any notifications from the network to the application, such as socket errors like
“host unreachable” or “connection reset.” Such messages often indicate a lack of connectivity be-
tween end points. When used in conjunction with virtualized transport protocols (Section 4.1),
Migrate intercepts these messages an interprets them as potential notifications of disconnection.
Migrate immediately attempts to verify connectivity by sending a keep-alive message on the cor-
responding session’s control channel. If this message succeeds, the error condition is passed up
to the application. Otherwise, the error condition is masked and treated in the same fashion as a
disconnectivity notification from an external connectivity monitor.

6.4.4 Application layer

Applications themselves may gather connectivity information, perhaps by passively monitoring
their connectivity, or through active probing (e.g., keep-alive proves). Such applications may in-
terface with Migrate directly, sharing their view of the session with Migrate. If applications provide
such modular connectivity monitors, Migrate may be able to use this information to better manage
sessions with shared end points in a fashion similar to the Congestion Manager [7]. We have not yet
extended any applications to support this feature.

6.4.5 Aggregation

Active connectivity monitoring can be expensive in terms of bandwidth needed for probing and
space used to store historical measurements. Network partitions typically effect entire sub-nets as
opposed to individual hosts. Thus, it may be beneficial to share connectivity information across
clusters of machines [115], not only multiple sessions on one end host [7]. Hosts may wish to
interface with non-local connectivity monitors that can provide increased coverage at lower expense.
We are considering implementing such a monitor in the context of the Reliable Overlay Network
(RON) testbed [4].

6.5 Connection migration

Unlike most of Migrate, which is implemented in a generic, POSIX-compliant fashion, the Migrate
TCP options must be integrated directly into a system’s TCP stack, which often resides in the kernel
itself, resulting in an operating-system-specific implementation. We have implemented the TCP
Migrate options in the Linux 2.2 kernel. The IPv4 TCP stack has been modified to support the

2In fact, a TCP sender may attempt an earlier retransmission in response to a duplicate ACK [124]. The RTO is a
persistent, timer-based retry mechanism used as a fail-safe.

105

winchester: >ls -l /proc/net/migrate/

total 0
-rw-r--r-- 1 snoeren root 0 Jul 29 09:32 127.0.0.1:1026->127.0.0.1:22
-rw-r--r-- 1 root root 0 Jul 29 09:32 127.0.0.1:22->127.0.0.1:1026
-rw-r--r-- 1 root root 0 Jul 29 09:36 18.31.0.66:22->18.31.0.82:1022
-rw-r--r-- 1 root root 0 Jul 29 09:38 18.31.0.66:80->18.31.0.82:1023

Figure 6-9: A directory listing showing open Migrate-capable TCP connections. There are currently
three connections: A local SSH connection, a remote SSH login, and an HTTP download.

Migrate and Migrate-Permitted options. We first describe the interface to connection migration
and, then, examine the details of the Migrate-Permitted option. The implementation of the Migrate
option will be discussed in the following section when we examine the cryptographic alternatives.

6.5.1 Controlling migration

TCP connection migration happens in two ways. Applications with open connections can explicitly
request a migration by issuing an ioctl() on the connection’s file descriptor specifying the local
address to migrate to. Most current applications, however, lack a notification method for the system
to inform them that the host has moved. Hence, we also provide a mechanism for external entities to
migrate open connections, even if they do not have file descriptors corresponding to the connections.

This external migration is affected through the Linux /proc file system. Files of the form

source IP address:source port->destination IP address:destination port

are inserted in the /proc/net/migrate directory for each open connection that has success-
fully negotiated the Migrate-Permitted option. These files are owned by the user associated with
the process that opened the connection. Any process with appropriate permissions can then write a
new IP address to these files, causing the corresponding connection to be migrated to the specified
address. A sample directory listing is shown in Figure 6-9. This method has the added benefit of
being easily accessible to a user through the command line.

6.5.2 Key negotiation

One of the most complicated aspects of implementing the Migrate TCP options is negotiating secret
keying material to sign the Migrate SYNs. End points wishing to initiate a migrateable TCP con-
nection send a Migrate-Permitted option in the initial SYN segment. Upon receipt of an initial SYN
with a Migrate-Permitted option, an end point with a Migrate-compliant TCP stack will include a
Migrate-Permitted option in its SYN/ACK segment. Similar to the SACK-Permitted option [66],
it should only be sent on SYN segments and not during an established connection. Additionally,
end points wishing to cryptographically secure the connection token may include up to 200 bits of
keying material.

As seen in Figure 6-10, the Migrate-Permitted option comes in two variants—the three-byte-long
insecure version and 20-byte-long secure version. The secure version is used to exchange crypto-
graphic keying material and contains an eight-bit Curve Name field and a 136-bit Keying Material
fragment. The Curve Name field selects a set of elliptic curve parameters for use in an elliptic-curve
Diffie-Hellman (ECDH) key exchange. The value indicates a particular set of domain parameters

106

Kind: 15 Length = 3/20 Method Name Keying M.

Keying Material (cont.)

Keying Material (cont.)

Keying Material (cont.)

Keying Material (cont.)

Figure 6-10: TCP Migrate-Permitted option

Curve Name Method Curve Parameters Key Length
0x00 None N/A N/A
0x01 ECDH Annex J.4.1, example 1 163 bits
0x02 ECDH Annex J.4.1, example 2 163 bits
0x03 ECDH Annex J.4.1, example 3 163 bits
0x04 ECDH Annex J.4.2, example 1 176 bits
0x05 ECDH Annex J.4.3, example 1 191 bits
0x06 ECDH Annex J.4.3, example 2 191 bits
0x07 ECDH Annex J.4.3, example 3 191 bits
0x08 ECDH Annex J.4.3, example 4 191 bits
0x09 ECDH Annex J.4.3, example 5 191 bits
0x0a ECDH Annex J.5.1, example 1 192 bits
0x0b ECDH Annex J.5.1, example 2 192 bits
0x0c ECDH Annex J.5.1, example 3 192 bits

Table 6.1: Defined Curve Name values and their corresponding mechanisms. The table shows the
corresponding elliptic curve parameters from the ANSI X9.62 standard [3]. This list may grow to
reflect further published elliptic curves with key lengths less than 200 bits.

(the curve, underlying finite field F and its representation, the generating point P and its order n),
as specified in [3]. Table 6.1 shows the list of currently defined method name values. Use of the
insecure version, which contains only a Curve Name field (which must be set to zero) allows the
end points using network-layer security mechanisms such as IPsec [55] to avoid additional crypto-
graphic overhead.

The secure variant of the Migrate-Permitted option also allows the use of the Timestamp [50] op-
tion in order to store up to 200 bits of keying material. An additional 64 bits of material can be
placed in the Timestamp option. Figure 6-11 shows the Migrate-Permitted option along with a set
of other TCP options commonly included on SYN segments; the fields used to store the Migrate-
Permitted keying material are shown in gray. The Timestamp option, while often included, is not
used on SYN segments. The Protection Against Wrapped Sequence Numbers (PAWS) [50] check
is only performed on synchronized connections, which by definition [97] includes only segments
after the three-way handshake. Similarly, the round-trip time measurement (RTTM) procedure only
functions when a timestamp has been echoed [50]; a timestamp is never echoed on an initial SYN
segment. Hence, the value of the Timestamp option on SYN segments is not meaningful to cur-
rent TCP stacks. Because legacy TCP stacks will never receive a Migrate-Permitted option on a

107

MSS Len = 4 Maximum Segment Size NOP
Window

Scale
Len = 3 Scale

SACK
Perm.

Len = 2 Timestamp Len = 10 Timestamp Value

Timestamp Reply
Migrate
Perm.

Len = 20 Method Keying M.

Keying Material (cont.)

Keying Material (cont.)

Figure 6-11: One possible set of TCP options. Our Linux Migrate TCP implementation sends these
forty bytes of TCP options by default in TCP SYN segments. Four options are requested: maximum
segment size (MSS) (four bytes), window scaling (three bytes), selective acknowledgments (SACK)
(two bytes), and Migrate (20 bytes). The fields used to store the 200 bits of Migrate-Permitted
keying material—64 bits of the Timestamp option and 136 bits from the Migrate-Permitted option—
are shaded. One byte of padding is inserted (a NOP option) to preserve 32-bit word alignment.

SYN/ACK, the Timestamp option will be processed normally. Special handling is only required
for the SYN/ACK and following ACK segment on connections that have negotiated the Migrate-
Permitted option, as Timestamp fields on these segments will not contain timestamps. Thus, the
RTTM algorithm must not be invoked for SYN/ACK or initial ACK segments of connections that
have negotiated the Migrate-Permitted option.

Once keying material is exchanged, it can be used to sign and validate Migrate SYNs. While the
implementations differ, this process is conceptually quite similar to session resumption. In the next
section we present an overview of the cryptographic techniques used for both.

6.6 Cryptography

The authentication needs of both session migration and TCP connection migration are essentially
identical—both need to authenticate a new remote attachment point as being the same end point that
initiated the session/connection. Migrate currently provides this service through a Diffie-Hellman
key exchange. Using Diffie-Hellman, both Migrate sessions and TCP connections using the Migrate
options are able to support an arbitrary number of migration events but require non-negligible com-
putation during each event. In this section, in addition to presenting the details of our current, Diffie-
Hellman-based authentication scheme, we introduce an alternative authentication method based on
one-way functions that entails almost no computational effort during migration in return for ad-
ditional storage. The main drawback with the one-way-function-based approach, however, is that
only a fixed number of migration events can be secured and the number must be specified initially
and cannot be extended. Here we examine the cryptographic primitives used in both approaches
and discuss our current implementation based on Diffie-Hellman. We have not yet implemented
authentication based on one-way functions in Migrate but present it here as an attractive alternative
for future implementations.

6.6.1 Elliptic curve Diffie-Hellman

An exponential key exchange, colloquially referred to as Diffie-Hellman after its inventors [28], is
a well-known cryptographic primitive that allows two parties to conduct a public conversation (i.e.,
eavesdroppers may overhear the messages being exchanged) and arrive at a private secret. That is, it
provides a mechanism for secretly exchanging keying material between two unauthenticated parties

108

in the presence of passive adversaries. There are many variants of Diffie-Hellman, each drawing
their strength from different cryptographic challenges. One particular variant, ECDH, produces
short keys which are thought to have significant cryptographic strength [3]. Due to the limited
space in a TCP SYN segments, we use ECDH to secure the TCP Migrate options.

When using ECDH, the keying material negotiated by the Migrate-Permitted option is an ECDH
public key, encoded using the ANSI-standard compressed conversion routine [3, Section 4.3.6]. The
136 least-significant bits are stored in the EDCH Public Key field of the Migrate-Permitted option
and the remaining 64 bits of the key are encoded in the Timestamp option. These two components
constitute the end point’s public key, k. If the public key is less than 200 bits, it is left-padded with
zeros. For any end point i, ki is generated by selecting a random number, Xi ∈ [1, n − 1], where n
is the order of P , and computing

ki = Xi ∗ P.

The ∗ operation is the scalar multiplication operation over the field F . Because the security of
the connection hinges on the secrecy of the negotiated key, Xi should be randomly generated and
stored in the control block for each new connection. Any necessary retransmissions of the SYN or
SYN/ACK must include identical values for the Migrate-Permitted and Timestamp option.

The remote end point, j, similarly selects a random Xj ∈ [1, n − 1] which it uses to construct kj ,
its public key, which it sends in the same fashion. After the initiating end point’s reception of the
SYN/ACK with the Migrate-Permitted and Timestamp options, both end points can then compute a
shared secret key, K:

K = ki ∗ Xj = kj ∗ Xi.

6.6.2 Using Diffie-Hellman for validation

As discussed previously, session resumptions are validated through the use of a challenge/response
protocol, while connection migrations are signed. This disparity is due to a fundamental trade-off
between the techniques. Challenge/response protocols are attractive because they allow the compu-
tational burden of validation to be scheduled—the operations need not be carried out at resumption
time. Unfortunately, such techniques introduce an additional round-trip delay. Signed connection
requests avoid the additional latency inherent this additional round trip but require additional pro-
tection against DoS attacks.

When a Migrate end point receives a session resumption request, it uses the secret key to encrypt
a random challenge, which is returned to the requester. Only after the requesting end point de-
crypts the challenge and echoes it to the challenging end point is the session allowed to resume
and virtualized network connections reestablished. Figure 6-12 depicts the messages sent during
Migrate session migration.

Because session resumption challenges do not depend on the resumption request, they can be pre-
computed. Hence, an end point may pre-compute a large number of challenges and support the
validation of a large number of simultaneous resumption requests without excessively burdening
the host. This property is important, as session resumptions are likely to be correlated—when
connectivity is restored after a period of complete disconnectivity, all of the sessions on a mobile
host are likely to resume simultaneously.

In TCP connection migration, the secret key is used to sign the Migrate SYN. Specifically, the key
is used to sign two separate components in a Migrate SYN: a validation token and the migration

109

Control SYN

Control SYN/ACK

Session Resumption Request

Challenge

Response

Connection Port Mapping

...
UDP Connection HELLOTCP Connection SYN

TCP Connection SYN/ACK

TCP Connection Synchronization...

Mobile end point Remote end point

1

2

3

4

5

6

7

Figure 6-12: Migrate session migration with virtualized connections. Time flows downward. The
migrating end point establishes a TCP session control channel (step 1) over which it sends a session
resumption request (step 2). The remote end point responds with a cryptographic challenge (step 3).
The migrating end point authenticates itself by decrypting the challenge (step 4). Upon validation
of the response, the remote end point sends a port mapping message for each connection included
in the session (step 5). The migrating end point then initiates new data connections as described in
Chapter 4 (step 6); virtualized TCP connections require further synchronization (step 7).

110

Kind: 16 Length = 19 ReqNo

Token

Token (cont.)

Request

Request (cont.)

Figure 6-13: TCP Migrate option

request itself. The token, T , is computed by hashing together the key and the initial sequence
numbers Ni and Nj using the Secure Hash Algorithm (SHA-1) [78] in the following fashion:

T = SHA1(Ni, Nj ,K).

(Recall that end point i initiated the connection with an active open, and end point j is perform-
ing a passive open.) While SHA-1 produces a 160-bit hash, all but the 64 most-significant bits are
discarded, resulting in a cryptographically-secure 64-bit token that is unique to the particular con-
nection. Since SHA-1 is collision-resistant, the chance that another connection on the same 〈source
IP address, source port〉 pair has an identical token is extremely unlikely. If a collision is detected,
however, the connection must be aborted by sending a RST segment. (The end point performing a
passive open can check for collisions before issuing a SYN/ACK and select a new random Xj until
a unique token is obtained. Hence, the only chance of collision occurs on the end point performing
the active open.)

The request, R, is the 64 most-significant bits of a SHA-1 hash calculated from the sequence number
of the connection initial sequence numbers N , Migrate SYN segment, S, the connection key, K,
and the request sequence number, I .

R = SHA1(Ni, Nj ,K, S, I)

Upon receipt of a SYN packet with the Migrate option, a TCP stack that supports migration attempts
to locate the connection on the receiving port with the corresponding token. The token values for
each connection were pre-computed at connection establishment, reducing the search to a hash
lookup.

If the token is valid, meaning an established connection on this 〈source IP address, source port〉 pair
has the same token, and the request number (ReqNo) is greater than any previously received Migrate
SYN, the receiving end point then computes R = SHA1(Ni, Nj ,K, S, I) as described above, and
compares it with the value of the request in the Migrate SYN. If the values are equal, and the request
number is larger than those in any previously received Migrate SYNs, the destination address and
port3 associated with the matching connection is updated to reflect the source of the Migrate SYN,
and a SYN/ACK packet generated with the ACK field set to the last received contiguous byte of
data, and the connection placed in the SYN_RCVD state. Upon receipt of an ACK, the connection
continues as before.

3Migrated connections will generally originate from the same port as before; however, if the mobile end point is
behind a NAT, it is possible the connection has been mapped to a different port.

111

6.6.3 ECDH key security

A connection key negotiated via ECDH is extremely difficult to guess even for attackers that can
eavesdrop on the connection in both directions. While hosts that lie on the path between connection
end points have sufficient information (namely the two ECDH components) to launch an attack
against the elliptic curve system itself, such an attack requires considerable computational power.
The best known attack is a distributed version of Pollard’s rho-algorithm [92], which Lenstra uses to
show that a 193-bit Elliptic Curve system would require 8.52 ·1014 MIPS years, or about 1.89 ·1012

years on a 450-Mhz Pentium II, to defeat [62].

While this key strength seems more than secure against ordinary attackers, an extremely well-
financed attacker might be able to launch such an attack on a long-running connection in the not-too-
distant future. The obvious response is to increase the key space. Unfortunately, we are restricted
by the 40-byte limitation on TCP options. Given the prevalence of the MSS (four bytes), Window
Scale (three bytes), SACK Permitted (two bytes), and Timestamp (ten bytes) options (of which we
are already using eight bytes) in today’s SYN segments, the 20-byte Migrate-Permitted option is
already as large as is feasible. We argue that further securing the connection key against brute-force
attacks from hosts on the path between the two end hosts is largely irrelevant, given the ability of
such hosts to launch man-in-the-middle attacks against traditional TCP with much less difficulty.

6.6.4 One-way functions

The Diffie-Hellman authentication approach has two main drawbacks. First, the initial key exchange
requires either modular exponentiation or elliptic-curve arithmetic, both of which are computation-
ally expensive. Second, the challenge process is complicated. In the implementation described
above, verification requires multiple messages and both an encryption and decryption operation.
Much of the computation overhead can be avoided through the use of one-way functions.

A one-way function f is a function closed on a domain X satisfying the following two conditions:

1. Given a value x ∈ X, it is easy to compute f(x).

2. Given some y, it is not feasible to find a value x ∈ X such that f(x) = y.

There are many examples in the literature of one-way functions. Common examples include mes-
sage digesting functions like SHA-1 or MD5 [106].

It is straightforward to design an authentication mechanism based upon one-way functions. A pass-
word authentication scheme based on one-way functions was first proposed by Leslie Lamport [59],
and popularized by the S/Key password system [42]. Migrate does not authenticate the end hosts
(the applications should), however, so a password is unnecessary. Instead, Migrate uses an anony-
mous form of Lamport’s scheme. As with Diffie-Hellman, our one-way-function-based approach
remains subject to man-in-the-middle attacks; this vulnerability is a property of all protocols that do
not authenticate the end points at the outset.

In the anonymous scheme, end point A selects some random value, X, and a number, n, which rep-
resents the maximum number of migrations to secure for a particular session. Let f2(x) = f(f(x)),
f3 = f(f(f(x))), and so on. A then computes f(x), f2(x), . . . , fn(x) and sends fn(x) to B.
Henceforth, A can authenticate itself to B by sending fk(x) for some k < n. B need only verify
that f (n−k)(fk(x)) = fn(x). Clearly, for this scheme to be secure, A can never choose a k greater

112

than a value it already transmitted. B must ensure this invariant holds by disallowing any authen-
tication requests for which k is greater than the smallest k is has already seen. A straightforward
enforcement scheme simply has A send f(n−1)(x) on its first migration, f(n−2)(x) on the next, and
so forth. B can reduce its required computation by storing only fk(x) and k for the smallest k it
has received. In the common case, B will then need to invoke f only once.

