
Daytona : A User-Level TCP Stack

PrashantPradhan
�

SrikanthKandula
�

WenXu � AneesShaikh
�

Erich Nahum
�

EnterpriseNetworkingDept.
�

Dept.of ComputerScience
�

Dept.of ComputerScience�
IBM T.J.WatsonResearchCenter Universityof Illinois PrincetonUniversity

Abstract

This paper presents Daytona, a user-level TCP stack for Linux. A user-level TCP stack can be an invaluable
tool for TCP performance research, network performance diagnosis, rapid prototyping and testing of new opti-
mizations and enhancements to the TCP protocol, and as a tool for creating adaptive application-level overlays.
We present the design and implementation of Daytona, and also describe several projects that are using Daytona
in a rich variety of contexts, indicating its suitability as an open-source project.

1 Introduction

TCP is the most widely usedtransportprotocol in the Internettoday, which hasmadeit a subjectof much
researchover the pasttwo decades.Understandingvariousaspectsof TCP performanceandits behavior under
variousnetwork conditionsremainscrucial to understandingthe performanceof networked applications,tuning
network server performance,anddesigningnovel networkedapplications.

Historically, mostacademicstudieson TCPhave involved simulationstudiesusingtoolssuchasns [1]. Such
tools canoften provide a lot of useful informationaboutTCP behavior in a simulatednetwork. Unfortunately,
toolssuchasnscan’t beusedto interactwith actualnetwork applicationsover a realnetwork. In fact,a routinely
criticized aspectof ns-basedstudieshasbeenthat the simulatednetwork conditionsoften fail to capturetraffic
characteristicsin therealInternet,whichcanbeextremelyhardto model.

The otherextremeis to usea standard,in-kernelTCP implementationfor suchstudies.While this approach
clearly capturesactualnetwork behavior and interactionswith actualapplications,it is hard to extract useful
protocoldatafrom the kernel,which is spreadover variousstatevariablesof the TCP protocol. For example,
thecongestionwindow, losscharacteristicsandround-triptime estimatemaintainedby TCPfor eachconnection,
captureimportantcharacteristicsof thestateof thenetwork pathusedby thatconnection.Thereis no cleanway
to extractthis informationwithout introducingnew APIs into thekernel.SomeAPIs, for exampletheTCP INFO
socket optionin Linux 2.4andtheSO DEBUG optionin FreeBSD,allow oneto extractTCPstatevariablesfrom
thekernel. However thesetypically provide aggregatedinformation,which is not synchronouslycorrelatedwith
applicationactions.

A similar issueariseswhile studyingnetwork serverperformance.Overheadsin thenetworkingstackdominate
theachievableperformanceof a high-volumenetwork server. Profiling andinstrumentationof theTCPstackcan
revealsourcesof suchoverheadsandhelpin tuningserverperformance.However, doingthis in aflexible andeasy
mannerbecomesachallengewhentheTCPimplementationresidesin thekernel.

Recentlya lot of interesthasbeengeneratedby application-level overlaysandpeer-to-peersystemssuchas
NapsterandGnutella.While in principle,creatingsuchoverlaysonly requiressocket applications,in practiceit is

1

oftenusefulto makesuchoverlaysadaptivewith respectto thestateof thenetwork. Having TCPstateinformation
availableat the applicationlayer providesa completeandsoundinformationbasefor guiding suchadaptation.
While it is possiblefor applicationsto develop their own mechanismsfor probingnetwork characteristicssuch
asavailablebandwidthandlossrates,TCP’s bandwidthestimationmechanismsareformally known to bestable
andfair to competingflows in thenetwork. Henceit is moredesirablefor adaptive network applicationsto reuse
informationgatheredby TCPaboutthestateof thenetwork.

