Infranet: Circumventing Web Censorship and Surveillance

Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, David Karger
M.I.T. Laboratory for Computer Science

http://nms.lcs.mit.edu/infranet/
The Big Picture
The Big Picture

Internet

nms.lcs.mit.edu cnn.com

CENSOR

http://www.cnn.com

http://nms.lcs.mit.edu

"http://nms.lcs.mit.edu"

(http://www.cnn.com)
How Infranet Works

- Use Infranet requester proxy (on localhost)
- Upstream request in sequence of HTTP requests
- Downstream response in images
Censor

• Restrictive government, corporate firewall, etc.

• Discovery Attacks: Notice unusual-looking Web traffic.
 ▶ monitors Web access for "inappropriate use"
 ▶ watch Web traffic for inappropriate access attempts
 ▶ watch for suspicious looking Web access patterns
 ▶ watch for use of circumvention software

• Disruptive Attacks: Keep the endpoints from talking.
 ▶ blocks access to certain Web sites
 ▶ attempts to block access to circumvention software (e.g., blocking SSL, disrupting communication, etc.)
Design Goals

- **Deniability for clients**
 - Can’t confirm that a client is intentionally retrieving censored data

- **Statistical deniability for clients**
 - Web traffic doesn’t look unusual

- **Covertness for servers**
 - Can’t discover a server that is serving censored content
 - Defense against blocking

- **Communication Robustness**
 - Should be difficult to disrupt request/transfer of censored content

- **Reasonable Performance**
Related Systems: Triangle Boy, Peekabooty, etc.

- **Deniability for clients**
 - Existing systems rely on SSL, vulnerable to fingerprinting

- **Statistical deniability for clients**
 - SSL traffic looks suspicious
 - No attempt to conceal suspicious traffic patterns

- **Covertness for servers**
 - Servers make no attempt to conceal their existence
 - Suspicious traffic patterns may result in discovery and blocking

- **Communication Robustness**
 - SSL can be blocked (e.g., unsigned server certificates)
Downstream Communication ("Downloading")

- Embed data in images, recover by shared secret
- Steganography is not ideal: can’t reuse cover image
- Web cams are wonderful.
Upstream Communication ("Requesting")

- Hidden message => sequence of HTTP requests
- Mapping function: secret, critical to deniability
Simple Schemes: Covertness/Bandwidth

- Odd/Even Links
 - Covertness: Requester may ask for any one of half of the links at any given time
 - Bandwidth: 1-bit per visible HTTP request

- Links modulo k
 - Covertness: Requester asks for any of N/k links
 - Bandwidth: $\log(k)$ bits per visible HTTP request

- Static Mapping
 - Covertness: potentially quite bad...
 - Bandwidth: M bits per request
Range-Mapping: Web Surfing, 20 Questions-Style

- **Assume**: Some set of censored URLs are commonly requested

- Responder tells requester
 - the boundaries (split-strings) for ranges in this set, and
 - the mapping between visible HTTP requests and split-strings

- Requester tells responder
 - a visible HTTP request

```
Visible Requests  Split-strings
-------------------  0%

Visible Requests  Split-strings
-------------------  25%
```

but...not all requests are equally likely!
Getting Statistical Deniability

• Divide the corpus according to more likely visible HTTP requests.

• Alphabetic coding says that our expected number of requests is the same!

Visible Requests ➔ Split-strings

http://nms.lcs.mit.edu/history.html

0% 100%
Range-Mapping

- Search through set of frequently-requested censored URLs achieves **good upstream bandwidth**.

- Division of ranges according to conditional request probabilities achieves **deniability and covertness**.

- Idea can be applied over the space of all strings.
Statistical Deniability is Free

Without Deniability (mean: 5.9)
With Deniability (mean: 6.4)
Server Covertness is Not Free

![Graph showing fraction of requests vs. bandwidth with two lines representing 'No Infranet' and 'Infranet'.]
Conclusion

- Infranet hides censored requests and responses in innocuous-looking HTTP request/response streams
 - client deniability
 - server covertness
 - reasonable robustness

- Future work
 - robustness
 - software distribution
 - server discovery

http://nms.lcs.mit.edu/infranet/