As described, the scheme only allows A to authenticate itself to B. In practice, B similarly selects
its own random value XB and nB. The one-way function, f , can be the same for both and even
well known, since it is infeasible by definition to invert f . Both A and B can independently trade
off the amount of computation required to request a migration with the amount of memory they are
willing to dedicate to storing pre-computed values of fk(X) for arbitrary k. Since an end point must
initially compute fk(X) for all k < n in order to compute fn(X), the end point could simply store
all intermediate values, and then need perform no computation at all to request a migration. Hybrid
schemes allow for arbitrary tradeoffs; for example, an end point could store every other value in
half the space and require one application of f only every two migrations.

One attractive feature of securing the TCP Migrate options with one-way functions is the ability
to integrate the Migrate options with SYN cookies [12]. SYN cookies are a popular way to avoid
delegating resources at a passive end point during TCP connection establishment until the entire
three-way handshake complete, thereby ensuring the remote end point is establishing the connection
in good faith. End points employing SYN cookies are thus far more resistant to SYN-flood attacks.
Unfortunately, when securing the Migrate options using ECDH, the passive end point must generate
and store its keying material upon receipt of a SYN. This is incompatible with the SYN cookie
approach, which encodes all information that would be stored by the passive end point into the
initial sequence number—which will be echoed back in the final ACK of the handshake. Encoding
the passive end point’s secret keying material in the SYN/ACK packet is untenable, as there is
insufficient space to encode all the necessary state in a cryptographically secure fashion. Even
if there were sufficient space to transmit all the necessary information, the computational effort
required to encode it would likely offset the savings achieved by not storing the state locally.

Using a one-way function scheme, however, the end points need not select their keying material
simultaneously. Because each end point selects its keying material independently, the passive end
point could wait until after the completion of the three-way handshake to do so. If end points were
allowed to send the Migrate permitted option on any TCP segment, not just those with the SYN
flag set, then a passive end point might elect to include it on a later segment—the one immedi-
ately following the completion of the three-way handshake, say. We have not yet implemented this
extension, however.

113

114

If a victory is told in detail, one can no longer distinguish it from a defeat.

- Jean-Paul Sartre

Chapter 7

Evaluating Migrate

This chapter evaluates Migrate in three different ways. First, we consider the impact of Migrate on
communication performance in Section 7.1. Our results show that while Migrate can impose con-
siderable overhead when virtualizing extremely-high bandwidth (> 350-Mbps) connections, the
throughput impact is minor (2% or less for moderate block sizes) for sessions operating over com-
mon access link technologies. When used in conjunction with the TCP Migrate options, Migrate’s
overhead becomes almost negligible and is restricted to session establishment and migration events.
Second, Section 7.2 quantifies the cost of migration in terms of the delay associated with both ses-
sion migration and connection synchronization. We find that the latency of session migration is
tied directly to the round-trip time (RTT) between the communicating peers—the total delay is al-
most exactly four RTTs. Finally, we examine the both the ease of deployment and performance of
session continuations in Section 7.3. We show that servers for two popular Internet applications,
SSH and FTP, require only small modifications to support session continuations, and that suspended
sessions for both applications consume only a few tens of bytes of secondary storage and between
one and three file descriptors. Experimental measurements show our sample complete continuations
introduce an additional session-continuation delay of less than 100 ms in our configuration, which
corresponds to the time required to retrieve the continuation from secondary storage, unmarshall the
stored state, and restart the process.

7.1 Overhead

In this section, we characterize the overhead of Migrate sessions in terms of their impact on con-
nection performance and end-host resources. Initially, we focus on the overhead imposed upon all
sessions, regardless of which end point changes attachment point. This overhead is quantified in
terms of throughput degradation, increased connection latency, and additional resource consump-
tion at end hosts. We examine the costs associated with session migration in the subsequent section.

Our experiments measure the C/C++-based Migrate implementation presented in Chapter 6 run-
ning on versions of two popular UNIX-based operating systems, Linux and FreeBSD. The results
show that Migrate adds an observable overhead, with the most pronounced impact visible in ini-
tial connection latencies and the throughput of small write operations on virtualized connections.
Throughput degradation becomes imperceptible as block size increases or available network band-
width decreases, however, and connection latency overhead is dominated by the expense of the
cryptographic session-establishment operations, which need not be performed on subsequent con-
nections.

115

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000

T
hr

ou
gh

pu
t (

M
b/

s)

Block size (bytes)

Native
Migrate

Figure 7-1: Mean TCP throughput with and without Migrate on a shared 100-Mbps Ethernet seg-
ment, as measured with ttcp. The receiver is an Intel 1.5-Ghz P4 running FreeBSD 4.6-STABLE
while the sender is an Intel 2.26-Ghz P4 running Linux 2.4.18. Each point represents the average of
at least sixteen runs; error bars represent one standard deviation.

7.1.1 Throughput

To evaluate the impact of Migrate’s connection virtualization on network communication, we mea-
sure the throughput of a virtualized TCP connection that is part of a Migrate session. Because the
costs of connection establishment can be amortized over the length of the connection, we measure
throughput across established connections and consider connection latency in the next section. We
measure TCP throughput using the widely-available ttcp program [75], which uses the write()
system call to write blocks of a specified size to the network as fast as possible. On the receiving end,
another copy of ttcp reads data from the network in 64-KB blocks as fast as possible. Throughput
is calculated at the receiver by dividing the number of bytes received by the time elapsed between
the completion of connection establishment (when the accept() call returns) and the closing of
the connection. All experiments were run with 64-KB socket buffers unless otherwise noted and
without any socket options (i.e., TCP_NODELAY and TCP_NOPUSH/TCP_CORKwere not set).

In practice, TCP throughput is governed largely by the available network capacity and the loss rate
experienced on the path between sender and receiver. Hence, we measured the throughput across
two separate, uncongested local-area networks (LANs): a shared 100-Mbps Ethernet segment and
a shared 11-Mbps 802.11b wireless LAN. The mean throughput of a virtualized TCP connection is
shown as a function of the sender’s block size in Figures 7-1 (100-Mbps Ethernet) and 7-2 (11-Mbps
802.11b). For comparison, we also plot the throughput of the same experiments without Migrate.

116

2.5

3

3.5

4

4.5

5

5.5

1 10 100 1000 10000

T
hr

ou
gh

pu
t (

M
b/

s)

Block size (bytes)

Native
Migrate

Figure 7-2: Mean TCP throughput with and without Migrate on a shared 802.11b wireless LAN, as
measured with ttcp. The receiver is an IBM ThinkPad T21 (600-Mhz P3) running Linux 2.4.16
while the sender is an Intel 2.26-Ghz P4 running Linux 2.4.18. Each point represents the average of
at least sixteen runs; error bars represent one standard deviation.

Not surprisingly, Migrate introduces a significant overhead at small block sizes. The overhead is
due to several factors including the additional context switch and system call overhead imposed by
TESLA and the memory copy operations required by Migrate to virtualize TCP connections. Recall
that TESLA requires that data first passes to a teslamaster process before being written to the
network. Similarly, a Migrate-enabled receiver first reads the data into its own teslamaster
process and then passes it along to the ttcp application. Once the bottleneck becomes the available
network bandwidth (approximately 74 Mbps on the Ethernet segment in this experiment, 4.5 Mbps
on 802.11b)—and not the system call overhead—the throughput reduction is less than 2%. In WAN
environments, the bottleneck bandwidth is frequently substantially lower, so Migrate is even less
likely to be the limiting factor.

Far more surprisingly, however, Migrate out-performs standard TCP connections for small block
sizes on 802.11b networks. This performance improvement is also due to interactions with tes-
lamaster. The teslamaster process runs in a loop, reading up to 8 KB at a time from the
application and writing it to the network as a block. Hence, while an application may be writing
data in small blocks, it is likely to be written to the network in much larger blocks, because several
blocks will have queued up in the pipe before the teslamaster process is swapped in and writes
the data to the network. When the network itself is the bottleneck—as is the case regardless of
block size in the 802.11b scenario—teslamaster’s implicit write batching ensures the kernel

117

0

500

1000

1500

2000

1 10 100 1000 10000

T
hr

ou
gh

pu
t (

M
b/

s)

Block size (bytes)

Native
Touched
Dummy
Migrate

Figure 7-3: Mean TCP throughput across the loopback interface of an IBM ThinkPad T21 (600-Mhz
P3) running Linux 2.4.16, as measured with ttcp. Results are presented with and without Migrate,
as well as for a dummy TESLA handler and a receiver that touches every byte received. Each point
represents the average of at least sixteen runs; error bars represent one standard deviation.

send buffers have data ready to send even if the ttcp application (or the teslamaster process,
when TESLA is in use) is not currently active. (All experiments were run on uniprocessor machines.)

The relatively large throughput variability of Migrate-enabled transfers is due to the increased im-
pact of context switching, cache replacement policies, and other scheduling vagaries on both sender
and receiver. This scheduling effect impacts all Migrate operations, including data transfer, con-
nection establishment, and session migration, and is visible in all of the graphs presented in this
chapter, especially Figures 7-2 and 7-5. Since all network I/O handled by TESLA must pass through
a separate teslamaster process, performance is dependent on how the application and corre-
sponding teslamaster process are interleaved. In an ideal implementation, this variance could
be removed by invoking the Migrate handler as a co-routine or part of the system call itself.

In addition to affecting performance, scheduling behavior may also cause applications that have
set the TCP_NODELAY option to emit segments of unexpected size. When the TCP_NODELAY
option is set, a conformant TCP stack writes data blocks to the network immediately (as opposed
to delaying for some period of time in accordance with the Nagle algorithm [77]). As described
previously, TESLA queues data in one contiguous buffer and does not respect application block
size. teslamaster’s buffering policy effectively enforces its own “Nagle algorithm,” possibly
coalescing consecutive blocks of data into one larger one. Hence, consecutive blocks of data that
would normally be sent in separate packets may be sent together.

118

Because access link bandwidths are likely to increase, we also consider the unrestricted case. Fig-
ure 7-3 presents the mean TCP throughput as measured across the loopback interface of an IBM
ThinkPad T21 (600-Mhz P3). For comparison, we also present the results of a similar experiment
without Migrate. Migrate imposes a significant overhead, effectively limiting the throughput to
350 Mbps, as opposed to a maximum achieved throughput of 2,020 Mbps without Migrate. If
the receiver is forced to actually touch every byte received, however—as would be the case in any
practical application—native throughput is limited to 845 Mpbs. (By default, a ttcp receiver sim-
ply discards the data without examining it, reaping considerable savings at large block sizes.) We
consider the second, more realistic configuration when calculating the impact of Migrate.

In order to separate the overhead of Migrate itself from the overhead imposed by our TESLA imple-
mentation, we also ran the experiment using a dummy TESLA handler [110]. This dummy handler
performs no operations at all on the data, but forces the data stream through teslamaster in
the same way the Migrate handlers do. The roughly 50% difference in throughput between the
TESLA dummy handler and the native ttcp application represents the architectural overhead of
TESLA; the difference between the dummy handler and Migrate corresponds to double-buffering
expense. In the worst case, Migrate decreases throughput by an additional 7.5% when compared to
the dummy handler. We conclude that the inter-process communication and context switching re-
quired to move between the four processes is the most significant factor preventing Migrate-enabled
ttcp processes from achieving a higher throughput. The expense of double-buffering the connec-
tion data is non-negligible, but can be avoided through the use of the Migrate TCP options.

As an additional complication, teslamaster is configured to read from applications and the
network in blocks no larger than 8 KB regardless of the size of blocks being read or or written
by the application process. Hence, while the throughput of direct reads and writes (as performed
by ttcp) may continue to improve as the block size increases, applications using TESLA handlers
may be unable to realize these gains. This parameter can be adjusted within TESLA itself if desired,
possibly improving performance. Limited experimentation with larger teslamaster block sizes
in this scenario revealed performance increased slightly (roughly 10%) with the dummy handler, but
not with the Migrate handlers, leading us to conclude that the increased expense of larger memory
copy operations counter-balances the increased efficiency of larger block reads.

7.1.2 Connection latency

In addition to the small overhead on each network operation, Migrate may introduce a significant
delay in connection establishment. This delay is caused by two factors. Any connection managed
by Migrate must be brokered by the Migrate daemons at each end point, introducing an additional
packet exchange. Because the exchange itself proceeds asynchronously it does not seriously impact
connection establishment. More significantly, the first connection of a session must endure the
delay associated with the cryptographic operations necessary to secure the session. To quantify
these overheads, we measured the time required to establish a virtualized TCP connection on a
single host. By establishing the connection on the loopback interface, we avoid any dependence
on the RTT between end points. Increased RTTs will affect native and subsequent virtual TCP
connections identically; the initial connection establishment incurs a delay equal to two additional
RTTs (or perhaps more, if packet loss occurs) due to session control channel establishment and
cryptographic message exchange.

We measured connection latency as the elapsed time between the issuance of a blocking con-
nect() system call and its return for each of three different types of connections: a native TCP

119

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

F
ra

ct
io

n

Latency (usec)

Native
Migrate, initial connection
Migrate, subsequent connections

Figure 7-4: Cumulative distribution of the connection establishment latency of a TCP connection
on the loopback interface of a 600-Mhz Intel P3 running Linux 2.4.1. Each distribution results from
100 independent trials.

connection, a virtualized TCP connection, and the initial virtualized TCP connection of a Mi-
grate session. The median latencies observed over 100 independent runs were 160 µs, 433 µs, and
3297 µs, respectively. (Latencies were measured through repeated calls to gettimeofday()
which is accurate to within 1–2 µs on Linux.) Figure 7-4 shows the cumulative distribution of
latency measurements for the three different connection establishment scenarios. All three curves
have similar shape, since the negligible network latency and packet loss means that connection es-
tablishment takes essentially constant time. The highest variability is seen in the initial Migrate con-
nection establishment due to scheduling variabilities, since both the sending and receiving Migrate
daemons may experience context switches during the cryptographic operations.

As expected, the initial connection establishment on a Migrate session is significantly slower than
subsequent connections, which are marginally slower than native TCP connections due to the TESLA

IPC overhead. Cryptographic operations account for the vast majority of the session establishment
overhead, requiring just over two ms in this configuration. The sessions in this experiment were se-
cured using a 128-bit key negotiated using Diffie-Hellman. Obviously, longer key lengths will lead
to increased session establishment latency. In practice, however, this delay is normally dominated
by the connection RTT, which is generally much larger in the wide area. (A similar effect is seen
with session migration latencies in Figure 7-6.)

120

7.1.3 End-host resources

In addition to the per-connection overhead, Migrate also consumes a small amount of system re-
sources on the end host. The resident portion of the Migrate daemon is about 1.5 MB in size
(1,560 KB on FreeBSD and 1,480 KB on Linux), and each Migrate-aware application requires
its own teslamaster process, which is also about 1.5 MB (1,372 KB on FreeBSD and 1,512
KB on Linux). The memory requirements of both the Migrate daemon and application-specific
teslamaster processes grow as the number of sessions being managed increases. Each new
teslamaster also requires two file descriptors: one each to communicate with the daemon and
the associated application. Chapter 6 details the data structures used to manage each session.

7.2 Migration

The costs of migration vary greatly, depending on the transport connections in use. We first examine
the cost of session migration independent of the constituent network connections, both in terms of
migration latency and its impact on application naming systems. We then focus on the additional
synchronization latencies associated with virtualized TCP connections. The third experiment com-
bines these two steps and quantifies impact of migration on connection throughput, considering both
soft and hard handoffs. We conclude this section by presenting sample traces of TCP connection
migration using the Migrate options and measurements of handoff performance.

7.2.1 Session migration latency

Recall from Chapter 3 that session migration consists of four parts: end-point location, authentica-
tion, rebinding (including connection port mapping), and connection synchronization. Because the
delay associated with end-point location depends on the naming system selected by the application,
we assume here that the location of the remote end point is known—which is the case unless both
end points move simultaneously. The cost of connection synchronization depends on the transport
protocol in use and the loss rate experienced at the previous attachment point. Hence, we con-
sider connection synchronization separately in the next section. Here we quantify the expense of
the other two operations—authentication and rebinding—by measuring the migration latencies of
sessions containing a variable number of connections. We define session migration latency, mea-
sured at the migrating end point, as the time between attempting to reestablish the session control
connection until the reestablishment of all of the associated network connections.

We first examine session migration latencies over a loopback interface to ignore the effects of net-
work latency. (Migration back to the same interface reduces to a change in ports.) Figure 7-5
presents the cumulative distribution of session migration latencies for sessions containing one, two,
and three virtualized TCP connections. The median latencies are 2,135 µs, 2,681 µs, and 3,251 µs,
respectively. Assuming the cost for each additional connection is the same, this experiment indi-
cates that end-point authentication accounts for about 1,600 µs and each connection adds roughly
550 µs of delay. The increased delay variability in the two- and three-connection case is due to the
increased likelihood of context switching at one or both of the end points between connection map-
ping messages. Each mapping message is sent separately so they may be processed independently.

Figure 7-6 shows the median time required to migrate a session containing one virtualized TCP
connection to an attachment point with a varying RTT between itself and the remote end point.
Because session migration is an end-to-end operation, with no dependencies on home agents or
similar third parties, the delay depends only on the RTT between the attachment points used by the
two end points. As expected, the delay is linear in the RTT and corresponds almost exactly to four

121

0

0.2

0.4

0.6

0.8

1

2000 2200 2400 2600 2800 3000 3200 3400

F
ra

ct
io

n

Latency (usec)

1 connection
2 connections
3 connections

Figure 7-5: Cumulative distribution of the session migration latency of a session with a varying
number of TCP connections on the loopback interface of a 850-Mhz Intel P3 running Linux 2.4.2.
Each distribution results from 100 independent trials.

round trip times (the 2.7 ms cost shown in Figure 7-5 is negligible compared to the network latency).
As shown in Figure 6-12, the reestablishment of contained network connections occur roughly in
parallel, so session migration delay is largely independent of the number of network connections
contained by the session when the RTT is large.

7.2.2 Connection synchronization

The time required to synchronize a virtualized connection after migration depends on the transport
protocol in use and the loss rate experienced by the connection before migration. From the point of
view of Migrate, which is virtualizing the transport-layer connection protocol, there is no need to
replay lost data on UDP sockets; they are instantly synchronized. Connection-oriented, application-
layer protocols running on top of UDP that provide additional delivery semantics (e.g., RTP [114])
may need to resynchronize, but they operate at a higher layer than Migrate and we do not consider
them here. Virtualizing TCP connections, on the other hand, requires all data previously sent by one
end point but not received by the remote end point be retransmitted. The greater the congestion and
receive windows prior to migration, the more data that may need to be retransmitted. Furthermore,
because TCP does not deliver data out of order, data received after a loss must be retransmitted.

To quantify the effect of varying loss rates, we measured the time required to synchronize a vir-
tualized TCP connection over a simple topology. We used Emulab [142] to emulate the topology
presented in Figure 7-7; each node is a distinct machine while the links are emulated using Dum-

122

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

La
te

nc
y

(m
se

c)

Round-trip time (msec)

Figure 7-6: Median session migration latency of a session with one TCP connection between two
850-Mhz Intel P3s running Linux 2.4.2 with varying RTTs.

Fixed
Host

Fixed
Gateway

Mobile
Location 1

Mobile
Location 2

100Mbps Ethernet

Bottleneck
Link

Bottleneck
Link

Figure 7-7: Network topology used for virtualized connection synchronization and TCP connection
migration experiments. DummyNet [107] is used to emulate 1-Mbps access links with 20ms of
delay for the experiments in Section 7.2.2; actual 19.2-Kbps serial lines were used in Section 7.2.5.

