
Practical Verification Techniques for
Wide-Area Routing

Nick Feamster
M.I.T. Computer Science and Artificial Intelligence Laboratory

feamster@lcs.mit.edu

http://nms.lcs.mit.edu/bgp/

(Thanks to Hari Balakrishnan and Jennifer Rexford)

 BGP is Flexible

 Many options for implementing a variety of policies
 Route injection, redistribution, aggregation
 Import and export policies
 Access control lists, filtering
 AS Path prepending
 Communities

 Flexibility for various network environments
 Next-hop settings
 Route flap damping
 Timer settings

 Wonderful!
 But there’s a catch...

 BGP Configuration Affects Correctness

 BGP has serious problems
 Frequently misconfigured [Mahajan2002]
 Forwarding loops [Dube1999]
 Persistent route oscillation [Griffin1999, Varadhan2000]
 Slow convergence/suppressed routes [Labovitz2001, Mao2002]
 Useless routing messages [Labovitz1999, Wang2002]
 Security weaknesses [Beard2002, Kent2000]

 BGP’s configuration determines
 whether the protocol behaves correctly or not.

 BGP configuration is a distributed program.
 We need practical verification techniques.

 Today: Stimulus-response Reasoning

 "What happens if I tweak this import policy?"
 "Let’s just readjust this IGP weight..."
 "New customer attachment point? Some cut-and-paste will fix that!"

 Some time later, some "strange behavior" appears.
 (OOPS! Revert.)

 Operators have a terrible "programming environment".
 Configuration is ad hoc and painful.
 Wastes operator time.
 Suboptimal performance, angry customers.

 Can’t check for errors by "seeing what happens".
 Won’t catch misconfigured filters, redundant route reflectors, etc.

 The Ideal Situation: Higher-level Reasoning

 Tool
Verification

Correctness
Constraints

Router
Configuration

Correct?

Property 1: OK
Property 2: OK

etc.

Property 3: Not OK
(possible error on line X)

 Verify the behavior of a particular configuration.
 Check "correctness properties".
 (e.g., forwarding loops in iBGP configuration?)

 The Ideal Situation: Higher-level Reasoning

 Tool
Verification

Correctness
Constraints

Router
Configuration

Correct?

Property 1: OK
Property 2: OK

Operator
Intent

Property 3: Not OK

etc.
 (possible error on line X)

 Verify the behavior of a particular configuration.
 Check "correctness properties".
 (e.g., forwarding loops in iBGP configuration?)
 Check that the configuration conforms to intended behavior.
 (e.g., is aggregation appropriate? readvertising according to policy?)

 More than a band-aid fix.
 Useful for any router configuration language.

 Eventually: Higher-level Configuration

 Tool
Verification

Correctness
Constraints

Router
Configuration

Correct?

Property 1: OK
Property 2: OK

Operator
Intent

Property 3: Not OK

etc.
 (possible error on line X)

 Specify configuration based on intended behavior.
 Configuring low-level mechanisms is error-prone.
 Specifying high-level intended behavior makes sense.

 Three Challenges

 Tool
Verification

Correctness
Constraints

Router
Configuration

Correct?

Property 1: OK
Property 2: OK

Operator
Intent

Property 3: Not OK

etc.
 (possible error on line X)

 How to design the verification tool?
 How to express correctness constraints?
 How to express operator intent?

 Verification Tool Design

Violations
Property

Violations
Property

Constraint Checker

Control Flow
Analyzer

High−level
Network Summary

Control Flow
Constraint Checker

Configuration
Router

Constraints/
Intent

Constraints/
Intent

ONGOING
WORK

FSM−Based

FSM−Based

Control−Flow

IMPLEMENTED
IN TOOL

PROTOTYPE

 How to express correctness constraints?
 How to express operator intent?

 Correctness: The Routing Logic [FDNA 2003]

 Validity: Does it advertise invalid routes?
 Bogus route injection, persistent forwarding loops, etc.

 Visibility: Does every valid path have a route?
 Session resets, missing sessions, damped routes, etc.

 Safety: Will it converge to a unique, stable answer?
 Policy-induced oscillation

 Determinism: Answer depend on orderings, etc.?
 Irrelevant route alternatives can affect outcomes.

 Information-flow control: Expose information?
 Accidental route leaks to neighbors, etc.

 Correctness Constraints: Validity

 Use the routing logic to express correctness constraints.

� �� ��� �� � 	�
 ���
 � 	 �� � �

��� �� � � �� ��� ��� �� �! � � "
 � 	

# $%� � � � 	�

&�' �� � � � ' ()' *+ � (� � �� �� � � $! � � �� , � ��

 � 	 �� � �

& *'- *�. . �

� � � 	�
0/ 1
2 	43 5�6

7� 8! � � �� 9 � ! � �

� :� 9 �� � 	�
 ��
 � 	

 Example: Validity

 One necessary, commonly violated condition:
 next-hop reachability

AS 2

AS 1 B

A

e.f.g.h

a.b.c.d

 Routes from AS 1 have next-hop e.f.g.h
 If e.f.g.h not injected into IGP, some routes from within AS will fail.

