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ABSTRACT 

Web services designed for human users are being abused by 
computer programs (bots). The bots steal thousands of free email 
accounts in a minute; participate in online polls to skew results; 
and irritate people by joining online chat rooms. These real-world 
issues have recently generated a new research area called Human 
Interactive Proofs (HIP), whose goal is to defend services from 
malicious attacks by differentiating bots from human users.   In 
this paper, we make two major contributions to HIP.  First, based 
on both theoretical and practical considerations, we propose a set 
of HIP design guidelines which ensure a HIP system to be secure 
and usable.  Second, we propose a new HIP algorithm based on 
detecting human face and facial features. Human faces are the 
most familiar object to humans, rendering it possibly the best 
candidate for HIP. We conducted user studies and showed the 
ease of use of our system to human users. We designed attacks 
using the best existing face detectors and demonstrated the 
difficulty to bots.  

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Security, Human Factors, and Verification. 

Keywords 
Human interactive proof (HIP), Web services security, 
CAPTCHA, Turing test, face detection, and facial feature 
detection. 

1. INTRODUCTION 
Web services are increasingly becoming part of people’s everyday 
life.  For example, we use free email accounts to send and receive 
emails; we use online polls to gather people’s opinion; and we use 
chat rooms to socialize with others. But all these Web services 
designed for human use are being abused by computer programs 
(bots).  

•  Free email services 

For people’s convenience, Hotmail, Yahoo and others are 
providing free email services.  But malicious programmers 
have designed bots to register thousands of free email 
accounts every minute.  These bots-created email accounts 
not only waste large amount of disk space of the service 

providers, they are also being used to send thousands of junk 
emails [1][4][15]. 

•  Online polls and recommendation systems 

Online polling is a convenient and cost-effective way to 
obtain people’s opinions. But if they are abused by bots, 
their credibility reduces to zero. In 1998, 
http://www.slashdot.com released an online poll asking for 
the best computer science program in the US [1].  This poll 
turned into a bots-voting competition between MIT and 
CMU.  Clearly, in this case the online poll has lost its 
intended objectives. Similar situation arises in online 
recommendation systems. For example, at Amazon.com, 
people write reviews for books, recommending others to buy 
or not to buy.  But if malicious bots start to write book 
reviews, this online recommendation system becomes 
useless. 

•  Chat rooms 

In the information age, people use online chat rooms to 
socialize with others.  But bots start to join chat rooms and 
point people to advertisement sites [3]. Chat room providers 
such as Yahoo and MSN do not like the bots, because they 
irritate human users and decrease human users’ visit to their 
sites. 

•  Meta services and shopping agents 

Meta service is unwelcome among E-commerce sites and 
search engines [18][14].  In the case of E-commerce, a 
malicious programmer can design a bots whose task is to 
aggregates prices from other E-commerce sites. Based on the 
collected prices, the malicious programmer can make his/her 
price a litter cheaper, thus stealing away other sites’ 
customers.  Meta service is a good thing to consumers but E-
commerce owners hate it because it consumes their site’s 
resources but does not bring in any revenue.  Similar 
situations arise with search engine sites. 

The above real-world issues have recently generated a new 
research area called Human Interactive Proofs (HIP), whose goal 
is to defend services from malicious attacks by differentiating bots 
from human users. The design of HIP systems turns out to have 
significant relationship with the famous Turing test. 



In 1950, Turing proposed a test whose goal was to determine if a 
machine has achieved artificial intelligence (AI) [16].  The test 
involves a human judge who asks questions to a human and a 
machine and decides which of them is human based on their 
answers.  So far, no machine has passed the Turing test in a 
generic sense, even after decades of hard research in AI.  This fact 
implies that there still exists considerable intelligence gap 
between human and machine. We can therefore use this gap to 
design tests to distinguish bots from human users.  HIP is a 
unique research area in that it creates a win-win situation.  If 
attackers cannot defeat a HIP algorithm, that algorithm can be 
used to defend Web services. On the other hand, if attackers 
defeat a HIP algorithm, that means they have solved a hard AI 
problem, thus advancing the AI research. 

So far, there exist several HIP algorithms. But most of them suffer 
from one or more deficiencies in ease of use, resistance to attack, 
dependency on labeled database and lack of universality (see 
Section 3 for details). In this paper, we make two major 
contributions.  First, based on both theoretical and practical 
considerations, we propose a set of HIP design guidelines which 
ensure a HIP system to be secure and usable.  Second, we propose 
a new HIP algorithm based on detecting human face and facial 
features. Human faces are the most familiar object to humans, 
rendering it possibly the best candidate for HIP.  

