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Abstract
As Internet services become more popular and pervasive, a crit-
ical problem that arises is managing the performance of ser-
vices under extreme overload. This paper presents a set of tech-
niques for managing overload in complex, dynamic Internet
services. These techniques are based on an adaptive admission
control mechanism that attempts to bound the 90th-percentile
response time of requests flowing through the service. This is
accomplished by internally monitoring the performance of the
service, which is decomposed into a set of event-drivenstages
connected with request queues. By controlling the rate at which
each stage admits requests, the service can perform focused
overload management, for example, by filtering only those re-
quests that lead to resource bottlenecks. We present two exten-
sions of this basic controller that provide class-based service
differentiation as well as application-specific service degrada-
tion. We evaluate these mechanisms using a complex Web-
based e-mail service that is subjected to a realistic user load, as
well as a simpler Web server benchmark.

1 Introduction
Internet services have become a vital resource for many
people. Internet-based e-mail, stock trading, driving di-
rections, and even movie listings are often considered in-
dispensable both for businesses and personal productiv-
ity. Web application hosting has opened up new demands
for service performance and availability, with businesses
relying on remotely-hosted services for accounting, hu-
man resources management, and other applications.

At the same time, Internet services are increasing in
complexity and scale. Although much prior research
has addressed the performance and scalability concerns
of serving static Web pages [8, 28, 31], many modern
services rely on dynamically-generated content, which
requires significant amounts of computation and I/O to
generate. It is not uncommon for a single Internet ser-
vice request to involve several databases, application
servers, and front-end Web servers. Unlike static content,
dynamically-generated pages often cannot be cached or
replicated for better performance, and the resource re-
quirements for a given user load are very difficult to pre-
dict.

Moreover, Internet services are subject to enormous

variations in demand, which in extreme cases can lead
to overload. During overload conditions, the service’s
response times may grow to unacceptable levels, and ex-
haustion of resources may cause the service to behave er-
ratically or even crash. The events of September 11, 2001
provided a poignant reminder of the inability of most In-
ternet services to scale: many news sites worldwide were
unavailable for several hours due to unprecedented de-
mand. CNN.com experienced a request load 20 times
greater than the expectedpeak, at one point exceeding
30,000 requests a second. Despite growing the size of
the server farm, CNN was unable to handle the major-
ity of requests to the site for almost 3 hours [23]. Many
services rely on overprovisioning of server resources to
handle spikes in demand. However, when a site is seri-
ously overloaded, request rates can be orders of magni-
tude greater than the average, and it is clearly infeasible
to overprovision a service to handle a 100-fold or 1000-
fold increase in load.

Overload management is a critical requirement for In-
ternet services, yet few services are designed with over-
load in mind. Often, services rely on the underlying op-
erating system to manage resources, yet the OS typically
does not have enough information about the service’s re-
source requirements to effectively handle overload con-
ditions. A common approach to overload control is to ap-
ply fixed (administrator-specified) resource limits, such
as bounding the number of simultaneous socket connec-
tions or threads. However, it is difficult to determine the
ideal resource limits under widely fluctuating loads; set-
ting limits too low underutilizes resources, while setting
them too high can lead to overload regardless. In addi-
tion, such resource limits do not have a direct relation-
ship to client-perceived service performance.

We argue that Internet services should be designed
from the ground up to detect and respond intelligently to
overload conditions. In this paper, we present an archi-
tecture for Internet service design that makes overload
management explicit in the programming model, pro-
viding services with the ability to perform fine-grained
control of resources in response to heavy load. In
this model, based on thestaged event-driven architec-
ture (SEDA) [40], services are constructed as a network



of event-drivenstagesconnected with explicit request
queues. By applying admission control to each queue,
the flow of requests through the service can be controlled
in a focused manner.

To achieve scalability and fault-tolerance, Internet
services are typically replicated across a set of machines,
which may be within a single data center or geograph-
ically distributed [16, 37]. Even if a service is scaled
across many machines, individual nodes still experience
huge variations in demand. This requires that effective
overload control techniques be deployed at the per-node
level, which is the focus of this paper.

Our previous work on SEDA [40] addressed the effi-
ciency and scalability of the architecture, and an earlier
position paper [39] made the case for overload manage-
ment primitives in service design. This paper builds on
this work by presenting an adaptive admission control
mechanism within the SEDA framework that attempts to
meet a 90th percentile response time target by filtering
requests at each stage of a service. This mechanism is
general enough to support class-based prioritization of
requests (e.g., allowing certain users to obtain better ser-
vice than others) as well as application-specific service
degradation.

Several prior approaches to overload control in Inter-
net services have been proposed, which we discuss in
detail in Section 5. Many of these techniques rely on
static resource limits [3, 36], apply only to simplistic,
static Web page loads [2, 9], or have been studied only
under simulation [10, 20]. In contrast, the techniques de-
scribed in this paper allow services to adapt to changing
loads, apply to complex, dynamic Internet services with
widely varying resource demands, and have been imple-
mented in a realistic application setting. We evaluate
our overload control mechanisms using both a resource-
intensive Web-based e-mail service and a simple Web
server benchmark. Our results show that these adaptive
overload control mechanisms are effective at controlling
the response times of complex Internet services, and per-
mit flexible prioritization and degradation policies to be
implemented.

2 The Staged Event-Driven Architecture
Our overload management techniques are based on the
staged event-driven architecture(or SEDA), a model for
designing Internet services that are inherently scalable
and robust to load. In SEDA, applications are struc-
tured as a graph of event-drivenstagesconnected with
explicit event queues, as shown in Figure 1. We provide
a brief overview of the architecture here; a more com-
plete description and extensive performance results are
given in [40].

2.1 SEDA Overview
SEDA is intended to support the massive concurrency
demands of large-scale Internet services, as well as to

exhibit good behavior under heavy load. Traditional
server designs rely on processes or threads to capture
the concurrency needs of the server: a common design
is to devote a thread to each client connection. However,
general-purpose threads are unable to scale to the large
numbers required by busy Internet services [5, 17, 31].

