
Wide-Area Routing:
The Devil is in the Configuration

Nick Feamster
M.I.T. Computer Science and Artificial Intelligence Laboratory

feamster@lcs.mit.edu

 BGP Configuration Determines Its Behavior

 Route injection, redistribution, aggregation
 Import and export route maps
 Access control lists, filtering
 AS Path prepending
 Communities
 Next-hop settings
 Route flap damping
 Timer settings

 BGP is a distributed program.
 We need practical verification techniques.

 Today: Stimulus-response Reasoning

 "What happens if I tweak this import policy?"
 "Let’s just readjust this IGP weight..."
 "New customer attachment point? Some cut-and-paste will fix that!"

 Some time later, some "strange behavior" appears.
 (OOPS! Revert.)

 This is a terrible "programming environment".
 Configuration is ad hoc and painful.
 Wastes operator time.
 Suboptimal performance, angry customers.

 Better: High-level Reasoning

 Verify the behavior of a particular configuration.
 Check "correctness properties".
 Check that the configuration conforms to intended behavior.

 More than a band-aid fix.
 Useful for any router configuration language.

 Specify configuration based on intended behavior.
 Configuring low-level mechanisms is error-prone.
 Specifying high-level intended behavior makes sense.

 Higher Level Reasoning about "Correctness"

 Validity: Does it advertise invalid routes?
 Bogus route injection, persistent forwarding loops, etc.

 Visibility: Does every valid path have a route?
 Session resets, missing sessions, damped routes, etc.

 Safety: Will it converge to a unique, stable answer?
 Policy-induced oscillation

 Determinism: Answer depend on orderings, etc.?
 Irrelevant route alternatives can affect outcomes.

 Information-flow control: Expose information?
 Accidental route leaks to neighbors, etc.

 Key Challenge: Specification

 Three types of constraints to express.
 Pattern-based: artifacts of today’s configuation languages
 Control-flow: interaction with routing at lower "scopes" (e.g., IGP)
 Information-flow: interaction with other participants in the same

"scope" (i.e., other ASes)

 We are developing a tool that checks
 these types of constraints.

 High-level configuration depends on specification.
 Verification also requires a specification of intent,
 which can inspire configuration language design.

 Intent-Based Configuration:
 Verification is a Necessary First Step

 Nick Feamster and Hari Balakrishnan
 M.I.T. Computer Science and Artificial Intelligence Laboratory

 {feamster,hari}@lcs.mit.edu

 Example: Information-flow Control

 Simple rule: don’t advertise routes
 from one peer to other peers.

���� � � �� � �

� ��� � 	
 � � � �

 Other Information-flow Control Examples

 Goal: Verify that route advertisements conform to
 intended information-flow policy.

 Partial peering

 Controlling prefix propagation
 Bogons
 "No Export" prefixes

 Conditional advertisements

 Signalling (e.g., with communities)

 Where are we?

���� � � �� � �

� ��� � 	
 � � � �

 Bad: Import/export route maps, ACLs, communities, etc.
 neighbor 10.0.0.1 route-map IMPORT-A in
 neighbor 10.0.0.1 route-map EXPORT-A out
 neighbor 192.168.0.1 route-map IMPORT-C in
 neighbor 192.168.0.1 route-map EXPORT-C out ...
 ip community-list 1 permit 0:1000 ...
 route-map IMPORT-C permit 10
 set community 0:1000
 ! ...
 route-map EXPORT-A permit 10
 match community 1
 !

 Where should we be?

���� � � �� � �

� ��� � 	
 � � � �

 Better: Lattice model.

 ��� ��� �

��� � � � ��� � �

 Towards High-level Configuration Languages

 How to specify the information flow lattice?
 Must be intuitive.
 Must express varying levels of detail (i.e., AS-level, session-level,

prefix-level, etc.)

 Must express positive requirements, too.

 Expressing intended behavior will improve routing.
 Verification: check existing configurations against intent.
 Synthesis: generate configurations according to intent.

 Beyond Static Rule Checking

 Statistical inference to reduce manual pain. ("Beliefs")
 100 routers, 99 have ACLs configured to deny prefix 192.168.0.0/16.
 All eBGP sessions to an AS but one have the same import/export

policies.

 Capturing dynamic effects. ("Sandbox")
 Property violations that appear due to timing, message orderings,

failures, etc.

 Avoiding low-level silliness. ("Synthesis")
 Configuration should be specified at the intent level, not at the

mechanism level.

 Example: Validity

 Problem: Persistent forwarding loops due to interactions
 between iBGP and IGP

�� � �� �

�� �

� �� � ��

� 	

� �

� �
� �

�
�

�

 Other Validity Examples

 Goal: Verify that advertised routes correspond to valid
 paths, except where explicitly intended otherwise.

 Accepting/re-advertising bogus or invalid prefixes

 Aggregation

 Next-hop misconfiguration

 eBGP-multihop issues

 Where are we?

�� � �� �

�� �

� �� � ��

� 	

� �

� �
� �

�
�

�
 Bad: Ad-hoc heuristics, guidelines for low-level config
 interface POS1/0
 ip address 10.0.0.1
 ip ospf 10 ...
 !
 router bgp 3
 neighbor 10.0.0.2 remote-as 3 ...
 !

 Where should we be?

�� � �� �

�� �

� �� � ��

� 	

� �

� �
� �

�
�

�
 Better: Control-flow model.

 Does every IGP hop along the path to the BGP next hop
agree on a next-hop?

 (Hamiltonian cycles...)

