Controlling the Impact of BGP Policy Changes on IP Traffic

Nick Feamster M.I.T. Laboratory for Computer Science

feamster@lcs.mit.edu

Jennifer Rexford AT&T Labs--Research jrex@research.att.com

> Jay Borkenhagen AT&T Labs jayb@att.com

Summary

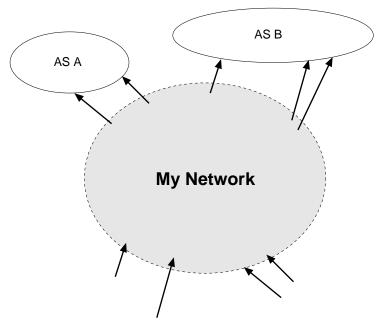
• BGP traffic engineering practices that:

- Have good scaling properties
- Result in predictable changes to traffic flows
- Limit the influence of neighboring domains

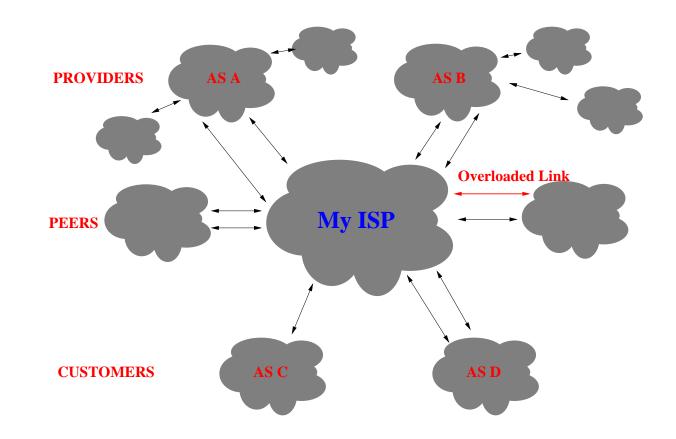
• Tool for BGP traffic engineering

- Model that describes the effect of BGP policies on traffic flows
- Deterministic, network-wide algorithm to determine best routes

Interdomain Traffic Engineering


• Why?

- Alleviating congestion on edge links
- Adapting to provisioning changes (e.g., link capacity)
- Achieving good end-to-end performance


• How?

Directing traffic to a different neighbor AS

Directing traffic to different links to the same neighbor

Many Breeds of Networks

• Where should we offload traffic?

• We have to be careful about the impact of policy changes!

BGP Traffic Engineering Overview

Change outbound traffic using BGP import policy.

- Why not scrap BGP and start over?
 - No flag days
 - Perhaps...ideas for improving BGP (?)
- Good" choices? Adjustments should...
 - Impose minimal management and message overhead
 - Result in predictable changes in traffic volumes
 - Not affect neighboring AS's routing decisions

Model: Effect of Import Policies on Traffic

Predict link loads when certain inputs are unstable?

- Routing choices (e.g., neighbor's BGP advertisements)
- Inbound traffic

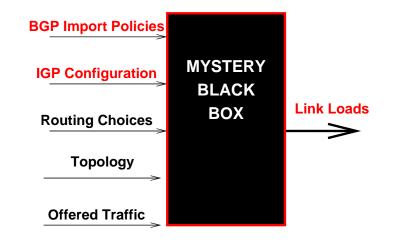
How can we adjust BGP import policies to affect outbound traffic and maintain stable/predictable inputs?

Traffic Engineering with BGP?!

Protocol Difficulties

No performance metrics in advertisement attributes.

Configuration Difficulties


- Can't express conjunction between attributes.
- Indirect influence on route selection.

Decision Process Difficulties

- At most one best route per prefix per router.
 - Egress router cannot "split" traffic across multiple links to different neighbors.
 - Limits granularity at which we can shift traffic.
- Can't split traffic to a prefix over paths of different lengths.
- Interaction with Interior Gateway Protocols (IGPs)

Commercial relationship constraints

Guidelines: Playing with the Black Box

- Deterministic Output:
 - bgp deterministic-med
 - Disable tiebreaking based on age of advertisement (use router ID instead).
- Minimal Overhead:
 - Minimize the frequency of changes.
 - Enable soft reconfiguration or route refresh options.

What types of constraints should we impose on BGP policy changes?

Challenges

Scale: 100k+ Prefixes, can't set independent policy for every one!

- Configuration overhead
- Traffic instability

• Predictability: Policy-based adjustments are indirect

- So many things can happen when a change is made!
- Is there a way to tell what's going to happen?

 Control: Neighbors' behavior can affect traffic volumes in ways we can't control.

- What if our neighbors change the inbound traffic?
- Neighbors announce "strange advertisements".