The alternative to multithreading is event-driven con-
currency, in which a small number of threads are used to
process many simultaneous requests. However, event-
driven server designs can often be very complex, re-
quiring careful application-specific scheduling of request
processing and I/O. This model also requires that ap-
plication code never block, which is often difficult to
achieve in practice. For example, garbage collection,
page faults, or calls to legacy code can cause the applica-
tion to block, leading to greatly reduced performance.

To counter the complexity of the standard event-
driven approach, SEDA decomposes a service into a
graph ofstages, where each stage is an event-driven ser-
vice component that performs some aspect of request
processing. Each stage contains a small, dynamically-
sizedthread poolto drive its execution. Threads act as
implicit continuations, automatically capturing the exe-
cution state across blocking operations; to avoid overus-
ing threads, it is important that blocking operations be
short or infrequent. SEDA provides nonblocking I/O
primitives to eliminate the most common sources of long
blocking operations.

Stages are connected with explicitqueuesthat act
as the execution boundary between stages, as well as a
mechanism for controlling the flow of requests through
the service. This design greatly reduces the complex-
ity of managing concurrency, as each stage is responsi-
ble only for a subset of request processing, and stages
are isolated from each other through composition with
queues.

As shown in Figure 2, a stage consists of anevent han-
dler, an incoming event queue, and a dynamically-sized
thread pool. Threads within a stage operate by pulling a
batchof events off of the incoming event queue and in-
voking the application-supplied event handler. The event
handler processes each batch of events, and dispatches
zero or more events by enqueueing them on the event
queues of other stages. The stage’s incoming event queue
is guarded by anadmission controllerthat accepts or re-
jects new requests for the stage. The overload control
mechanisms described in this paper are based on adap-
tive admission control for each stage in a SEDA service.

Additionally, each stage is subject to dynamicre-
source control, which attempts to keep each stage within
its ideal operating regime by tuning parameters of the
stage’s operation. For example, one such controller ad-
justs the number of threads executing within each stage
based on an observation of the stage’s offered load (in-
coming queue length) and performance (throughput).
This approach frees the application programmer from
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Figure 1: Structure of the Arashi SEDA-based email service:This is a typical example of a SEDA-based Internet service,
consisting of a network of stages connected with explicit event queues. Each stage is subject to adaptive resource management and
admission control to prevent overload. Requests are read from the network and parsed by a theread packetandparse packetstages
on the left. Each request is then passed to a stage that handles the particular request type, such as listing the user’s mail folders.
Static page requests are handled by a separate set of stages that maintain an in-memory cache. For simplicity, some event paths
and stages have been elided from this figure.

manually setting “knobs” that can have a serious im-
pact on performance. More details on resource control
in SEDA are given in [40].

2.2 Advantages of SEDA
While conceptually simple, the SEDA model has a num-
ber of desirable properties for overload management:

Exposure of the request stream:Event queues make
the request stream within the service explicit, allow-
ing the application (and the underlying runtime environ-
ment) to observe and control the performance of the sys-
tem, e.g., through reordering or filtering of requests.

Focused, application-specific admission control:By
applying fine-grained admission control to each stage,
the system can avoid bottlenecks in a focused manner.
For example, a stage that consumes many resources can
be conditioned to load by throttling the rate at which
events are admitted to just that stage, rather than refus-
ing all new requests in a generic fashion. The application
can provide its own admission control algorithms that are
tailored for the particular service.

Modularity and performance isolation: Requiring
stages to communicate through explicit event-passing al-
lows each stage to be insulated from others in the system
for purposes of code modularity and performance isola-
tion.

2.3 Overload exposure and admission con-
trol

The goal of overload management is to prevent service
performance from degrading in an uncontrolled fash-
ion under heavy load, as a result of overcommitting re-
sources. As a service approaches saturation, response
times typically grow very large and throughput may de-
grade substantially. Under such conditions, it is often

desirable to shed load, for example, by sending explicit
rejection messages to users, rather than cause all users
to experience unacceptable response times. Note that re-
jecting requests is just one form of load shedding; several
alternatives are discussed below.

Overload protection in SEDA is accomplished
through the use of fine-grained admission control at each
stage, which can be used to implement a wide range of
policies. Generally, by applying admission control, the
service can limit the rate at which a stage accepts new re-
quests, allowing performance bottlenecks to be isolated.
A simple admission control policy might be to apply a
fixed threshold to each stage’s event queue; however,
with this policy it is very difficult to determine what the
ideal thresholds should be to meet some performance tar-
get. A better approach is for stages to monitor their per-
formance and trigger rejection of incoming events when
some performance threshold has been exceeded. Addi-
tionally, an admission controller could assign a cost to
each event in the system, prioritizing low-cost events
(e.g., inexpensive static Web page requests) over high-
cost events (e.g., expensive dynamic pages). SEDA al-
lows the admission control policy to be tailored for each
individual stage.

This mechanism allows overload control to be per-
formed within a service in response to measured re-
source bottlenecks; this is in contrast to “external” ser-
vice control based on ana priori model of service capac-
ity [2, 10]. Moreover, by performing admission control
on a per-stage basis, overload response can be focused
on those requests that lead to a bottleneck, and be cus-
tomized for each type of request. This is as opposed to
generic overload response mechanisms that fail to con-
sider the nature of the request being processed [18, 19].

When the admission controller rejects a request, the
corresponding enqueue operation fails, indicating to the
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Figure 2: A SEDA Stage: A stage consists of anincoming
event queuewith an associatedadmission controller, a thread
pool, and an application-suppliedevent handler. The stage’s
operation is managed by a set ofcontrollers, which dynami-
cally adjust resource allocations and scheduling. Theadmis-
sion controllerdetermines whether a given request is admitted
to the queue.

originating stage that there is a bottleneck in the system.
The upstream stage is therefore responsible for reacting
to these “overload signals” in some way. This explicit
indication of overload differs from traditional service de-
signs that treat overload as an exceptional case for which
applications are given little indication or control.