We name our HIP algorithm ARTiFACIAL, standing for 
Automated Reverse Turing test using FACIAL features. It relates 
to (and differs from) the original Turing test in several ways.  
First, our test is automatically generated and graded, i.e., the 
Turing test judge is a machine instead of a human.  Second, the 
goal of the test is the reverse of the original Turing test – we want 
to differentiate bots from human, instead of proving bots is as 
intelligent as human.  These two features constitute the first three 
letters (ART) in ARTiFACIAL: Automated Reverse Turing test.   

ARTiFACIAL works as follows. Per each user request, it 
automatically synthesizes an image with a distorted face 
embedded in a cluttered background. The user is asked to first 
find the face and then click on 6 points (4 eye corners and 2 
mouth corners) on the face. If the user can correctly identify these 
points, ARTiFACIAL concludes the user is a human; otherwise, 
the user is a machine. We conduct user studies and show the ease 
of use of ARTiFACIAL to human users. We design attacks using 
the best existing face detectors and demonstrate the difficulty to 
malicious bots. 

The rest of the paper is organized as follows.  In Section 2, we 
discuss related work, which mainly uses letters, digits and audio.  
In Section 3, we propose a set of design guidelines that are 
important to the success of a HIP algorithm. We further evaluate 
existing HIP algorithms against the proposed guidelines.  In 
Section 4, we first give a brief review of various face detection 
techniques and point out their limitations.  Based on these 
limitations, we then design ARTiFACIAL, covering 3D wire 
model, cylindrical texture map, geometric head transformation 
and deformation, and appearance changes. To demonstrate a HIP 
algorithm is effective, we need to at least show it is easy for 
human and very hard for computer programs. In Section 5, we 
describe our user study design and results, showing the ease of 
use to human users.  In Section 6, we present various attacks to 
ARTiFACIAL using the best existing techniques. The results 

show that ARTiFACIAL has very high resistance to malicious 
attacks.  We give concluding remarks in Section 7. 

2. RELATED WORK 
While HIP is a very new area, it has already attracted researchers 
from AI, cryptography, signal processing, document 
understanding and computer vision.  The first idea related to HIP 
can be traced back to Naor who wrote an unpublished note in 
1996 [14].  The note contained many important intuitive thoughts 
about HIP but did not produce functional systems.  The first HIP 
system in action was developed in 1997 by researchers at Alta 
Vista [3].  Its goal was to prevent bots from adding URLs to the 
search engine to skew the search results.  The specific technique 
they used was based on distorted characters, and it worked well in 
defeating regular optical character recognition (OCR) systems.  

In 2000, Udi Manber of Yahoo talked to researchers (von Ahn, 
Blum, Hopper and others) at CMU that bots were joining in 
Yahoo’s online chat rooms and pointing people to advertisement 
sites [1][4].  Udi Manber challenged the CMU researchers to 
come up solutions to distinguish between humans and bots.  Later 
that year, von Ahn, et. al.  proposed several approaches to HIP 
[6].  The CMU team so far has been one of the most active teams 
in HIP, and we highly recommend readers to visit their web site at 
http://www.captcha.net to see concrete HIP examples.  The CMU 
team introduced the notion of CAPTCHA: Completely Automated 
Public Turing Test to Tell Computers and Humans Apart.  
Intuitively, a CAPTCHA is a program that can generate and grade 
tests that 1) most human can pass; but 2) current computer 
programs cannot pass [1][2].  They have developed several 
CAPTCHA systems [6]. 

•  Gimpy 

Gimpy picks seven random words out of a dictionary, 
distorts them and renders them to users.  An example Gimpy 
test is shown in Figure 1 (a). The user needs to recognize 
three out of the seven words to prove that he or she is a 
human user. Because words in Gimpy overlap and undergo 
non-linear transformations, they pose serious challenges to 
existing OCR systems. However, they also pose burden on 

 

   (a) 

 

(b) 

Figure 1. (a) Gimpy.  (b) EZ Gimpy 



human users. The burden is so much that Yahoo pulled 
Gimpy out from its website [4]. The CMU team later 
developed an easier version, EZ Gimpy, which is shown in 
Figure 1 (b). It shows a single word over a cluttered 
background, and it is currently used at Yahoo’s website. 

•  Bongo 

Bongo explores human ability in visual pattern recognition 
[5].  It presents to a user two groups of visual patterns (e.g., 
lines, circles and squares), named LEFT and RIGHT.  It then 
shows new visual patterns and asks the user to decide if the 
new patterns belong to LEFT or RIGHT. 