Interestingly, a user-level TCP stackis a “least commondenominator”that canhelp us addressthesediverse
challenges. If sucha stackwere to be available, it would be straight-forward to customizeit to provide the
specificinformationrequiredby eachproblem,in a fairly flexible manner. Daytonais essentiallyinspiredby this
goal. Daytonais a library availableto Linux applications,which workswith any arbitrarynetwork interfaceand
is largely independentof the kernelversion. SinceDaytonafinds applicationsin a rich variety of contexts, we
believe it is well-suitedto beanopen-sourceproject.

Therestof thepaperis organizedasfollows. In section2 webriefly discusssomebackgroundonhow Daytona
evolved from relatedprojects,andimproved uponthemby addressingtheir key limitations. Section3 describes
thedesignof Daytonaandsection4 fills in relevant implementationdetails.Section6 describesseveralprojects
thatarecurrentlyusingDaytona.Section7 concludeswith somedescriptionof ongoingwork.

2 Background

Onceit wasclearthatauser-level TCPstackis thekey tool to addressthekindsof problemsdescribedabove,our
first attemptwasto try andfindanexistingimplementation.Indeed,otherprojectshaverealizedtheneedfor auser-
levelnetworkingstack[11, 13, 14, 15, 16, 17]. However, theseimplementationswereeitheravailableonnon-Linux
platforms,or provide only partof thecompleteTCPfunctionalityat theuser-level. Non-Linux implementations
did notserveourpurposesincewebelieve thatasolutionfor Linux wouldhavewiderapplicabilityby virtueof its
largeruseranddeveloperbase.Similarly, tools thatdid not provide completestackfunctionalitycouldnot serve
asabaseuser-level TCPimplementationthatwouldapplyto a rich varietyof problems.

Arsenic[12] wasa Linux 2.3.29-baseduser-level TCPimplementationdevelopedby PrattandFraserat Cam-
bridgeUniversity. Thegoalof their projectwasto give user-level applicationsbettercontrol for managingband-
width on a network interface. Their implementationwasdesignedto work with a specializedgigabit network
interfacefrom Alteon calledACEnic,which providedper-connectioncontexts in interfacehardware. Their user-
level stackcommunicatedwith the interfacethrougha controlAPI providedby thecarddevice driver. This API
wasusedto install filters for packet classification,buffers for postingdatafor variousconnections,andfor speci-
fying network QoSparametersfor theseconnections.

Essentially, Arsenic’s goalwasto extract thebestperformanceandQoSfunctionality from a specializednet-
work interface. As a generalrule of thumb,specialization is often thekey to achieving thehighestperformance
from agivensystem,andutilizing all featuresprovidedby its hardware.This is alsotrueof theArsenicimplemen-
tation.Arsenic’s designnaturallyinvolvesacouplingwith theinterfacehardware,andadependenceon thekernel
version.For example,buffer managementis oneof themostspecializedaspectsof theArsenicimplementation.
Providing zero-copy transfersandconnection-specificbufferswasa key goalof theproject,bothfor thepurposes
of low overheadandQoSisolation. This involvesco-mappingof buffersbetweentheuser-level TCPlibrary and
thecardskerneldevice driver. Arsenicuseskernelmodulesfor providing this functionality, which leadsto a de-
pendency ontheVM implementationof the2.3.29Linux kernel.Theco-mappingfacility alsoallowedsomeof the
kernel’s timing variables(e.g.,jif fies)to bevisible directly in userspace.This indirectly leadsto adependenceof
theTCPtimermanagementcodeuponthekernelversion.Classificationanddemultiplexing of packetsto various
connectionswashandledby thespecializedACEnichardware,andhencewasessentiallystill a kernelfunction.
Arsenicalsouseskernelmodulesfor extractingrouting tablesandARP tablesfrom the kernel,which requires
portingto work with newer kernelversions.At first, we attemptedto minimally changetheimplementation,and

2

adaptsomeof thefunctionsimplementedin kernelmodulesto work with newerkernels.However, it soonbecame
apparentthatfor thetool to beusefulandextensible,all dependenceon kernelmodulesmustberemoved.

