Practical Verification Techniques for
Wide-Area Routing

Nick Feamster
M.I1.T. Computer Science and Atrtificial Intelligence Laboratory

feamster@lcs.mit.edu

http://nms.lcs.mit.edu/bgp/

(Thanks to Hari Balakrishnan and Jennifer Rexford)

BGP iIs Flexible

® Many options for implementing a variety of policies

> Route Injection, redistribution, aggregation
> Import and export policies

» Access control lists, filtering

> AS Path prepending

> Communities

® Flexibility for various network environments
> Next-hop settings
» Route flap damping
> Timer settings

Wonderful!
But there’s a catch...

BGP Configuration Affects Correctness

® BGP has serious problems

> Frequently misconfigured [Mahajan2002]

» Forwarding loops [Dube1999]

> Persistent route oscillation [Griffin1999, Varadhan2000]

» Slow convergence/suppressed routes [Labovitz2001, Mao2002]
» Useless routing messages [Labovitz1999, Wang2002]

> Security weaknesses [Beard2002, Kent2000]

BGP’s configuration determines
whether the protocol behaves correctly or not.

BGP configuration is a distributed program.
We need practical verification techniques.

Today: Stimulus-response Reasoning

"What happens if | tweak this import policy?"
"Let’s just readjust this IGP weight..."
"New customer attachment point? Some cut-and-paste will fix that!"

Some time later, some "strange behavior" appears.
(OOPS! Revert.)

® Operators have a terrible "programming environment".

» Configuration is ad hoc and painful.
»\Wastes operator time.
» Suboptimal performance, angry customers.

® Can’t check for errors by "seeing what happens".
»\Won't catch misconfigured filters, redundant route reflectors, etc.

The Ideal Situation: Higher-level Reasoning

Correctness
Constraints
\ Property 1. OK
R_outer | Verification Correct? Property 2: OK
Configuration Tool Property 3: Not OK
(possible error on line X)
etc.

®\erify the behavior of a particular configuration.

» Check "correctness properties".
¢ (e.g., forwarding loops in IBGP configuration?)

The Ideal Situation: Higher-level Reasoning

Correctness Operator
Constraints | ntent
/
/
/
V Property 1. OK
R.outer | Verification Correct? Property 2: OK
Configuration Tool Property 3: Not OK
(possible error on line X)
etc.

®\erify the behavior of a particular configuration.

> Check "correctness properties".
¢ (e.g., forwarding loops in IBGP configuration?)
> Check that the configuration conforms to intended behavior.
* (e.q., Is aggregation appropriate? readvertising according to policy?)

More than a band-aid fix.
Useful for any router configuration language.

Eventually: Higher-level Configuration

Correctness Operator
Constraints | ntent
/
/
/
// Property 1: OK
_out _ Verification Correct? Property 2: OK
Ca tion Tool Property 3: Not OK
(possible error on line X)
etc.

® Specify configuration based on intended behavior.

> Configuring low-level mechanisms is error-prone.
» Specifying high-level intended behavior makes sense.

Three Challenges

Correctness Operator
Constraints | ntent
/
/
/
V Property 1. OK
R.outer | Verification Correct? Property 2: OK
Configuration Tool Property 3: Not OK
(possible error on line X)
etc.

® How to design the verification tool?
® How to express correctness constraints?
® How to express operator intent?

Verification Tool Design

FSM-Based
Constraints/ ——> FSM-Based Property
Intent Constraint Checker Violations
Router
Configuration
. IMPLEMENTED
Control Flow High-level IN TOOL
Analyzer - Network Summary | 50~ ToTYPE
Control-Flow
Constraints/ Control Flow ONGOING
Intent Constraint Checker WORK
Property
Violations

® How to express correctness constraints?
® How to express operator intent?

Correctness: The Routing Logic [FDNA 2003]

®\/alidity: Does it advertise invalid routes?
» Bogus route Injection, persistent forwarding loops, etc.

® \/isibility: Does every valid path have a route?
» Session resets, missing sessions, damped routes, etc.

® Safety: Will it converge to a unique, stable answer?
> Policy-induced oscillation

® Determinism: Answer depend on orderings, etc.?
> Irrelevant route alternatives can affect outcomes.

® Information-flow control: Expose information?
> Accidental route leaks to neighbors, etc.

Correctness Constraints: Validity

Use the routing logic to express correctness constraints.

Reachability:

A puts route to dest for B ——

A can reach dest
via route

Policy conformance:
A carries traffic to

dest for B

Progress:
route.next-hop
makes progress

along route to dest

Example: Validity

® One necessary, commonly violated condition:
next-hop reachabillity

Routes from AS 1 have next-hop e.f.g.h
If e.f.g.h not injected into IGP, some routes from within AS will fail.

Validity: Checking Next-hop Reachability

® Bad: Copy/paste configurations and hope for the best.
Traceroute-based debugging.

® Better: Apply the theory of the routing logic rules.

Next-Hop Reachability: An FSM-Based Rule

® The next-hop refers to some router in the AS, or
® The next-hop is "injected" into the IGP

Start

l rl: router bgp al { neighbor n2 remote-as a2}

@on ton2 (AS a2)

@ reachability OK ERROR: next-hop@

More on FSM-Based Rules

® Each correctness constraint: an FSM
> specifies the verification procedure

» gives useful information about the error

® Tool provides finite-state machinery and some rules
> Rules are simple: 41 lines of code for next-hop test

® Figuring out "boundary" between users, developers.

> Ruleset is part of the tool and is designed for extensibility.
» Each rule is an FSM specification.