Rejection of an event from a queue does not imply that
the user’s request is rejected from the system. Rather, it is
the responsibility of the stage receiving a queue rejection
to perform some alternate action, which depends greatly
on the service logic, as described above. If the service
has been replicated across multiple servers, the request
can be redirected to another node, either internally or by
sending an HTTP redirect message to the client. Services
may also provide differentiated service by delaying cer-
tain requests in favor of others: an e-commerce site might
give priority to requests from users about to complete
an order. Another overload response is to block until
the downstream stage can accept the request. This leads
to backpressure, since blocked threads in a stage cause
its incoming queue to fill, triggering overload response
upstream. In some applications, however, backpressure
may be undesirable as it causes requests to queue up,
possibly for long periods of time.

More generally, an application maydegrade service
in response to overload, allowing a larger number of
requests to be processed at lower quality. Examples
include delivering lower-fidelity content (e.g., reduced-
resolution image files) or performing alternate actions
that consume fewer resources per request. Whether
or not such degradation is feasible depends greatly on
the nature of the service. The SEDA framework it-
self is agnostic as to the precise degradation mecha-
nism employed—it simply provides the admission con-
trol primitive to signal overload to applications.

3 Overload Control in SEDA

In this section we present three particular overload con-
trol mechanisms that have been constructed using the
stage-based admission control primitives described ear-
lier. We begin with a motivation for the use of 90th-
percentile response time as a client-based performance
metric to drive overload control. We then discuss an
adaptive admission control mechanism to meet a 90th-
percentile response time target, and describe an exten-
sion that enables service differentiation across different
classes of users. We also describe the use of application-
specific service degradation in this framework.

3.1 Performance metrics

A variety of performance metrics have been studied in
the context of overload management, including through-
put and response time targets [9, 10], CPU utiliza-
tion [2, 11, 12], and differentiated service metrics, such
as the fraction of users in each class that meet a given
performance target [20, 25]. In this paper, we focus
on 90th-percentile response timeas a realistic and in-
tuitive measure of client-perceived system performance.
This metric has the benefit that it is both easy to rea-
son about and captures the user’s experience of Inter-
net service performance. This is as opposed to average
or maximum response time (which fail to represent the
“shape” of a response time curve), or throughput (which
depends greatly on the network connection to the service
and bears little relation to user-perceived performance).

In this context, the system administrator specifies a
target value for the service’s 90th-percentile response
time. The target response time may be parameterized
by relative utility of the requests, for example, based on
request type or user classification. An example might be
to specify a lower response time target for requests from
users with more items in their shopping cart. Our cur-
rent implementation, discussed below, allows separate
response time targets to be specified for each stage in the
service, as well as for different classes of users (based on
IP address, request header information, or HTTP cook-
ies).

3.2 Response time controller design

The design of the per-stage overload controller in SEDA
is shown in Figure 3. The controller consists of sev-
eral components. Amonitor measures response times
for each request passing through a stage. Requests are
tagged with the current time when they enter the service.
At each stageS, the request’s response time is calcu-
lated as the time it leavesS minus the time it entered the
system. While this approach does not measure network
effects, we expect that under overload the greatest con-
tributor to perceived request latency will be intra-service
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Figure 3: Response time controller design:The controller
observes a history of response times through the stage, and ad-
justs the rate at which the stage accepts new requests to meet an
administrator-specified 90th-percentile response time target.

Parameter Description Default value
nreq # reqs before controller run 100
timeout Time before controller run 1 sec
α EWMA filter constant 0.7
erri % error to trigger increase -0.5
errd % error to trigger decrease 0.0
adji Additive rate increase 2.0
adjd Multiplicative rate decrease 1.2
ci Weight on additive increase -0.1
ratemin Minimum rate 0.05
ratemax Maximum rate 5000.0

Figure 4:Parameters used in the response time controller.

response time.1

The measured 90th-percentile response time over
some interval is passed to thecontroller that ad-
justs theadmission control parametersbased on the
administrator-supplied response-timetarget. In the cur-
rent design, the controller adjusts the rate at which new
requests are admitted into the stage’s queue by adjust-
ing the rate at which new tokens are generated in a token
bucket traffic shaper [33]. A wide range of alternate ad-
mission control policies are possible, including drop-tail
FIFO or variants of random early detection (RED) [14].

The basic overload control algorithm makes use of
additive-increase/multiplicative-decrease tuning of the
token bucket rate based on the current observation of the
90th-percentile response time. The controller is invoked
by the stage’s event-processing thread after some num-
ber of requests (nreq) has been processed. The controller
also runs after a set interval (timeout) to allow the rate to
be adjusted when the processing rate is low.

The controller records up tonreqresponse-time sam-
ples and calculates the 90th-percentile samplesampby
sorting the samples and taking the(0.9×nreq)-th sample.

1To avoid TCP’s exponential backoff for initial SYN retransmis-
sion, our implementation of SEDA rapidly accepts new client connec-
tions. In cases where the number of incoming connections is extremely
large, or initial SYNs are dropped by the network, our approach can be
supplemented with some form of network latency estimation [30, 35]
to obtain a more accurate response-time estimate.

In order to prevent sudden spikes in the response time
sample from causing large reactions in the controller, the
90th-percentile response time estimate is smoothed using
an exponentially weighted moving average with parame-
terα:

cur = α · cur + (1− α) · samp

The controller then calculates the error between the cur-
rent response time measurement and the target:

err =
cur− target

target

If err > errd, the token bucket rate is reduced by a
multiplicative factoradjd. If err < erri, the rate is in-
creased by an additive factor proportional to the error:
−(err − ci)adji. The constantci is used to weight the
rate increase such that whenerr = ci the rate adjustment
is 0.

The parameters used in the implementation are sum-
marized in Figure 4. These parameters were determined
experimentally using a combination of microbenchmarks
with artificial loads and real applications with realistic
loads (e.g., the e-mail service described in the next sec-
tion). In most cases the controller algorithm and param-
eters were tuned by running test loads against a service
and observing the behavior of the controller in terms of
measured response times and the corresponding admis-
sion rate.