In contrastwith Arsenic,our goal is to provide a very generaluser-level TCPstackthatworkswith arbitrary
network interfaces,with nokerneldependencies.Providing this functionality, ratherthanthehighestperformance,
is our key goal. In thenext sectionwe outlinethekey designdecisionsin Daytonathatallowedusto achieve this
goal. A significantpart of the Arsenic implementationcould still be directly used. Arsenic pulled the Linux
2.3.29networking stackcodeinto user-level andpackagedit into a library. By pulling thecodedirectly from the
Linux implementation,we geta faithful protocolimplementationat theuser-level. This codecanbeupdatedto
incorporateenhancementsintroducedin laterkernelversions.However, beinguser-spacecode,this codecanrun
on anarbitrarykernelversion.Arsenicuseduser-level threads(GNU pthreads)to provide per-connectioncontext
andsynchronizationfeaturesinto thestack,replacingthetraditionalonesthat thekerneluses.Henceit provided
usa fairly strongfoundationto startwith.

3 Design Overview

Daytonais a user-level library thatprovidesthesocketsandTCP/IPfunctionalitynormallyimplementedin the
kernel.Applicationscanlink with this library andgetthesamenetworkingfunctionalityasprovidedby thekernel.
Thekernelis just usedasa communicationchannelbetweenthe library andthenetwork, throughtheuseof raw
IP sockets. Raw IP socketscanbeusedaslong asthemachinehasnetwork connectivity, henceDaytonahasno
dependency on any particularnetwork interface.An importantbenefitof this choiceis thatneitherIP routingnor
MAC-layerinformationis neededfrom thekernel.Thekernelitself performsroutingtableandARPtablelookup
to createMAC layerheadersfor thepacketssentover a raw IP socket. Thusthekernelmodulesneededfor this
purposeby Arsenicareno longerneeded.

Normally, a copy of thepacketsreceived by thekernelnetworking stackarehandedto a raw socket if certain
criteriaaremet [3]. Anothercopy is processedby thekernel, in thestandardmanner. However, TCPandUDP
packetson generalportsdo not satisfythesecriteria. To trapsuchpackets,a packet capturinglibrary is needed.
Sucha library installsfilters in the kernelexpressedin a generalizedinterpretedlanguage(e.g. BPF [4]). The
overheadof filtering will typically bequitesmallif, for example,weareinterestedin only gettingpacketsof some
specificapplicationport to theuser-level stack.Thenetworkingcodein thekernelcheckspacketsfor amatchwith
suchfilters, andsendsthemup to a raw socket openedby the library. Careshouldbe taken to alsoput firewall
DENY rulesfor suchpackets,so that thekernelwould drop its own copy of suchpacketsandnot attemptto do
redundantprocessingfor them.

We usethepcap[5] packet capturinglibrary usedby thewell-known tcpdumptool. To integratepacket cap-
turing, we reusedsomeof thepcapcodefrom theStingprojectat theUniversity of Washington[6]. Oneof the
threadsin Daytonaactsas the “bottom half” threadandconstantlypolls for packets on the raw socket. Some
peculiaritiesof thepcaplibrary hadto betakeninto accountin thedesign.For example,in pcappacket reception
happensasa side-effect of polling for apacket on theraw socket. Anotheraspectis thatthememoryoccupiedby
thecapturedpacket is internally reusedby the library for subsequentoperations,andhenceDaytonamustmake
a copy of thepacket providedby thepcaplibrary beforepassingit up to anapplicationthread.Oncepacketsare
capturedby Daytona,they areclassifiedanddemultiplexedfor TCPprocessing.