123

 0%

 5%

 10%

 15%

 20%

 25%
D

eg
ra

da
tio

n
(p

er
ce

nt
)

Throughput degradation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.05 0.1 0.15 0.2

La
te

nc
y

(s
ec

)

Packet loss rate (probability)

Synchronization time

Figure 7-8: Mean connection synchronization latency and throughput degradation of a 524,288-byte
virtualized TCP transfer between two 850-Mhz Intel P3s running Linux 2.4.2 over a 1-Mbps link
with a RTT of 40 ms. The connection iss migrated to a loss-free link after one second. The initial
link loss rate varies from zero to 20 percent. Each point is the average of fifty trials; error bars
represent one standard deviation.

myNet [107]. This topology, with different link speeds, is also used to conduct the experiments
presented in Section 7.2.5. Both mobile host locations use identical connections: a one-Mbps link
with 40 ms RTT to the gateway. The gateway and fixed host are on a 100-Mbps Ethernet segment;
the link to the mobile host is, therefore, the connection bottleneck. While our experimental results
depend greatly on the bandwidth-delay product resulting from our selection of link bandwidth and
latency values, we believe our parameters provide a realistic baseline for evaluation.

In this experiment, we began a 524,288-byte (64 8192-byte blocks) ttcp transfer from the fixed
host to a mobile client (using a 32-KB TCP receive buffer) at Location 1. After one second, the
mobile host moved to Location 2 and migrated the session. Figure 7-8 presents both the mean
throughput degradation and the mean time to synchronize the TCP connection as a function of the
loss rate on the link between the gateway and Location 1. The download time does not include
session or connection establishment times; time is measured from the moment the receiver’s ac-
cept() call returns until the download completes. To help isolate the effects of packet loss before
migration, there is no packet loss on the links connecting the gateway to the fixed host and the mo-
bile host’s new attachment point, Location 2. As expected, the total download time increases with

124

0

5000

10000

15000

20000

25000

30000

0 0.05 0.1 0.15 0.2

O
ut

st
an

di
ng

 d
at

a
(b

yt
es

)

Packet loss rate (probability)

Figure 7-9: Mean number of bytes required to synchronize a virtualized TCP connection over a
1-Mbps link between two 850-Mhz Intel P3s running Linux 2.4.2 over the topology in Figure 7-7.
The initial link loss rate varies from 0 to 10 percent. Each point is the average of fifty trials; error
bars represent one standard deviation.

packet loss rate. Somewhat surprisingly, however, the connection synchronization time actually
decreases as the packet loss rate goes up.

This counter-intuitive result is explained by Figure 7-9, which shows the number of outstanding
bytes on the connection at migration time. As the packet loss rate increases, the number of bytes in
flight decreases. This effect is due to the fact that TCP is unable to grow its congestion window in
the face of packet losses. Hence, the number of bytes that need to be retransmitted to synchronize
a connection actually decreases with packet loss rate. While this unfortunately means the impact
of migration is greatest when the connection is performing best, the absolute impact of connection
synchronization remains small: downloads migrated once between zero-loss links completed in an
average of 4.69 seconds as opposed to 4.47 seconds for downloads that were not migrated at all.

The relatively large variance in the number of bytes outstanding and, thus, the synchronization
latency, seen in Figures 7-8 and 7-9 is due to two separate effects. First, the TCP congestion window
(which, combined with the receiver’s receive buffer size, governs the number of bytes in flight)
grows sporadically in the face of background loss. Burst losses may lead to time outs which cause
the sender to halve the congestion window. The absence of this effect in the zero-loss case results in
a significantly tighter distribution. In addition to TCP’s congestion window behavior, the inherent
variance of the packet loss distribution is amplified by the size of the TCP segments themselves. In
this case, all packets are MTU size (1448 bytes) leading to significant quantization effects.

125

Fixed
Host

Mobile
Location 1

Mobile
Location 2

128 Kbps

128 Kbps

Figure 7-10: Network topology used to measure handoff performance for both virtualized TCP
connections (Section 7.2.3) and the Migrate TCP options (Section 7.2.5). DummyNet is used to
emulate 128-Kbps links with a one-way delay of 20 ms between the attachment points.

7.2.3 Handoff performance

When an end point changes attachment points, steps examined in the previous two sections, mi-
gration and connection synchronization, are both performed. We term their combined impact on
a connection’s throughput handoff overhead. In this section, we quantify handoff overhead by ob-
serving the progression of a TCP download as one of the end points continually changes attachment
point. We conducted a series of simple experiments where a mobile host migrated between two
attachment points using distinct links to a fixed, remote end point. The mobile end point oscillates
between the two attachment points with varying frequency. Both attachment points are connected
to the remote end point with separate 128-Kbps links with 40-ms RTTs. The experimental topology
is shown in Figure 7-10.

We first considered so-called hard handoffs, where the end point changes attachment point and
any queued communications sent from the previous attachment point are lost. Migrate end points
experience a hard handoff when a mobile receiver changes attachment points. All in-flight data from
a fixed sender continues to be delivered to the mobile end point’s old attachment point where it is
discarded. Figure 7-11 shows the throughput of a 947,570-byte download subjected to migration
oscillations with periods up to 30 seconds. (A download from one attachment point takes just over
60 seconds.) As expected, throughput decreases monotonically as migration frequency increases.

The throughput degradation is clearly visible in Figure 7-12, which shows the progression of a vir-
tualized TCP download subjected to varying rates of oscillation. The absolute impact of a particular
migration frequency depends on its relationship to the bandwidth-delay product of the path. We will
explain this relationship in more detail when we consider the TCP Migrate options in Section 7.2.5.

Figure 7-13, on the other hand, shows the same experiment, except the transfer proceeds in reverse.
The receiver is fixed, and the sender changes attachment points. This movement pattern results in

126

75

80

85

90

95

100

105

110

115

120

125

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
b/

s)

Seconds between oscillations

With oscillations
No oscillations

Figure 7-11: Throughput vs. hard-handoff oscillation rates of a virtualized TCP connection.
Throughput measured at the receiver by timing the transfer of a 947,570-byte file. A transfer con-
ducted entirely from one attachment point achieves a throughput of 119.4 Kbps.

a soft handoff—in-flight data from the mobile sender continues to be received by the fixed receiver,
even though the fact the sender has moved. Because Migrate does not abort connections to the
previous attachment point until a session migration request has been validated, this process contin-
ues in parallel with the reception of data from the previous attachment point. Hence, the amount
of in-flight data lost due to a change in sender’s attachment point is considerably less than when a
receiver changes attachment point. The benefits of soft handoffs can be seen in the minimal impact
of even high-frequency migrations.

7.2.4 Naming system impact

In addition to its impact on the end hosts themselves, Migrate places an additional burden on the
naming systems used by application end points. In particular, all naming systems in use by an
end point should be updated each time the end point changes attachment point. Migrate does not,
however, necessarily increase the look-up burden on a naming system, since end points are only
looked up during initial session establishment (when they would be any way) and in the event that
both end points move simultaneously. Migration events where only one end point moves do not
place any demands on the naming system.

Yet the increased update frequency may reduce the effectiveness of look-up caching. Name records
with a high update frequency, such as those used to store bindings for mobile end points, do not
lend themselves well to caching, as they must be invalidated when the end point moves. Naming

127

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 10 20 30 40 50 60

G
oo

dp
ut

 (
by

te
s)

Time (secs)

No oscillations
12 seconds
10 seconds

5 seconds
2 seconds

Figure 7-12: Hard session handoff performance. Progress of a virtualized TCP transfer of a 947,570-
byte file subjected to varying rates of receiver attachment-point oscillation. The TCP receive buffer
is 64 KB.

systems that lack an explicit invalidation mechanism are forced to use a lease-based scheme instead,
in which highly dynamic records are expired after a short period of time. We examine the effect on
one such popular naming system, the Domain Name System (DNS), and consider how to mitigate
the costs of frequent updates.

Studies have shown that the increased look-up load of DNS records with near-zero time-to-live
fields (TTLs)—as required by mobile hosts using Migrate as well as popular content distribution
networks [2]—can be supported by the current DNS infrastructure. Records with small TTLs (on
the order of a few minutes) have a relatively small impact on the DNS hierarchy because the lo-
cation of the authoritative DNS server (the server that stores the end-point binding itself) can be
cached [52]. Each additional look-up operation contacts the authoritative server directly, avoiding
the complete walk through the domain name hierarchy starting at the root. Hence, the increased
burden on DNS of records with low TTLs is limited to the clients that need to look up the record
and the authoritative server. Since Migrate only looks up the record at session initiation in most
cases, there is little additional overhead due to end point mobility. Popular mobile hosts, or those
that move frequently and are more likely to move in concert with a remote end point, are easily
identified by increased look-up load on their authoritative name servers. These records can either
be off-loaded to a less heavily loaded server, or the server can be replicated. Mobile end points that
are not servers themselves, and communicate only with remote end points that do not move (as is
commonly the case in today’s client/server environment) do not need DNS records, and, therefore,
need not contribute any additional load to the naming system.

128

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 10 20 30 40 50 60

G
oo

dp
ut

 (
by

te
s)

Time (secs)

No oscillations
12 seconds
10 seconds

5 seconds
2 seconds

Figure 7-13: Soft session handoff performance. Progress of a virtualized TCP transfer of a 947,570-
byte file subjected to varying rates of sender attachment-point oscillation. The TCP receive buffer
is 64 KB.

In addition to the increased look-up burden of low-TTL name records, it may be that frequent
DNS updates could lead to a significant burden on highly utilized name servers. In particular,
secured DNS updates [141] require DNS servers to perform a cryptographic signature verification
operation for each update. The rate of these operations at any particular server can be controlled
by adjusting the number of DNS records it maintains; the more frequently updated the records,
the fewer records maintained by a single server. Alternatively, updates can be authenticated by
dedicated, trusted update servers and propagated to authoritative servers using traditional domain-
transfer techniques [68]. When DNSSEC [32] is in use, updated records must also be signed by
an entity holding the signing key for the relevant zone. This operation can also be off-loaded to a
trusted agent of it becomes an excessive burden on the DNS server itself.

7.2.5 TCP connection migration

Unlike virtualized TCP connections, whose activities during migration are drastically different than
during normal operation, TCP connections using the TCP Migration options perform quite similarly
to standard TCP connections even during migration. This section presents traces of migrating TCP
connections to demonstrate the effectiveness of the Migrate options and, then, considers the impact
of rapid, repeat migration on the throughput of ongoing TCP connections using the Migrate options.

The TCP traces shown in Figures 7-14 and 7-15 were gathered at the gateway depicted in Figure 7-
7, which is on the path between the fixed host and both mobile host locations. We conducted TCP

129

70000

72000

74000

76000

78000

80000

82000

84000

86000

0 2 4 6 8 10 12

S
eq

ue
nc

e
N

um
be

r
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

Figure 7-14: A TCP connection sequence trace showing the migration of an established connection
transferring data from a fixed server to a mobile client. The Migrate SYN is generated by the
migrating receiver; its value is unrelated to the sequence space shown in this graph and is depicted as
a dashed vertical line. The Migrate SYN/ACK appears as the first data segment sent after migration.

bulk transfers from the fixed host to the mobile host. The mobile host initiates the connection from
Location 1 and migrates to Location 2 at a later time. This topology is intentionally simple in order
to isolate the various subtleties of migrating TCP connections, as discussed below.

Figure 7-14 shows the TCP sequence trace of a migrated TCP connection. At time t ≈ 4.2 s
the mobile host moved to a new address and issued a Migrate SYN. Because the trace shown in
Figure 7-14 was conducted at the gateway and not the mobile end point, the SYN does not appear in
the trace until time t ≈ 4.8 s, as depicted by the dotted line. Since the host is no longer attached at
its previous address, all of the enqueued segments at the bottleneck are lost. The amount of lost data
is bounded by the advertised receive window of the mobile host. Finally, at t ≈ 6.8 s the remote
host’s SYN/ACK passes through the bottleneck and is ACKed by the remote host one RTT later.

The remote host does not immediately restart data transmissions because the TCP Migrate options
do not change the congestion-avoidance or retransmission behavior of TCP. The sender is still wait-
ing for ACKs for the lost segments; as far as it is concerned, it has only received two (identical)
ACKs—the original ACK, and another ACK with the same ACK value as part of the Migrate SYN
three-way handshake. Finally, at t ≈ 7.8 s the retransmission timer expires (the interval is counted
from the arrival of the first ACK, received at the server at t ≈ 4.9 s), and the remote host retransmits
the first of the lost segments. It is immediately acknowledged by the mobile host, and TCP resumes
transmission in slow-start after the time out.

130

68000

70000

72000

74000

76000

78000

80000

82000

84000

22 24 26 28 30 32 34

S
eq

ue
nc

e
N

um
be

r
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

Figure 7-15: A TCP Migrate connection (with SACK) sequence trace with losses just before migra-
tion. As before, the Migrate SYN is depicted as a dashed vertical line, and the SYN/ACK is shown
as the first data segment after migration.

Figure 7-15 shows the TCP sequence trace of another Migrate TCP connection on the same topol-
ogy. As before, the dashed line indicates a Migrate SYN was received at the gateway at time
t ≈ 27.1 s, but it was actually issued by the mobile host at t ≈ 26.6 s. This time, however, there
were two additional losses on the connection that occurred just before the migration, as can be seen
by the duplicate ACKs at t ≈ 24.9 s. These two segments are fast-retransmitted [124] using infor-
mation contained in the selective acknowledgment (SACK) option and pass through the bottleneck
at t ≈ 28 s. Unfortunately, these segments are retransmitted after the mobile host has migrated, so
they, along with all the segments addressed to the mobile host’s initial address after t ≈ 27.1 s, are
lost.

At t ≈ 29 s, the Migrate SYN/ACK makes it out of the queue at the bottleneck, and the mobile
host immediately generates an ACK from the new attachment point. As in the previous example,
however, the fixed host is still awaiting ACKs for previously transmitted segments. It is only at
t ≈ 31 s that the retransmission timer expires and the missing segments are retransmitted. In our
Linux implementation, SACK prevents the retransmission of the previously-received segments, only
those segments lost due to the mobile host’s address change are retransmitted, and the connection
continues as before. The success of this trace demonstrates that the Migrate options work well with
SACK due to the consistency of the sequence space across migrations.

The behavior shown in Figure 7-15 (preserving the SACK information across a timeout) is actually
contrary to that suggested in the SACK specification [66] but leads to improved performance in

131

this case. Hence, we suggest that TCP stacks implementing the Migrate options maintain SACK
information across migration events, including those incurring a timeout. Furthermore, TCP stacks
supporting the Migrate options may wish to force a timeout after connection migration rather than
waiting for the RTO to expire. Automatically triggering a timeout decreases the impact of a hard
handoff—where the receiver changes attachment points—bringing its performance up to the case
where the sender changes attachment points. We have added this optimization to our current imple-
mentation.

As with virtualized connections, we examined handoff performance by measuring the degradation
experienced by a connection as a function of the rate at which it is migrated between different at-
tachment points. When using the Migrate options, however, there are no true soft handoffs. Because
the Migrate SYN immediately validates the request, the connection is changed over to the new at-
tachment point immediately upon receipt of the request. All in-flight data addressed to the previous
attachment point is ignored, even if it is received by the end point. Hence, without loss of general-
ity, we consider a migrating sender that oscillates periodically between two attachment points. This
configuration avoids the TCP timeout seen previously since the mobile end point resumes trans-
mitting immediately after migration. All graphs in this section represent data collected at the fixed
server.

One might believe that performance degradation would increase steadily as the frequency of oscil-
lations between attachment points increases, as observed previously (Figure 7-11). Recall that the
oscillation frequency is deterministic and fixed—the connection is migrated periodically at fixed
intervals. Contrary to our initial intuition, however, we find that the degradation is non-monotonic
in the oscillation frequency for this experiment. Nonetheless, none of the measured frequencies
performed as poorly as virtualized TCP connections subjected to hard handoffs with a two-second
oscillation.

Figure 7-16 presents the throughput of a 947,570-byte download subjected to oscillating migrations
with periods up to 30 seconds. (A download from one attachment point takes just over 60 seconds.)
To illustrate the benefits gained from preserving SACK information across migration events, we
present two experiments. In the first, labeled “go-back-n,” the receiver discards all non-consecutive
blocks received at the previous attachment point(s), forcing the sender to go-back-n—resume trans-
mitting from the last successfully received consecutive byte. In the second experiment, labeled
“SACK”, we show the performance of connections that preserve the SACK information and out-of-
order packets across migration events. It is immediately evident that the performance of connections
that retain SACK information is generally superior to those that do not.

While the traces and exact numbers we present are specific to our link parameters, they illustrate
three important interactions. The first is intuitive: the longer the interval between migrations, the
higher the throughput because there is less disruption. This lack of disruption explains the decreas-
ing overall trend and the decreasing magnitude of the “valleys” of the “go-back-n” experiments in
Figure 7-16. The second effect is due to the window growth during slow start; if migrations occur
before the link bandwidth is fully utilized, throughput decreases dramatically because the connec-
tion always under-utilizes the link. This phenomenon occurs at oscillation periods less than about
three seconds. The third interaction occurs when migration occurs during non-SACK TCP loss
recovery, either due to slow start or congestion avoidance. In this case, TCP’s go-back-n retrans-
mission policy during migration causes the connection to retransmit already-received data. This
interaction explains the sporadic “valleys” in Figure 7-16 and is discussed in more detail below.

To illustrate the slow-start and loss recovery interactions, Figure 7-17 depicts the progression of five
separate “go-back-n” 947,570-byte downloads, each subjected to a different frequency of oscilla-

132

75

80

85

90

95

100

105

110

115

120

125

0 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

K
b/

s)

Seconds between oscillations

With oscillations (Go-back-n)
With oscillations (SACK)
No oscillations

Figure 7-16: Throughput vs. oscillation rate with the TCP migrate options on a TCP connection
without SACK. A download conducted entirely from one attachment point achieves a throughput of
119.48 Kbps.

tion. The migration events are often visible as regular pauses. Figure 7-18 examines the sequence
traces for the interval from 35 to 40 seconds of the “go-back-n” connections subjected to two- and
five-second oscillation periods. At two seconds, the connections are still ramping up their window
sizes and have experienced no losses. At five seconds, the connections experience multiple loss
events as slow start begins to overrun the bottleneck buffer. Four retransmissions can be observed
to be successfully received; the fifth, unfortunately, arrives just after the Migrate SYN from the new
attachment point. Since the remaining data is non-contiguous, it is flushed at the remote end point
in accordance with the go-back-n policy, and retransmission resumes from substantially earlier. Re-
gardless of the exact period of interaction, the migration overhead for realistic rates of attachment
point changes is almost imperceptible.

7.3 Session continuations

In this section, we consider the effectiveness of session continuations across three metrics: ease of
deployment, ability to conserve resources, and speed of session resumption. Our experience shows
that session continuations can be integrated with existing Internet server applications with only mi-
nor modifications. Measurements of our Migrate-enabled server applications show that complete
session continuations are able to effectively conserve both system memory and file descriptors dur-
ing periods of disconnection and increase session resumption latencies only slightly (around 80 ms
in our tested configuration).

133

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 10 20 30 40 50 60

G
oo

dp
ut

 (
by

te
s)

Time (secs)

No Oscillations
10 sec
12 sec

2 sec
5 sec

Figure 7-17: Connection ACK traces for varying rates of server attachment point oscillation using
the go-back-n policy. The TCP receive buffer is 64 KB.

