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Abstract. Flash crowds can cripple a web site’s performance. Since they
are infrequent and unpredictable, these floods do not justify the cost of
traditional commercial solutions. We describe Backslash, a collaborative
web mirroring system run by a collective of web sites that wish to protect
themselves from flash crowds. Backslash is built on a distributed hash
table overlay and uses the structure of the overlay to cache aggressively
a resource that experiences an uncharacteristically high request load. By
redirecting requests for that resource uniformly to the created caches,
Backslash helps alleviate the effects of flash crowds. We explore cache
diffusion techniques for use in such a system and find that probabilistic
forwarding improves load distribution albeit not dramatically®.

1 Introduction

Flash crowds have been the bane of many web masters since the web’s explosion
in mainstream popularity. The term “flash crowd” is used to describe the unan-
ticipated, massive, rapid increase in the popularity of a resource, such as a web
page, that lasts for a short amount of time.

Although their long term effects are hardly noticeable, in the short term,
flash crowds incur unbearably high loads on web servers, gateway routers and
links. They render the affected resources and any collocated resource unavailable
to the rest of the world. Flash crowds are also relatively easy to cause. A mere
mention of an interesting web page address in a popular news feed can result
in an instant flood that lasts as long as the attention span of the news feed
audience. In fact, flash crowds have been commonly referred to as “the Slashdot
effect,” from the name of the popular news feed, which has caused quite a few
floods with its stories.

Although the concept of a malicious flash crowd is certainly within the realm
of possibility, the intent behind the effect is usually impossible to distinguish
in real time. Therefore in practice, it is important to understand how to adapt

! Appears in the Proceedings of the 1st International Workshop on Peer-To-Peer Sys-
tems (IPTPS 2002), Cambridge, MA, USA. March 2002



2 Tyron Stading et al.

efficiently to the changing resource demands so as to distribute the unexpected
high load among available resources, regardless of the intent.

Commercial solutions have previously addressed this problem for very pop-
ular sites, such as large corporations with extensive web presence. Companies
such as Akamai earn their income by distributing the load of highly trafficked
web sites across a geographically dispersed network in advance. Akamai’s so-
lution focuses primarily on using proprietary networks and strategically placed
dedicated caching centers to intercept and serve customer requests before they
become a flood.

However, for sites such as non-profit organizations, schools and governments,
which do not generally ezpect flash crowds, the cost of a high-profile content
distribution solution such as Akamai’s is not justifiable. Such sites have currently
no recourse other than to overprovision or to pay the price of the occasional
disastrous flash crowd including unavailability, prolonged recovery, ISP penalties
and loss of legitimate, desirable traffic.

The purpose of this paper is to introduce, motivate, describe and begin eval-
uating Backslash, a grassroots web content distribution system based on peer-
to-peer overlays. Backslash is a collaborative, scalable web mirroring service run
and maintained by a collective of content providers who do not expect consis-
tently heavy traffic to their sites. It relies on a content-addressable overlay [3,
5,6, 8] for the self-organization of participants, for routing requests and for load
balancing.

We use the remainder of this paper to identify the requirements from such
a system and to present the overall design in more detail. We focus on the
caching aspects of Backslash and limit the scope of the evaluation section to
cache diffusion issues. We conclude with a research agenda for further work in
this area.

2 System Requirements

In this section we outline the basic requirements for our grassroots web mirroring
system.

Backslash is intended as a drop-in replacement for current web servers and
reverse proxy caches. The driving requirement for its development is to make
deployment completely transparent to the client web browsers.

The setting in which we hope to deploy the system is, for example, a collective
of several universities or research institutions (possibly up to several thousand).
Each institution dedicates to Backslash a well-connected low-end PC-grade com-
puter; at the time of this writing any Pentium II-class computer with 128 MB
of RAM should suffice. Node-to-node links have bandwidths between one and
10 Mbps, and latencies between 10 and 300ms. Client-to-node link characteris-
tics range from 56 Kbps modems to perhaps cable or ADSL home connections.
Each node stores a complete copy of the data collection published by its host-
ing site—that is, the Stanford Backslash node holds the entire web collection of
the www.stanford.edu web site— and has enough free storage for caching. We
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expect the available free space to be a small multiple, say two or three times, of
the local collection size.