•  Pix 

Pix relies on a large database of labeled images.  It first 
randomly picks an object label (e.g., flower, baby, lion, etc.) 
from the label list, and then randomly selects six images 
containing that object from the database, and shows the 
images to a user.  The user needs to enter the correct object 
label to prove he or she is a human user. 

•  Animal Pix 

Animal Pix is similar to Pix but differ in the following ways: 
1). It uses 12 animals (bear, cow, dog, elephant, horse, 
kangaroo, lion, monkey, pig and snake) instead of generic 
objects as the labeled objects; 2). Instead of asking a user to 
enter the object label, it asks a user to select from the set of 
predefine 12 animals [6]. 

Almost at the same time that the CMU team was building their 
CAPTCHAs, Xu, Lipton and Essa were developing their HIP 
system at Georgia Tech [18].  Their project was motivated by the 
security holes in E-commerce applications (see meta services in 
Section 1).  They developed a new type of trapdoor one-way hash 
function, which transforms a character string into a graphical form 
such that human can recover the string while bots cannot.  No 
specific string examples were given in their paper [18]. 

In the past two years, researchers at PARC and UC Berkeley 
published a series of papers on HIP, e.g., [9][8][4].  In their 
systems, they mainly explored the gap between human and bots in 
terms of reading poorly printed texts (e.g., fax prints). In Pessimal 
Print [9], Coates, Baird and Fateman reported close to zero 
recognition rates from three existing OCR systems: Expervision, 
FineReader and IRIS Reader. In BaffleText [8], Chew and Baird 
further used non-English words to defend dictionary attacks. 

In addition to the above visual HIP designs, there also exist audio 
challenges, e.g., Byan [7] and Eco [6].  The general idea is to add 
noise and reverberation to clean speech such that existing speech 
recognizers can no longer recognize it.  The audio challenges are 
complementary to the visual ones and are especially useful to 
vision-impaired users. 

To summarize, HIP is still a young and developing area.  But it 
has already attracted researchers from cryptograpy, AI, computer 
vision, and document analysis.  The first HIP workshop was held 
in January 2002 in PARC [12], and [4] provides a good summary.  
For a new area to develop and advance, it is necessary for 
researchers to formulate design guidelines and evaluation criteria. 
The CMU and PARC teams have proposed many of the crucial 
aspects of HIP.  In the next section, we present further guidelines 

on how to design a practical HIP system and evaluate existing and 
our proposed approaches against the guidelines. 

3. HIP GUIDELINES 
The CMU and PARC researchers have summarized the following 
desired properties of a HIP system [1][4]: 

1. The test should be automatically generated and graded by a 
machine. 

2. The test can be quickly taken by a human user.  

3. The test will accept virtually all human users. 

4. The test will reject virtually all bots. 

5. The test will resist attacks for a long time. 

The above five properties capture many important aspects of a 
successful HIP system. But we realize that there are other 
theoretical and practical considerations that need to be taken into 
account. Furthermore, we think it is beneficial to the HIP 
community that the desired HIP properties should be orthogonal 
to each other and can be clearly evaluated against. We therefore 
propose the following new guidelines for designing a HIP 
algorithm: 

1. Automation and gradability. The test should be 
automatically generated and graded by a machine. This is the 
same as the old guideline and is the minimum requirement of 
a HIP system. 

2. Easy to human. The test should be quickly and easily taken 
by a human user. Any test that requires longer than 30 
seconds becomes less useful in practice. 

3. Hard to machine. The test should be based on a well-known 
problem which has been investigated extensively, and the 
best existing techniques are far from solving the problem. 
This guideline consolidates the old guidelines 4 and 5. The 
old guideline 4 is a consequence of this new guideline.  The 
old guideline 5 is difficult to evaluate against, i.e., it is 
difficult to define “for a long time”.  Instead of predicting the 
future, we only require that the problem is a well known 
problem, and the best existing techniques are far from 
solving the problem.  This new guideline avoids the 
interrelationship between old guidelines 4 and 5 and is much 
easier to evaluate against. An example problem that satisfies 
our requirement is “automatic image understanding” which is 
well known and has been investigated for more than three 
decades but is still without success. On the other hand, 
printed clean text OCR is not a hard problem, as today’s 
existing techniques can already do a very good job.  As 
pointed out by von Ahn, et. al., HIP has an analogy to 
cryptography: in cryptography it is assumed that the attacker 
cannot factor 1024-bit integer in reasonable amount of time.  
In HIP, we assume that the attacker cannot solve a well-
known hard AI problem [2]. 