Daytonaperformsbuffer andtimer managementcompletelyin user-space.Buffer managementis donein user
spacein a mannersimilar to that doneinsidethe kernelduring transmitandreceive processing.For TCP timer
management,a baseline10 msectimer is implementedto emulate“jif fies”. TheLinux kernelprovidesa higher
granularityon top of jif fieswhena timestampis taken,but this canbeeasilyemulatedin userspaceby usingthe
gettimeofday()systemcall at thetimestampinginstant,or, in caseof theX86 architecture,by usingsimplemacros
to readhardwarecyclecountingregisters.

Similar to thecasewhentheTCP/IPstackis in thekernel,callsmadeby applicationthreadsinto theDaytona

3

Application
Processes

Application
Threads

User-level
TCP library

Operating
System Operating

System

Raw socket

Card device
driver

Network

Card device
driver

Network

Sockets and
TCP processing

Sockets and
TCP processing

Standard in-kernel TCP Daytona

Packet
fil ter

Packet capture
library

XDrop
copy

Figure 1. Thehigh-level designof Daytonacomparedto thestanrardin-kernelTCPstack.

library carry their executioncontexts with them. WhenTCPprocessingmustblock waiting for events(network
eventsor timers)or resumein responseto events,thesethreadsareblockedandunblocked in thesamemanneras
processesareblockedandunblocked insidethekernel.

Notethatif multipleprocesseslink to Daytona,eachof themgetstheirown copy of thedatamaintainedwithin
the TCP/IP stackand the socket layer (thoughthe code is shared). Thus, while multiple applicationthreads
usingDaytonasharedata,multiple applicationprocessesusingDaytonado not. This mayneedto be taken into
accountdependingupontheintendeduseof Daytona.For example,to measurethepacket classificationoverhead
of the TCP stackwith a large numberof connections,a commonclassificationtableshouldbe used. But if the
connectionsspanmultiple processes,eachprocesswill have its own copy of a smallerTCP classificationtable.
Thiswouldnotcapturetheoverheadscorrectly. To achievesharingacrossprocesses,it is straight-forwardto make
Daytonaaserver processwhich is calledby otherprocessesthroughIPCcalls.

Figure1 illustratesthehigh-level multi-threadeddesignof Daytona,whencomparedto thestandard,in-kernel
TCPstack.

4 Code Structure

The intent of this sectionis to describethe high-level codestructurethat implementsthe variouspiecesof
Daytonafunctionality. Thisshouldallow oneto understandandpotentiallymodify Daytonato suit their purpose.

4

����� �
	���

���������

At the top level is the library interfaceto Daytona,which exposesthe traditionalsocketsAPI, andactsasthe
entrypoint for applicationthreadsinto theuser-level networking code.In thespirit of thekernel“inet” functions,
mostof the functionsheresimply act asindirectionsinto protocol-specificfunctions,theprotocolbeingTCP in
our case.An importantpart implementedby this codeis theinitialization of thelibrary, which alsoinitializesthe
buffer pool for theuser-level networking stack.Thisbuffer pool is essentiallytheuser-level “skbuff ” pool.

����� ��������	
�
"!#	
�$�%	
&('*),+
-/.

Theequivalentof theLinux network bottomhalf (“NetBH”) is a threadwhichusesthepcapinterfaceto poll for
work arriving from thenetwork. This threadinitiatesreceive processing,which typically leadsto a statechange
for someTCPconnection,followedby awakeupcall on theassociatedapplicationthread.Theapplicationthreads
andthebottomhalf threadarescheduledunderthecontrolof thepthreadsscheduler.

��� 0 1,�%+3254$&(67���8�$	9�:�;4 4 6/2,<

Thepcaplibrary usesa raw socket for packet captureon the receive side. Similarly a raw socket interfaceis
alsoneededon thetransmitside.CompletelyformedIP packetsarehandedto this socket for transmissionby the
kernel.ThekerneltreatstheseasstandardIP packetsandperformsroutingtablelookupandMAC processingon
them,eventuallyqueuingthemto somedevice driver transmitqueue.