The objective of Backslash is to offer fair load distribution in the face of flash
crowds. Our primary interest is to limit the load on any participating node so
as not to overwhelm it, by distributing requests among as many participants as
possible. However, we consider the task of identifying and penalizing documents
that consistently exhibit disproportionately high popularity to be out of scope for
this paper. Similarly, we ignore the security implications of malicious Backslash
nodes at this early stage of this work.

Finally, we ignore problems with the mirroring of dynamically generated
content. The problem of mirroring static content is, by itself, a formidable one
in the grassroots context. Consequently, we tackle it first, before taking on the
much harder problem of dynamic content.

3 Design

In the next few sections we describe the design of Backslash at a high level.
We first present how Backslash bridges the gap between the resource location
subsystem and the traditional browser-server relationship (Section 3.1). Then,
we describe the resource location subsystem, which is based on the peer-to-peer
Distributed Hash Table paradigm (Section 3.2). Finally, we go into cache diffusion
in more detail (Section 3.3).

3.1 Redirection

Every Backslash node is primarily a regular web server for the document collec-
tion of the hosting site. During its normal mode of operation, that is, as long
as the request load perceived by the node is manageable, a Backslash node does
little more than what a normal web server does.

When an increased request load is perceived, the Backslash node switches
into one of two special modes of operation: the pre-overload mode, in which
the node sees uncharacteristically high load but is still not overwhelmed, and
the overload mode, in which the node is nearly overrun with requests. In the
pre-overload mode of operation, the node satisfies all requests that arrive, but
diverts subsequent requests to associated resources, such as embedded images,
away from itself. In the overload mode, the node redirects all requests it receives
to surrogate Backslash nodes and otherwise serves no content. Every node has
two locally defined load thresholds that determine the boundaries of the normal,
pre-overload and overload modes.

Backslash nodes diffuse some of the load directed at a flooded document
collection via the use of URL rewriting. A node in pre-overload mode overwrites
the embedded URLs of the documents it returns so as to divert subsequent
follow-up requests. Such requests—for example, embedded images—are directed
instead to surrogate Backslash nodes. URL rewriting takes advantage of the two
stages of which web requests commonly consist: the DNS lookup and the HT'TP
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request. In fact, every Backslash node runs a simplified DNS server to intercept
DNS requests caused by URL rewrites.

Both types of URL rewrites have the same goal: to cause the client browser to
look elsewhere for the flooded document. The DNS-based rewrite accomplishes
this by directing the DNS lookups for the hostname of the rewritten URL to a
Backslash DNS server. For example, the original URL http://www.backslash.
stanford.edu/image. jpgis rewritten as http://<hash>.backslash.berkeley.
edu/www.backslash.stanford.edu/image. jpg, so as to redirect the requester
to a surrogate Backslash node at Berkeley, where <hash> denotes the base-32
encoding of a SHA-1 hash of the entire original URL.

Similarly, the HTTP-based rewrite accomplishes the same thing by naming
a specific surrogate IP address within the rewritten URL. For example, the
original URL http://www.backslash.stanford.edu/image. jpgis rewritten as
http://a.b.c.d/www.backslash.stanford.edu/image. jpg, wherea.b.c.dis
the IP address of a Backslash node at Berkeley.

Although functionally similar, the two rewrite techniques have different per-
formance implications. The DNS-based rewrite can overlap the document loca-
tion task, triggered by an intercepted DNS request at the surrogate node, with
the HT'TP /TCP client connection establishment that follows. On the other hand,
DNS requests can result in long latencies in high-loss environments because of
UDP time-outs, especially for wireless clients. As a result, embedded links served
to client browsers coming from “nearby” network locations use DNS rewriting,
whereas HT'TP rewriting is used for more remote clients, based on local policy.

When URL rewriting is not an option, specifically in the case of the first
request to an overloaded node from a particular client, plain redirection is used,
again either via DNS or HTTP. For example, the mini DNS server responsible
for the backslash.stanford.edu domain (which is a Backslash node itself) can
return the IP address of a surrogate node when asked for the A record of www,
when the Stanford site is in overload mode. Similarly, HTTP redirection uses
REDIRECT responses to cause browsers to retry a request at a rewritten URL.

The combination of URL rewriting and redirection allows unaware client
browsers to reach an unloaded surrogate Backslash node that will serve their
requests. We explain how surrogate Backslash nodes serve requests for content
from other sites’ collections in the next section.