4. Universality. The test should be independent of user’s 
language, physical location, and education background, 
among others. This new guideline relates to the old guideline 
3 but is more concrete, and is more clear to evaluate against. 
This guideline is motivated by practical considerations, and 
is especially important for companies with international 



customers, e.g., Yahoo and Microsoft.  It would be a 
nightmare for Yahoo or Microsoft if they had to localize a 
HIP test to 20 different languages. As an example, any digits-
based audio HIP tests are not universal because there is no 
universal language on digits (even though visually they are 

the same). A different HIP test would have to be 
implemented for each different language, thus not cost 
effective. Strictly speaking, no HIP test can be absolutely 
universal, as there are no two humans that are the same in 
this world.  However, we can make reasonable assumptions. 

Table 1. Evaluation of existing HIP tests against the proposed criteria. 

Guidelines 1.  Automation 

and gradability 

2. Easy to human 3. Hard to 
machine 

4. Universality 5. Resistance to 
no-effort attacks 

6. Robustness 
when database 

publicized 

Gimpy Yes Yes 

But the partially 
overlapped text 
can be hard to 
recognize [4] 

Yes No 

People who know 
English have 
much more 
advantages 

Yes Yes 

EZ Gimpy Yes Yes No 

It has been 
broken [13] 

Yes 

 

Yes 

 

No 

Has only 850 
words [8] 

Bongo Yes Yes 

 

Yes 

 

Yes No 

A machine can 
randomly guess 

an answer 

Yes 

Pix Yes 

But the labels 
can be 

ambiguous 
(cars vs. White 

cars) 

Yes 

 

Yes No 

Some objects do 
not exist in some 

countries. 

Yes No 

With the 
database, it 

becomes simple 
image matching. 

Animal Pix Yes Yes Yes No 

Some animals are 
only popular in a 

few countries. 

No 

A machine can 
randomly guess 

an answer 

No 

With the 
database, it 

becomes simple 
image matching. 

Pessimal Yes Yes Yes No 

People who know 
English have 
much more 
advantages 

Yes 

 

No 

Has only 70 
words [8][9] 

BaffleText Yes Yes 

But has been 
attacked when 

using single font 
[8] 

Yes Yes 

But people who 
know English 

may have 
advantages 

Yes Yes 

Byan Yes Yes Yes No 

Users need to 
know English 

Yes Yes 

ARTiFACIAL Yes Yes Yes Yes Yes Yes 



For example, we can consider EZ Gimpy as universal 
because if a user can use a computer, it is reasonable to 
assume he or she knows the 10 digits and the 26 English 
alphabets.  In contrast, Gimpy is not as universal as EZ 
Gimpy because users who know English have much better 
chance to succeed. Gimpy is quite difficult for non-English 
speakers. 

5. Resistance to no-effort attacks. The test should survive no-
effort attacks. No-effort attacks are the ones that can solve a 
HIP test without solving the hard AI problem. Here is an 
example.  Bongo is a two-class classification challenge (see 
Section 1). To attack Bongo, the attacker needs no effort 
other than always guessing LEFT.  This will guarantee the 
attacker to achieve 50% accuracy.  Even if Bongo can ask a 
user to solve 4 tests together, that still gives no-effort attacks 
1/16 accuracy.  Animal Pix is another example that will not 
survive no-effort attack. Because there are 12 predefined 
animal labels, a no-effort attack can achieve 1/12 accuracy 
without solving the animal recognition problem. The HIP 
tests that cannot survive no-effort attacks do not have 
practical usefulness and cannot advance AI research. 

6. Robustness when database publicized. The test should be 
difficult to attack even if the database, from which the test is 
generated, is publicized. For example, both Pix and Animal 
Pix would be very easy to attack once the database is 
publicly available. They therefore are not good HIP tests [1]. 

Compared with the 5 old guidelines, the proposed 6 new 
guidelines are more comprehensive, more orthogonal to each 
other and more clear to evaluate against. We summarize the 
evaluations of the existing approaches against the new guidelines 
in Table 1. From Table 1, it is clear that most of the existing HIP 
algorithms suffer from one or more deficiencies.  In the following 
section, we propose a new HIP algorithm: ARTiFACIA, which is 
based on detecting human faces and facial features. It is easy to 
human, hard to bots, universal, survives no-effort attacks and does 
not require a database. 

4. PROPOSED TEST -- ARTiFACIAL 
Human faces are arguably the most familiar object to humans, 
rendering it possibly the best candidate for HIP. Regardless of 
nationalities, culture differences or educational background, we 
all recognize human faces.  In fact, our ability is so good that we 
can recognize human faces even if they are distorted, partially 
occluded, or in bad lighting conditions.   

