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1. Introduction

Mobile laptop users have grown accustomed to the “sus-
pend/resume” model of computing, in which activity can
be resumed precisely from the point at which it was sus-
pended, despite arbitrary periods of inactivity. Unfortu-
nately, today’s Internet hosts lack support for seamless op-
eration of session-based network applications across peri-
ods of disconnectivity; hence, contemporary operating sys-
tems do not provide “suspend/resume” support for such ap-
plications. Instead, movement or disconnection events are
either concealed inside the network or exposed as commu-
nication failures to the application, which is then forced to
abandon open sessions and begin new ones.

The first approach is problematic to implement, often
yields sub-optimal performance, and results in significant
amounts of wasted resources. In particular, concealing dis-
connectivity (Zhang & Dao, 1995) becomes extremely dif-
ficult when applications require periodic communication
or keep-alive messages. Further, if concealment is suc-
cessful, the application is unable to adapt to changes in
network conditions and continues consuming system re-
sources (CPU, memory, kernel buffers, timers, file descrip-
tors, etc.) while disconnected. Many of these resources are
scarce, and cannot be efficiently multiplexed.

The latter, more common approach, typically results in
a poor user experience, decreased performance, and even
loss of data or incorrect operation unless the application is
specifically designed to be restartable. In the best case, the
user is forced to restart her application session, an incon-
venient and (relatively) slow process, and often results in
the loss of unsaved data–sometimes irretrievably (e.g. live
streaming media). In more unfortunate situations, the in-
ability to communicate with the remote host for some pe-
riod of time may lead to the invocation of an undesirable
operation by the remote host.

In both cases, the problems arise from the inability to effec-
tively manage session state across suspend/resume events.
In order to resume communication sessions from the point
of disconnection, communicating hosts must record the
session state to be restored and reconciled with the re-
sumption environment, and various network-dependent re-

sources reconfigured (such as transport protocols, name
bindings, application settings, etc.)

We observe that the resumption problem is not unlike that
encountered by a compiler when handling returns from pro-
cedure calls. In both cases, naming scopes, environment
settings, and mutable state must be saved and restored. This
can all be avoided if procedures never return, which lead to
the development ofcontinuations, which embody the “the
rest of the computation.” Rather than returning, procedures
can simply execute a provided continuation, resulting in a
chain of procedure calls that never return (Appel, 1992).

In a similar spirit, we proposesession continuations, which
allow application sessions to suspend operation during pe-
riods of disconnection and specify their resumption con-
text, enabling the release of unnecessary resources and in-
telligent adaptation to the reconnection environment. Ses-
sion continuations provide application programmers with a
single abstraction that is at once simple to program for and
powerful enough to enable sophisticated resource savings.
We have implemented session continuations as part of the
Migrate mobility toolkit (Snoeren et al., 2001) to manage
both scarce system resources, such as kernel socket buffers,
memory, and file descriptors, as well as application state
across changes in network attachment point and during pe-
riods of disconnectivity. Here, we demonstrate how session
continuations can conserve system resources by describing
an extended SSH server that consumes almost no resources
on the server when the client is disconnected, yet enables
seamless session resumption upon reconnection.

2. Session continuation passing

Continuation Passing Style (CPS), where the thread of con-
trol is explicitly passed from one continuation to another
along with any necessary context, has been shown to be
beneficial in several domains, including process manage-
ment and IPC (Draves et al., 1991). The key advantage of
CPS is that any state or context necessary for the continua-
tion is specified explicitly, and control never returns to the
entity calling the continuation. This significantly simplifies
state management, as context must never be transparently
saved and restored—all durable state is explicit.
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Figure 1.Three separate continuations make up a complete
session-continuation: a base continuation,C∅, an internal con-
tinuationCint, and one that restarts the entire application,Capp.

By making the notion of the “rest of the session” explicit,
session continuations similarly enable graceful handling of
session disconnection, reconnection, and rebinding. Upon
disconnection, each session end point simply generates a
continuation representing the state necessary to complete
the session. With the continuation safely stored, the pre-
viously communicating hosts are free to reclaim any re-
sources used by the abandoned session. If a host ever
wishes to resume the session, each system need only in-
voke their continuation to continue processing.

Note that a session continuation isnot simply a snapshot of
the current local state; rather, it is a function from a quies-
cent state (as determined by the application) to the remain-
der of the session. In order to adapt to dynamic conditions,
continuations take a set of input parameters reflecting both
the current network state and optionally that of the remote
end points (as exchanged during reconnection).

The contents of a continuation depend greatly on the state
of the system. For example, if a continuation will execute
in the same process that generated it, and no associated
state has changed during disconnection, the continuation
simply needs to validate and perhaps update the end-point
bindings (since the corresponding host may have changed
network locations) and identify the point in the application
to which control should be returned. We call this simple
re-binding continuation the base continuation,C∅.

More generally, changes will have occurred in both lo-
cal and remote state. In many cases, the session contin-
uation will execute in the same process it was created in
(server applications often host several client sessions per
process). Internal continuations,Cint(), need only con-
tain sufficient application state to allow the session to con-
tinue, and a function that restores the context required by
the session. Sometimes, the application itself may need to
be restarted; not only must system resources be established
appropriately, but the appropriate application must be con-
tinued (through its own continuation,Capp()) before the
application-specific continuation can be run. This compo-
sition of continuations is depicted in Figure 1.
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Figure 2. Through the use of session continuations, our SSH
server is able to dramatically reduce its resource footprint dur-
ing periods of disconnection. In addition, session continuation is
significantly faster than session initiation.

3. SSH: A case study

To demonstrate the ability of session continuations to con-
serve system resources, we have extended an SSH server to
support session continuations. In only 250 lines of code1

and an afternoon’s worth of work, we were able to ex-
tend SSH to generate both internal and application contin-
uations. If a client unexpectedly becomes disconnected,
the SSH server application can remove itself completely
from the server by presenting a 52KB session continua-
tion to Migrate which is cached in secondary storage. As
can be seen in Figure 2, this frees up 1856KB of mem-
ory (468KB of which was not shared) on the server. More
importantly, however, it also releases system resources in-
cluding network connections, kernel buffers, and file de-
scriptors. Upon reconnection, the continuation resumes ex-
ecution within 111ms—significantly less than the 274ms
required to initiate the session (although 63ms of that is ad-
ditional cryptography overhead due to theMigrate mobility
support). Hence, the resulting application provides seam-
less “suspend/resume” operation to clients with negligible
resource usage during periods of disconnection.
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1The SSH server itself contains approximately48, 000 LOC.