7.3.1 Ease of deployment

To evaluate the ease with which session continuations can be added to existing, session-based Inter-
net server applications, we selected two common Internet applications to modify: SSH and FTP. We
acquired recent versions of popular server implementations, OpenSSH 3.0.2p1 and WuFTP 2.6.2,
respectively. The author was not familiar with the implementation of either application prior to its
selection for this evaluation. The hope, then, is that the particular architectures are representative
of typical session-based Internet servers and are not biased by any constraints or ease of integration
with the session continuation abstraction.

Both applications were extended to generate complete continuations upon session suspension. Ta-
ble 7.1 shows the number of lines of code (LoC) added to each application to support session
continuations. The size of the original application is presented for comparison. The modifications

Name Version Application Size Changes Required
SSH OpenSSH 3.0.2p1 48,967 LoC 262 LoC
FTP WuFTP 2.6.2 21,147 LoC 358 LoC

Table 7.1: The changes required to add session continuations to two popular Internet server applica-
tions. The presented figure includes both the additional code required to generate the continuations
and any required changes to existing code.

134

460000

480000

500000

520000

540000

560000

580000

35 36 37 38 39 40

S
eq

ue
nc

e
N

um
be

r
(b

yt
es

)

Time (secs)

2 sec (Attachment point A)
2 sec (Attachment point B)
5 sec (Attachment point A)
5 sec (Attachment point B)

Figure 7-18: Sequence traces of oscillatory TCP migration behavior under the go-back-n policy.
These are the same traces shown in Figure 7-17.

represent between 0.5% and 1.5% of the code base in both cases. Due to the problematic nature of
quantifying programmer effort, we do not present any measure of the difficulty of making the mod-
ifications, other than to note that in both cases the applications were modified in less than two work
days. We provide below a brief synopsis of the changes required for each application. Selected
portions of the code are presented in Appendix B.

In both cases, continuation generation is simplified by the ability of the application to execute in
the absence of network connectivity. SSH and FTP servers are loops: they consume data from a
source—local applications or files, respectively—encode it, and delivery it to a remote client, and
vice versa. Hence, if either application is allowed to run long enough, it is guaranteed to pass a
particular point in its execution loop. If a quiescent point exists in the loop, where the application
state can be described concisely, then continuation generation is straightforward. Fortunately, both
servers are single threaded and block only on external I/O operations, so such quiescent points exist
and are easy to identify. In particular, after completing all pending tasks, both applications use the
select() system call to block awaiting additional input.

The session generation process is, therefore, quite similar in both applications. Even though dis-
connection may be detected at arbitrary points in the servers’ execution, they only generate contin-
uations from a specified, quiescent state. Suspension requests received at any other time are simply
recorded by their mobility handlers and queued until the quiescent state is reached again. In each
pass through the quiescent state, the applications check to see if a suspension request has arrived. If
so, a continuation is generated. Otherwise, the processing loop repeats.

135

In particular, SSH can continue to process data already received from the network and any data
already consumed from child processes until it exhausts the available data. Outstanding data can
be (de)encrypted, (de)compressed, and either delivered to the local application or buffered for later
network transmission. In any case, the server can run until it quiesces, at which point its state
can be succinctly described in terms of the authentication credentials of the remote user, the state
of the encryption and compression engines, and any outstanding data buffered for later network
transmission. Similarly, FTP can continue reading from its data source and buffer any outstanding
data for delivery to the client. Since both applications read data in small, fixed-sized blocks, the
amount of data outstanding is limited by the size of this data block.

7.3.2 Resource conservation

One of the main features of session continuations is their ability to allow corresponding hosts to
conserve resources during periods of disconnection. We provide experimental evidence of Migrate’s
ability to conserve two particular resources, system memory and file descriptors, in this section. We
measure the resource consumption of the two Migrate-aware server applications described in the
previous section, SSH and FTP running on Linux 2.4.1, and show that both consume significantly
less memory and fewer file descriptors when suspended through session continuations. We also
show that Migrate is able to conserve power on multi-homed hosts by turning off power-hungry,
high-bandwidth interfaces when bandwidth-sensitive sessions are suspended.

Both applications fork separate processes for each session. Hence, our complete continuations
are able to release an entire process during periods of disconnection. The resources consumed by
an individual Linux process are quite diverse. While not necessarily the most important (a good
virtual memory system will swap inactive pages to disk), the most dramatic resource savings that
is straightforward to quantify is system memory. Figure 7-19 shows the memory footprints of
processes serving active SSH and FTP sessions. For comparison, the processes are shown with
our Migrate-extensions and without. The TESLA stub required for Migrate support increases the
memory usage of both applications. The smaller increase experienced by the SSH process is due
to the fact that it already loads many of the libraries required by the TESLA stub. The FTP server’s
library selection is relatively spartan in contrast. In both cases, however, the complete continuations
generated upon disconnection are minuscule in comparison—18 KB and 98 KB, respectively.

The difference in the size of the continuations is due to the much larger connection buffers required
by the FTP session, as shown in Figure 7-20. For each application, an uncompressed continuation
is shown on the left, the compressed version on the right. The FTP session has two active TCP con-
nections, both of which must be double-buffered, in contrast to the SSH session. Further, because
the suspended SSH session had just started up, its connection buffers were largely unused, result-
ing in much more effective compression. The FTP session’s connection buffers were filled with
less-easily compressed file data, resulting in a substantially larger continuation. Not surprisingly,
the SSH continuation contains more session state, since the FTP session need only store the user’s
ID, settings, and current directory, while the SSH session must preserve the session keys and any
as-yet-unsent data in the encryption buffers.

Table 7.2 shows the number of file descriptors required for an individual session in each applica-
tion. The SSH session is currently logged in to a command shell, while the FTP session is in the
middle of a file download. The second column shows Migrate adds an overhead of two to three file
descriptors per session which are used by TESLA. Only one of the SSH file descriptors is a network
connection, while FTP uses two (a control channel and a data channel). Of the remaining file de-
scriptors, our continuations preserve eight and three, respectively. By generating simple resource

136

SSH FTP
0

1000

2000

3000

 M
em

or
y

us
ag

e
(K

B
)

Swapped pages

Shared pages

Non-shared resident pages

Session continuation

Figure 7-19: The memory footprints of sample Migrate-aware servers. We report values observed
using gcc version 2.96 with the -O2 option on a Linux 2.4.1 system with 256 MB of RAM and 512
MB of swap.

SSH FTP
0

100

200

300

400

500

 M
em

or
y

us
ag

e
(b

yt
es

)

Connection buffers

Session state

Compressed

Figure 7-20: Complete continuation sizes. The sizes reported here include persistent application
state, buffered network connection data, and all associated Migrate control data necessary to invoke
the communication.

137

Name Native With Migrate Network Connections Suspended Compressed
SSH 9 12 1 8 3
FTP 8 10 2 3 1

Table 7.2: The file descriptor usage of two popular Internet server applications. The first two
columns indicate the number of file descriptors used by an active session before and after enabling
Migrate support. The third column shows the number of these descriptors corresponding to ac-
tive network connections. The last two columns present the number of file descriptors required for
sessions suspended through a continuation. The “Suspended” column indicates the number of de-
scriptors included within the continuation, and the “Compressed” column shows the actual number
held open by Migrate during disconnection after generating all available resource continuations.

continuations (closing redundant descriptors, leaving only one descriptor pointing to a particular
resource), Migrate is able to reduce those numbers further to three and one, respectively. In the case
of SSH, the remaining descriptors correspond to the connection to the user’s shell, its pseudo-tty,
and the /dev/ptmx device1. FTP, on the other hand, requires only one remaining file descriptor
corresponding to the source of content being downloaded. (A more sophisticated FTP session con-
tinuation might close the file upon suspension and open it again once the session resumed. Doing so
could affect the application semantics, however, as the file might be deleted, modified, or otherwise
altered while closed. Keeping the file open during suspension ensures the original application and
operating system semantics—whatever they might be—are maintained.)

Finally, we show that by handling multi-homing at the session layer, Migrate is able to conserve
additional resources during session disconnection. By allowing sessions to migrate back and forth
across network interfaces, hosts with multiple network interfaces can trade off cost, performance,
and power consumption. It is not always the case that all sessions want to use the same interface.
This need has been recognized previously [21], but solutions either rely on a proxy [64] or require
all mobile-aware connections to use the same attachment point [21, 148].

Migrate, on the other hand, allows end points to change attachment point on a per-session basis and
at any time during the session. We demonstrate the utility of this flexibility by measuring the power
consumption of a hand-held PDA with two network interfaces: an 802.11b interface and a Blue-
tooth interface. Initially, the 802.11b interface is in use by a bandwidth-hungry application. When
powered up, the 802.11b interface is preferred even by bandwidth-insensitive applications. Hence,
when a long-running, bandwidth-insensitive background transfer starts up, it also uses the 802.11b
interface. When all bandwidth-hungry sessions terminate or suspend, however, Migrate system pol-
icy specifies that the 802.11b interface should be powered down in favor of the Bluetooth interface
if Bluetooth coverage is available (802.11b has substantially larger range than Bluetooth).

Figure 7-21 shows the instantaneous current draw of a Compaq iPAQ 3600 over a ten-second period.
Initially, a TCP download is being conducted over the 802.11b interface. At t ≈ 5 s Migrate powers
down the 802.11b device and migrates the transfer to the Bluetooth interface. Power consumption
drops from almost 800 mA to around 450 mA when the bandwidth-insensitive session is migrated
to the Bluetooth device, a savings of almost 350 mA. Power consumption is slightly higher for the
first second or so while Migrate negotiates the change of attachment points, which requires several
packet exchanges and significant computation.

1/dev/ptmx is a device used to control the allocation of pseudo-ttys on Linux. A resource-specific continuation
could be written to allow the closing of it as well, but we have not yet implemented such a continuation.

138

7.3.3 Continuation latency

In exchange for their decreased resource utilization, session continuations introduce additional la-
tency to session resumption over and above the migration latency discussed in Section 7.2. The
exact delay depends entirely on the particular session continuation in question. We have measured
the time required to resume sessions suspended using the complete continuations presented in this
section on a 600-Mhz P3 running Linux 2.4.1. In order to separate delays related to the network,
both the clients and servers used in this experiment were run on the same machine; all network
connections use the loopback interface.

Figure 7-22 shows the median resumption latency of both SSH and FTP session continuations.
For comparison, we also present the initial session establishment times with and without Migrate.
The Migrate-aware session represents the same session that was resumed; the native sessions were
separate, but identical. For SSH, the connection time measures the time between invoking the SSH
command and completion of the ntptime command on the remote host. For FTP, the initial
connection time measures the time between the client’s connect() call and the completion of an
automatic USER/PASS login exchange.

In the case of FTP, the additional connection latency due to Migrate is significantly greater than
that suggested by Figure 7-4. This delay is due to the Network Information Service (NIS)-based
authentication mechanism used to authenticate the login. This mechanism results in additional
(Migrate-enabled) network activity to a remote server. In both cases, the resumption time is similar
(roughly 80 ms), corresponding to the cost of starting up a new process and passing it the preserved
file descriptors. In the case of SSH, this process is significantly faster than the original session
instantiation, which requires several expensive cryptographic operations. In the case of FTP, the
resumption operation is relatively more heavyweight. We note, however, that the resumption cost is
still small and results in a seamless user experience. Terminating the FTP session and restarting it,
while possibly faster (if user intervention can be avoided), requires either an enhanced FTP client
or an accommodating user.

139

Figure 7-21: The instantaneous power consumption of a Compaq iPAQ 3600 over a ten-second
interval. Each grid line on the horizontal axis represents one second; the vertical grid marks are
200 mA. Zero is marked on the vertical axes by the arrow on the left hand side. Initially, the iPAQ
is downloading a TCP stream using a Cisco Aeronet 350 802.11b interface. At time t ≈ 5 s,
the transfer is migrated to a Brainboxes BL-500 Bluetooth interface, and the 802.11b interface
is powered down. The solid horizontal line was manually placed to illustrate the average power
consumption after migration; it corresponds to 456 mA as shown in the upper right. Similarly, the
dashed horizontal line roughly corresponds to the average power consumption before migration.
The difference between the two lines, as also shown in the upper right, is 328 mA.

140

SSH FTP
0

50

100

150

200

 (
R

e)
co

nn
ec

tio
n

la
te

nc
y

(m
s)

Connection, native

Connection, Migrate

Resumption

Figure 7-22: The connection and resumption latency for sample Migrate-aware applications. The
resumption latency measures the time to invoke a complete continuation and restore all suspended
network connections. As in Figure 7-5, it does not include the time necessary to resynchronize those
connections.

141

142

If it were done when ’tis done, then ’twere well it were done quickly.

All’s well that ends well.

- William ShakespeareChapter 8

Conclusions

This dissertation addresses the problems faced by network applications on intermittently connected
mobile hosts. Users of mobile devices have come to expect seamless operation of their local applica-
tions despite frequent interruptions, changes in network attachment point, and periods of disconnec-
tivity. This “suspend/resume” model of operation is not well supported for network applications by
today’s operating systems, however. Traditional network connections are unable to survive changes
in attachment points or periods of disconnection, forcing applications to manage all aspects of no-
madic computing by themselves. Unfortunately for today’s user, many popular network applications
do not include this functionality.

We have presented Migrate, an architecture to support Internet mobility. Legacy applications can
rely on Migrate to transparently manage any changes in attachment point or periods of disconnec-
tion, providing mobile users with the “suspend/resume” semantics they expect from laptops and
PDAs. Mobile-aware applications can use Migrate’s extended API to adapt to changing network
conditions. In particular, session continuations can significantly decrease the resource footprint of
disconnected sessions, enabling Internet servers to support large numbers of open but suspended
sessions. If suspended sessions consumed the same amount of resources as active sessions, pop-
ular servers would be unable to support Migrate’s “suspend/resume” semantics due to resource
constraints.

This chapter begins with a summary of our contributions. Section 8.2 presents a set of higher-level
guidelines extracted from our work that we believe can assist in the design of future mobile-aware
network applications and protocols. Finally, the dissertation concludes with a brief discussion of
possible future directions.

8.1 Contributions

In an attempt to design an efficient, flexible, and easy-to-use architecture to support intermittently
connected end points in the Internet, this dissertation makes the following specific contributions:

• The development of an end-to-end approach to Internet mobility that is based on a system-
supported session abstraction, along with a specific architecture, Migrate, that implements
this approach.

• The design and implementation of Migrate options that extend TCP to support the migration
of TCP connections to new attachment points.

143

• Session continuations, extensions to the session abstraction that enable application-specific
suspend/resume handling. By providing system support for session continuations, hosts can
realize significant resource savings during periods of disconnection. Session continuations
also have applications to problems outside of host mobility such as load balancing and ap-
plication migration. Carefully crafted continuations can be executed in environments (hosts)
other than those that created them, enabling a form of inter-host session migration.

• An application-agnostic, attack-equivalence security model that ensures any attacks enabled
by mobility support reduce to ones already present in a non-mobile environment.

• A proposed session API that allows mobile-aware applications to specify intelligent discon-
nection handling through the use of continuation-passing style, and an understanding of how
a variety of network-based applications can use the API to provide application-specific func-
tionality.

• An evaluation of the efficiency of our prototype Migrate implementation. Our results show
that the throughput impact of connection virtualization is small (2% or less for moderate
block sizes) for sessions operating over common access link technologies. The overhead can
be considerably larger, however, when virtualizing extremely-high bandwidth (> 350-Mbps)
connections or those using small (< 200-byte) block sizes. When used in conjunction with
the TCP Migrate options, Migrate’s overhead becomes almost negligible and is restricted to
session establishment and migration events.

• A demonstration of the effectiveness, flexibility, and ease-of-use of our session continuation
abstraction. We show that servers for two popular Internet applications, SSH and FTP, require
only small modifications to support session continuations, and that suspended sessions for
both applications consume only a few tens of bytes of secondary storage and between one
and three file descriptors.

We believe that our session-based Internet mobility architecture is suitable to a wide range of
operating environments. In particular, our three complimentary approaches to changes in attach-
ment points and periods of disconnectivity—TCP migration, connection virtualization, and session
continuations—provide a comprehensive solution spectrum. For frequent, instantaneous changes
of TCP attachment points, the TCP Migrate options enable connection resumption in one RTT
with very little throughput overhead. For other transport protocols, or attachment point changes
accompanied by periods of disconnection, our connection virtualization approach is able to resume
session connectivity in four RTTs (plus any necessary connection synchronization time). Finally,
for extended periods of disconnection, session continuations can decrease resource utilization on
the disconnected hosts while enabling applications to adapt to changes upon resumption.

All software implementations presented in this dissertation are available for download online in
both source and executable formats at http://nms.lcs.mit.edu/migrate.

The Migrate daemon and TESLA-based session library are available for UNIX. While we believe
our implementation is portable to almost any POSIX-compliant platform, we have tested it only
on Linux and FreeBSD. The TCP Migrate options are only available as a patch for Linux version
2.2.17.

The session continuations for SSH and FTP described in Chapter 7 are available as patch files.
Selected sections of the source code are listed in Appendix B.

TESLA can be downloaded from http://nms.lcs.mit.edu/tesla.

144

8.2 Guidelines

In the course of designing and implementing Migrate, we have identified several principles that
were helpful in making architectural and implementation decisions. We believe these lessons apply
more generally to the design of any network application or protocol for use in a mobile environment:

• Eliminate lower-layer dependence. The first step in enabling higher-layer mobility handling
is to remove inter-layer dependences. In a 1983 retrospective paper on the DoD Internet Ar-
chitecture, Cerf wrote “TCP’s [dependence] upon the network and host addresses for part of
its connection identifiers” makes “dynamic reconnection” difficult, “a problem . . . which has
plagued network designers since the inception of the ARPANET project in 1968.” [19] We
presented two distinct solutions to this particular problem in Chapter 4: connection virtual-
ization and rebinding through the Migrate TCP options.

A host of other problems crop up because of similar linkages. For example, the increasing
proliferation of NATs in the middle of the network has caused problems for applications (like
FTP) that use network- and transport-layer identifiers as part of their internal states. These
problems can be avoided by removing any assumption of stability of lower-layer identifiers. If
a higher layer finds it necessary to use a lower-layer identifier as part of its internal state, then
the higher layer should allow for it to change and continue to function across such changes.
Migrate sessions use application-layer names to identify end points; mobile-aware applica-
tions using the Migrate API presented in Chapter 3 do not depend on the current attachment
points in use by either end point.

• Do not restrict the choice of naming techniques. Many researchers have observed that the
one of the most difficult problems raised by mobility, namely locating the mobile end point,
can be addressed through the use of a sophisticated naming system that supports dynamic up-
dates. Hence, many proposals for managing mobility in the Internet attempt to provide nam-
ing and location services as a fundamental part of the mobility architecture. Unfortunately,
the tight binding between naming schemes and mobility support often causes the resulting
system to be inefficient or unsuitable for various classes of applications. Our experience
shows that each application is likely to end up using a naming scheme that best suits it (e.g.,
INS [1], DNS [68], Twine [9], UPnP [137]) rather than suffer the inadequacies of a universal
one. Migrate allows each application to use a naming system of its choice.

• Provide services at the end points. A great deal of previous work in mobility management
has relied on a proxy-based architecture, providing enhanced services to mobile hosts by
routing communications through a (typically fixed) way-point that is not collocated with the
host [8, 23, 40, 64, 89, 146]. It is often easier to deploy new services through a proxy, as
the proxy can provide enhanced services in a transparent fashion, inter-operating with legacy
systems. Unfortunately, in order to provide adequate performance, it is not only necessary to
highly engineer the proxy [64], but locate the proxy appropriately as well.