These parameters have been observed to work well
across a range of applications, however, there are no
guarantees that they are optimal. In particular, the be-
havior of the controller is sensitive to the setting of the
smoothing filter constantα, as well as the rate increase
adji and decreaseadjd; the setting of the other parame-
ters is less critical. The main goal of tuning is allow the
controller to react quickly to increases in response time,
while not being so conservative that an excessive num-
ber of requests are rejected. An important problem for
future investigation is the tuning (perhaps automated) of
controller parameters in this environment. It would be
useful to apply concepts from control theory to aid in the
tuning process, but this requires the development of com-
plex models of system behavior. We discuss the role of
control theoretic techniques in more detail in Section 5.3.

3.3 Class-based differentiation
By prioritizing requests from certain users over others,
a SEDA application can implement various policies re-
lated to class-based service level agreements (SLAs). A
common example is to prioritize requests from “gold”
customers, who might pay more money for the privilege,
or to give better service to customers with items in their
shopping cart.

Various approaches to class-based differentiation are
possible in SEDA. One option would be to segregate re-
quest processing for each class into its own set of stages,
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Figure 6: Screenshot of the Arashi e-mail service:Arashi
allows users to read e-mail through a Web browser interface.
Many traditional e-mail reader features are implemented, in-
cluding message search, folder view, sorting message lists by
author, subject, or date fields, and so forth.

in effect partitioning the service’s stage graph into sepa-
rate flows for each class. In this way, stages for higher-
priority classes could be given higher priority, e.g., by
increasing scheduling priorities or allocating additional
threads. Another option is to process all classes of re-
quests in the same set of stages, but make the admission
control mechanism aware of each class, for example, by
rejecting a larger fraction of lower-class requests than
higher-class requests. This is the approach taken here.

The multiclass response time control algorithm is
identical to that presented in Section 3.2, with several
small modifications. Incoming requests are assigned
an integerclassthat is derived from application-specific
properties of the request, such as IP address or HTTP
cookie information. A separate instance of the response
time controller is used for each classc, with independent
response time targetstargetc. Likewise, the queue ad-
mission controller maintains a separate token bucket for

each class.
For classc, if errc > errcd, then the token bucket rate

of all classeslower thanc is reduced by a multiplicative
factor adjlod (with default value 10). If the rate of all
lower classes is already equal toratemin then a counter
lcc is incremented; whenlcc ≥ lcthresh(default value 20),
then the rate for classc is reduced byadjd as described
above. In this way the controller aggressively reduces
the rate of lower-priority classes before that of higher-
priority classes. Admission rates are increased as in Sec-
tion 3.2, except that whenever a higher-priority class ex-
ceeds its response time target, all lower-priority classes
are flagged to prevent their admission rates from being
increased during the next iteration of the controller.

3.4 Service degradation
Another approach to overload management is to allow
applications to degrade the quality of delivered service
in order to admit a larger number of requests [1, 7, 16].
SEDA itself does not implement service degradation
mechanisms, but rather signals overload to applications
in a way that allows them to degrade if possible. Stages
can obtain the current 90th-percentile response time
measurement as well as enable or disable the stage’s ad-
mission control mechanism. This allows an service to
implement degradation by periodically sampling the cur-
rent response time and comparing it to the target. If ser-
vice degradation is ineffective (say, because the load is
too high to support even the lowest quality setting), the
stage can re-enable admission control to cause requests
to be rejected.

4 Evaluation
In this section, we evaluate the SEDA overload control
mechanisms using two applications: a complex Web-
based e-mail service, and a Web server benchmark in-
volving dynamic page generation that is capable of de-
grading service in response to overload.

4.1 Arashi: A SEDA-based e-mail service
We wish to study the behavior of the SEDA overload
controllers in a highly dynamic environment, under a
wide variation of user load and resource demands. We
have developed theArashi2 Web-based e-mail service,
which is akin to Hotmail and Yahoo! Mail, allowing
users to access e-mail through a Web browser interface
with various functions: managing e-mail folders, delet-
ing and refiling messages, searching for messages, and
so forth. A screenshot of the Arashi service is shown in
Figure 6.

Arashi is implemented using theSandstormplatform,
a SEDA-based Internet services framework implemented

2Arashi is the Japanese word forstorm.
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Figure 7:Overload controller operation: This figure shows
the operation of the SEDA overload controller for one of the
stages in the Arashi e-mail service during a large load spike. A
load spike of 1000 users enters the system at aroundt = 70 and
leaves the system aroundt = 150. The response time target is
set to 1 sec. The overload controller responds to a spike in
response time by exponentially decreasing the admission rate
of the stage. Likewise, when the measured response time is
below the target, the admission rate is increased slowly. Notice
the slight increase in the admission rate aroundt = 100; this is
an example of the proportional increase of the admission rate
based on the error between the response time measurement and
the target. The spikes in the measured response time are caused
by bursts of requests entering the stage, as well as resource
contention across stages.

in Java [40].3 As shown in Figure 1, some number
of stages are devoted to generic Web page processing,
nonblocking network and file I/O, and maintaining a
cache of recently-accessed static pages; in the Arashi
service, there is only a single static Web object (the
Arashi logo image). Arashi employs six stages to pro-
cess dynamic page requests, with one stage assigned
to each request type (show message, list folders, etc.).
Each stage is implemented as a Java class that pro-
cesses the corresponding request type, accesses e-mail
data from a MySQL [27] database, and generates a cus-
tomized HTML page in response. This design allows
the admission control parameters for each request type
to be tuned independently, which is desirable given the
large variation in resource requirements across requests.
For example, displaying a single message is a relatively
lightweight operation, while listing the contents of an en-
tire folder requires a significant number of database ac-
cesses.

The client load generator used in our experiments em-
ulates a number of simultaneous users, each accessing
a single mail folder consisting of between 1 and 12794
messages, the contents of which are based on actual e-
mail archives. Emulated users access the service based
on a simple Markovian model of user behavior derived

3Our earlier work [40] demonstrated that despite using Java, Sand-
storm performance is competitive with systems implemented in C.
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Figure 8: Overload control in Arashi: This figure shows
the 90th-percentile response time for the Arashi e-mail ser-
vice with and without the overload controller enabled. The
90th-percentile response time target is 10 sec. Also shown is
the fraction of rejected requests with overload control enabled.
Note that the overload controller is operating independently on
each request type, though this figure shows the 90th-percentile
response time and reject rate averaged across all requests. As
the figure shows, the overload control mechanism is effective at
meeting the response time target despite a many-fold increase
in load.

from traces of the UC Berkeley Computer Science Divi-
sion’s IMAP server.4 The inter-request think time is ag-
gressively set to 20ms. When the service rejects a request
from a user, the user waits for 5 sec before attempting to
log into the service again. The Arashi service runs on a
1.2 GHz Pentium 4 machine running Linux 2.4.18, and
the client load generators run on between 1 and 16 simi-
lar machines connected to the server with Gigabit Ether-
net. Since we are only interested in the overload behavior
of the server, WAN network effects are not incorporated
into our evaluation.