Computer vision researchers have long been interested in 
developing automated face detection algorithms. A good survey 
paper on this topic is [20].  In general face detection algorithms 
can be classified into four categories. The first is the knowledge-
based approach. Based on people’s common knowledge about 
faces, this approach uses a set of rules to do detection. The second 
approach is feature-based. It first detects local facial features, e.g., 
eyes, nose and mouth, and then infer the presence of a face. The 
third approach is based on template matching. A parameterized 
face pattern is pre-designed manually, which is then used as a 
template to locate faces in an image. The fourth approach is 
appearance-based. Instead of using pre-designed templates, it 
learns the templates from a set of training examples. So far, the 
fourth approach is the most successful one [20]. 

In spite of decades of hard research on face and facial feature 
detection, today’s best detectors still suffer from the following 
limitations: 

1. Head Orientations. Let axis x point to the right of the paper, 
axis y point to the top of the paper, and axis z point out of 
the paper. All face detectors handle frontal face well.  That 
is, they work well when there is no rotation around any of the 
three axes.  They can also handle rotations around axis y to 
some extend, but worse than handling frontal faces. They do 
not handle rotations around axes x and z well.  

2. Face Symmetry. Face detectors assume, either explicitly or 
implicitly, that the faces are symmetric, e.g., the left eye and 
right eye are roughly of the same height, and are roughly of 
the same distance from the nose bridge. 

3. Lighting and Shading.  Face detectors rely on different 
intensity levels of landmarks on human faces. For example, 
they assume that the two eyes are darker than the 
surrounding region, and the mouth/lip region is also darker 
than the rest of the face. When a face image is taken under 
very low or high lighting conditions, the image’s dynamic 
range decreases.  This in turn results in difficulties in finding 
the landmark regions in faces.  In addition, lighting also 
creates shading which further complicates face detection. 

4. Cluttered Background. If there exist face-like clutters in the 
background of the face image, the face detectors can be 
further distracted.  

The above 4 conditions are among the most difficulty cases for 
automated face detection, yet we human seldom have any problem 
under those conditions.  If we use the above 4 conditions to 
design a HIP test, it can take advantage of the large detection gap 
between human and machine.  Indeed, this gap motivates our 
design of ARTiFACIAL.  When taking a closer exam of 
ARTiFACIAL against the HIP criteria, we can see that it is one of 
the best HIP candidates (see Table 1).  

ARTiFACIAL works as follows. Per each user request, it 
automatically synthesizes an image with a distorted face 
embedded in a cluttered background. The user is asked to first 
find the face and then click on 6 points (4 eye corners and 2 
mouth corners) on the face. If the user can correctly identify these 
points, we can conclude the user is a human; otherwise, the user is 
a machine. 

We next use a concrete example to illustrate how to automatically 
generate an ARTiFACIAL test image, taking into account of the 4 
conditions summarized above.  For clarity, we use F to indicate a 
foreground object in an image, e.g., a face; B to indicate the 
background in an image; I to indicate the whole image (i.e., 
foreground and background); and T to indicate cylindrical texture 
map. 

[Procedure] ARTiFACIAL 

[Input] The only inputs to our algorithm are the 3D wire model of 
a generic head (see Figure 2 (a)) and a 512 x 512 cylindrical 
texture map Tm of an arbitrary person (see Figure 2 (b)).  Note 
that any person’s texture map will work in our system and from 
that single texture map we can in theory generate infinite number 
of test images. 



[Output] An 512 x 512 ARTiFACIAL test image IF (see Figure 5 
(d)) with ground truth (i.e., face location and facial feature 
locations). 

1. Confusion texture map Tc generation 
This process takes advantage of the Cluttered Background 
limitation to design the HIP test. The 512 x 512 confusion 
texture map Tc (see Figure 3) is obtained by moving facial 
features (e.g., eyes, nose and mouth) in Figure 2 (b) to 
different places such that the “face” no longer looks like a 
face. 

2. Global head transformation 
Because we have the 3D wire model (see Figure 2 (a)), we 
can easily generate any global head transformations we want. 
Specifically, the transformations include translation, scaling, 
and rotation of the head. Translation controls where we want 
to position the head in the final image IF. Scaling controls the 
size of the head, and rotation can be around all the three x, y, 
and z axes. At run time, we randomly select the global head 
transformation parameters and apply them to the 3D wire 
model texture-mapped with the input texture Tm. This 
process takes advantage of the Head Orientations limitation 
to design the HIP test. 