��� � 1=6/&>�?�%4

A 10 msecuser-level timer is setupusingthestandardsetitimer()systemcall to emulate“jif fies”. At thetimes-
tampinginstant,moregranularitycanbeaddedeitherby usinggettimeofday(),or Pentiumtimestampcounters.

����@ �A�$	3�%	9�:	B-C�A�$	D�:�E4 4$6/2,<

The codeimplementingthe TCP/IPprotocolprocessingexactly mimics the codeandstructureof the Linux
2.3.29code. A tricky problemhere is that while normally there is a natural independencebetweendatatype
declarationsusedin thekernelcodeandthoseusedin applications,user-level TCPmusthave kernelcodeaswell
ascodethat interfaceswith applications.Hence,someof the headerfiles may causeconflicts. Arsenicavoided
this problemby collectingall datatypedeclarationsneededby thekernelcodein a singleheaderfile, which was
thenincludedby thekernel-derived code.For codethat interfaceswith theapplicationsandneedssomeof these
datastructures,relevantpartsof thesedatastructureswereseparatelyexposedin anotherheaderfile.

Most of thecodeheremimicsthekernelcode,exceptthat thekernelsleepandwakeupfunctionsarereplaced
by threadsuspensionandwakeupfunctions.All kernelfunctionsusedby theTCP/IPcodewhoseimplementations
lie outsidethenetworking codeareaggregatedin a singlefile. This includescodefor Ethernetinteraction(now
replacedby raw socket communication),synchronizationprimitives(replacedby threadprimitives),andmemory
andbuffer allocation/deallocation routines.

5 Using Daytona

The usageof Daytonais fairly simple. Daytonaassumesthat the interfaceeth0 on the host is usedas the
connectionto thenetwork, sono setupis requiredaslong aseth0exists in thesystem(this canbeconfirmedby
invoking thecommandifconfig on theshell). Daytonaapplicationshave to berun asroot so that the library can
openraw sockets.

5

ApplicationsuseDaytonain amannersimilarto thestandardC socket library, exceptthatall thestandardsocket
callshave to beprefixedwith astring. If callsin theapplicationcodecannotbemodifiedfor somereason,another
alternative is to modify thelibrary linking ordersothattheDaytonalibrary is linkedbeforethestandardC library.

6 Projects Using Daytona

As mentionedbefore,we expectedDaytonato find applicationsin a rich setof contexts wheretheproblemat
handrequiresTCP functionality and/orTCP stateinformation. The following subsectionsgive an overview of
someprojectsthatareusingDaytonain variouscontexts.

F ��� ��������	
�
G�3�:� H������I���$.J	�� &>+
2,���K19L92,6729<

At IBM Research,weareinvolvedin aprojectinvestigatingserver designsthatscalewell with next-generation
I/O andnetworking standardssuchas10GEthernet.Daytonaprovedto bea very convenienttool for usto study
andtunenetwork server performance.For example,wewereableto useDaytonawith theFlash[7] Webserver to
studyTCPperformancebottlenecksfor Webservingworkloadsin detail. By having a user-level implementation,
we were able to get extensive analysisof copying overheadsby using user-level cacheprofiling tools suchas
cacheprof[8] on Daytona.Further, Daytonaallowedusto extensively instrumentandprofile TCPoverheadsfor
variouscombinationsof applicationsandworkloads.While kernelprofiling is alsoanoption for obtainingsuch
overheadinformation,it providesabreak-upof overheadonafunctionalbasis.Whatweneededis ameasurement
on an activity basis,for example,overheadsof datacopying, receive processingand transmitprocessing.The
functionalbreakdown reportedby kernelprofiling doesnot isolatehow theoverheadsof commonfunctionsused
by theseactivities (e.g. skbuff functions),shouldbechargedto eachkind of activity. By instrumentingthecode
accordingto variousactivities of interest,we wereableto easilyextract performancedataon an activity basis.
Thisprocesswouldhave beentediousandtime-consumingif we haddoneit in thekernel.