3.2 Resource Location

Once a surrogate Backslash node has received a request for a document of the
afflicted site, it has to act as a gateway between the HTTP client browser and
the collaborative mirroring portion of Backslash.

Mirroring is implemented on a peer-to-peer overlay following the distributed
hash table paradigm. Systems in this category [3, 5, 6, 8] implement a hash table
over a large number of self-organized nodes. Each node is responsible for a chunk
of the entire hash table. If the hash function used by the table is uniform, then
regardless of the distribution of resource names stored, resources are distributed
uniformly over the hash space. As long as the chunks of the hash space assigned
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to participating nodes are of roughly equal size, then each node maintains a
roughly equal portion of all resources stored into the distributed hash table,
thereby achieving load balancing.

Backslash is specifically implemented on the Content Addressable Network [5],
but does not rely on the specifics of CAN for its operation. The overlay used
underneath Backslash is mostly interchangeable with any other distributed hash
table. In addition to hash table operations, Backslash requires knowledge about
the neighborhood of an overlay node, but all such popular systems can be easily
modified to export this information through their APIs.

3.3 Caching and Replication

Although using a distributed hash table, such as a CAN, explains how we find
a copy of a popular document within the Backslash web mirror, it does not
explain how the copy was created or propagated through the system. In this
section we explain the basic cache diffusion techniques we explore in the context
of Backslash.

Each Backslash node has some available storage for use in caching (a few
times the size of its local document collection). This storage is split in two
categories: replica space and temporary cache space. On one hand, a replica
is a cached copy of a document that is guaranteed to be where it was placed.
Replicas are placed in the overlay by insertion operations of the distributed hash
table. A temporary cache, on the other hand, is a cached copy of a document
that is placed opportunistically at a node of the overlay to speed up subsequent
retrievals. Temporary caches are created in response to retrieval operations of the
distributed hash table and are not guaranteed to remain where they are placed.
In fact, they might be replaced very soon after they are created if they are the
least recently used temporarily cached document of a node. A fixed portion of the
available free space of each node is allocated as replica space. Whatever remains
unused in the replica space and the remainder of the free space is allocated as
temporary cache space.

The Backslash replica space is used exclusively for the first copy of each file
in the participating mirrored web collections. Every Backslash node periodically
injects the documents in its local document collection into the distributed hash
table. The single copy of each such document created at insertion time is a
replica. In the cache diffusion schemes we explore in the remainder of this paper
we create no other replicas.

The first cache diffusion method we consider is local diffusion. In local dif-
fusion, each node serving a document as a replica or temporary cache monitors
the rate of requests it receives for that document. When the node determines
that the request rate has reached a predetermined push threshold, it pushes out
a new temporary cache of the document one overlay hop closer to the source of
the last request. This technique aims to offload some of the demand by having
more nodes in the locality of an observed flood intercept and serve requests.
In a sense, a node that observes a local flood creates a “bubble” of temporary
caches around itself, diffusing its load over its neighborhood. The diameter of
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the bubble grows in relation to the intensity of the flood, until no node on the
perimeter of the bubble observes high request rates for the document.

The second cache diffusion method we consider is directory diffusion. In this
method, the distributed hash table stores directories of pointers to document
copies instead of the document copies themselves. Replicas and temporary caches
are also stored in Backslash nodes, but their location is not related to the hash
table structure. When a node receives a newly inserted document, it creates
a directory for it, picks a random Backslash node and stores a replica for the
document at that node, documenting it in its own directory. When the direc-
tory receives a request for the document, it returns as many permuted directory
entries pointing to individual copies of the document as it can fit in a single re-
sponse packet. To create new temporary caches, the directory node monitors the
request rate for the document. When the request rate reaches a predetermined
threshold, the directory responds to the requester with an invitation to become
a new temporary cache along with the list of pointers to copies of the file.

Both cache diffusion techniques require that a node serve a request if it holds
a copy of the requested document. We explore a modification of this requirement
whereby a node may choose (at random) to forward a request even if it already
holds a copy of the requested document. This allows the node to shed probabilis-
tically a fraction of the request load it observes, without creating new temporary
caches. We introduce this variation, called probabilistic forwarding, to increase
the reuse of already existing caches and curtail the creation of new ones. This is
especially the case for the local diffusion method, where all requests originating
outside the “bubble” are handled by the nodes at the perimeter, leaving caches
inside the bubble practically unused. Probabilistic forwarding enables the use of
caches in the interior.