3. Local facial feature deformations 
The local facial feature deformations are used to modify the 

facial feature positions so that they are slightly deviated from 
their original positions and shapes.  This deformation process 
takes advantage of the Face Symmetry limitation to design 
the HIP test. Each geometric deformation is represented as a 
vector of vertex differences. We have designed a set of 
geometric deformations including the vertical and horizontal 
translations of the left eye, right eye, left eyebrow, right 
eyebrow, left mouth corner, and right mouth corner. Each 
geometric deformation is associated with a random 
coefficient uniformly distribution in [-1, 1], which controls 
the amount of deformation to be applied. At run time, we 
randomly select the geometric deformation coefficients and 
apply them to the 3D wire model. An example of a head after 
Steps 2 and 3 is shown in Figure 4 (a). Note that the head has 
been rotated and facial features deformed. 

4. Confusion texture map transformation and deformation 
In this step, we conduct exactly the same Steps 2 and 3 to the 
confusion texture map Tc, instead to Tm. This step generates 
the transformed and deformed confusion head Fc as shown 
in Figure 4 (b). 

5. Stage-1 image I1 generation 
Use the confusion texture map Tc as the background B and 
use Fh as the foreground to generate the 512 x 512 stage-1 
image I1 (see Figure 5 (a)). 

6. Stage-2 image I2 generation 
Make L copies of randomly shrunk Tc and randomly put 
them into image I1 to generate the 512 x 512 stage-2 image I2 
(see Figure 5 (b)). This process takes advantage of the 
Cluttered Background limitation to design the HIP test. 
Note that none of the copies should occlude the key face 
regions including eyes, nose and mouth. 

7. Stage-3 image I3 generation 

There are three steps in this stage.  First, make M copies of 
the confusion head Fc and randomly put them into image I2. 
This step takes advantage of the Cluttered Background 
limitation. Note that none of the copies should occlude the 

key face regions including eyes, nose and mouth. Second, 
we now have M+1 regions in the image, where M of them 
come from Fc and one from Fh. Let Avg(m), m = 0, …, M+1, 
be the average intensity of region m. We next re-map the 

  
(a)    (b) 

Figure 4. (a) The head after global transformation and 
facial feature deformation. We denote this head by Fh. 
(b) The confusion head after global transformation and 
facial feature deformation. We denote this head by Fc. 

 

Figure 3. The confusion texture map Tc, is generated 
by randomly moving facial features (e.g., eyes, nose 
and mouth) in Figure 2 (b) to different places such 
that the “face” no longer looks like a face. 

  
(a)    (b) 

Figure 2. (a) The 3D wire model of a generic head. (b) 
The cylindrical head texture map of an arbitrary person. 



intensities of each region m such that Avg(m)’s are uniformly 
distributed in [0,255] across the M+1 regions, i.e., some of 
the regions become darker and others become brighter. This 
step takes advantage of the Lighting and Shading limitation. 
Third, for each of the M+1 regions, randomly select a point 
within that region which divides the region into four 
quadrants. Randomly select two opposite quadrants to under 
go further intensity changes.  If the average intensity of the 
region is greater than 128, the intensity of all the pixels in the 
selected quadrants will decrease by a randomly selected 
amount; otherwise, it will increase by a randomly selected 

amount.  This step takes advantage of both the Face 
Symmetry and Lighting and Shading limitations. An 
example I3 image is shown in Figure 5(c). Note in the image 
that 1) the average intensities of the M+1 regions are 
uniformly distributed, i.e., some regions are darker while 
others are brighter; 2) two of the quadrants undergo further 
intensity changes.  

8. Final ARTiFACIAL test image IF generation 
Make N copies of the facial feature regions in Fh (e.g., eyes, 
nose, and mouth) and randomly put them into I3 to generate 
the final 512 x 512 ARTiFACIAL test image IF (see Figure 5 

   

(a). Image I1.      (b). Image I2. 

   

(c). Image I3.      (d). Final Image IF. 

Figure 5. Different stages of the image. 



(d)). This process takes advantage of the Cluttered 
Background limitation to design our HIP test. Note that 
none of the copies should occlude the key face regions 
including eyes, nose and mouth. 

The above 8 steps take the 4 face detection limitations into 
account and generate ARTiFACIAL test images that are very 
difficult for face detectors.  We used the above described 
procedure and generated 1,000 images to be used in both user 
study (Section 5) and bots attacks (Section 6).   

5. USER STUDY DESIGN AND RESULTS 
For a HIP test to be successful, we need at least prove that it is 
easy for human user and very hard for bots. In this section, we 

design user studies to evaluate human user’s performance to our 
test. We will discuss bots attacks in the following section. 

5.1 User Study Design 
To evaluate our HIP system across diversified user samples, we 
invited 34 people to be our study subjects, consisting of 
accountants, administrative staff, architects, executives, 
receptionists, researchers, software developers, support engineers 
and patent attorneys. The user study procedure is summarized as 
follows: 

1. A laptop is set up in the subject’s office, and the subject is 
asked to adjust the laptop so that he or she is comfortable 
using the laptop screen and mouse. 

