Verifying the Correctness of Wide-Area Internet Routing

Nick Feamster and Hari Balakrishnan
M.I.T. Computer Science and Artificial Intelligence Laboratory
{feamster,hari}@csail.mit.edu

http://nms.lcs.mit.edu/bgp/
BGP is Flexible

- Many options for implementing a variety of policies
 - Route injection, redistribution, aggregation
 - Import and export policies
 - Access control lists, filtering
 - AS Path prepending
 - Communities

- Flexibility for various network environments
 - Next-hop settings
 - Route flap damping
 - Timer settings

Wonderful!
But there’s a catch...
BGP Configuration Affects Correctness

- BGP has serious problems
 - Frequently misconfigured [Mahajan2002]
 - Forwarding loops [Dube1999]
 - Persistent route oscillation [Griffin1999, Varadhan2000]
 - Slow convergence/suppressed routes [Labovitz2001, Mao2002]

BGP’s configuration determines whether the protocol behaves correctly or not.

These problems never happen in the "real world", right?
"A number of Covad customers went out from 5pm today due to, supposedly, a DDOS (distributed denial of service attack) on a key Level3 data center, which later was described as a route leak (misconfiguration)."

-- dslreports.com

"A Level 3 spokesman would not confirm or deny that hardware was the source of the problem, nor would he elaborate on the nature of the issue."

-- news.com
10 Years of NANOG...

Reported problems:

- 93 filtering issues
- 62 leaked routes
- 139 problems with route visibility
- 108 blackholes
- 23 routing loops

...

These problems haven’t gone away.
Stimulus-response Reasoning

"What happens if I tweak this import policy?"
"Let's just readjust this IGP weight..."
"New customer attachment point? Some cut-and-paste will fix that!"

Some time later, some "strange behavior" appears. (OOPS! Revert.)

- Operators have a terrible "programming environment".
 - Configuration is ad hoc and painful.
 - Wastes operator time.
 - Suboptimal performance, angry customers.

- Can't check for errors by "seeing what happens".
 - Won't catch misconfigured filters, redundant route reflectors, etc.
Possible Remedies

- Protocol is buggy. *Replace.*
 - What to fix?
 - "BGPv5" would have to be as flexible as BGPv4.
 - Will it be any less error-prone?

- Configuration language is too "low-level". *Redesign.*
 - Again, what are the flaws in today’s configuration languages?

We must understand the problems in BGPv4 before proposing reasonable fixes.
Our Approach

• Develop a tool that uses static analysis to analyze router configurations.

• Operators can make BGPv4 less error-prone.
 ▶ Find configuration problems before deployment.

• We can learn from the errors we find in today’s configurations.
Needed: Higher-level Analysis

- **Verify** the behavior of a particular configuration.
 - Check "correctness properties".
 - Check that the configuration conforms to intended behavior.

More than a band-aid fix.

Useful for any router configuration language.
Challenges

- Defining "correctness".
- Router configuration is distributed across multiple routers and ASes.
- Limitations of static analysis?
Contributions

- Correctness constraints for BGP routing.
- Design and implementation of rcc.
- Study of configuration errors in real-world networks.
- Recommended protocol and language changes.
How to Derive Correctness Constraints?

- Need a definition of correctness.
- Need a way to apply that definition.
Properties: The Routing Logic [FDNA 2003]

- **Validity**: Does it advertise invalid routes?
 - Bogus route origination, persistent forwarding loops, etc.

- **Visibility**: Does every valid path have a route?
 - Session resets, missing sessions, damped routes, etc.

- **Information-flow control**: Expose information?
 - Accidental route leaks to neighbors, etc.

- **Determinism**: Answer depend on orderings, etc.?
 - Irrelevant route alternatives can affect outcomes.

