Topology Inference from BGP Routing Dynamics

David Andersen, Nick Feamster, Steve Bauer, Hari Balakrishnan
M.I.T. Laboratory for Computer Science
{dga,feamster,bauer,hari}@lcs.mit.edu
Internet Topology Estimation

- Current techniques:
 - Passive: BGP routing table-based AS-level topologies
 - Active: Traceroute-based intra-AS topologies
 - Combinations of the above (e.g., Rocketfuel)

- Our approach:
 - Passively observe prefix relationships inside an AS.
 - Treat BGP updates as a signal that contains logical topology information
Table-Based Autonomous System Topologies

- Simple and passive
- Lacks detailed information...why?
Most prefixes are advertised by common paths.

- 13 common paths contain 10% of prefixes
- Not all prefixes within an AS are like.
Router-level Topologies

- Contains considerable sub-AS detail
- Requires active probing
 - Traceroute can be blocked, and can generate complaints
 - Potentially bandwidth intensive
Logical Topologies from Routing Dynamics

- Group prefixes that have similar update patterns.
- Do these groups share common characteristics?
Colored prefixes experienced a routing change at nearly the same time.

Might they have something in common?

Processing:

- Filter out noise (e.g., session resets).
- Divide timeseries into discrete 30-seconds windows.
Update stream is 0/1 signal.
 ➤ If prefix has at least one update w/i window: 1
 ➤ Otherwise: 0

Now, can use techniques to compare these two prefixes.
How to Measure "Closeness"?

<table>
<thead>
<tr>
<th></th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
<th>t_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$$
\sigma_{xy} = \frac{E[(x(t) - \mu_x)(y(t) - \mu_y)]}{\sigma_x \sigma_y}
$$

- **Correlation Coefficient**
 - Expresses correlation well
 - One coincidence may falsely indicate perfect correlation (if update traffic is low)
How to Group Prefixes?

- Single-linkage clustering
- Simple and efficient
iBGP Session: Changes to best route only.

3 months of BGP updates originating from
- UUNet (2338 prefixes)
- AT&T (1310 prefixes)

Didn’t consider when prefixes change origin
Fun Anecdotes

- 6 Sandia labs prefixes - internet2 routes, but flapped to backup UUNET route.

- Many transient discoveries: backups, etc.
Prefix Groups Share Traceroute Hops

- Tough to figure out the meaning here
 - Many shared hops on customer routes
 - Standard traceroute "noise"
Prefix Clusters Often Share the Same PoP

- **UUNet**: 50% Clustered, 97% Accuracy
- **AT&T**: 30% Clustered, 95% Accuracy
Prefix Clusters are Close in Address Space

- Clusters that form first are closer in address space.
Other Thoughts

- What about other correlations?
 - Changes in the AS path to guess about failure points?

- Other signal weirdness (cf. BGP misconfiguration). Can we see:
 - Load balancing?
 - Route hijacking?
 - Failover/backup relationships?
 - Policy slips due to NTAF?
Conclusion

- More to passive topology than the snapshot!

- Routing dynamics reveal interesting details about logical topology
 - Fate sharing
 - Prefix assignment
 - History :)

- Uses only passive measurements.

- Can reduce the amount of data needed for topology mapping, etc.