4 Evaluation

In our preliminary evaluation efforts, we have focused on the behavior of cache
diffusion techniques. The mechanisms responsible for interjecting Backslash into
the protocol stream of unaware client browsers (delineated in Section 3.1) or for
building simple self-maintained overlays (pointed to in Section 3.2) are available
and pose no significant challenges for the purposes of our target application.
Our experimental setup involves 1,000 nodes participating in a single two-
dimensional CAN overlay. Each node has twice the size of its own collection in
available free space, of which exactly half is allocated to replicas, and the other
half to temporary caches. For simplicity, the document collection owned by each
node consists of a single document and all documents have exactly the same
size. We present a brief preliminary exploration of two particular design choices
in our cache diffusion mechanism: diffusion agility and probabilistic forwarding.
Diffusion agility is the speed with which Backslash reacts to a new flash
crowd. A highly agile diffusion mechanism spreads out cached copies of the
flooded document rapidly, so as to reach a state where the downpour of requests
for that document can be served collectively by as many nodes as possible. How-



Lecture Notes in Computer Science 7

(a) Diffusion for (b) Cache pushesvs.
threshold 1 push threshold
é ( 25000
o B 3

{B = = 20000 E

-g S ag; 15000—2

5 8 A ) ?@ 10000

® first % 5000
&7 second| = E
e L L LR 0 -||||||||Il|||||||||||||||||||||||||||||||
o % % % S ]& 8 ¢

Request # Push threshold
(©) Request_ load of (d) Request load of
first file second file
oo g

Q <2§5’L [0 §_

LY o 8]

2 o Sell/ — trest

o ° 8| res.

O ] 0 41l thres. 22
> <] — thres. 43
o= T T

° ° 8 § 8
Max load Max load

Fig. 1. The simultaneous flash crowd scenario discussed in the text. (a) Cache diffusion
during the evolution of the scenario. (b) Number of cache pushes as a function of the
push threshold. (c¢) and (d) Cumulative load distribution of requests served as a function
of the number of requests served per node for the first, long flood and the second, short
flood, respectively.

ever, high agility also carries an early commitment of heavy resources (storage
space, cache diffusion bandwidth) to a flood that might not necessitate them.
By controlling agility, we allow the system to moderate the amount of resources
it commits to a particular flood.

We represent this agility parameter by a push threshold, the number of re-
quests a node must serve before it decides to push to its neighbors a copy of the
flooded file. A push threshold of one means that every time a Backslash node
receives a request, it also pushes out a copy of the requested file to the neigh-
bor that forwarded it the request for caching. A push threshold of 100 means
that the node only pushes out a new cache of a requested file after every 100-th
request.

To illustrate the effects of the push threshold, we have simulated a scenario
where two floods are handled at the same time by Backslash. The first flood
starts alone and manages to saturate the system by causing a copy of the first
flooded file to be placed at every node. After saturation, and while the first
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flood is ongoing, the second flood begins, gradually displacing cached copies of
the first file for copies of the second file. Finally, the second flood terminates,
allowing the first file to saturate the system again. Figure 1(a) shows how the
diffusion evolves in this scenario for a push threshold of one. Note how agility is
very high; the system responds very rapidly to changes in offered load.

The benefits of using lower push thresholds are illustrated in Figure 1(d).
The figure graphs the cumulative load distribution over the system for the short
second flood for three representative thresholds: 1, 22 and 43. On one hand, with
a threshold of one, the second flood causes no higher a load than 300 requests to
any node. On the other hand, with the highest threshold of 43 only 600 nodes
participate in caching the second file at any one time and the maximum per
node load reaches almost 800 requests.

However, higher agility makes the satisfaction of requests for the second file
more expensive. For the same number of requests satisfied, higher thresholds
result in much fewer cache pushes in the face of contention. Figure 1(b) graphs
the total number of cache pushes as a function of the push threshold. Threshold
one results in almost 25,000 cache pushes, of which 23,000 are mainly due to
the oscillations caused by contention between the first and second files. The
hysteresis introduced by the highest threshold of 43 mitigates this effect, as
indicated by the almost tenfold reduction in cache pushes shown in the graph.
Note, however, that the actual point where the benefit of lower threshold justifies
the cost is specific to the underlying topology and resource restrictions of each
Backslash participant, for whom a temporarily high load might be justified by
overall lower traffic.