2. The subject is given the following instructions: “We will 
show you 10 images. In each image, there is one and only 
one distorted but complete human face.  Your task is to find 
that face and click on 6 points: 4 eye corners and 2 mouth 
corners.” 

3. The user study application is launched on the laptop. It 
randomly selects an ARTiFACIAL test image from the 1,000 
images generated in Section 4, and shows it to the subject. 
The subject detects the face and clicks on the 6 points.  The 
coordinates of the 6 points and the time it takes the subject to 
finish the task are both recorded for latter analysis. 

4. Repeat Step 3 for another 9 randomly selected images.  Note 
that no two images of the 10 tests are the same. 

5. The user study application is closed and the subject is 
debriefed. At this stage, the subject is given the opportunity 
to ask questions or give comments on the system and on the 

study procedure. 

5.2 User Study Results 
Table 2 summarizes the average time taken for each of the 10 
tests. The numbers are averaged over all 34 subjects. Table 3 
summarizes the average mismatch, in pixels, between the ground 
truth and what were actually clicked for the 6 points.  Combining 
the statistics in the two tables and feedback obtained during 
debriefing, we can make the following observations: 

•  On average, it takes 14 seconds for a subject to find the face 
and click on the 6 points.  This shows the test is easy to 
complete for human users. Out of the 34x10=340 tests, there 
are only a few tests that take longer than 30 seconds to finish.  
And interestingly enough most of those cases occurred with 
the same subject. During our debriefing, the subject told us 
that he was a perfectionist and was willing to spend longer 
time to ensure no mistakes.  Out of the 340 tests, human 
subjects only made one wrong detection (see Figure 6).  The 
correct rate is 99.7%.  During debriefing, the subject told us 
that she was not paying too much attention for this image but 
should be able to get it correct if she was given a second 
chance.  Indeed, she only made one mistake out of the 10 
tests.  

•  The first test takes longer than the rest of the tests (see Table 
2).  This implies that our instruction may not be clear enough 
to the subjects. One possible solution is, as suggested by 
several subjects, to show users an example of the task before 
asking them to conduct the test.  

 

Figure 6. The only wrong detection made by human 
users out of 340 tests.  The 6 black dots indicate the 6 
points clicked by the human user. The black bounding 
box is inferred from the 6 points as the user detected 
face region. The ground truth face region is shown 
with a white bounding box.  We only show part of the 
test image for clarity. 

Table 2. The average time (in seconds) taken for each of the 
10 tests. The last column gives the average time over all the 10 
tests. 

Test 1 2 3 4 5 6 7 8 9 10 Avg 

Time 

(sec.) 
22 15 16 13 12 11 12 12 11 12 14 

 

Table 3. Mismatches (in pixels) of the 6 points, averaged over 
the 34 subjects. 

Points (x,y) Mismatches (in pixels) 

Left corner of the left eye (2.0, 2.3) 

Right corner of the left eye (3.3, 5.5) 

Left corner of the Right eye (3.2, 5.0) 

Right corner of the Right eye (2.6, 1.8) 

Left corner of the mouth (2.5, 1.8) 

Right corner of the mouth (2.7, 3.6) 



•  The mismatches between the point coordinates of the ground 
truth and where the subjects actually clicked are small. They 
are within a few pixels (see Table 3).  This tells us that we 
can enforce tight verifications (e.g., within a few pixels) to 
efficiently distinguish bots from human users. 

To summarize, in this section we designed and conducted a user 
study and demonstrated that the proposed HIP test is easy for 
human to take.  A byproduct of the user study is that it also 
provides us with human behavior statistics (e.g., small mismatches 
for the coordinates of the 6 points) which enables us to defend our 
system from attacks.  

6. ATTACKS AND RESULTS 
To succeed in an attack, the attacker must first locate the face 
from a test image’s cluttered background by using a face detector, 
and then find the facial features (e.g., eyes, nose, and mouth) by 
using a facial feature detector. In this section we present results of 
attacks from three different face detectors and one face feature 
detector.  

6.1 Face Detectors 
The three face detectors used in this paper represent the state of 
the art in automatic face detection.  The first face detector was 
developed by Colmenarez and Huang [10]. It uses the 
information-based maximum discrimination (MD) to detect faces.  

The second face detector was developed by Yang et. al. [21]. It 
used a sparse network (SNoW) of linear functions and was 
tailored for learning in the presence of a very large number of 
features.  It used a wide range of face images in different poses, 
with different expressions and under different lighting conditions.  