Data from AT&T's Commercial Backbone

BGP Routing Tables

- Received paths for each prefix at each peering point
- Best guess at what future updates will look like
- Aggregate traffic statistics by prefix
- Cisco Netflow data
 - Medium-grained traffic statistics
 - Used in conjunction with tables to:
 - Determine popular prefixes
 - Assess significance of events w/respect to traffic

Router Configuration Files

- Who our "peers" are
- Which import policies apply to which eBGP sessions

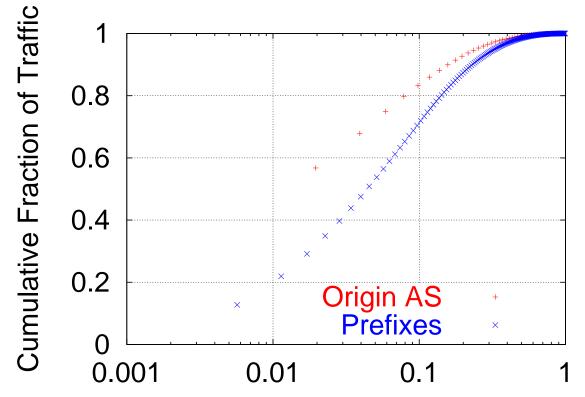
We focus on outbound traffic over peering links; examples are from March 1, 2002.

But I Don't Have That Data! :(

BGP Advertisements

- BGP monitors can be used to determine at least the best routes
- Juniper support for outputting a feed of all BGP routes

Traffic Measurement


- Netflow
- Policy-based accounting
- Packet sampling/monitoring

Our analysis also applies with limited traffic data...

 Problem: Large number of prefixes preclude setting import policy on every one.

 Solution: Change policies for the small fraction of groups of prefixes that are responsible for the majority of traffic.

Scale: Heed Traffic Characteristics

Cumulative Fraction

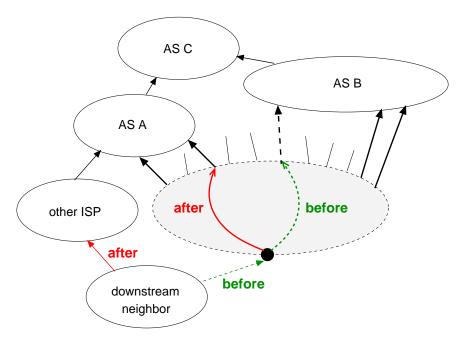
- 10% of prefixes are responsible for 70% of traffic
- Focus: small number of popular prefixes/origin AS's.
 - Per-prefix tweaking is tractable
 - Hopefully, more predictable offered loads...

Predictability: Changes in Inbound Traffic

• Problem: Inbound traffic volumes change over time.

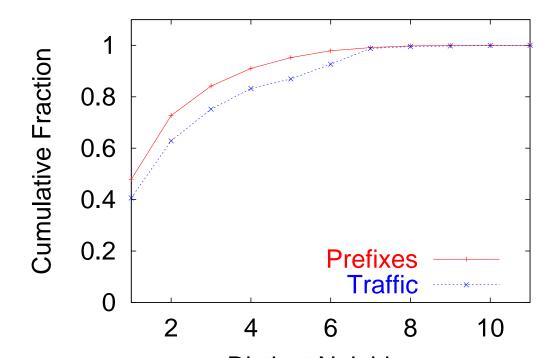
 Solution: Change policies for the groups of prefixes that have more stable traffic volumes.

Which prefixes are those?


Predictability: Focus on Stable Prefixes

- Origin AS's responsible for top 1% of outbound traffic in one week experienced a 10% change in traffic over a one-week period.
- Most origin AS's that are responsible for more than 10% of outbound traffic do not change by more than a factor of 2 from week-to-week.

Networks that terminate more traffic are more likely to have stable offered load from week-to-week.


Predictability: Big Changes, Fickle Neighbors

 Problem: Internal changes that are externally visible can change inbound traffic volumes.

- Solution: Shift traffic among paths
 - to the same AS
 - to different AS, but with the same path length

Predictability: Shift to the Same AS

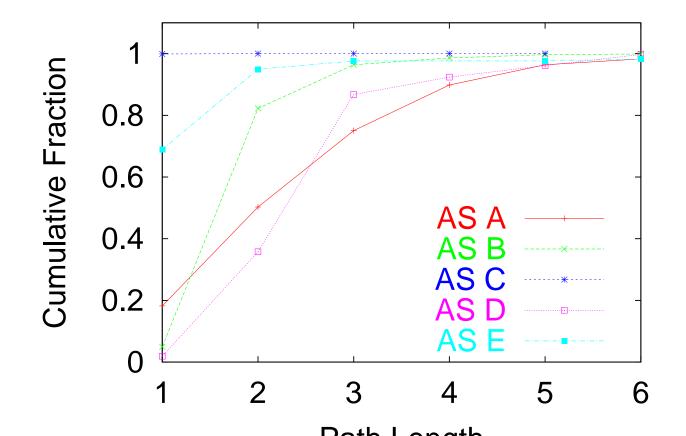
 Distinct Neighbors
 Shifting traffic on links to the same peer keeps inbound traffic more predictable.