- **Safety**: Will it converge to a unique, stable answer?
 - Policy-induced oscillation
1. **Origination**: A router "originates" a route.
Application: BGP Route Propagation

2. Export: Router advertises route to other routers.
3. **Import:** Other routers learn those routes.
Application: BGP Route Propagation

3. Import: Other routers learn those routes.
Application: BGP Route Propagation

6. Intra-AS Propagation: Propagates route within the AS.
Applying Correctness Definitions to BGP

1. Origination: A router "originates" a route.
2. Export: Router advertises route to other routers.
3. Import: Other routers learn those routes.
6. Propagation: Propagates route within the AS.
Putting it together

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Origination</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Export</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>3. Import</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>4. Selection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>5. Modification</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>6. Intra-AS Prop.</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

- Determine which aspects of correctness apply at each stage of BGP’s operation.
- Express constraints.
- Try to test constraints with static analysis.
Example: Validity

• Incorrect Origin AS (Origination)

• Incorrect AS Path (Export)

• Incorrect or Missing Filters (Export/Import)

• Incorrect "next-hop" attribute (Modification)

• Intra-AS Inconsistencies (Intra-AS Propagation)
Validity: Incorrect "next-hop" attribute

- One necessary, commonly violated condition: next-hop reachability

Routes from AS 1 have next-hop e.f.g.h. If e.f.g.h not injected into IGP, some routes from within AS will fail.
Example: Visibility

- Failure to install valid routes (Import)
- iBGP Signaling (Intra-AS Propagation)
Visibility: iBGP Signaling Overview

- Default: don’t readvertise iBGP-learned routes
 - Complete propagation requires "full-mesh" iBGP.
 - Doesn’t scale.

- "Route reflection" improves scaling (RFC 2796)
 - **Client**: re-advertise as usual
 - **Route reflector**: reflect non-client routes to all clients, client routes to non-clients and other clients.
Visibility: iBGP Signaling

Route Reflector (RR)

W

Client

X

Y

Z

RR

Client
Visibility: iBGP Signaling

route r_2 to d
Visibility: iBGP Signaling

Route Reflector (RR)

route \(r_1 \) to \(d \)

\(W \)

\(X \)

\(Y \)

\(Z \)

route \(r_2 \) to \(d \)

iBGP Signaling Partition!
Theorem.

Suppose the iBGP reflector-client relationship graph contains no cycles.

Then, the AS’s configuration satisfies visibility if, and only if, the set of routers that are not route reflector clients forms a full mesh.

Condition is easy to check with static analysis.
Verification requires a specification of intended policy. (We don’t have this today, but we can make reasonable assumptions.)

- Controlled export (Export)
- Consistent export (Export)
- Consistent import (Import)

These conditions are difficult to "eyeball" in practice, but easy to check with static analysis.
Information-flow Control: Controlled Export

Simple rule: don’t advertise routes from one peer to other peers.

A \xrightarrow{\text{Peer}} B \xleftarrow{\text{Peer}} C

“Announce p”
Bad: Specifying Policy with Mechanism

```plaintext
neighbor 10.0.0.1 route-map EXPORT-A out
neighbor 192.168.0.1 route-map IMPORT-C in
  ip community-list 1 permit 0:1000
route-map IMPORT-C permit 10
  set community 0:1000
!
route-map EXPORT-A permit 10
  match community 1
!
```

"Announce p"
Common practice: make routes to neighboring peers look "equally good".

If AS 1 and AS 2 are peers, the AS path length and MED on both of these sessions should normally be identical.

Again, much easier with static analysis.
Where Static Analysis is Less Helpful

- **Determinism:** Persistent route oscillation
- **Safety:** Policy disputes [Griffin 2001]

We suggest protocol modifications to make BGP more verifiably correct.
Determinism: Persistent route oscillation

AS 2

A, B, C => A, B, C

AS 3

A, B => B
A, B, C => A
A > C > B

Cisco 7500 Series

Cisco Systems

 Ethernet 1000 Series

Cisco 7600 Series
Determinism: Persistent route oscillation

AS 2

A

B

AS 3

C

A, B => B
A, B, C => A
A > C > B
Determinism: Persistent route oscillation

A,B,C => A
A,B => B
A,C => B

Cisco Systems Cisco 7500 Series
Determinism: Persistent route oscillation

A, B, C => A
A, B => B
A, B, C => A
A > C > B

Cisco Systems Cisco 7500 Series
Determinism: Persistent route oscillation

A, B, C => A
A, B => B
A, C > B

AS 2

AS 3

A, B => B
A, B, C => A
A > C > B

Cisco Systems Cisco 7500 Series
Determinism: Persistent route oscillation

AS 2

A

B

C

AS 3

A, B => B
A, B, C => A
A > C > B

Static analysis is no help.
rcc Overview

- Expand macros, etc.
- Generate intermediate format
- Verify using queries against intermediate format