4.2 Controller operation
Figure 7 demonstrates the operation of the overload con-
troller, showing the 90th-percentile response time mea-
surement and token bucket admission rate for one of the
stages in the Arashi service (in this case, for the “list fold-
ers” request type). Here, the stage is being subjected to
a very heavy load spike of 1000 users, causing response
times to increase dramatically.

As the figure shows, the controller responds to a spike
in the response time by exponentially decreasing the to-
ken bucket rate. When the response time is below the
target, the rate is increased slowly. Despite several over-
shoots of the response time target, the controller is very
effective at keeping the response time near the target.
The response time spikes are explained by two factors.
First, the request load is extremely bursty due to the real-
istic nature of the client load generator. Second, because

4We are indebted to Steve Czerwinski for providing the IMAP trace
data.



16 users 1024 users
Type No OLC OLC No OLC OLC
login 0.83 sec 0.59 sec 0.86 sec 3.84 sec
list folders 1.73 sec 0.57 sec 365 sec 5.75 sec
list msgs 2.37 sec 0.58 sec 116 sec 9.28 sec
show msg 0.70 sec 0.30 sec 30.1 sec 3.87 sec
delete 1.00 sec 0.28 sec 11.3 sec 6.85 sec
refile 1.00 sec 0.47 sec 10.6 sec 6.07 sec
search 8.17 sec 9.92 sec 19.6 sec 18.1 sec

Figure 9: Breakdown of response times by request type:
This table lists the 90th-percentile response time for each re-
quest type in the Arashi e-mail service for loads of 16 and
1024 users, both without overload control (“No OLC”) and
with overload control (“With OLC”). The response time target
is 10 sec, and values in boldface exceeded the target. Although
request types exhibit a widely varying degree of complexity, the
controller is effective at meeting the response time target for
each type. With 1024 users, the performance target is exceeded
for searchrequests due to their relative infrequency.

all stages share the same back-end database, requests for
other stages (not shown in the figure) may cause resource
contention that affects the response time of the “list fold-
ers” stage. Note, however, that the largest response time
spike is only about 4 seconds, which is not too serious
given a response time target of 1 second. With no admis-
sion control, response times grow without bound, as we
will show in Sections 4.3 and 4.4.

4.3 Overload control with increased user
load

Figure 8 shows the 90th-percentile response time of the
Arashi service, as a function of the user load, both with
and without the per-stage overload controller enabled.
Also shown is the fraction of overall requests that are
rejected by the overload controller. The 90th-percentile
response time target is set to 10 sec. For each data point,
the corresponding number of simulated clients load the
system for about 15 minutes, and response-time distri-
butions are collected after an initial warm-up period of
about 20 seconds. As the figure shows, the overload con-
trol mechanism is effective at meeting the response time
target despite a many-fold load increase.

Recall that the overload controller is operating on
each request type separately, though this figure shows the
90th-percentile response time and reject rate acrossall
requests. Figure 9 breaks the response times down ac-
cording to request type, showing that the overload con-
troller is able to meet the performance target for each
request type individually. With 1024 users, the perfor-
mance target is exceeded forsearchrequests. This is
mainly due to their relative infrequency: search requests
are very uncommon, comprising less than 1% of the re-
quest load. The controller for thesearchstage is there-
fore unable to react as quickly to arrivals of this request
type.
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Figure 10: Overload control under a massive load spike:
This figure shows the 90th-percentile response time experi-
enced by clients using the Arashi e-mail service under a mas-
sive load spike (from 3 users to 1000 users). Without over-
load control, response times grow without bound; with over-
load control (using a 90th-percentile response time target of
1 second), there is a small increase during load but response
times quickly stabilize. The lower portion of the figure shows
the fraction of requests rejected by the overload controller.

4.4 Overload control under a massive load
spike

The previous section evaluated the overload controller
under a steadily increasing user load, representing a slow
increase in user population over time. We are also inter-
ested in evaluating the effectiveness of the overload con-
troller under a sudden load spike. In this scenario, we
start with a base load of 3 users accessing the Arashi ser-
vice, and suddenly increase the load to 1000 users. This
is meant to model a “flash crowd” in which a large num-
ber of users access the service all at once.

Figure 10 shows the performance of the overload con-
troller in this situation. Without overload control, there
is an enormous increase in response times during the
load spike, making the service effectively unusable for
all users. With overload control and a 90th-percentile re-
sponse time target of 1 second, about 70-80% of requests
are rejected during the spike, but response times for ad-
mitted requests are kept very low.

Our feedback-driven approach to overload control is
in contrast to the common technique of limiting the num-
ber of client TCP connections to the service, which does
not actively monitor response times (a small number of
clients could cause a large response time spike), nor give
users any indication of overload. In fact, refusing TCP
connections has a negative impact on user-perceived re-
sponse time, as the client’s TCP stack transparently re-
tries connection requests with exponential backoff. Fig-
ure 10 shows the client response times when overload
control is disabled and a limit of 128 simultaneous con-
nections is imposed on the server. As the figure shows,
this approach leads to large response times overall. Dur-
ing this benchmark run, over 561 of the 1000 clients ex-



Per-stage AC Single-stage AC
Type 90th RT Rejected 90th RT Rejected
login 2.07 sec 44.3% 1.00 sec 18.8%
list folders 8.11 sec 59.6% 3.97 sec 59.6%
list msgs 8.04 sec 47.1% 6.20 sec 53.7%
show msg 3.90 sec 23.1% 2.04 sec 49.1%
delete 4.86 sec 11.3% 3.26 sec 51.4%
refile 4.60 sec 10.4% 2.12 sec 54.7%
search 22.2 sec 0% 18.9 sec 53.3%