Anothersignificantadvantageof Daytonawasthatit allowedusto createaperformancemodelof TCPprocess-
ing in asimulator. Wehave createdaperformancemodelingframework for anetwork server by modelingvarious
systemcomponents(e.g.processors,buses,caches)in adiscrete-eventsimulator. Weareinterestedin understand-
ing theeffect of off-loading someof thenetwork processingonto intelligent interfaceswith network processors
on them. A uniqueaspectof our modelingframework is that it derivesperformancemodelsof processorsfrom
theapplicationsrunningon them.Clearly, in thiscase,we neededaTCPprocessingprogramthatwecoulduseto
derive thenetwork processormodel.Daytonawasusedin oursimulationframework to provide thismodel.

F ��� �NM,+
OD�%6/H��KPNHB��� -7+EQR4

Variousacademicresearchgroupsareinvestigatingthedesignof resilientandadaptive application-level over-
laysthatadapttheir routingbehavior andfunctionplacementto network andserver loadconditions.Network state
information,neededby theseoverlaysto guidetheir adaptation,is cleanlyabstractedout in TCPstatevariables.
Large-scaleacademictestbedssuchasEmulab[9] andPlanetLab[10] arebeingusedto designandevaluatesuch
application-level overlays. In suchtestbeds,having TCP stateinformationat the applicationlayer obviatesthe
needto modify thekernelsof theoverlaynodesto provide APIs to extractsuchinformation. This approachalso
facilitatesheterogeneityin thekind of machinesusedin theoverlaysinceotherwiseonehasto worry aboutpro-
viding OS-specificAPIs to extractnetwork statefrom TCP. Someof theseresearchgroupsareusingvariantsof
Daytonato designandstudysuchoverlays.

6

F � 0 �S23� �;<
�%+3� �;MT�����U�N	B�%
V�I���$.W	
� &>+B2,���YXN6Z+3<B2,	B4 � 67�?4

Oneof themostchallengingpartsof runninga network-basedservice,for instanceWebhosting,is monitoring
andmanagingperformance.End-to-endperformancemaybe influencedby numerousfactors,andproblemsare
noteasilyattributableto theircorrectsource.A commonperformancemanagementapproachinvolvesmonitoring
theapplication(i.e., user-perceived) performanceat a relatively coarselevel, andthenconductingfurther, more
detailed,testswhenapotentialproblemis detected.Suchanapproachrequirestheuseof multiple techniquesand
tools,operatingat multiple levels. Hence,theproblemremainsof how to correlatethe informationto construct
a morecompleteview of low-level network events(e.g.,packet retransmission)andthe applicationactionsthat
triggeredthem(e.g.,HTTPrequest).An approachtakenby someresearchersatIBM is to provideapplication-level
measurementtoolswith directaccessto pertinentinformationfrom lower layers.This enablesa diagnosticianto
detectspecificpacket-level eventsin variouscontexts of theapplicationin anautomatedway, without having to
unify multiple traces.This approachis beingembodiedin a measurementandmonitoringtool for identifying the
causesof performanceproblemsin networkedapplications.

Toavoid relianceonaparticularkernelconfiguration,or thepresenceof specifickernelsupport,thearchitectural
approachtaken by this project is to make the bulk of the kernel networking stackavailable at the user level
with Daytona.As Daytonaprovidesaccessto themainprotocolsin theTCP/IPprotocolsuite,themeasurement
applicationcanreceiveextensivediagnosisinformation.Changesin TCPstatevariables,burstyvs. isolatedpacket
lossevents,andinformationaboutthesourceandtypeof received ICMP messages,areexamplesof the typeof
additionaldetailsthatarenototherwiseavailableto anapplication-level measurementtool. TheDaytonalibrary is
currentlybeinginstrumentedunderthisprojectto delivernotificationsabouteventsof interestto themeasurement
application.Theintent is to usethetool to explorethebenefitsof theintegratedapproachfor enhanceddiagnosis
of Webperformance.