~70% of outbound traffic to peers has shortest-path advertisements for only one next hop AS

Predictability: Advertisement Changes

• Problem: Want to shift traffic aggregates

- On a finer granularity than per AS
- On a more coarse granularity than per path
 - ...and remain resilient to changes in neighbor's advertisements


Solution: Assign policies using regular expressions.

```
ip as-path access-list 1 permit ^701$
ip as-path access-list 1 permit ^701_[0-9]+_$
```

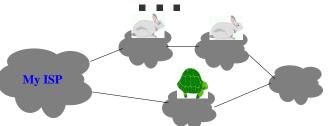
```
route-map IMPORT permit 5
match as-path 1
set local-preference 100
!
route-map IMPORT permit 10
set local-preference 105
```

But be careful...

Predictability: AS's are Not Created Equal

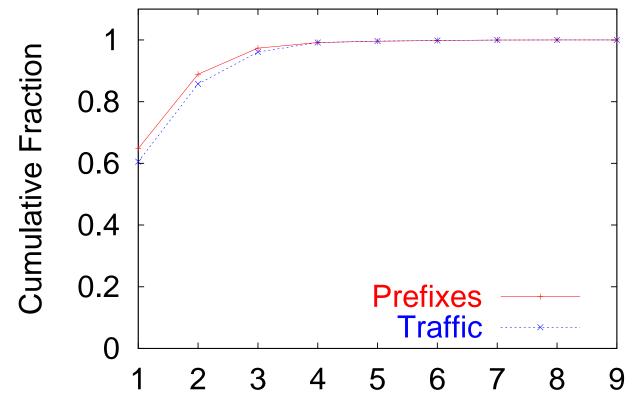
Path Length
 Blindly offloading 2-hop paths could lead to trouble!

 Pay attention to the type of AS when making policy changes.

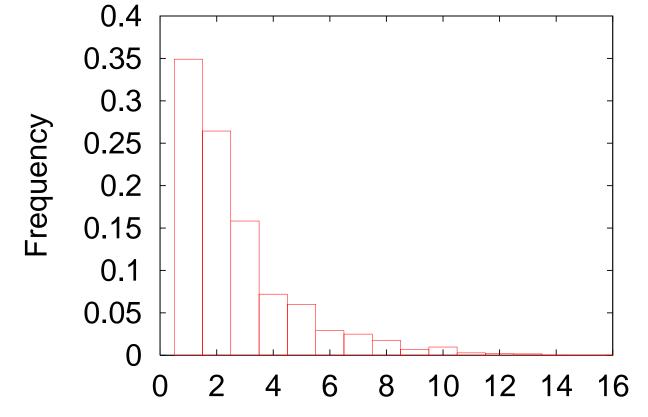

Control: Why AS Path Length Doesn't Fit In

- Problem: AS path length comes early in the decision process, is controlled by neighbors, and doesn't often reflect a short path.
 - Step 1: Highest Localpref
 - Step 2: AS Path Length
 - Step 3: Origin Type

Step 4:


Lowest MED

Operator-Controlled *Neighbor-Controlled* Operator-Controlled Operator-Controlled


 Solution: Assign coarse-grained localpref based on path length, rather than using path length metric.

Control: AS Paths Can Be Deceiving

- Distinct Path Lengths
 >35% of traffic goes to prefixes that hear advertisements of more than one distinct length.
 - Prepending often used to indicate a backup route.
 - Many backup links could be used to offload traffic, but AS path length metric limits this possibility.

Control: Prepending Limits Choices

Amount of Prepending

Coarse-grained metric unnecessarily excludes some "good" routes.
Difference between 7 and 8 prepends?

Solution:

Ignore AS path length as an absolute metric. Use it as an attribute to assign localpref! Problem: Neighbors can play the following games that limit a network's ability to do traffic engineering:

- Filtering on some peering points but not others.
- Advertising different paths to different peering points.
 - Different path lengths.
 - Same path lengths, different paths.
- Advertising next-hop different from BGP session IP address.

Solution: Pay attention. :)

These don't happen that often in the AT&T network, but they're good to watch out for...

Conclusions

• BGP not designed for TE, but it is here to stay!

- Language is indirect and inflexible
- Restrictive decision process
- Limited control, many interactions with neighbors
- We can have BGP traffic engineering practices that
 - Have good scaling properties
 - Result in predictable changes to traffic flows
 - Control the influence of neighboring domains
 - Operate within the existing BGP infrastructure
- A tool for network-wide routing prediction
 - Model that describes the effect of BGP on traffic flows
 - Algorithm to determine best routes, without simulating BGP messag passing

http://nms.lcs.mit.edu/~feamster/paper-nanog25.pdf

Shameless Plea for Network Presence

Resilient Overlay Networks (RON) Project

- http://nms.lcs.mit.edu/projects/ron/
- 15 active nodes
- Research Questions
 - How are BGP announcements and end-to-end path failures correlated?
 - What are fate-sharing relationships between prefixes? (looking at prefixes that are announced/withdrawn together)
 - Where along the path are failures occurring, and why?
- We need network presence
 - ► iBGP Monitor
 - Place to send active probes (low-traffic)
 - Thanks to Randy Bush for volunteering!

feamster@lcs.mit.edu