Figure 11:Comparison of per-stage versus single-stage ad-
mission control: This table shows the 90th-percentile response
time and reject rate by request type for a load of 128 users on
the Arashi service. The response time target is 10 sec, and times
shown in boldface exceeded the performance target. With per-
stage admission control, the rejection rate is tuned based on
the overhead of each request type. For single-stage admission
control, all requests experience approproximately the same re-
jection rate.

perienced connection timeout errors.
We claim that giving 20% of the users good service

and 80% of the users some indication that the site is
overloaded is better than givingall users unacceptable
service. However, this comes down to a question of what
policy a service wants to adopt for managing heavy load.
Recall that the service need not reject requests outright—
it could redirect them to another server, degrade service,
or perform an alternate action. The SEDA design allows
a wide range of policies to be implemented: in the next
section we look at degrading service as an alternate re-
sponse to overload.

Applying admission control to each stage in the
Arashi service allows the admission rate to be separately
tuned for each type of request. An alternative policy
would be to use a single admission controller that fil-
ters all incoming requests, regardless of type. Under
such a policy, a small number of expensive requests can
cause the admission controller to reject many unrelated
requests from the system. Figure 11 compares these two
policies, showing the admission rate and 90th-percentile
response time by request type for a load of 128 users. As
the figure shows, using a single admission controller is
much more aggressive in terms of the overall rejection
rate, leading to lower response times overall. However,
the policy does not discriminate between infrequent, ex-
pensive requests and more common, less expensive re-
quests.

4.5 Service degradation experiments
As discussed previously, SEDA applications can respond
to overload by degrading the fidelity of the service of-
fered to clients. This technique can be combined with ad-
mission control, for example, by rejecting requests only
when the lowest service quality still leads to overload.

We evaluate the use of service degradation through a
simple Web server benchmark that incorporates a con-
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Figure 12:Effect of service degradation:This figure shows
the 90th-percentile response time experienced by clients ac-
cessing a simple service consisting of a single bottleneck stage.
The stage is capable of degrading the quality of service deliv-
ered to clients in order to meet response time demands. The
90th-percentile response time target is set to 5 seconds. With-
out service degradation, response times grow very large under
a load spike of 1000 users. With service degradation, response
times are greatly reduced, oscillating near the target perfor-
mance level.

tinuous “quality knob” that can be tuned to trade per-
formance for service fidelity. A single stage acts as a
CPU-bound bottleneck in this service; for each request,
the stage reads a varying amount of data from a file, com-
putes checksums on the file data, and produces a dynam-
ically generated HTML page in response. The stage has
an associated quality factor that controls the amount of
data read from the file and the number of checksums
computed. By reducing the quality factor, the stage con-
sumes fewer CPU resources, but provides “lower qual-
ity” service to clients.

Using the overload control interfaces in SEDA, the
stage monitors its own 90th-percentile response time
and reduces the quality factor when it is over the
administrator-specified limit. Likewise, the quality fac-
tor is increased slowly when the response time is below
the limit. Service degradation may be performed either
independently or in conjunction with the response-time
admission controller described above. If degradation is
used alone, then under overload all clients are given ser-
vice but at a reduced quality level. In extreme cases,
however, the lowest quality setting may still lead to very
large response times. The stage optionally re-enables the
admission controller when the quality factor is at its low-
est setting and response times continue to exceed the tar-
get.

Figure 12 shows the effect of service degradation un-
der an extreme load spike, and Figure 13 shows the use of
service degradation coupled with admission control. As
these figures show, service degradation alone does a fair
job of managing overload, though re-enabling the admis-
sion controller under heavy load is much more effective.



0

10

20

30

40

50

60

70

80

0 20 40 60 80 100
0

0.5

1

90
th

 p
er

ce
nt

ile
 r

es
po

ns
e 

tim
e 

(s
ec

)

Q
ua

lit
y 

/ R
ej

ec
t r

at
e

Time (5 sec intervals)

Load spike Load spike ends

No overload control
Degrade + Reject
Service quality
Reject rate

Figure 13:Service degradation combined with admission
control: This figure shows the effect of service degradation
combined with admission control. The experiment is identical
to that in Figure 12, except that the bottleneck stage re-enables
admission control when the service quality is at its lowest level.
In contrast to the use of service degradation alone, degradation
coupled with admission control is much more effective at meet-
ing the response time target.

Note that when admission control is used, a very large
fraction (99%) of the requests are rejected; this is due to
the extreme nature of the load spike and the inability of
the bottleneck stage to meet the performance target, even
at a degraded level of service.

4.6 Service differentiation
Finally, we evaluate the use of multiclass service differ-
entiation, in which requests from lower-priority users are
rejected before those from higher-priority users. In these
experiments, we deal with two user classes, each with
a 90th-percentile response time target of 10 sec, gener-
ating load against the Arashi e-mail service. Each ex-
periment begins with a base load of 128 users from the
lower-priority class. At a certain point during the run,
128 users from the higher-priority class also start access-
ing the service, and leave after some time. The user class
is determined by a field in the HTTP request header; the
implementation is general enough to support class as-
signment based on client IP address, HTTP cookies, or
other information.

Figure 14 shows the performance of the multiclass
overload controller without service differentiation en-
abled: all users are effectively treated as belonging to the
same class. As the figure shows, the controller is able to
maintain response times near the target, though no pref-
erential treatment is given to the high priority requests.