7 Conclusions and Ongoing Work

In thispaper, wehave motivatedtheneedfor auser-level TCPstackandpresentedthedesignandimplementa-
tion of a user-level TCPstackcalledDaytona.We have alsodescribedvariousprojectsthathave foundDaytona
to be useful in a very rich variety of contexts, which we believe indicatesits suitability as a widely available
open-sourcetool.

We are currently in the processof improving Daytonain several ways,an importantonebeing to incorpo-
ratesomeof the TCP implementationenhancementsthat appearin morerecentLinux kernelversions.At IBM
Research,we arealsogoingthrougha formalopen-sourcingprocessto make thetool widely available.

Questions,commentsor bug reportsrelatedto Daytonamaybesentto ppradhan@us.ibm.com.

References

[1] “The Network SimulatorNS-2.” http://www.isi.edu/nsnam/ns/.

[3] “Raw IP Networking FAQ.” http://whitefang.com/rin/rawfaq.html.

[4] Steven McCanneandVan Jacobson.“The BSD Packet Filter: A New Architecturefor User-level Packet
Capture.” In Proceedingsof theUSENIX WinterConference,SanDiego,California,January1993.

[5] “The libpcapPacket CaptureLibrary.” ftp://ftp.ee.lbl.gov/libpcap.tar.Z.

[6] Stefan Savage.“Sting: A TCP BasedNetwork MeasurementTool.” In Proceedingsof the 2nd USENIX
Symposiumon InternetTechnologiesandSystems,Boulder, Colorado,USA, October1999.

7

[7] Vivek Pai, PeterDruschelandWilly Zwaenepoel.“Flash : An Efficient andPortableWebServer.” In Pro-
ceedingsof theUSENIX AnnualTechnicalConference,Monterey, California,USA, June1999.

[8] JulianSeward.“The CacheprofHomePage.” http://www.cacheprof.org.

[9] TheEmulabProject.http://www.emulab.net.

[10] ThePlanetLabProject.http://www.planet-lab.org.

[11] David Ely, StefanSavageandDavid Wetherall.“Alpine: A User-Level Infrastructurefor Network Protocol
Development.” In Proceedingsof the3rd USENIX Symposiumon InternetTechnologiesandSystems,San
Francisco,California,USA, March2001.

[12] Ian PrattandKeir Fraser. “Arsenic:A User-AccessibleGigabitEthernetInterface.” In Proceedingsof IEEE
INFOCOM,Anchorage,Alaska,USA, April 2001.

[13] PeterA. Dinda. “The Minet TCP/IPStack.” TechnicalReportNWU-CS-02-08,Departmentof Computer
Science,NorthwesternUniversity, 2002.

[14] TorstenBraun,CristopheDiot, AnnaHoglanderandVincentRoca.“An ExperimentalUserLevel Implemen-
tationof TCP.” TechnicalReportRR-2650,INRIA SophiaAntipolis, 1995.

[15] ChandramohanA. Thekkath,Thu D. Nguyen,Evelyn Moy andEdwardD. Lazowska.“ImplementingNet-
work ProtocolsAt UserLevel.” IEEE/ACM TransactionsonNetworking,Vol. 1, No. 5, October1993.

[16] Aled Edwardsand Steve Muir. “ExperiencesImplementinga High-PerformanceTCP in User-Space.” In
Proceedingsof ACM SIGCOMM,Cambridge,MA, USA, August1995.

[17] ChrisMaedaandBrian Bershad.“Protocol ServiceDecompositionfor High-PerformanceNetworking.” In
Proceedingsof theFourteenthACM Symposiumon OperatingSystemsPrinciples(SOSP),Asheville, NC,
USA, December1993.

8