As described in Section 3.3, in local diffusion cached copies of a flooded
document inside a cache “bubble” are only used by requests initiated locally,
whereas caches on the perimeter of the bubble are used locally and also by
requests initiated outside the bubble. This makes perimeter caches much hotter
than internal bubble caches. We explore the use of probabilistic forwarding as
a method to spread out the load of the perimeter incurred by requests initiated
outside the bubble over all the nodes within the bubble.

We use a probability function that assigns a linearly decreasing forwarding
probability to every bubble node on the path from an external request originator
to the authority node. In this way, a cache at the perimeter of the bubble has
a maximum forwarding probability (60% in our experiments). Subsequent next
hop nodes toward the center of the bubble decrease their forwarding probability
proportionally as they get closer to the center. We would expect to see a better
load distribution among the nodes of a bubble as a result of this technique.

In Figure 2(b) we show the effects of using probabilistic forwarding during a
single flood. We have calibrated the push threshold of the probabilistic run so
as to achieve similar diffusion patterns between the two runs (see Figure 2(a)).
Surprisingly, although we initially expected probabilistic forwarding to even out
the distribution of load among nodes with caches of the flooded file, the graph
shows only a very small improvement; specifically, there are slightly more lower-
load nodes and slightly fewer higher-load nodes. We ascribe this surprising result
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Fig. 2. The effects of probabilistic forwarding in one flood ((a) and (b)), and in two
concurrent floods of equal intensity ((c) and (d)). (a) and (c) graph cache diffusion dur-
ing the evolution of the two experiments, as achieved by calibrating the push threshold
in the probabilistic experiments to 220; the standard experiments used a threshold of
500. (b) and (d) show the cumulative load distributions for the two flood scenarios
with and without probabilistic forwarding.

to the monolithic fashion in which we measure load in our simulations. We
conjecture that although the cumulative load per node in the duration of the
experiment seems only a little affected by the use of probabilistic forwarding, it
is the distribution of that load over time within a single node that improves, that
is, becomes less bursty, in this case. Deterministic forwarding creates high bursts
of load at the perimeter of the bubble since all nodes must service their requests.
Upon reaching its threshold, the bubble expands outward and a new perimeter
services incoming requests. Once a node is no longer at the perimeter of the
bubble, it does not receive requests from outside and its load drops significantly.
Probabilistic forwarding allows interior nodes to continue servicing requests even
after they are no longer at the perimeter of the bubble.

The results are similar when two floods of equal intensity compete against
each other. Figure 2(d) shows the difference in load distribution with and without
probabilistic forwarding for one of the two simultaneous floods. While probabilis-
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tic forwarding evens out the load distribution in favor of lower loads, the effect
is not quite as significant as we had anticipated. We hope to experiment with
different forwarding probability functions to achieve a more pronounced benefit.

This is a very preliminary evaluation of cache diffusion in Backslash. We hope
to perform a more thorough analysis in the near future.

5 Related Work

Our work shares many goals with the pioneering work done in the Adaptive
Web Caching project [1]. Our local diffusion method is similar to the diffusion
method used by AWC. However, AWC offers the benefits of a proxy cache,
whereas Backslash replaces a reverse proxy cache.

A lot of work has been done on building self-maintainable overlay networks
that follow the distributed hash table paradigm [3,5,6,8]. We use results from
that area extensively.

A set of HTTP extensions for the “content addressable web” were proposed
recently [2]. Backslash would certainly benefit from the extended HTTP func-
tionality offered by this work.

Other work has explored the use of client Web browser plug-ins to diffuse the
effects of flash crowds [4]. However, Backslash differs by requiring a server-side
implementation that is completely transparent to the client.

Finally, Rubenstein and Sahu [7] analyze theoretically a simple peer-to-peer
protocol for flash crowd document retrieval based on random walks in an un-
structured overlay, similar to Gnutella. We hope to compare the latency charac-
teristics of the two designs in the near future.

6 Conclusions

There exists a need for a cost effective method to combat flash crowds. Backslash
addresses this problem and, given preliminary results, is a promising method of
mitigating flash crowd effects.

The next steps in this research involve a deeper exploration of different for-
warding probability functions and their interactions with the other aspects of
cache diffusion, the development of a hybrid local/directory diffusion method to
exploit the benefits of both methods, closer cooperation with a cache invalidation
scheme, and a higher-fidelity simulation and trial deployment plan.
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