In Figure 15, service differentiation is enabled, caus-
ing requests from lower-priority users to be rejected
more frequently than higher-priority users. As the fig-
ure demonstrates, while both user classes are active, the
overall rejection rate for higher-priority users is slightly
lower than that in Figure 14, though the lower-priority
class is penalized with a higher rejection rate. The aver-
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Figure 14:Multiclass experiment without service differen-
tiation: This figure shows the operation of the overload con-
trol mechanism in Arashi with two classes of 128 users each
accessing the service. The high-priority users begin accessing
the service at timet = 100 and leave att = 200. No service
differentiation is used, so all users are treated as belonging to
the same class. The 90th-percentile response time target is set
to 10 sec. The controller is able to maintain response times
near the target, though no preferential treatment is given to
higher-priority users as they exhibit an identical frequency of
rejected requests.

age reject rate is 87.9% for the low-priority requests, and
48.8% for the high-priority requests. This is compared
to 55.5% and 57.6%, respectively, when no service dif-
ferentiation is performed. Note that the initial load spike
(aroundt = 100) when the high priority users become
active is somewhat more severe with service differenti-
ation enabled. This is because the controller is initially
attempting to reject only low-priority requests, due to the
lag threshold (lcthresh) for triggering admission rate re-
duction for high-priority requests.

5 Related Work
In this section we survey prior work in Internet service
overload control, discussing previous approaches as they
relate to four broad categories: resource containment, ad-
mission control, control-theoretic approaches, and ser-
vice degradation. In [38] we present a more thorough
overview of related work.

5.1 Resource containment
The classic approach to resource management in Inter-
net services is static resource containment, in whicha
priori resource limits are imposed on an application or
service to avoid overcommitment. We categorize all of
these approaches asstaticin the sense that some external
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Figure 15: Multiclass service differentiation: This figure
shows the operation of the multiclass overload control mech-
anism in Arashi with two classes of 128 users each. Service
differentiation between the two classes is enabled and the 90th-
percentile response time target for each class is 10 sec. The
high-priority users begin accessing the service at timet = 100

and leave att = 200. As the figure shows, when the high-
priority users become active, there is an initial load spike that
is compensated for by penalizing the admission rate of the low-
priority users. Overall the low-priority users receive a large
number of rejections, while high-priority users are able to re-
ceive a greater fraction of service.

entity (say, the system administrator) imposes a limit on
the resource usage of a process or application. Although
resource limits may change over time, they are typically
not driven by monitoring and feedback of system perfor-
mance; rather, the limits are arbitrary and rigid.

In a traditional thread-per-connection Web server de-
sign, the only overload mechanism generally used is to
bound the number of processes (and hence the number of
simultaneous connections) that the server will allocate.
When all server threads are busy, the server stops accept-
ing new connections; this is the type of overload protec-
tion used by Apache [4]. There are two serious problems
with this approach. First, it is based on a static thread or
connection limit, which does not directly correspond to
user-perceived performance. Service response time de-
pends on many factors such as user load, the length of
time a given connection is active, and the type of request
(e.g., static versus dynamic pages). Secondly, not ac-
cepting new TCP connections gives the user no indica-
tion that the site is overloaded: the Web browser simply
reports that it is still waiting for a connection to the site.
As described earlier, this wait time can grow to be very
long, due to TCP’s exponential backoff on SYN retrans-
missions.

Zeus [41] and thttpd [3] provide mechanisms to throt-
tle the bandwidth consumption for certain Web pages to
prevent overload, based on a static bandwidth limit im-
posed by the system administrator for certain classes of
requests. A very similar mechanism has been described
by Li and Jamin [24]. In this model, the server inten-
tionally delays outgoing replies to maintain a bandwidth
limit, which has the side-effect of tying up server re-
sources for greater periods of time to deliver throttled
replies.

5.2 Admission control
The use of admission control as an overload management
technique has been explored by several systems. Many
of the proposed techniques are based on fixed policies,
such as bounding the maximum request rate of requests
to some constant value. Another common aspect of these
approaches is that they often reject incoming work to a
service by refusing to accept new client TCP connec-
tions.

Iyer et al. [18] describe a simple admission control
mechanism based on bounding the length of the Web
server request queue. This work analyzes various set-
tings for the queue abatement and discard thresholds,
though does not specify how these thresholds should be
set to meet any given performance target. Cherkasova
and Phaal [11] presentsession-basedadmission control,
driven by a CPU utiliization threshold, which performs
an admission decision when a new session arrives from
a user, rather than for individual requests or connections.
Such a policy would be straightforward to implement in
SEDA.

Voigt et al.[36] present several kernel-level mecha-
nisms for overload management: restricting incoming
connections based on dropping SYN packets; parsing
and classification of HTTP requests in the kernel; and
ordering the socket listen queue by request URL and
client IP address. Another traffic-shaping approach is
described in [19], which drives the selection of incom-
ing packet rates based on an observation of system load,
such as CPU utilization and memory usage. Web2K [6]
brings several of these ideas together in a Web server
“front-end” that performs admission control based on the
length of the request queue; as in [18], the issue of de-
termining appropriate queue thresholds is not addressed.
Lazy Receiver Processing [13] prevents the TCP/IP re-
ceive path from overloading the system; this technique
could be coupled with SEDA’s overload controllers in ex-
treme cases where incoming request rates are very high.
Qie et al.[34] introduce resource limitations within the
Flash [31] Web serber, primarily as a protection against
denial-of-service attacks, though the idea could be ex-
tended to overload control.

Several other admission control mechanisms have
been presented, though often only in simulation or for
simplistic workloads (e.g., static Web pages). PAC-



ERS [10] attempts to limit the number of admitted re-
quests based on expected server capacity, but this pa-
per deals with a simplistic simulated service where re-
quest processing time is linear in the size of the requested
Web page. A related paper allocates requests to Apache
server processes to minimize per-class response time
bounds [9]. This paper is unclear on implementation de-
tails, and the proposed technique silently drops requests
if delay bounds are exceeded, rather than explicitly noti-
fying clients of overload. Kanodia and Knightly [20] de-
velop an admission control mechanism based onservice
envelopes, a modelling technique used to characterize the
traffic of multiple flows over a shared link. The admis-
sion controller attempts to meet response-time bounds
for multiple classes of service requests, but again is only
studied under a simple simulation of Web server behav-
ior.

5.3 Control-theoretic approaches
Control theory [29] provides a formal framework for
reasoning about the behavior of dynamic systems and
feedback-driven control. A number of control-theoretic
approaches to performance management of real systems
have been described [26, 32], and several of these have
focused on overload control for Internet services.