Extensible design.
Errors Happen

- **Serious Errors (1st Class)**
 - Incorrect or missing filters (~ 50 sessions)
 - iBGP signaling partitions (10 instances)
 - Unintentional transit (3 instances)

- **Annoyances (2nd Class)**
 - Inconsistent export (3 instances)
 - Nondeterministic settings (34 routers)
 - Failure to install valid routes (3 routers)

- **Cleanup (3rd Class)**
 - Sessions with undefined policies (2 sessions)
 - Policies with undefined distribute lists, etc. (30 policies)
 - Incomplete iBGP sessions (76 sessions)
Errors in Every AS

- prefix adv. w/o route
- incomplete iBGP sessions
- policy w/undefined ACL
- policy w/undefined community
- policy w/undefined AS path
- session w/undefined policy
- router w/synchronization
- nondeterministic tiebreak
- router w/o determ. med
- inconsistent export to peer
- unintentional transit
- duplicate loopbacks
- RR cluster partition
- route reflector partition
- non-RR iBGP partition
- missing prefix in filters
- session w/undefined filters
- eBGP session w/no filters

Number of ASes

- First-class
 - (5)
 - (2)
 - (5)
 - (2)
 - (2)
- Second-class
 - (2)
 - (2)
 - (2)
- Third-class
 - (5)
 - (2)
 - (2)

Number of ASes: 0 1 2 3 4 5 6 7 8
Curiosities

- Historical relationships between ASes.
 "I don’t know what the status of that relationship is these days. Perhaps it is still active---at least in the configs!"

- Inbound AS path prepending.

- Intentional cold-potato routing.

- Next-hop settings.
Why are these errors happening?

• Ad hoc process
 ▶ **Example:** Filtering is rarely (if ever) done correctly.
 ▶ **Solution:** Automation; build validity into BGP (e.g., S-BGP).
"The real solution to this problem is to make it possible for ISPs to closely track RIR allocations in their filters in a semi-automated way. There may still be a few days of delay before a new allocation is fully routable but ISPs can compensate for that with internal processes."

-- Michael Dillon, NANOG, 2/24/2004

"...all this bogon or related filtering is not a long-term solution. We need it now, but the long term solution is some kind of authentication that will allow only the rightful owner of a block to announce it."

-- Michael Py, NANOG, 2/24/2004
Why are these errors happening?

- **Ad hoc process**
 - *Example*: Filtering is rarely (if ever) done correctly.
 - *Solution*: Automation; build validity into BGP (e.g., S-BGP).

- **Obscure mechanisms**
 - *Example*: iBGP signaling partitions
 - *Solution*: Redesign iBGP

- **Indirect specification**
 - *Example*: Incorrect implementation of information flow policies
 - *Solution*: Better configuration languages
Ongoing and Future Work

- Protocol design work
 - intra-AS route propagation
 - policy/protocol restrictions to guarantee safety on fast timescales

- Constraint specification is not easy (yet).
 - *Idea*: statistical beliefs of "correctness"

- Verifying constraints across multiple ASes.

- Towards *intent-based* configuration languages.
 - Figuring out how to express operator intent.
 - Operator should specify *intended goals*, not the mechanism.
Conclusion

- BGP needs systematic verification techniques, regardless of configuration language.

- Our contributions:
 - Correctness constraints for configuration.
 - Design and implementation of rcc.
 - Study of configuration errors in real-world networks.
 - Recommended protocol and language changes.

- Early version of rcc is available.
 - More than 30 operators have downloaded the tool.
 - Tested configurations of 9 ASes (and counting).

http://nms.lcs.mit.edu/bgp/