Infranet: Circumventing Web Censorship and Surveillance

Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, David Karger M.I.T. Laboratory for Computer Science

http://nms.lcs.mit.edu/infranet/

The Big Picture

The Big Picture

How Infranet Works

- Use Infranet requester proxy (on localhost)
- Upstream request in sequence of HTTP requests
- Downstream response in images

Restrictive government, corporate firewall, etc.

Discovery Attacks: Notice unusual-looking Web traffic.

- monitors Web access for "inappropriate use"
- watch Web traffic for inappropriate access attempts
- watch for suspicious looking Web access patterns
- watch for use of circumvention software

• Disruptive Attacks: Keep the endpoints from talking.

- blocks access to certain Web sites
- attempts to block access to circumvention software (e.g., blocking SSL, disrupting communication, etc.)

Design Goals

Deniability for clients

Can't confirm that a client is intentionally retrieving censored data

Statistical deniability for clients

Web traffic doesn't look unusual

Covertness for servers

- Can't discover a server that is serving censored content
- Defense against blocking

Communication Robustness

Should be difficult to disrupt request/transfer of censored content

Reasonable Performance

Related Systems: Triangle Boy, Peekabooty, etc.

Deniability for clients

Existing systems rely on SSL, vulnerable to fingerprinting

Statistical deniability for clients

- SSL traffic looks suspicious
- No attempt to conceal suspicious traffic patterns

Covertness for servers

- Servers make no attempt to conceal their existence
- Suspicious traffic patterns may result in discovery and blocking

Communication Robustness

SSL can be blocked (e.g., unsigned server certificates)

Downstream Communication ("Downloading")

Embed data in images, recover by shared secret

Steganography is not ideal: can't reuse cover image

• Web cams are wonderful.

Upstream Communication ("Requesting")

Hidden message => sequence of HTTP requests
Mapping function: secret, critical to deniability

Simple Schemes: Covertness/Bandwidth

Odd/Even Links

- Covertness: Requester may ask for any one of half of the links at any given time
- Bandwidth: 1-bit per visible HTTP request

Links modulo k

- Covertness: Requester asks for any of N/k links
- Bandwidth: lg(k) bits per visible HTTP request

Static Mapping

- Covertness: potentially quite bad...
- Bandwidth: M bits per request

Range-Mapping: Web Surfing, 20 Questions-Style

- Assume: Some set of censored URLs are commonly requested
- Responder tells requester
 - the boundaries (split-strings) for ranges in this set, and
 the mapping between visible HTTP requests and split-strings

but...not all requests are equally likely!

Getting Statistical Deniability

- Divide the corpus according to more likely visible HTTP requests.
- Alphabetic coding says that our expected number of requests is the same!

- Search through set of frequently-requested censored URLs achieves good upstream bandwidth.
- Division of ranges according to conditional request probabilities achieves deniability and covertness.
- Idea can be applied over the space of all strings.

Statistical Deniability is Free

Conclusion

- Infranet hides censored requests and responses in innocuous-looking HTTP request/response streams
 - client deniability
 - server covertness
 - reasonable robustness
- Future work
 - robustness
 - software distribution
 - server discovery

http://nms.lcs.mit.edu/infranet/