The third face detector was developed by Li and his colleagues 
[11][22] following the Viola-Jones approach [17]. They used 
AdaBoost to train a cascade of linear features, and had a very 
large database consisting of over 10,000 faces. Their system has 
been demonstrated live in various places and is regarded as one of 
the best existing face detectors. 

We apply the three face detectors to attack the 1,000 images 
generated in Section 4. When evaluating if an attack is successful, 
we use very forgiving criterion for the face detectors: as long as 
the detected face region overlaps with the ground truth face region 
for 60% (or above), we call it a correct detection.  For the MD 
face detector, it has only one correct detection.  For SNoW face 
detector, it has three correct detections.  For AdaBoost face 
detector, it has zero correct detection.  Comparing these results 
with the 99.7% detection rate of human users, we can clearly see 
the big gap. Figure 7 shows the only correctly detected face region 
(in black bounding box) by the MD face detector and the ground 
truth face region (in white bounding box).  It is clear that even 
this “correct detection” is arguable as it is apparently distracted by 
two dark regions above the true face. 

6.2 Facial Feature Detector 
The facial feature detector proposed by Yan et. al. [19] is an 
improved version of the conventional Active Shape Model 
(ASM). It assumes that a face detector has already found the 
general location of the face region.  It then searches for the facial 
features in that region. It works quite well with undistorted and 
clean faces [19].  

Again, we use those 1,000 images as our test set. During the 
attack, we give multiple advantages to the facial feature detector.  
First, we tell the facial feature detector exactly where the true face 
is. Second, as long as the detected points are within twice the 
average mismatches human made (see Table 3), we call it a 
correct detection.  We summarize the detection results over the 
1,000 test images in Table 4.  Even if we give multiple advantages 
to the detector, the correct detection rate is only 0.2%. 

6.3 Resistance to No-Effort Attacks 
As a final sanity check, let’s take a look at ARTiFACIAL’s 
resistance to no-effort attacks.  

•  The chance for face detectors.   

The image size is 512 x 512 and the face region is about 128 
x 128. It is easy to compute that there are (512-128) x (512-
128) = 147,456 possible face regions in the image.  The 
chance for a no-effort attack is therefore 1/147,456 = 6.8E-6.   

•  The chance for facial feature detectors.  

If we use the very forgiving mismatch tolerance region of 10 
x 10 for each point, the chance for each point is (10x10) / 

 

Figure 7. The MD face detector’s best detection out of 
the 1,000 attacks.  The detected face region is shown 
with a black bounding box while the ground truth face 
region is shown with a white bounding box.  The face 
detector is distracted by the two dark regions above 
the true face – the face detector thinks the two dark 
regions as left and right eye regions.  We only show 
part of the test image for clarity. 

Table 4.  The number of images with 0, 1, 2, 3, 4, 5 and 6 
correctly detected points. 

Number of 
correctly 

detected points 
0 1 2 3 4 5 6 

Number of 
images 

509 257 114 79 33 6 2 



(128x128) = 0.0061.  For 6 points, 0.00616 = 5.2E-14. The 
final success rate is the product of face detector and facial 
feature detector: 6.8E-6 x 5.2E-14 = 3.5E-19.  

Before we conclude the paper, we want to make an observation. 
HIP researchers normally choose hard AI problems to create a 
HIP test. The hope is that if attackers cannot defeat a HIP 
algorithm, that algorithm can be used to defend applications and 
services; if attackers defeat a HIP algorithm, that means they 
solved a hard AI problem, thus advancing the AI research.  Mori 
and Malik’s attack on EZ Gimpy is a good example of how HIP 
motivates people to solve hard AI problems [13]. But we should 
be careful that HIP tests do not necessarily lead to AI 
advancement.  An obvious example is the no-effort attacks.  In 
that case, the HIP test is broken and there is no AI advancement.  
We therefore want to advocate the importance of the presentation 
aspect of a HIP system.  Even if the problems themselves are hard, 
but if there is no good way to present them to users, e.g., the cases 
of Bongo and Animal Pix, they are not good HIP tests. Today’s 
HIP researchers have not given enough attentions to this 
presentation aspect of HIP design.  

7. CONCLUSIONS 
In this paper, we have proposed a set of HIP design guidelines 
which are important to ensure the security and usability of a HIP 
system. Furthermore, we have developed a new HIP algorithm 
ARTiFACIAL based on human face and facial feature detection. 
Because human face is the most familiar object to all human 
users, ARTiFACIAL is possibly the most universal HIP system so 
far. We used three state-of-the-art face detectors and one facial 
feature detector to attack our system, and their success rate are all 
very low. We also conducted user studies on 34 human users with 
diverse background. The results have shown that our system is 
robust to machine attacks and easy for human users. 
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