Several researchers have proposed techniques to migrate proxy services to the appropriate
location, avoiding the need to pre-configure locations [23, 138]. Unfortunately, all candidate
proxy locations must be appropriately pre-configured to participate. Further, in the face of
general mobility, proxies (or at least their internal states) must be able to move with the
mobile host in order to remain along the path from the host to its correspondent peers. This
is a complex problem [146]; we observe that it can be completely avoided if the support is

145

collocated with the mobile host itself. Hence, Migrate support is implemented at each mobile
end point.

• Optimize for the static case. When one considers movement patterns with respect to com-
munication session durations, today’s mobile devices fall fairly naturally into two categories:
those that are basically static, and move only every few minutes or hours (e.g., most laptops
or even PDAs), and those that move almost constantly (e.g., cell phones). Those with rapid
and continuous movement often require link-layer or micro-mobility techniques to handle the
short time-scales over which their mobility needs to be tracked. Those devices that move
rarely relative to on-going communications (of which there are a significant number) should
not be forced to pay a large overhead when the chance of moving during a session is low.

Many mobility schemes add a significant amount of additional baggage to network commu-
nications that they significantly impact communication between hosts even when neither of
them actually moves during the course of communicating. The mere possibility of movement
forces the end points to incur severe performance penalties. These designs stem from an
over-generalization; many Internet hosts change attachment points only rarely. While many
devices are physically mobile, their network attachment point often changes at much longer
time-scales due to techniques like physical-layer bridging. As demonstrated in Chapter 7,
Migrate’s overhead is often inconsequential when used in bandwidth-restricted environments
such as congested, wide-area networks or wireless access links. Furthermore, when the TCP
Migrate options are used instead of connection virtualization, the overhead becomes almost
negligible and is restricted to session establishment and migration events.

8.3 Open questions

Despite our best intentions, this dissertation raises many more issues than it addresses. We discuss
several of the most interesting ones below, as well as possibilities for extensions to the Migrate ar-
chitecture.

8.3.1 Policy interface

Migrate currently lacks an expressive policy interface. In particular, there is no way to describe a
particular session other than through its constituent network connections. This limitation is most
evident in the system-wide policy file (Appendix A), which is constrained to describe per-session
preferences in terms of connection ports and IP addresses—network attachment points, not session
end points. An approach that allowed policy to be specified in terms of session end points would be
preferred but is complicated by Migrate’s flexibility with regard to the naming system used to name
any particular session end point. Because there is no canonical name for a particular session end
point—indeed, the name of a session end point is entirely dependent on the application to which the
session belongs—it is difficult to describe in a general way.

8.3.2 Multi-homing support

Because it operates at user-level, Migrate’s support for multi-homed hosts is limited by the operating
system’s ability to manage multiple network interfaces. In particular, the operating system remains
in control of how packets are routed, including which interface is actually used to transmit the
packet. While Migrate can select which attachment point (IP address) is used through the bind()
system call, the final selection of outgoing network interface and next-hop gateway is made by the

146

operating system using the local routing table. This means that for hosts with multiple interfaces,
Migrate may not be able to control which interface is used for outgoing traffic on a session.

Most operating systems select the appropriate outgoing interface and next-hop gateway for a packet
based on its destination address. Multi-homed hosts, by definition, may have multiple, alternative
routes to the same destination. How a particular route is chosen varies from operating system to
operating system. For example, KAME/NetBSD will chose among alternate routes based on a
hash of the source and destination IP addresses [133]. To enable true support for multi-homing at
the session layer (or, indeed, any higher layer than the network layer), an operating system needs
to allow Migrate to explicitly specify not only which address to place in outgoing packets, but
which interface (route) to use as well. We previously implemented such an extension to FreeBSD
in support of network-layer inverse-multiplexing [118]. Hopefully, demand from research projects
implementing higher-layer multi-homing (as found both in Migrate and transport-layer solutions
like SCTP [126]) will result in the development of a standard interface. Alternatively, Migrate could
be configured to establish ad-hoc point-to-point IP tunnels for each session on a multi-homed host.
We have not examined the performance impact of this approach.

8.3.3 Extensible security

While Migrate’s attack-equivalent security model has many benefits, it comes at the cost of ignoring
any security provisions already put in place by the application. In theory, Migrate could leverage
an application’s authentication mechanism to authenticate binding updates rather than providing
its own, anonymous scheme. The difficulty with relying on the application, however, is that Mi-
grate cannot be sure what particular semantics the application’s authentication scheme provides. It
is well-known that one of the most common sources of security vulnerabilities is the poor imple-
mentation or misuse of an otherwise secure mechanism [5]. It would be useful to consider whether
a mechanism could be devised to allow applications to describe to Migrate how to use their authen-
tication scheme to validate binding updates.

Migrate would also benefit from the ability to use variable length session keys, and re-key open ses-
sions. Currently, session end points negotiate keying material once, at the beginning of a session,
and use the same material to secure the session for its entire life time. Our implementation uses the
same key length of all sessions, regardless of their expected duration. This leads to increased over-
head for short sessions due to the unnecessary key strength. Further, especially long-lived sessions
may be vulnerable to off-line attacks. Both vulnerabilities could be addressed by initially keying the
session with weaker keys, and re-keying the session if it lasted longer than some cut-off. Sessions
that were expected to be long lived at the outset (applications might use the session_length()
call as a hint) could be keyed with a stronger key initially. Re-keying is problematic, however,
because the end points do not authenticate themselves to Migrate—only to the remote applica-
tion end point. Using the old key to secure the exchange of new keying material is obviously
ill-advised. Hence, the application would likely need to be involved with any re-keying operation to
re-authenticate the end points.

8.3.4 Application structure

This dissertation addresses the needs of session-based network applications that maintain durable
state between two end points across multiple packet exchanges or network connections. This is
a common architecture used in a large number of applications. There are two major exceptions,
however. Some multi-party applications such as multi-media conferencing, online games, and con-
tent distribution networks do not maintain one-to-one relationships between application end points.

147

Instead, multi-party applications may maintain sessions consisting of multiple end points. Because
the semantics of connectivity, session suspension, and end-point tracking are unclear in this envi-
ronment, Migrate does not support applications that use multicast [25]. Extending Migrate’s notion
of a session include more than two end points is an area for future research.

In addition to applications that maintain state across multiple end points, some applications maintain
no session state whatsoever. The most notable example of this class of application is the Web.
The Hypertext Transfer Protocol (HTTP) [35] was designed as a stateless protocol, and many Web
servers maintain no state at all between page requests. This class of application functions well in
a mobile environment without explicit support for disconnection. Migrate does not interfere with
their operation, however, and may safely be used in conjunction with stateless applications. The
major benefit of Migrate for stateless applications is the ability to resume interrupted transfers—
such as large Web downloads, for example. If it was possible to design all applications in a stateless
fashion, Migrate’s utility would be greatly diminished. How far the stateless architecture can be
extended is an open question. It would be interesting to characterize the types of applications that
can or cannot be architected in this fashion.

Many Web-based applications do indeed preserve state across requests, however. Such applications
can be implemented in two ways: they can either maintain the state on the server using dynamically-
generated pages and some sort of back-end database or include all necessary state in each client
request. This latter approach is typically implemented using HTTP cookies [58]. Cookies bare
many similarities to session continuations in that they provide an end point with sufficient state
to resume processing a session where it left off. Unlike continuations, however, which are stored
locally at each end point, cookies are transferred to the remote end point and reflected back. Because
continuations are usually generated by an end point while it is disconnected, storing the continuation
on the remote host is infeasible. It may, however, be stored elsewhere if desired.

8.3.5 Session continuation extensions

Session continuations present a number of intriguing possibilities. In their current form, continu-
ations are generated independently at each end point and are transparent to the remote end point.
That is, a session end point is unaware of whether the remote end point has generated a continuation,
let alone how it was generated. Continuations are designed to resume sessions from their previous
states; they must be invisible to the remote end point by definition.

There may be cases, however, when resources could be more efficiently conserved if continuations
were generated in concert by both end points. More generally, it may be sufficient for one end
point to know that the remote end point is generating a particular continuation. This knowledge
might allow for non-transparent continuations. Such an extension would require the ability to name
continuations and, further, some form of versioning to ensure that the continuation actually being
generated corresponds to the remote end point’s expectations.

Another enticing possibility is to allow end points to off-load continuations. If continuations were
sufficiently portable, it might be possible to invoke them in an entirely separate host. In this case,
the session is changing not only network attachment points, but system host as well. We have found
this approach feasible in the domain of static Web servers [119] and believe it holds more general
promise. Portable continuations, as we’ve dubbed them, provide a form of lightweight process
migration. A complete implementation would likely face many of the challenges typically faced by
full-fledged process migration. Portable continuations appear more general, however, as they enable
migration of individual sessions, as opposed to entire processes. For applications that host many
sessions in one process, this may be more desirable.

148

Appendix A

Policy File

The Migrate policy file is evaluated each time Migrate considers migrating a session between at-
tachment points. The policy file is really a script written in the Tcl [84] scripting language. The
script is evaluated whenever there is a change in connectivity status for session that Migrate is man-
aging. The script is run once for each connection in a session. The input for each invocation is
the description of the network connection in question—its protocol and current remote and local
attachment points, including ports.

The script can take one of two actions: either migrate the session to a new interface, or leave it alone.
Sessions left on an interface that currently lacks connectivity are suspended by the Migrate daemon.
When migration is selected, the new local attachment point is determined by a set of numerical
scores specifying the respective desirabilities of available interfaces for the session. An interface
with a higher score is preferable to an interface with a lower score. Interfaces which are down are
given a score of zero.

A.1 Commands

Table A.1 lists the commands available to the policy script. There are only two ”primitive” com-
mands, score-interface and migrate, which provide information to the Migrate daemon.
The on command is used as a control structure to apply certain commands based on properties of
the session being examined.

A.1.1 score-interface command

score-interface interface-glob score

Assign the score em score to all interfaces whose labels match the glob interface-glob. For example,
to assign a score of 100 to all Ethernet interfaces (except eth1, which has a score of 150), but a score
of only 50 to dialup (PPP) interfaces, one might use this:

Command Name Arguments Description
score-interface interface-glob score Score interface-glob as score
migrate (theshold | if-dead | never | always) Migrate a connection
on (port | l-port | p-port) port-spec . . . Consider specific connections

Table A.1: The commands available to a Migrate Tcl policy script.

149

score-interface eth* 100
score-interface eth1 150
score-interface ppp* 50

A.1.2 migrate command

migrate (threshold | if-dead | never | always)

Specifies under what conditions a session should be migrated. The threshold parameter specifies
that a session should be migrated if another interface has a score that is at least threshold higher
than that of the session’s current interface. The if-dead option specifies that migration is desired
only if the interface presently being used is down. The never option specifies that migration is
never desired. The always option specifies that migration should be attempted whenever another
interface has a score which is even minutely higher.

A.1.3 on command

The on command is used as a control structure to apply certain commands based on properties of
the session being examined. In many instances, on refers to properties of the connections contained
within a session rather than the session itself.

Port selection

on (port | l-port | p-port) port-spec commands . . .

Evaluate commands if the session being examined uses port port. With l-port, the local port
number must match port-spec; for p-port, the peer port number must match; with neither, either
the local or peer port number may match.

port-spec is a comma-delimited list of one or more elements. Each element is either

1. a service name in /etc/services,

2. a port number, or

3. a range of port numbers (e.g., 3000–3010).

For example, to assign Ethernet interfaces a score of 50 for connections on port 80 (HTTP), port
8000, and ports 8080–8089, one might use this:

on port http,8000,8080-8089 score-interface eth* 50

Interface selection

on remote-ip ip-spec commands . . .

Evaluate commands if the session being examined is currently connected to an IP address matching
ip-spec. ip-spec is either an IP address or a CIDR-style IP mask. For example, to assign Ethernet
interfaces a score of 50 for sessions to the class-C 18.31.0.* subnet:

on remote-ip 18.31.0.0/24 score-interface eth* 50

150

Protocol selection

on proto (tcp | udp) commands . . .

Executes commands if the protocol of the connection being examined is TCP or UDP, respectively.

A.2 Chaining

on commands can be chained and nested, e.g.,

on proto tcp { on remote-ip 18.31.0.0/24
on port ssh { migrate always }
on port http { migrate never }

}

In this example the migrate always command applies only to SSH (port 22) connections to the
specified subnet.

Since the script is evaluated from top to bottom, each command takes precedence over commands
preceding it. More general information should therefore be specified closer to the top of the file and
more specific information closer to the bottom. (For an example, see score-interface, below,
where the eth1 interface has a different score than the rest of the eth interfaces.)

151

152

Appendix B

Application Session Continuations

This appendix includes the source code of the session continuation generation code used to pro-
duce the session continuations measured in Chapter 7. We include code for our modifications to
both the Washington University FTP server and the OpenSSH server. In each instance, we pro-
vide the complete listing for our continuation generation code, and selected portions of the exist-
ing code that were modified to support our continuations. All modifications are included within
#ifdef/#endif clauses that require the MIGRATE conditional compilation flag. In neither case
are the all of changes presented. The complete set of patches are available for download on the Web
at http://nms.lcs.mit.edu/migrate.

B.1 FTPd

/*
* Migrate Session Continuation for wu-ftpd
*
* Alex C. Snoeren <snoeren@lcs.mit.edu>
*
* Copyright (c) 2002 Massachusetts Institute of Technology.
*
* This software is being provided by the copyright holders under the GNU
* General Public License, either version 2 or, at your discretion, any later
* version. For more information, see the ‘COPYING’ file in the source
* distribution.
*
* $Id: ftpd-migrate.c,v 1.1 2002/11/04 06:44:47 snoeren Exp $
*/

#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pwd.h>
#include <syslog.h>
#include <assert.h>

#include "config.h"
#include "proto.h"

#include <tesla/tesla.h>
#include "ftpd-migrate.h"

153

static char * argvz = NULL;
static char * cwd = NULL;

/* Session state */
extern int logged in;
extern int askpasswd;
extern int anonymous;
extern int guest;
extern int type;
extern struct passwd *pw;
extern char *home;
extern int use accessfile;

/* Transfer session state */
int FTPD transfer resume = 0;
char * FTPD transfer name = NULL;
FILE * FTPD transfer fin = NULL;
FILE * FTPD transfer dout = NULL;
off t FTPD transfer bsize = 0;
char * FTPD transfer buf = NULL;

/* Internal variables */
migrate session *FTPD session = NULL;
char * FTPD chrootpath = NULL;
int FTPD suspend now = 0;
jmp buf FTPD jmpbuf;
int FTPD jmpbuf live = 0;

void
FTPD cleanup(void)
{
migrate session close(FTPD session);

}

void
mig saveargv(char *argv)
{

argvz = strdup(argv);
cwd = getcwd(NULL, 0);

}

migrate continuation *
FTPD handler(migrate session *session, int flags)
{

/* Ignore instant movement */
if (flags & M INSTANT)
return NULL;

/* Remember we’ve been asked to suspend */
FTPD suspend now = 1;

/* If we’re in a blocking syscall, abort it */
if (FTPD jmpbuf live) {
longjmp(FTPD jmpbuf, flags);

}

/* Otherwise, don’t do anything just yet, wait until we’ve settled */
return NULL;

154

}

void
FTPD suspend input(char *s, char *cs)
{
if (s != cs) {
*cs++ = ’“0’;
MIGRATE STRSAVE(FTPD session, cs);

}

syslog(LOG INFO, "Suspending while awaiting input: %s",
(s != cs) ? s : "[none yet]");

FTPD suspend();
}

void
FTPD suspend transfer(char *name, FILE *instr, FILE *outstr,

off t FTPD transfer bsize, char *buf)
{
int FTPD transfer ifd = fileno(instr);
int FTPD transfer ofd = fileno(outstr);
static fd set cfds;

syslog(LOG INFO, "Suspending while transferring: %s, %ld buffered",
(name ? name : ""), (buf ? FTPD transfer bsize : 0));

if (name)
migrate store(FTPD session, "FTPD˙transfer˙name", name, (strlen(name)+1));

MIGRATE SAVE(FTPD session, FTPD transfer ifd);
MIGRATE SAVE(FTPD session, FTPD transfer ofd);
MIGRATE SAVE(FTPD session, FTPD transfer bsize);
if (buf)
migrate store(FTPD session, "FTPD˙transfer˙buf", buf, FTPD transfer bsize);

FTPD suspend();
}

void
FTPD suspend(void)
{
char * const argv[4] = { argvz, "-L", "-v", NULL};
migrate continuation cont;

MIGRATE SAVE(FTPD session, logged in);
MIGRATE SAVE(FTPD session, askpasswd);
MIGRATE SAVE(FTPD session, anonymous);
MIGRATE SAVE(FTPD session, guest);
MIGRATE SAVE(FTPD session, type);

if(logged in) {
char * cwd = getcwd(NULL, 0);
assert(pw);
MIGRATE STRSAVE(FTPD session, pw−>pw name);
MIGRATE STRSAVE(FTPD session, pw−>pw passwd);
MIGRATE SAVE(FTPD session, pw−>pw uid);
MIGRATE SAVE(FTPD session, pw−>pw gid);

155

MIGRATE STRSAVE(FTPD session, pw−>pw gecos);
MIGRATE STRSAVE(FTPD session, pw−>pw dir);
MIGRATE STRSAVE(FTPD session, pw−>pw shell);
MIGRATE STRSAVE(FTPD session, home);
MIGRATE STRSAVE(FTPD session, cwd);
MIGRATE STRSAVE(FTPD session, FTPD chrootpath);
free(cwd);

}

/* Return complete continuation & exit */
memset(&cont, 0, sizeof(cont));
cont.cont = FTPD restore;
cont.flags = M COMPLETE;
migrate return cont(FTPD session, &cont, argv, NULL, cwd);

/* Not reached */
exit(0);

}

void
FTPD restore(migrate session *session)
{
int FTPD transfer ifd = −1;
int FTPD transfer ofd = −1;
char * cs = NULL;

MIGRATE RESTORE(session, logged in);
MIGRATE RESTORE(session, askpasswd);
MIGRATE RESTORE(session, anonymous);
MIGRATE RESTORE(session, guest);
MIGRATE RESTORE(session, type);

if(logged in) {

char * cwd;
char * buf;
size t buflen;

pw = malloc(sizeof(struct passwd));
pw−>pw name = MIGRATE STRRESTORE(session, pw−>pw name);

pw−>pw passwd = MIGRATE STRRESTORE(session, pw−>pw passwd);
MIGRATE RESTORE(session, pw−>pw uid);
MIGRATE RESTORE(session, pw−>pw gid);
pw−>pw gecos = MIGRATE STRRESTORE(session, pw−>pw gecos);
pw−>pw dir = MIGRATE STRRESTORE(session, pw−>pw dir);
pw−>pw shell = MIGRATE STRRESTORE(session, pw−>pw shell);

home = MIGRATE STRRESTORE(session, home);

/* Restore any chroot jail */
if((FTPD chrootpath = MIGRATE STRRESTORE(session, FTPD chrootpath)))

chroot(FTPD chrootpath);

/* Return to appropriate directory */
if((cwd = MIGRATE STRRESTORE(session, cwd)))
chdir(cwd);

/* Handle interrupted transfers */
MIGRATE RESTORE(session, FTPD transfer ifd);

156

MIGRATE RESTORE(session, FTPD transfer ofd);
MIGRATE RESTORE(session, FTPD transfer bsize);
FTPD transfer name = MIGRATE STRRESTORE(session, FTPD transfer name);
if(FTPD transfer ifd != −1) {
if(!(FTPD transfer fin = fdopen(FTPD transfer ifd, "r")))
syslog(LOG ERR, "Unable to fdopen fin %d: %m", FTPD transfer ifd);

if(!(FTPD transfer dout = fdopen(FTPD transfer ofd, "w")))
syslog(LOG ERR, "Unable to fdopen ofd %d: %m", FTPD transfer ofd);

FTPD transfer resume = 1;
syslog(LOG INFO, "Resuming transfer of %s",

(FTPD transfer name ? FTPD transfer name : "unknown"));
}
if ((buflen = migrate store size(session, "FTPD˙transfer˙buf"))) {
syslog(LOG ERR, "Restoring a length %d buffer", buflen);
buf = malloc(buflen);
FTPD transfer buf = migrate retrieve(session, "FTPD˙transfer˙buf", buf);

}
}

/* Check to see if we were in the middle of input */
if(migrate store size(session, "cs")) {
cs = MIGRATE STRRESTORE(session, cs);
syslog(LOG INFO, "Resuming in the middle of input %s", cs);

}

/* Respect access file security if enabled */
if(use accessfile)
acl setfunctions();

syslog(LOG INFO, "Migrate complete continuation for %s", logged in ?
pw−>pw name : "[no one yet]");

}

B.1.1 ftpcmd.y

/**
Copyright (c) 1999,2000,2001 WU-FTPD Development Group.
All rights reserved.