Example: Information-flow Control

Simple rule: don’t advertise routes
from one peer to other peers.

“Announce p”

Today: Specifying Policy with Mechanism

“Announce p”

Bad: Import/export route maps, ACLs, communities, etc.

nel ghbor 10.0.0.1 route-map EXPORT-A out
nei ghbor 192.168.0.1 route-map | MPORT-C in

Il p community-list 1 permt 0:1000
route-map | MPORT-C permt 10
| set community 0:1000

rout e-map EXPORT-A permit 10
| mat ch community 1

Tomorrow: High-level Policy Specification

“Announce p”

Better: Use information-flow control principles.

Operator specifies intended flow.
Check against a control graph.

Peer A Peer C

_—

Public
Key Challenge: Specification

(ongoing work)

Limitations and Ongoing Work

® Static analysis can’t catch everything.
> |dea: "sandbox" to test configurations

® Constraint specification is not easy (yet).
> |dea: statistical beliefs of "correctness”

® \/erifying constraints across multiple ASes.

® Towards intent-based configuration languages.

> Figuring out how to express operator intent.
» Operator should specify intended goals, not the mechanism.

Conclusion

® BGP needs systematic verification techniques,
regardless of configuration language.

® \/erification can inspire the design of new configuration
languages.

® Early version of the tool (RoLex) is available.

» Several operators have downloaded the tool

» Talking with Cisco about incorporating configuration checking on the
routers themselves.

http://nms.lcs.mit.edu/bgp/rolex

Why Not Model Checking?

AS 0 AS 1’s backup path is not visible to AS 0
under most circumstances
Default — @
\ ’
only routes whose . AS 3

AS path matches "1 [0-9]+ 3"

® State-space explosion
® More importantly, some states may be hidden

Control Flow Analyzer

® Some constraints (e.d., Iimport/export policies) best
expressed in terms of higher-level semantics.

® Abstracts mechanisms, gives operators a higher-level
view of network configuration.

Rules Pattern—Based Property
Constraint Checker Violations
Cisco
10S
Control Flow High—level
Analyzer Network Summary

(Web-based interface)

Control Flow Analyzer: Features

® Graph the network at router-level, labelling route maps
on edges.

® Database-backed Web interface.

> View the number of BGP sessions to each AS.
> View sessions, import and export route maps:

* by router
¢ associated with a particular remote AS

» Easily compare policies across routers.

® Policies are "normalized" according to what they do, not
what they are called.

Control Flow Analyzer: View By Neighbor AS

Routers Peering with AS 1239

Router Neighhor Neighhor AS Import Route Map Export Route Ma;
atlga-gwl ehep AR1232 0 25 o) 26
cecil-gwl ehep AR1239 1 1238] 26
dlzte-gwrd gbegp AS1238 2 $238 114 26
laxca-gwl ebgp AS1238 3 LESe e 26

show Al Import chow All Export

® Network-wide view of import/export policies to an AS.
® Easy to see when differences exist.

Control Flow Analyzer: View By Neighbor AS

Routers Peering with A5 1239

Router MNeighhor Neighbor AS Import Route Map Export Rouwie Majg
atlga-gwrl ghegp ASI238 0 123% A3 26
cecil-gwl chgp AS1ASE 1 1239 22 26
dlzt- gl chep AS1238 2 1239 20
laxca-gwl ehgp AS1239 5 1232 25 28

show All [mport Show All Export

® Network-wide view of import/export policies to an AS.
® Easy to see when differences exist.

Other Information-flow Control Examples

Goal: Verify that route advertisements conform to
iIntended information-flow policy.

® Partial peering

® Controlling prefix propagation
» Bogons
»"No Export" prefixes

® Conditional advertisements

® Signaling (e.g., with communities)

Towards Intent-based Configuration

Verification requires a specification of intent,
which can inspire configuration language deS|gn

® How to specify the information flow lattice?

> Must be intuitive.
» Must express varying levels of detall (i.e., AS-level, session-level,
prefix-level, etc.)

> Must express positive requirements, too.

Understanding Correctness Constraints

®\/\/hat correctness property does it address?

® \What type of rule will verify it?

® One router, or multiple?

® Need information from other routing protocols?
® Need a specification of intended behavior?

® Need external information?
® Single AS, or more than one?

® Can static analysis catch the error?

Constraints: Next-hop Reachability

®\\Vhat correctness property does it address? validity
® \\Vhat type of rule will verify it? pattern-based

® One router, or multiple? multiple

® Need information from other routing protocols? IGP
® Need a specification of intended behavior? no

® Need external information? no
® Single AS, or more than one? single AS

® Can static analysis catch the error? yes

Constraints: eBGP Route propagation

® \What property does it address? information-flow
®\\Vhat type of rule will verify it? control-flow

® One router, or multiple? multiple

® Need information from other routing protocols? (IGP)
® Need a specification of intended behavior? yes

® Need external information? no
® Single AS, or more than one? single AS

® Can static analysis catch the error? yes

Towards Intent-based Configuration

Verification requires a specification of intent,
which can inspire configuration language deS|gn.

® Expressing intended behavior will improve routing.

> Verification: check existing configurations against intent.
» Synthesis: generate configurations according to intent.

® Example: Controlling propagation of eBGP routes

> ACLs, filters, communities, etc. are prone to mistakes.
> \Why not simply specify the intended policy?

® Example: Aggregation
> Tradeoffs: hiding information about failures, TE, scalability.
» Operator should specify intended goals, not the mechanism.