Abdelzaher and Lu [2] describe an admission con-
trol scheme that attempts to maintain a CPU utilization
target using a proportional-integral (PI) controller and
a simplistic linear model of server performance. Apart
from ignoring caching, resource contention, and a host
of other effects, this model is limited to static Web page
accesses. An alternative approach, described in [25], al-
locates server processes to each class of pending con-
nections to obtain arelative delaybetween user classes.
Diao et al. [12] describe a control-based mechanism for
tuning Apache server parameters (the number of server
processes and the per-connection idle timeout) to meet
given CPU and memory utilization targets. Recall that in
Apache, reducing the number of server processes leads
to increased likelihood of stalling incoming connections;
although this technique effectively protects server re-
sources from oversaturation, it results in poor client-
perceived performance.

Although control theory provides a useful set of tools
for designing and reasoning about systems subject to
feedback, there are many challenges that must be ad-
dressed in order for these techniques to be applicable to
real-world systems. One of the greatest difficulties is that
good models of system behavior are often difficult to de-
rive. Unlike physical systems, which can often be de-
scribed by linear models or approximations, Internet ser-
vices are subject to poorly understood traffic and internal
resource demands. The systems described here all make
use of linear models, which may not be accurate in de-
scribing systems with widely varying loads and resource
requirements. Moreover, when a system is subject to ex-

treme overload, we expect that a system model based on
low-load conditions may break down.

Many system designers resort toad hoccontroller de-
signs in the face of increasing system complexity. Al-
though such an approach does not lend itself to for-
mal analysis, careful design and tuning may yield a ro-
bust system regardless. Indeed, the congestion-control
mechanisms used in TCP were empirically determined,
though recent work has attempted to apply control-
theoretic concepts to this problem as well [21, 22].

5.4 Service degradation
A number of systems have explored the use of service
degradation to manage heavy load. The most straightfor-
ward type of degradation is to reduce the quality of static
Web content, such as by reducing the resolution or com-
pression quality of images delivered to clients [1, 7, 16].
In many cases the goal of image quality degradation is
to reduce network bandwidth consumption on the server,
though this may have other effects as well, such as mem-
ory savings.

A more sophisticated example of service degrada-
tion involves replacing entire Web pages (with many
inlined images and links to other expensive objects)
with stripped-down Web pages that entail fewer individ-
ual HTTP requests to deliver. This was the approach
taken by CNN.com on September 11, 2001; in response
to overload, CNN replaced its front page with simple
HTML page that that could be transmitted in a single
Ethernet packet [23]. This technique was implemented
manually, though a better approach would be to degrade
service gracefully and automatically in response to load.

In some cases it is possible for a service to make per-
formance tradeoffs in terms of the freshness, consistency,
or completeness of data delivered to clients. Brewer and
Fox [15] describe this tradeoff in terms of theharvestand
yield of a data operation; harvest refers to the amount
of data represented in a response, while yield (closely
related to availability) refers to the probability of com-
pleting a request. For example, a Web search engine
could reduce the amount of the Web database searched
when overloaded, and still produce results that are good
enough such that a user may not notice any difference.

One disadvantage to service degradation is that many
services lack a “fidelity knob” by design. For example,
an e-mail or chat service cannot practically degrade ser-
vice in response to overload: “lower-quality” e-mail and
chat have no meaning. In these cases, a service must re-
sort to admission control, delaying responses, or one of
the other mechanisms described earlier. Indeed, rejecting
a request through admission control is the lowest quality
setting for a degraded service.

6 Future Work and Conclusions
We have argued that measurement and control are the
keys to resource management and overload protection



in busy Internet services. This is in contrast to long-
standing approaches based on resource containment,
which typically mandate ana priori assignment of re-
sources to each request, limiting the range of applicable
load-conditioning policies. Still, introducing feedback
as a mechanism for overload control raises a number of
questions, such as how controller parameters should be
tuned. We have relied mainly on a heuristic approach to
controller design, though more formal, control-theoretic
techniques are possible [32]. Capturing the performance
and resource needs of real applications through detailed
models is an important research direction if control-
theoretic techniques are to be employed more widely.

The use of per-stage admission control allows the ser-
vice to carefully control the flow of requests through the
system, for example, by only rejecting those requests that
lead to a bottleneck resource. The downside of this ap-
proach is that a request may be rejected late in the pro-
cessing pipeline, after it has consumed significant re-
sources in upstream stages. There are several ways to
address this problem. Ideally, request classification and
load shedding can be performed early; in Arashi, re-
quests are classified in the first stage after they have been
read from the network. Another approach is for a stage’s
overload controller to affect the admission-control policy
of upstream stages, causing requests to be dropped be-
fore encountering a bottleneck. This paper has focused
on stage-local reactions to overload, though a global ap-
proach is also feasible in the SEDA framework.

Our approach to overload management is based on
adaptive admission control using “external” observations
of stage performance. This approach uses no knowledge
of the actual resource-consumption patterns of stages in
an application, but is based on the implicit connection
between request admission and performance. This does
not directly capture all of the relevant factors that can
drive a system into overload. For example, a memory-
intensive stage (or a stage with a memory leak) can lead
to VM thrashing even with a very low request-admission
rate. One direction for future work is to inform the over-
load control mechanism with more direct measurements
of per-stage resource consumption. We have investigated
one step in this direction, a system-wide resource moni-
tor capable of signaling stages when resource usage (e.g.,
memory availability or CPU utilization) meets certain
conditions. In this model, stages receive system-wide
overload signals and use the information to voluntarily
reduce their resource consumption.

We have presented an approach to overload control
for dynamic Internet services, based on adaptive, per-
stage admission control. In this approach, the system
actively observes application performance and tunes the
admission rate of each stage to attempt to meet a 90th-
percentile response time target. We have presented ex-
tensions of this approach that perform class-based ser-
vice differentiation as well as application-specific ser-

vice degradation. The evaluation of these control mech-
anisms, using both the complex Arashi e-mail service
and a simpler dynamic Web server benchmark, show that
they are effective for managing load with increasing user
populations as well as under massive load spikes.

Software Availability
The SEDA software, related papers, and other documen-
tation are available for download fromhttp://www.
cs.berkeley.edu/˜mdw/proj/seda .
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