Portions Copyright (c) 1980, 1985, 1988, 1989, 1990, 1991, 1993, 1994
The Regents of the University of California.

Portions Copyright (c) 1993, 1994 Washington University in Saint Louis.
Portions Copyright (c) 1996, 1998 Berkeley Software Design, Inc.
Portions Copyright (c) 1989 Massachusetts Institute of Technology.
Portions Copyright (c) 1998 Sendmail, Inc.
Portions Copyright (c) 1983, 1995, 1996, 1997 Eric P. Allman.
Portions Copyright (c) 1997 by Stan Barber.
Portions Copyright (c) 1997 by Kent Landfield.
Portions Copyright (c) 1991, 1992, 1993, 1994, 1995, 1996, 1997

Free Software Foundation, Inc.

Use and distribution of this software and its source code are governed
by the terms and conditions of the WU-FTPD Software License (“LICENSE”).

If you did not receive a copy of the license, it may be obtained online
at http://www.wu-ftpd.org/license.html.

157

$Id: ftpcmd.c,v 1.1 2002/11/04 06:44:47 snoeren Exp $

**/
/*
* Grammar for FTP commands.
* See RFC 959.
*/

/*
* Migrate Session Continuation for wu-ftpd
*
* Alex C. Snoeren <snoeren@lcs.mit.edu>
*
* Copyright (c) 2002 Massachusetts Institute of Technology.
*
* This software is being provided by the copyright holders under the GNU
* General Public License, either version 2 or, at your discretion, any later
* version. For more information, see the ‘COPYING’ file in the source
* distribution.
*
*/

/*
* getline - a hacked up version of fgets to ignore TELNET escape codes.
*/
char *wu getline(char *s, int n, register FILE *iop)
{

register int c;
register char *cs;
char *passtxt = "PASS password“r“n";

cs = s;
/* tmpline may contain saved command from urgent mode interruption */

for (c = 0; tmpline[c] != ’“0’ && −−n > 0; ++c) {
*cs++ = tmpline[c];
if (tmpline[c] == ’“n’) {

*cs++ = ’“0’;
if (debug) {

if (strncasecmp(passtxt, s, 5) == 0)
syslog(LOG DEBUG, "command: %s", passtxt);

else
syslog(LOG DEBUG, "command: %s", s);

}
tmpline[0] = ’“0’;
return (s);

}
if (c == 0)

tmpline[0] = ’“0’;
}

retry:
#ifdef MIGRATE

if(FTPD suspend now | | setjmp(FTPD jmpbuf))
FTPD suspend input(s,cs);

FTPD jmpbuf live = 1;
#endif

while ((c = getc(iop)) != EOF) {
#ifdef MIGRATE

FTPD jmpbuf live = 0;
#endif

158

#ifdef TRANSFER COUNT
byte count total++;
byte count in++;

#endif
c &= 0377;
if (c == IAC) {

if ((c = getc(iop)) != EOF) {
#ifdef TRANSFER COUNT

byte count total++;
byte count in++;

#endif
c &= 0377;
switch (c) {
case WILL:
case WONT:

c = getc(iop);
#ifdef TRANSFER COUNT

byte count total++;
byte count in++;

#endif
printf("%c%c%c", IAC, DONT, 0377 & c);
(void) fflush(stdout);
continue;

case DO:
case DONT:

c = getc(iop);
#ifdef TRANSFER COUNT

byte count total++;
byte count in++;

#endif
printf("%c%c%c", IAC, WONT, 0377 & c);
(void) fflush(stdout);
continue;

case IAC:
break;

default:
continue; /* ignore command */

}
}

}
#ifdef MIGRATE

FTPD jmpbuf live = 0;
#endif

*cs++ = c;
if (−−n <= 0 | | c == ’“n’)

break;
}

if (c == EOF && cs == s) {
if (ferror(iop) && (errno == EINTR))

goto retry;
return (NULL);

}

*cs++ = ’“0’;
if (debug) {

if (strncasecmp(passtxt, s, 5) == 0)
syslog(LOG DEBUG, "command: %s", passtxt);

else

159

syslog(LOG DEBUG, "command: %s", s);
}
return (s);

}

B.1.2 ftpd.c

/**

Copyright (c) 1999,2000,2001 WU-FTPD Development Group.
All rights reserved.

Portions Copyright (c) 1980, 1985, 1988, 1989, 1990, 1991, 1993, 1994
The Regents of the University of California.

Portions Copyright (c) 1993, 1994 Washington University in Saint Louis.
Portions Copyright (c) 1996, 1998 Berkeley Software Design, Inc.
Portions Copyright (c) 1989 Massachusetts Institute of Technology.
Portions Copyright (c) 1998 Sendmail, Inc.
Portions Copyright (c) 1983, 1995, 1996, 1997 Eric P. Allman.
Portions Copyright (c) 1997 by Stan Barber.
Portions Copyright (c) 1997 by Kent Landfield.
Portions Copyright (c) 1991, 1992, 1993, 1994, 1995, 1996, 1997

Free Software Foundation, Inc.

Use and distribution of this software and its source code are governed
by the terms and conditions of the WU-FTPD Software License (“LICENSE”).

If you did not receive a copy of the license, it may be obtained online
at http://www.wu-ftpd.org/license.html.

$Id: ftpd.c,v 1.1 2002/11/04 06:44:47 snoeren Exp $

**/
/* FTP server. */

/*
* Migrate Session Continuation for wu-ftpd
*
* Alex C. Snoeren <snoeren@lcs.mit.edu>
*
* Copyright (c) 2002 Massachusetts Institute of Technology.
*
* This software is being provided by the copyright holders under the GNU
* General Public License, either version 2 or, at your discretion, any later
* version. For more information, see the ‘COPYING’ file in the source
* distribution.
*
*/

int main(int argc, char **argv, char **envp)
{

(void) setjmp(errcatch);

#ifdef MIGRATE
if(FTPD transfer resume) {
retrieve(NULL, FTPD transfer name);

160

FTPD transfer resume = 0;
}

#endif
for (;;) {

#ifdef MIGRATE
if(FTPD suspend now)
FTPD suspend();

#endif
(void) yyparse();

}
/* NOTREACHED */

}

/* Tranfer the contents of “instr” to “outstr” peer using the appropriate
* encapsulation of the data subject to Mode, Structure, and Type.
*
* NB: Form isn’t handled. */

int
#ifdef THROUGHPUT

send data(char *name, FILE *instr, FILE *outstr, off t blksize)
#else

send data(FILE *instr, FILE *outstr, off t blksize)
#endif
{

register int c, cnt = 0;
static char *buf;
int netfd, filefd;

#ifdef THROUGHPUT
int bps;
double bpsmult;
time t t1, t2;

#endif

#ifdef THROUGHPUT
throughput calc(name, &bps, &bpsmult);

#endif

buf = NULL;
if (wu setjmp(urgcatch)) {

draconian FILE = NULL;
alarm(0);
transflag = 0;
if (buf)

(void) free(buf);
retrieve is data = 1;
return (0);

}
transflag++;
switch (type) {

case TYPE A:
draconian FILE = outstr;
(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);

#ifdef MIGRATE
while (!FTPD suspend now && !setjmp(FTPD jmpbuf) &&

((FTPD jmpbuf live = 1)) &&

161

(draconian FILE != NULL) && ((c = getc(instr)) != EOF)) {
FTPD jmpbuf live = 0;

#else
while ((draconian FILE != NULL) && ((c = getc(instr)) != EOF)) {

#endif
if (++byte count % 4096 == 0) {

(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);

}
if (c == ’“n’) {

if (ferror(outstr))
goto data err;

(void) putc(’“r’, outstr);
#ifdef TRANSFER COUNT

if (retrieve is data) {
data count total++;
data count out++;

}
byte count total++;
byte count out++;

#endif
}

#ifdef MIGRATE
/* XXX: need to trap signals here too */

#endif
(void) putc(c, outstr);

#ifdef TRANSFER COUNT
if (retrieve is data) {

data count total++;
data count out++;

}
byte count total++;
byte count out++;

#endif
}

#ifdef MIGRATE
if(FTPD suspend now) {
syslog(LOG INFO, "Wrote %d bytes so far", byte count);

#ifdef THROUGHPUT
FTPD suspend transfer(name, instr, outstr, 1, NULL);

#else
FTPD suspend transfer(NULL, instr, outstr, 1, NULL);

#endif
}

#endif
if (draconian FILE != NULL) {

(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);
fflush(outstr);

}
if (draconian FILE != NULL) {

(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);
socket flush wait(outstr);

}
transflag = 0;
if (ferror(instr))

goto file err;
if ((draconian FILE == NULL) | | ferror(outstr))

162

goto data err;
draconian FILE = NULL;
alarm(0);
reply(226, "Transfer complete.");

#ifdef TRANSFER COUNT
if (retrieve is data) {

file count total++;
file count out++;

}
xfer count total++;
xfer count out++;

#endif
retrieve is data = 1;
return (1);

case TYPE I:
case TYPE L:

#ifdef THROUGHPUT
if (bps != −1)

blksize = bps;
#endif

if ((buf = (char *) malloc(blksize)) == NULL) {
transflag = 0;
perror reply(451, "Local resource failure: malloc");
retrieve is data = 1;
return (0);

}
netfd = fileno(outstr);
filefd = fileno(instr);
draconian FILE = outstr;
(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);

#ifdef THROUGHPUT
if (bps != −1)

t1 = time(NULL);
#endif
#ifdef MIGRATE

while (!FTPD suspend now && !setjmp(FTPD jmpbuf) &&
((FTPD jmpbuf live = 1)) && (!(cnt = 0)) &&
(draconian FILE != NULL) &&
((cnt = read(filefd, buf, blksize)) > 0)) {

if(!FTPD suspend now && !setjmp(FTPD jmpbuf))
if(write(netfd, buf, cnt) != cnt) {
FTPD jmpbuf live = 0;
break;

} else {
FTPD jmpbuf live = 0;

}
else {
break;

}
#else

while ((draconian FILE != NULL) &&
((cnt = read(filefd, buf, blksize)) > 0 &&
write(netfd, buf, cnt) == cnt)) {

#endif
(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);
byte count += cnt;

163

#ifdef TRANSFER COUNT
if (retrieve is data) {

#ifdef RATIO
if(freefile) {

total free dl += cnt;
}

#endif /* RATIO */
data count total += cnt;
data count out += cnt;

}
byte count total += cnt;
byte count out += cnt;

#endif
#ifdef THROUGHPUT

if (bps != −1) {
t2 = time(NULL);
if (t2 == t1)

sleep(1);
t1 = time(NULL);

}
#endif

}
#ifdef MIGRATE

if(FTPD suspend now) {
syslog(LOG INFO, "Wrote %d(%d) bytes so far", byte count,

ftell(instr));
#ifdef THROUGHPUT

FTPD suspend transfer(name, instr, outstr, blksize,
(cnt ? buf : NULL));

#else
FTPD suspend transfer(NULL, instr, outstr, blksize,

(cnt ? buf : NULL));
#endif

}
#endif
#ifdef THROUGHPUT

if (bps != −1)
throughput adjust(name);

#endif
transflag = 0;
(void) free(buf);
if (draconian FILE != NULL) {

(void) signal(SIGALRM, draconian alarm signal);
alarm(timeout data);
socket flush wait(outstr);

}
if (cnt != 0) {

if (cnt < 0)
goto file err;

goto data err;
}
if (draconian FILE == NULL)

goto data err;
draconian FILE = NULL;
alarm(0);
reply(226, "Transfer complete.");

#ifdef TRANSFER COUNT
if (retrieve is data) {

file count total++;

164

file count out++;
}
xfer count total++;
xfer count out++;

#endif
retrieve is data = 1;
return (1);

default:
transflag = 0;
reply(550, "Unimplemented TYPE %d in send˙data", type);
retrieve is data = 1;
return (0);

}

data err:
draconian FILE = NULL;
alarm(0);
transflag = 0;
perror reply(426, "Data connection");
retrieve is data = 1;
return (0);

file err:
draconian FILE = NULL;
alarm(0);
transflag = 0;
perror reply(551, "Error on input file");
retrieve is data = 1;
return (0);

}

void retrieve(char *cmd, char *name)
{

FILE *fin = NULL, *dout;
struct stat st, junk;
int (*closefunc) () = NULL;
int options = 0;
int ThisRetrieveIsData = retrieve is data;
time t start time = time(NULL);
char *logname;
char namebuf[MAXPATHLEN];
char fnbuf[MAXPATHLEN];
int TransferComplete = 0;
struct convert *cptr;
char realname[MAXPATHLEN];
int stat ret = −1;

extern int checknoretrieve(char *);

#ifdef MIGRATE
if (FTPD transfer resume) {
syslog(LOG INFO, "Resuming download at pos %ld",

ftell(FTPD transfer fin));
if(FTPD transfer buf) {
syslog(LOG INFO, "Stuffing %ld first", FTPD transfer bsize);
write(fileno(FTPD transfer dout), FTPD transfer buf,

FTPD transfer bsize);
free(FTPD transfer buf);
FTPD transfer buf = 0;

165

}
#ifdef THROUGHPUT

TransferComplete = send data(FTPD transfer name, FTPD transfer fin,
FTPD transfer dout, FTPD transfer bsize);

#else
TransferComplete = send data(FTPD transfer fin, FTPD transfer dout,

FTPD transfer bsize);
#endif

(void) fclose(FTPD transfer dout);
goto logresults;

}
#endif

B.2 SSHd

/*
* Migrate Continuation Handling
*
* Alex C. Snoeren <snoeren@lcs.mit.edu>
*
* Copyright (c) 2001-2 Massachusetts Institute of Technology.
*
* This software is being provided by the copyright holders under the GNU
* General Public License, either version 2 or, at your discretion, any later
* version. For more information, see the ‘COPYING’ file in the source
* distribution.
*
*/

#include <stdio.h>
#include <stdlib.h>

#include "ssh.h"
#include "xmalloc.h"
#include "packet.h"
#include "buffer.h"
#include "log.h"
#include "servconf.h"
#include "sshpty.h"
#include "channels.h"
#include "compat.h"
#include "ssh1.h"
#include "ssh2.h"
#include "auth.h"
#include "session.h"
#include "dispatch.h"
#include "auth-options.h"
#include "serverloop.h"

#include "ssh-migrate.h"

extern char **environ;
extern char **saved argv;

char * migrate cont = NULL;
int migrate bs valid = 0;
sigjmp buf migrate bs;

166

char migrate cwd[255];
int migrate ssh sock = −1;

/* Check to see if we should suspend now */
int
migrate suspend now(void)
{
return (!migrate cont && migrate ssh session &&

(migrate ssh session−>state == MIGRATE FROZEN));
}

/* Handle mobility updates */
migrate continuation *
SSH handler(migrate session *session, int flags)
{

/* Ignore instant movement */
if(flags & M INSTANT)
return NULL;

/* Break out of the select if we were in it */
if(migrate bs valid)
siglongjmp(migrate bs, 1);

/* We want to finish what we can before generating the continuation */
return NULL;

}

/* Generate a session continuation */
void
SSH gen cont(void)
{
static migrate continuation cont;

/* Pickle the state of the encryption and compression buffers */
migrate packet store(migrate ssh session);

x
/* Return complete continuation & exit */
memset(&cont, 0, sizeof(cont));
cont.flags = M COMPLETE;
cont.cont = SSH restart;
migrate return cont(migrate ssh session, &cont, saved argv, environ,

migrate cwd);

/* Not reached */
exit(0);

}

void
SSH restart(migrate session * migrate ssh session)
{
int fdin arg, fdout arg, fderr arg;
int sock in;
pid t pid;

MIGRATE RESTORE(migrate ssh session, fdin arg);
MIGRATE RESTORE(migrate ssh session, fdout arg);
MIGRATE RESTORE(migrate ssh session, fderr arg);
MIGRATE RESTORE(migrate ssh session, pid);

167

MIGRATE RESTORE(migrate ssh session, sock in);

/* Revive the encryption and compression engines */
migrate packet restore(migrate ssh session, sock in);

/* We’re all set up, jump back into the server loop */
server loop(pid, fdin arg, fdout arg, fderr arg);

/* The following is the cleanup code from sshd.c since server loop returns here */

/* The connection has been terminated. */
verbose("Closing connection to %.100s", migrate ssh session−>dname);

migrate session close(migrate ssh session);
packet close();
exit(0);

}

B.2.1 serverloop.c

/*
* Author: Tatu Ylonen <ylo@cs.hut.fi>
* Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
* All rights reserved
* Server main loop for handling the interactive session.
*
* As far as I am concerned, the code I have written for this software
* can be used freely for any purpose. Any derived versions of this
* software must be clearly marked as such, and if the derived work is
* incompatible with the protocol description in the RFC file, it must be
* called by a name other than “ssh” or “Secure Shell”.
*
* SSH2 support by Markus Friedl.
* Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "includes.h"

168

RCSID("$OpenBSD: serverloop.c,v 1.83 2001/11/09 18:59:23 markus Exp $");

/*
* Migrate SSHd Continuation Handling
*
* Alex C. Snoeren <snoeren@lcs.mit.edu>
*
* Copyright (c) 2001-2 Massachusetts Institute of Technology.
*
* This software is being provided by the copyright holders under the GNU
* General Public License, either version 2 or, at your discretion, any later
* version. For more information, see the ‘COPYING’ file in the source
* distribution.
*
*/

/*
* Performs the interactive session. This handles data transmission between
* the client and the program. Note that the notion of stdin, stdout, and
* stderr in this function is sort of reversed: this function writes to
* stdin (of the child program), and reads from stdout and stderr (of the
* child program).
*/
void
server loop(pid t pid, int fdin arg, int fdout arg, int fderr arg)
{

fd set *readset = NULL, *writeset = NULL;
int max fd = 0, nalloc = 0;
int wait status; /* Status returned by wait(). */
pid t wait pid; /* pid returned by wait(). */
int waiting termination = 0; /* Have displayed waiting close message. */
u int max time milliseconds;
u int previous stdout buffer bytes;
u int stdout buffer bytes;
int type;

debug("Entering interactive session.");

#ifdef MIGRATE
MIGRATE SAVE(migrate ssh session, pid);
MIGRATE SAVE(migrate ssh session, fdin arg);
MIGRATE SAVE(migrate ssh session, fdout arg);
MIGRATE SAVE(migrate ssh session, fderr arg);

#endif

/* Initialize the SIGCHLD kludge. */
child terminated = 0;
mysignal(SIGCHLD, sigchld handler);

/* Initialize our global variables. */
fdin = fdin arg;
fdout = fdout arg;
fderr = fderr arg;

/* nonblocking IO */
set nonblock(fdin);
set nonblock(fdout);
/* we don’t have stderr for interactive terminal sessions, see below */
if (fderr != −1)

169

set nonblock(fderr);

if (!(datafellows & SSH BUG IGNOREMSG) && isatty(fdin))
fdin is tty = 1;

connection in = packet get connection in();
connection out = packet get connection out();

previous stdout buffer bytes = 0;

/* Set approximate I/O buffer size. */
if (packet is interactive())

buffer high = 4096;
else

buffer high = 64 * 1024;

#if 0
/* Initialize max fd to the maximum of the known file descriptors. */
max fd = MAX(connection in, connection out);
max fd = MAX(max fd, fdin);
max fd = MAX(max fd, fdout);
if (fderr != −1)

max fd = MAX(max fd, fderr);
#endif

/* Initialize Initialize buffers. */
buffer init(&stdin buffer);
buffer init(&stdout buffer);
buffer init(&stderr buffer);

/*
* If we have no separate fderr (which is the case when we have a pty
* - there we cannot make difference between data sent to stdout and
* stderr), indicate that we have seen an EOF from stderr. This way
* we don’t need to check the descriptor everywhere.
*/
if (fderr == −1)

fderr eof = 1;

server init dispatch();

/* Main loop of the server for the interactive session mode. */
for (;;) {

/* Process buffered packets from the client. */
process buffered input packets();

/*
* If we have received eof, and there is no more pending
* input data, cause a real eof by closing fdin.
*/
if (stdin eof && fdin != −1 && buffer len(&stdin buffer) == 0) {

#ifdef USE PIPES
close(fdin);

#else
if (fdin != fdout)

close(fdin);
else

shutdown(fdin, SHUT WR); /* We will no longer send. */

170

#endif
fdin = −1;

}
/* Make packets from buffered stderr data to send to the client. */
make packets from stderr data();

/*
* Make packets from buffered stdout data to send to the
* client. If there is very little to send, this arranges to
* not send them now, but to wait a short while to see if we
* are getting more data. This is necessary, as some systems
* wake up readers from a pty after each separate character.
*/
max time milliseconds = 0;
stdout buffer bytes = buffer len(&stdout buffer);
if (stdout buffer bytes != 0 && stdout buffer bytes < 256 &&

stdout buffer bytes != previous stdout buffer bytes) {
/* try again after a while */
max time milliseconds = 10;

} else {
/* Send it now. */
make packets from stdout data();

}
previous stdout buffer bytes = buffer len(&stdout buffer);

/* Send channel data to the client. */
if (packet not very much data to write())

channel output poll();

/*
* Bail out of the loop if the program has closed its output
* descriptors, and we have no more data to send to the
* client, and there is no pending buffered data.
*/
if (fdout eof && fderr eof && !packet have data to write() &&

buffer len(&stdout buffer) == 0 && buffer len(&stderr buffer) == 0) {
if (!channel still open())

break;
if (!waiting termination) {

const char *s = "Waiting for forwarded connections to terminate. . .“r“n";
char *cp;
waiting termination = 1;
buffer append(&stderr buffer, s, strlen(s));

/* Display list of open channels. */
cp = channel open message();
buffer append(&stderr buffer, cp, strlen(cp));
xfree(cp);

}
}
max fd = MAX(connection in, connection out);
max fd = MAX(max fd, fdin);
max fd = MAX(max fd, fdout);
max fd = MAX(max fd, fderr);

#ifdef MIGRATE
if(sigsetjmp(migrate bs, 1) | | migrate suspend now()) {
SSH gen cont();

} else {

171

migrate bs valid = 1;
}

#endif

/* Sleep in select() until we can do something. */
wait until can do something(&readset, &writeset, &max fd,

&nalloc, max time milliseconds);
#ifdef MIGRATE

migrate bs valid = 0;
#endif

/* Process any channel events. */
channel after select(readset, writeset);

/* Process input from the client and from program stdout/stderr. */
process input(readset);

/* Process output to the client and to program stdin. */
process output(writeset);

}
if (readset)

xfree(readset);
if (writeset)

xfree(writeset);

/* Cleanup and termination code. */

/* Wait until all output has been sent to the client. */
drain output();

debug("End of interactive session; stdin %ld, stdout (read %ld, sent %ld), stderr %ld bytes.",
stdin bytes, fdout bytes, stdout bytes, stderr bytes);

/* Free and clear the buffers. */
buffer free(&stdin buffer);
buffer free(&stdout buffer);
buffer free(&stderr buffer);

/* Close the file descriptors. */
if (fdout != −1)

close(fdout);
fdout = −1;
fdout eof = 1;
if (fderr != −1)

close(fderr);
fderr = −1;
fderr eof = 1;
if (fdin != −1)

close(fdin);
fdin = −1;

channel free all();

/* We no longer want our SIGCHLD handler to be called. */
mysignal(SIGCHLD, SIG DFL);

#ifndef MIGRATE
wait pid = waitpid(−1, &wait status, child terminated ? WNOHANG : 0);

#else

172

/* Hack to act like it exited cleanly */
wait status = W EXITCODE(0, 0);
wait pid = pid;

#endif
if (wait pid == −1)

packet disconnect("wait: %.100s", strerror(errno));
else if (wait pid != pid)

error("Strange, wait returned pid %d, expected %d",
wait pid, pid);

/* Check if it exited normally. */
if (WIFEXITED(wait status)) {

/* Yes, normal exit. Get exit status and send it to the client. */
debug("Command exited with status %d.", WEXITSTATUS(wait status));
packet start(SSH SMSG EXITSTATUS);
packet put int(WEXITSTATUS(wait status));
packet send();
packet write wait();

/*
* Wait for exit confirmation. Note that there might be
* other packets coming before it; however, the program has
* already died so we just ignore them. The client is
* supposed to respond with the confirmation when it receives
* the exit status.
*/
do {

int plen;
type = packet read(&plen);

}
while (type != SSH CMSG EXIT CONFIRMATION);

debug("Received exit confirmation.");
return;

}
/* Check if the program terminated due to a signal. */
if (WIFSIGNALED(wait status))

packet disconnect("Command terminated on signal %d.",
WTERMSIG(wait status));

/* Some weird exit cause. Just exit. */
packet disconnect("wait returned status %04x.", wait status);
/* NOTREACHED */

}

B.2.2 packet.c

/*
* Author: Tatu Ylonen <ylocs.hut.fi>
* Copyright (c) 1995 Tatu Ylonen <ylocs.hut.fi>, Espoo, Finland
* All rights reserved
* This file contains code implementing the packet protocol and communication
* with the other side. This same code is used both on client and server side.
*
* As far as I am concerned, the code I have written for this software
* can be used freely for any purpose. Any derived versions of this
* software must be clearly marked as such, and if the derived work is
* incompatible with the protocol description in the RFC file, it must be

173

* called by a name other than “ssh” or “Secure Shell”.
*
*
* SSH2 packet format added by Markus Friedl.
* Copyright (c) 2000, 2001 Markus Friedl. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "includes.h"
RCSID("$OpenBSD: packet.c,v 1.72 2001/11/10 13:37:20 markus Exp $");

/*
* Migrate SSHd Continuation Handling
*
* Alex C. Snoeren <snoeren@lcs.mit.edu>
*
* Copyright (c) 2001-2 Massachusetts Institute of Technology.
*
* This software is being provided by the copyright holders under the GNU
* General Public License, either version 2 or, at your discretion, any later
* version. For more information, see the ‘COPYING’ file in the source
* distribution.
*
*/

/*
* Causes any further packets to be encrypted using the given key. The same
* key is used for both sending and reception. However, both directions are
* encrypted independently of each other.
*/
void
packet set encryption key(const u char *key, u int keylen,

int number)
{

Cipher *cipher = cipher by number(number);
if (cipher == NULL)

fatal("packet˙set˙encryption˙key: unknown cipher number %d", number);
if (keylen < 20)

fatal("packet˙set˙encryption˙key: keylen too small: %d", keylen);
cipher init(&receive context, cipher, key, keylen, NULL, 0);

174

cipher init(&send context, cipher, key, keylen, NULL, 0);
#ifdef MIGRATE

/* We need to record this data for later */
if(migrate ssh session) {
migrate store(migrate ssh session, "key", (char *)key, keylen);
MIGRATE SAVE(migrate ssh session, number);
MIGRATE SAVE(migrate ssh session, keylen);

}
#endif
}

/* Pickle packet engine state */
void
migrate packet store(migrate session *s)
{
MIGRATE SAVE(s, remote protocol flags);
MIGRATE SAVE(s, packet compression);
MIGRATE SAVE(s, max packet size);
MIGRATE SAVE(s, interactive mode);
MIGRATE SAVE(s, extra pad);

/* We always fully process these before trying to suspend */
assert(!buffer len(&outgoing packet));
assert(!buffer len(&incoming packet));

MIGRATE SAVE(s, input);
migrate store(s, "input˙buf", input.buf, input.alloc);
MIGRATE SAVE(s, output);
migrate store(s, "output˙buf", output.buf, output.alloc);

/* Save crypto stuff */
MIGRATE SAVE(s, send context);
MIGRATE SAVE(s, receive context);

/* We don’t handle compression in this version */
assert(!packet compression);

}

/* Restore packet engine state */
void
migrate packet restore(migrate session *s, int fd)
{
u char *key;
u int keylen;
int number;
Cipher * storecipher;

packet set connection(fd, fd);

MIGRATE RESTORE(s, remote protocol flags);
MIGRATE RESTORE(s, packet compression);
MIGRATE RESTORE(s, max packet size);
MIGRATE RESTORE(s, interactive mode);
MIGRATE RESTORE(s, extra pad);

MIGRATE RESTORE(s, input);
input.buf = malloc(input.alloc);
migrate retrieve(s, "input˙buf", input.buf);
MIGRATE RESTORE(s, output);

175

output.buf = malloc(output.alloc);
migrate retrieve(s, "output˙buf", output.buf);

/* Restore crypto stuff */
MIGRATE RESTORE(s, number);
MIGRATE RESTORE(s, keylen);
key = malloc(keylen);
migrate retrieve(s, "key", key);
packet set encryption key(key, keylen, number);

storecipher = send context.cipher;
MIGRATE RESTORE(s, send context);
send context.cipher = storecipher;

storecipher = receive context.cipher;
MIGRATE RESTORE(s, receive context);
receive context.cipher = storecipher;

}

176

Glossary

address In a network, the name of a network attachment point. In the Internet, addresses are
specified by IP addresses (e.g., 18.31.0.100).

bind (v.) To map a specified name to a value. In the context of network addressing, an end-point
binding is a mapping between an end-point name and a network address.

binding update The act of altering the mapping between a name and its value.

connection A communications channel between two transport-layer end points used to send and
receive packets. The transport-layer end points are bound to network attachment points at
connection establishment.

connection migration The act of modifying one of a connection’s end-point bindings. In the con-
text of mobile networking, this typically has the effect of moving one end of the connection
to a new network attachment point.

correspondent end points With respect to a particular end point, its correspondent end points are
the set of other end points currently engaged in communication with it.

end point An application, service, protocol, or other computational agent that uses the network to
transfer data to other end points.

inconsistent binding A binding from name to value that has become stale due to a change in the
value.

multi-homed An end point is said to be multi-homed when it is associated with more than one
network attachment point, each with its own address.

naming system A service that stores and resolves bindings between names and their values. A
dynamic naming system additionally allows binding updates to alter the name to value map-
pings. In the context of the Internet, a naming system typically resolves names to IP ad-
dresses.

network attachment point The place where the network accepts data from or delivers data to an
end point. Each network attachment point has an address which is typically unique within the
network.

network interface A device that physically connects an end point to a network. A network inter-
face provides one or more logical network attachment points.

resolve (v.) To look up or compute a binding between a specified name and its value.

177

session An association between two end points that maintains coordinated state. Sessions often
consist of multiple connections.

session continuation A session continuation is a function from the current end point and network
conditions to a context sufficient for control to be returned to an end point that effectively
continues the session from where it was suspended.

socket A transport connection end point. Sockets are bound to a particular network attachment
point which they use to transmit and receive data.

178

Bibliography

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design
and implementation of an intentional naming system. In Proc. 17th ACM Symposium on
Operating Systems Principles, pages 186–201, Kiawah Island, South Carolina, December
1999.

[2] Akamai Technologies, Inc. Turbo-charging dynamic web sites with Akamai Edge-
Suite. http://www.akamai.com/en/resources/pdf/Turbocharging_WP.
pdf, December 2001.

[3] American National Standards Institute. Public key cryptography for the financial service
industry: The elliptic curve digital signature algorithm. ANSI X9.62 - 1998, January 1999.

[4] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert T. Morris. Resilient
overlay networks. In Proc. 18th ACM Symposium on Operating Systems Principles, pages
131–145, Lake Luise, Canada, October 2001.

[5] Ross J. Anderson. Why cryptosystems fail. Communications of the ACM, 37(11):32–40,
November 1994.

[6] Apache HTTP Server Version 1.3 Documentation. Descriptors and Apache. http://
httpd.apache.org/docs/misc/descriptors.html.

[7] Hari Balakrishnan, Hariharan Rahul, and Srinivasan Seshan. An integrated congestion man-
agement architecture for Internet hosts. In Proc. ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM), pages
175–187, Cambridge, Massachusetts, August 1999.

[8] Hari Balakrishnan, Srinivasan Seshan, and Randy H. Katz. Improving reliable transport and
handoff performance in cellular wireless networks. ACM Wireless Networks, 1(4):469–481,
December 1995.

[9] Magdalena Balazinska, Hari Balakrishnan, and David Karger. INS/Twine: A scalable peer-
to-peer architecture for intentional resource discovery. In Proc. International Conference on
Pervasive Computing, Zurich, Switzerland, August 2002.

[10] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: A new facility
for resource management in server systems. In Proc. 3rd USENIX Symposium on Operating
Systems Design and Implementation, pages 45–58, New Orleans, Louisiana, February 1999.

[11] Stephen Bellovin. Defending against sequence number attacks. RFC 1948, Internet Engi-
neering Task Force, May 1996.

179

[12] Dan J. Bernstein. SYN cookies. http://cr.yp.to/syncookies.html, 1997.

[13] Pravin Bhagwat, Charles Perkins, and Satish K. Tripathi. Network layer mobility: an archi-
tecture and survey. IEEE Personal Communications, 3(3):54–64, June 1996.

[14] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(1):39–59, February 1984.

[15] Rámon Cáceres and Liviu Iftode. Improving the performance of reliable transport protocols
in mobile computing environments. IEEE Journal on Selected Areas in Communications,
13(5):850–857, June 1995.

[16] Andrew T. Campbell, Javier Gomez, Sanghyo Kim, Chieh-Yih Wan, Zoltan R. Turanyi, and
Andras G. Valkó. Comparison of IP micromobility protocols. IEEE Wireless Communica-
tions, 9(1):2–12, February 2002.

[17] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor, Founda-
tions of Software Science and Computational Structures, volume 1378 of Lecture Notes in
Computer Science, pages 140–155. Springer-Verlag, 1998.

[18] Isidro Castiñeyra, Noel Chiappa, and Martha Steenstrup. The Nimrod routing architecture.
RFC 1992, Internet Engineering Task Force, August 1996.

[19] Vinton G. Cerf and Edward Cain. The DoD Internet architecture model. Computer Networks,
7:307–318, October 1983.

[20] CERT. TCP SYN flooding and IP spoofing attacks. CERT advisory CA-1996-21, September
1996.

[21] Stuart Cheshire and Mary Baker. Internet mobility 4x4. In Proc. ACM Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM), pages 318–329, Stanford, California, August 1996.

[22] Columbitech, Inc. Columbitech WVPN technical descrip-
tion. http://www.columbitech.com/documents/
ColumbitechWVPNTechnicalDescription.pdf, 2002.

[23] Mike Dahlin, Bharat Chandra, Lei Gao, Amjad-Ali Khoja, Amol Nayate, Asim Razzaq, and
Anil Sewani. Using mobile extensions to support disconnected services. CS-TR-00-20, UT
Austin, April 2000.

[24] Leslie Daigle. IAB considerations for unilateral self-address fixing (UNSAF) across net-
work address translation. Internet Draft, Internet Engineering Task Force, June 2002.
draft-iab-unsaf-considerations-02.txt (work in progress).

[25] Stephen E. Deering. Host extensions for IP multicasting. RFC 1122, Internet Engineering
Task Force, August 1989.

[26] Stephen E. Deering and Robert M. Hinden. Internet protocol, version 6 (IPv6) specification.
RFC 2460, Internet Engineering Task Force, December 1998.

[27] Tim Dierks and Christopher Allen. The TLS protocol. RFC 2246, Internet Engineering Task
Force, January 1998.

180

[28] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-11:644–654, November 1976.

[29] Frederick Douglis. Transparent Process Migration in the Sprite Operating System. PhD
thesis, University of California at Berkeley, September 1990.

[30] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean. Using contin-
uations to implement thread management and communication in operating systems. In Proc.
13th ACM Symposium on Operating Systems Principles, pages 122–136, Pacific Grove, Cal-
ifornia, October 1991.

[31] Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131, Internet Engineering Task
Force, March 1997.

[32] Donald E. Eastlake, 3rd. Domain name system security extensions. RFC 2535, Internet
Engineering Task Force, March 1999.

[33] Federal Communications Commission. Spectrum study of 2500–2690 MHz band: The po-
tential for accommodating third generation mobile systems. ET Docket No. 00-258, March
2001.

[34] Paul Ferguson and Daniel Senie. Network ingress filtering: Defeating denial of service at-
tacks which employ IP source address spoofing. RFC 2267, Internet Engineering Task Force,
January 1998.

[35] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry Masinter,
Paul J. Leach, and Tim Berners-Lee. Hypertext transfer protocol — HTTP/1.1. RFC 2616,
Internet Engineering Task Force, June 1999.

[36] Bryan Ford, Mike Hibler, Jay Lepreau, Roland McGrath, and Patrick Tullman. Interface and
execution models in the Fluke kernel. In Proc. 3rd USENIX Symposium on Operating Systems
Design and Implementation, pages 101–115, New Orleans, Louisiana, February 1999.

[37] Daichi Funato, Kinuko Yasuda, and Hideyuki Tokuda. TCP-R: TCP mobility support for
continuous operation. In Proc. IEEE International Conference on Network Protocols, pages
229–236, Atlanta, Georgia, October 1997.

[38] Robert Grimm, Janet Davis, Eric Lemar, and Brian Bershad. Migration for pervasive appli-
cations. http://www.cs.nyu.edu/rgrimm/papers/one.world.pdf, 2002.

[39] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swanson, Tom Anderson,
Brian Bershad, Gaetano Borriello, Steven Gribble, and David Wetherall. Programming for
pervasive computing environments. http://www.cs.nyu.edu/rgrimm/papers/
migration02.pdf, 2002.

[40] Mark Gritter and David Cheriton. An architecture for content routing support in the Internet.
In Proc. 3rd USENIX Symposium on Internet Technologies and Systems, pages 37–48, San
Francisco, California, March 2001.

[41] Sumit Gupta and A. L. Narasimha Reddy. A client oriented, IP level redirection mechanism.
In Proc. IEEE Infocom, pages 1461–1469, New York, New York, March 1999.

181

[42] Neil M. Haller. The S/KEY one-time password system. In Proceedings of the Symposium on
Network and Distributed System Security, pages 151–157, 1994.

[43] Ahmed Helmy. A multicast-based protocol for IP mobility support. In Proc. 2nd Interna-
tional Workshop on Networked Group Communication, pages 49–58, Palo Alto, California,
November 2000.

[44] Christian Huitema. Multi-homed TCP. Internet Draft, Internet Engineering Task Force, May
1995. (expired).

[45] Jon Inouye, Jim Binkley, and Jonathan Walpole. Dynamic network reconfiguration support
for mobile computers. In Proc. 3rd Annual ACM/IEEE International Conference on Mobile
Computing and Networking, pages 13–22, Budapest, Hungary, September 1997.

[46] Institute of Electronic and Electrical Engineers (IEEE). Wireless medium access control
(MAC) and physical layer (PHY) specifications. Standard 802.11, 1999.

[47] Institute of Electronic and Electrical Engineers (IEEE). Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical specifications. Standard 802.3,
2002.

[48] International Organization for Standardization (ISO). Information processing systems – Open
Systems Interconnection – basic connection oriented session service definition. ISO 8326,
August 1987.

[49] John Ioannidis, Dan Duchamp, and Gerald Q. Maguire, Jr. IP-based protocols for mobile
internetworking. In Proc. ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 235–245, Zurich, Switzerland,
September 1991.

[50] Van Jacobson, Robert Braden, and David Borman. TCP extensions for high performance.
RFC 1323, Internet Engineering Task Force, May 1992.

[51] Anthony D. Joseph, Joshua A. Tauber, and M. Frans Kaashoek. Mobile computing with the
Rover toolkit. IEEE Transactions on Computers, 46(3):337–352, March 1997.

[52] Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert T. Morris. DNS performance and the
effectiveness of caching. IEEE/ACM Transactions on Networking, 10(5), October 2002.

[53] M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, and Andrew S. Tanenbaum.
FLIP: An internetwork protocol for supporting distributed systems. ACM Transactions on
Computer Systems, 11(1):77–106, February 1993.

[54] Scott F. Kaplan. Compressed Caching and Modern Virtual Memory Simulation. PhD thesis,
University of Texas at Austin, December 1999.

[55] Stephen Kent and Randall Atkinson. Security architecture for the Internet protocol.
RFC 2401, Internet Engineering Task Force, November 1998.

[56] Anne-Marie Kermarrec, Paul Couderc, and Michel Banâtre. Introducing contextual objects
in an adaptive framework for wide-area global computing. In Proc. ACM SIGOPS European
Workshop, Sintra, Portugal, September 1998.

182

[57] Eddie Kohler, Mark Handley, Sally Floyd, and Jitendra Padhye. Datagram congestion
control protocol (DCCP). Internet Draft, Internet Engineering Task Force, June 2002.
draft-kohler-dcp-04.txt (work in progress).

[58] David M. Kristol and Lou Montulli. HTTP state management mechanism. RFC 2109, Inter-
net Engineering Task Force, February 1997.

[59] Leslie Lamport. Password authentication with insecure communication. Communications of
the ACM, 24(11):770–772, November 1981.

[60] Björn Landfeldt, Tomas Larsson, Yuri Ismailov, and Aruna Seneviratne. SLM, a framework
for session layer mobility management. In Proc. IEEE International Conference on Computer
Communications and Networks, pages 452–456, Natick, Massachusetts, October 1999.

[61] Marcus Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS protocol version
5. RFC 1928, Internet Engineering Task Force, March 1996.

[62] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. http://www.
cryptosavvy.com, November 1999.

[63] Michael Litzkow, Miron Livny, and Matt Mutka. Condor — A hunter of idle workstations.
In Proc. 8th International Conference on Distributed Computing Systems, pages 104–111,
San Jose, California, June 1988.

[64] David Maltz and Pravin Bhagwat. MSOCKS: An architecture for transport layer mobility. In
Proc. IEEE Infocom, pages 1037–1045, San Francisco, California, March 1998.

[65] Petros Maniatis, Mema Roussopoulos, Edward Swierk, Kevin Lai, Guido Appenzeller, Xin-
hua Zhao, and Mary Baker. The mobile people architecture. ACM Mobile Computing and
Communications Review (MC2R), 3(3):36–42, July 1999.

[66] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP selective acknowl-
edgment options. RFC 2018, Internet Engineering Task Force, October 1996.

[67] Marshall K. McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman. The De-
sign and Implementation of the 4.4BSD Operating System. Addison Wesley, Reading, Mas-
sachusetts, April 1996.

[68] Paul V. Mockapetris and Kevin J. Dunlap. Development of the domain name system. In Proc.
ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), pages 123–133, Stanford, California, August 1988.

[69] Gabriel E. Montenegro. Reverse tunneling for mobile IP, revised. RFC 3024, Internet Engi-
neering Task Force, January 2001.

[70] Robert T. Morris. A weakness in the 4.2BSD UNIX TCP/IP software. Computing science
technical report 117, AT&T Bell Laboratories, Murray Hill, New Jersey, February 1985.

[71] David Mosberger and Larry L. Peterson. Making paths explicit in the Scout operating system.
In Proc. 2nd USENIX Symposium on Operating Systems Design and Implementation, pages
153–167, Seattle, Washington, October 1996.

[72] Robert Moskowitz. Host identity payload. Internet Draft, Internet Engineering Task Force,
February 2001. draft-moskowitz-hip-arch-02.txt (expired).

183

[73] Robert Moskowitz. Host identity payload and protocol. Internet Draft, Internet Engineering
Task Force, October 2001. draft-ietf-moskowitz-hip-05.txt (expired).

[74] Lily Mummert, Maria Ebling, and M. Satyanarayanan. Exploiting weak connectivity for
mobile file access. In Proc. 15th ACM Symposium on Operating Systems Principles, pages
143–155, Copper Mountain, Colorado, December 1995.

[75] Mike Muuss. The story of the TTCP program. http://http://ftp.arl.mil/
˜mike/ttcp.html.

[76] Jayanth Mysore and Vaduvur Bharghavan. A new multicasting-based architecture for In-
ternet host mobility. In Proc. 3rd Annual ACM/IEEE International Conference on Mobile
Computing and Networking, pages 161–172, Budapest, Hungary, September 1997.

[77] John Nagle. Congestion control in IP/TCP internetworks. RFC 896, Internet Engineering
Task Force, January 1984.

[78] National Institute of Standards and Technology. The secure hash algorithm (SHA-1). NIST
FIPS PUB 180-1, U.S. Department of Commerce, April 1995.

[79] NetMotion Wireless, Inc. A standards-based breakthrough for wireless connectiv-
ity. http://www.netmotionwireless.com/assets/netmotion_standrds.
pdf, August 2001.

[80] T. S. Eugene Ng, Ion Stoica, and Hui Zhang. A waypoint service approach to connect het-
erogeneous Internet address spaces. In Proc. USENIX Technical Conference, pages 319–332,
Boston, Massachusetts, June 2001.

[81] Brian Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn,
and Kevin R. Walker. Agile application-aware adaptation for mobility. In Proc. 16th ACM
Symposium on Operating Systems Principles, pages 276–287, Saint Malo, France, October
1997.

[82] Tadashi Okoshi, Masahiro Mochizuki, Yoshito Tobe, and Hideyuki Tokuda. MobileSocket:
Toward continuous operation for Java applications. In Proc. IEEE International Conference
on Computer Communications and Networks, pages 50–57, Natick, Massachusetts, October
1999.

[83] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and implementation
of Zap: A system for migrating computing environments. In Proc. 5th USENIX Symposium
on Operating Systems Design and Implementation, pages 361–376, Boston, Massachusetts,
December 2002.

[84] John Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, Reading, Massachusetts, 1994.

[85] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy
Zwaenepoel, and Erich Nahum. Locality-aware request distribution in cluster-based net-
work servers. In Proc. 8th Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 205–216, San Jose, California, October 1998.

[86] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-lite; a unified I/O buffering and
caching system. ACM Transactions on Computer Systems, 18(1):37–66, February 2000.

184

[87] Vern Paxson and Mark Allman. Computing TCP’s retransmission timer. RFC 2988, Internet
Engineering Task Force, November 2000.

[88] Charles E. Perkins. IP encapsulation within IP. RFC 2003, Internet Engineering Task Force,
October 1996.

[89] Charles E. Perkins. IP mobility support for IPv4. RFC 3220, Internet Engineering Task
Force, January 2002.

[90] Charles E. Perkins and Pat R. Calhoun. Mobile IPv4 challenge/response
extensions. Internet Draft, Internet Engineering Task Force, May 2002.
draft-ietf-mobileip-optim-11.txt (work in progress).

[91] Charles E. Perkins and David B. Johnson. Route optimization in mobile IP. Internet Draft, In-
ternet Engineering Task Force, September 2001. draft-ietf-mobileip-optim-11.
txt (work in progress).

[92] John M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of
Computation, 32(143):918–924, July 1978.

[93] Gerald J. Popek and Bruce J. Walker. The LOCUS Distributed System Architecture. Computer
Systems Series. MIT Press, Cambridge, Massachusetts, 1985.

[94] J. Postel and J. Reynolds. File transfer protocol (FTP). Technical report, Internet Engineering
Task Force, October 1985. RFC 959.

[95] Jon Postel. User datagram protocol. RFC 768, Internet Engineering Task Force, August
1980.

[96] Jon Postel. Internet Protocol. RFC 791, Internet Engineering Task Force, September 1981.

[97] Jon Postel. Transmission control protocol. RFC 793, Internet Engineering Task Force,
September 1981.

[98] Jon Postel and Joyce K. Reynolds. TELNET protocol specification. RFC 854, Internet
Engineering Task Force, May 1983.

[99] Xun Qu, Jeffrey Xu Yu, and Richard P. Brent. A mobile TCP socket. In Proc. IASTED
International Conference on Software Engineering, San Francisco, California, November
1997.

[100] Xun Qu, Jeffrey Xu Yu, and Richard P. Brent. A mobile TCP socket. TR-CS-97-09, The
Australian National University, April 1997.

[101] Michael O. Rabin. Fingerprinting by random polynomials. TR-15-81, Center for Research
in Computing Technology, Harvard University, 1981.

[102] Ram Ramanathan. Nimrod mobility support. RFC 2103, Internet Engineering Task Force,
February 1997.

[103] Yakov Rekhter, Robert G. Moskowitz, Daniel Karrenberg Geert Jan de Groot, and Eliot Lear.
Address allocation for private internets. RFC 1918, Internet Engineering Task Force, Febru-
ary 1996.

185

[104] John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation: An
International Journal, 6:233–247, 1993.

[105] Maximilan Riegel and Michael Tuexen. Mobile SCTP. Internet Draft, Internet Engineering
Task Force, February 2002. draft-riegel-tuexen-mobile-sctp-00.txt (work
in progress).

[106] Ronald R. Rivest. The MD5 message-digest algorithm. RFC 1321, Internet Engineering Task
Force, April 1992.

[107] Luigi Rizzo. Dummynet: A simple approach to the evaluation of network protocols. ACM
SIGCOMM Computer Communication Review, 27(1):31–41, January 1997.

[108] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Caramillo, Alan Jonston, Jon Peterson,
Robert Sparks, Mark Handley, and Eve Schooler. SIP: Session initiation protocol. RFC 3261,
Internet Engineering Task Force, June 2002.

[109] Jerome H. Saltzer. On the naming and binding of network destinations. RFC 1498, Internet
Engineering Task Force, August 1993.

[110] Jon Salz, Alex C. Snoeren, and Hari Balakrishnan. TESLA: A transparent, extensible session-
layer framework for end-to-end network services. In Proc. 4th USENIX Symposium on Inter-
net Technologies and Systems, Seattle, Washington, March 2003. To appear.

[111] M. Satyanarayanan. Fundamental challenges in mobile computing. In Proc. 15th ACM
Symposium on Principles of Distributed Computing, pages 1–7, Philadelphia, Pennsylvania,
May 1996.

[112] Robert Scheifler and Jim Gettys. The X window system. ACM Transactions on Graphics,
5(2):79–109, April 1986.

[113] Henning Schulzrinne. Personal mobility for multimedia services in the Internet. In Proc.
European Workshop on Interactive Distributed Multimedia Systems and Services, pages 143–
161, Berlin, Germany, March 1996.

[114] Henning Schulzrinne, Steve Casner, Ron Frederick, and Van Jacobson. RTP: A transport
protocol for real-time applications. RFC 1889, Internet Engineering Task Force, January
1996.

[115] Srinivasan Seshan, Mark Stemm, and Randy H. Katz. SPAND: Shared passive network per-
formance discovery. In Proc. 1st USENIX Symposium on Internet Technologies and Systems,
Monterey, California, December 1997.

[116] Eugene Shih, Paramvir Bahl, and Michael J. Sinclair. Wake on wireless: An event driven
energy saving strategy for battery operated devices. In Proc. 8th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking, pages 160–171, Atlanta, Georgia,
September 2002.

[117] William A. Simpson. The point-to-point protocol (PPP). RFC 1661, Internet Engineering
Task Force, July 1994.

[118] Alex C. Snoeren. Adaptive inverse multiplexing for wide-area wireless networks. In Proc.
IEEE Conference on Global Communications, volume 2, pages 1665–1672, Rio de Janiero,
Brazil, December 1999.

186

[119] Alex C. Snoeren, David G. Andersen, and Hari Balakrishnan. Fine-grained failover using
connection migration. In Proc. 3rd USENIX Symposium on Internet Technologies and Sys-
tems, pages 221–232, San Francisco, California, March 2001.

[120] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host mobility. In Proc.
6th Annual ACM/IEEE International Conference on Mobile Computing and Networking,
pages 155–166, Boston, Massachusetts, August 2000.

[121] Raj Srinivasan. Binding protocols for ONC RPC version 2. RFC 1833, Internet Engineering
Task Force, August 1995.

[122] Pyda Srisuresh and Kjeld B. Egevang. Traditional IP network address translator (traditional
NAT). RFC 3022, Internet Engineering Task Force, January 2001.

[123] W. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison Wesley, Reading,
Massachusetts, 1994.

[124] W. Richard Stevens. TCP tcp slow start, congestion avoidance, fast retransmit, and fast
recovery algorithms. RFC 2001, Internet Engineering Task Force, January 1997.

[125] Randall R. Stewart, Michael A. Ramalho, Qiaobing Xie, Michael Tuexen, Ian Rytina, Maria-
Carmen Belinchon, and Phil Conrad. Stream control transmission protocol (SCTP) dy-
namic address reconfiguration. Internet Draft, Internet Engineering Task Force, May 2002.
draft-ietf-tsvwg-addip-sctp-05.txt (work in progress).

[126] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp, Hanns J. Schwarzbauer, Tom
Taylor, Ian Rytina, Malleswar Kalla, Lixia Zhang, and Vern Paxson. Stream control trans-
mission protocol. RFC 2960, Internet Engineering Task Force, October 2000.

[127] Ion Stoica, Robert T. Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet applications. In Proc. ACM Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer Commu-
nications (SIGCOMM), pages 149–160, San Diego, California, August 2001.

[128] Gong Su and Jason Nieh. Mobile communications with virtual network address translation.
CUCS-003-02, Columbia University, February 2002.

[129] Florin Sultan, Kiran Srinivasan, Deepa Iyer, and Liviu Iftode. Migratory TCP: Highly avail-
able Internet services using connection migration. In Proc. 22nd International Conference
on Distributed Computing Systems, Vienna, Austria, July 2002.

[130] Sun Microsystems, Inc. Java servlet 2.3 specification. Final release, September 2001.

[131] Diane Tang and Mary Baker. Analysis of a local-area wireless network. In Proc. 6th Annual
ACM/IEEE International Conference on Mobile Computing and Networking, pages 1–10,
Boston, Massachusetts, August 2000.

[132] Fumio Teraoka, Yasuhiko Yokore, and Mario Tokoro. A network architecture providing host
migration transparency. In Proc. ACM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM), pages 209–220, Zurich,
Switzerland, September 1991.

187

[133] Dave Thaler and Christian E. Hopps. Multipath issues in unicast and multicast next-hop
selection. RFC 2991, Internet Engineering Task Force, November 2000.

[134] Marvin Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable remote execution
facilities for the V-system. In Proc. ACM Symposium on Operating Systems Principles,
pages 2–12, Orcas Island, Washington, December 1985.

[135] Susan Thomson and Thomas Narten. IPv6 stateless address autoconfiguration. RFC 2462,
Internet Engineering Task Force, December 1998.

[136] Sameer Tilak and Nael B. Abu-Ghazaleh. A concurrent migration extension to an end-to-
end host mobility architecture. Mobile Computing and Communications Review, 5(3):26–31,
July 2001.

[137] Universal plug and play. http://www.upnp.org/.

[138] Amin Vahdat, Michael Dahlin, Tom Anderson, and Amit Aggarwal. Active names: Flexible
location and transport of wide-area resources. In Proc. 2nd USENIX Symposium on Internet
Technologies and Systems, Boulder, Colorado, October 1999.

[139] Faramak Vakil, Ashutosh Dutta, Jyh-Cheng Chen, Shinichi Baba, Nobuyasu Naka-
jima, Yasuro Shobatake, and Henning Schulzrinne. Mobility management in a
SIP environment. Internet Draft, Internet Engineering Task Force, December 2000.
draft-itsumo-sip-mobility-req-02.txt (expired).

[140] Paul Vixie, Susan Thomson, Yakov Rekhter, and Jim Bound. Dynamic updates in the domain
name system (DNS UPDATE). RFC 2136, Internet Engineering Task Force, April 1997.

[141] Brian Wellington. Secure domain name system (DNS) dynamic update. RFC 3007, Internet
Engineering Task Force, November 2000.

[142] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold,
Mike Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment for
distributed systems and networks. In Proc. 5th USENIX Symposium on Operating Systems
Design and Implementation, pages 255–270, Boston, Massachusetts, December 2002.

[143] Praveen Yalagandula, Amit Garg, Mike Dahlin, Lorenzo Alvisi, and Harrick Vin. Transparent
mobility with minimal infrastructure. CS-TR-01-30, UT Austin, August 2001.

[144] Tatu Ylonen. SSH — secure login connections over the Internet. In Proc. 6th USENIX
Security Symposium, pages 37–42, San Jose, California, July 1996.

[145] Victor C. Zandy and Barton P. Miller. Reliable network connections. In Proc. 8th Annual
ACM/IEEE International Conference on Mobile Computing and Networking, pages 95–106,
Atlanta, Georgia, September 2002.

[146] Bruce Zenel and Dan Duchamp. A general purpose proxy filtering mechanism applied to the
mobile environment. In Proc. 3rd Annual ACM/IEEE International Conference on Mobile
Computing and Networking, pages 248–259, Budapest, Hungary, September 1997.

[147] Yongguang Zhang and Son Dao. A “persistent connection” model for mobile and distributed
systems. In Proc. IEEE International Conference on Computer Communications and Net-
works, pages 300–307, Las Vegas, Nevada, September 1995.

188

[148] Xinhua Zhao, Claude Castelluccia, and Mary Baker. Flexible network support for mobile
hosts. ACM Mobile Networks and Application Journal, 6(2):137–149, April 2001.

[149] Hans Zimmerman. OSI reference model — the ISO model of architecture for open system
intereconnection. IEEE Transactions on Communications, COM-28(4):425–432, April 1980.

189