 Validity: Checking Next-hop Reachability

AS 2

AS 1 B

A

e.f.g.h

a.b.c.d

 Bad: Copy/paste configurations and hope for the best.
Traceroute-based debugging.

 Better: Apply the theory of the routing logic rules.

 Next-Hop Reachability: An FSM-Based Rule

 The next-hop refers to some router in the AS, or
 The next-hop is "injected" into the IGP

Start

eBGP session to n2 (AS a2)

r1: router bgp a1 {neighbor n2 remote-as a2}

Next-hop reachability OK

r1: router bgp a1 {neighbor n2 next-hop-self} Looking for n2 in IGP

END

router ospf { network [prefix containing n2] }

ERROR: next-hop not in IGP

END

 More on FSM-Based Rules

 Each correctness constraint: an FSM
 specifies the verification procedure
 gives useful information about the error

 Tool provides finite-state machinery and some rules
 Rules are simple: 41 lines of code for next-hop test

 Figuring out "boundary" between users, developers.
 Ruleset is part of the tool and is designed for extensibility.
 Each rule is an FSM specification.

 Example: Information-flow Control

 Simple rule: don’t advertise routes
 from one peer to other peers.

���� � � �� � �

� ��� � 	
 � � � �

 Today: Specifying Policy with Mechanism

���� � � �� � �

� ��� � 	
 � � � �

 Bad: Import/export route maps, ACLs, communities, etc.

 neighbor 10.0.0.1 route-map EXPORT-A out
 neighbor 192.168.0.1 route-map IMPORT-C in ...
 ip community-list 1 permit 0:1000 ...
 route-map IMPORT-C permit 10
 set community 0:1000
 ! ...
 route-map EXPORT-A permit 10
 match community 1
 !

 Tomorrow: High-level Policy Specification

���� � � �� � �

� ��� � 	
 � � � �

 Better: Use information-flow control principles.

 Operator specifies intended flow.
 Check against a control graph.

 ��� ��� �

��� � � � ��� � �

 Key Challenge: Specification
 (ongoing work)

 Limitations and Ongoing Work

 Static analysis can’t catch everything.
 Idea: "sandbox" to test configurations

 Constraint specification is not easy (yet).
 Idea: statistical beliefs of "correctness"

 Verifying constraints across multiple ASes.

 Towards intent-based configuration languages.
 Figuring out how to express operator intent.
 Operator should specify intended goals, not the mechanism.

 Conclusion

 BGP needs systematic verification techniques,
regardless of configuration language.

 Verification can inspire the design of new configuration
languages.

 Early version of the tool (RoLex) is available.
 Several operators have downloaded the tool
 Talking with Cisco about incorporating configuration checking on the

routers themselves.

 http://nms.lcs.mit.edu/bgp/rolex

 Why Not Model Checking?

AS 1

AS 2

AS 3

Default

AS 0

d

s

AS 1’s backup path is not visible to AS 0
under most circumstances

AS path matches "1 [0−9]+ 3"
only routes whose

 State-space explosion
 More importantly, some states may be hidden

 Control Flow Analyzer

 Some constraints (e.g., import/export policies) best
expressed in terms of higher-level semantics.

 Abstracts mechanisms, gives operators a higher-level
view of network configuration.

Pattern−Based
Constraint Checker

Cisco
IOS

Property
Violations

Network Summary
(Web−based interface)

Rules

Control Flow
Analyzer

High−level

 Control Flow Analyzer: Features

 Graph the network at router-level, labelling route maps
on edges.

 Database-backed Web interface.
 View the number of BGP sessions to each AS.
 View sessions, import and export route maps:
 by router
 associated with a particular remote AS
 Easily compare policies across routers.

 Policies are "normalized" according to what they do, not
what they are called.

 Control Flow Analyzer: View By Neighbor AS

 Network-wide view of import/export policies to an AS.
 Easy to see when differences exist.

 Control Flow Analyzer: View By Neighbor AS

 Network-wide view of import/export policies to an AS.
 Easy to see when differences exist.

 Other Information-flow Control Examples

 Goal: Verify that route advertisements conform to
 intended information-flow policy.

 Partial peering

 Controlling prefix propagation
 Bogons
 "No Export" prefixes

 Conditional advertisements

 Signaling (e.g., with communities)

 Towards Intent-based Configuration

 Verification requires a specification of intent,
 which can inspire configuration language design.

 How to specify the information flow lattice?
 Must be intuitive.
 Must express varying levels of detail (i.e., AS-level, session-level,

prefix-level, etc.)

 Must express positive requirements, too.

 Understanding Correctness Constraints

 What correctness property does it address?
 What type of rule will verify it?
 One router, or multiple?
 Need information from other routing protocols?
 Need a specification of intended behavior?
 Need external information?
 Single AS, or more than one?
 Can static analysis catch the error?

 Constraints: Next-hop Reachability

 What correctness property does it address? validity
 What type of rule will verify it? pattern-based
 One router, or multiple? multiple
 Need information from other routing protocols? IGP
 Need a specification of intended behavior? no
 Need external information? no
 Single AS, or more than one? single AS
 Can static analysis catch the error? yes

 Constraints: eBGP Route propagation

 What property does it address? information-flow
 What type of rule will verify it? control-flow
 One router, or multiple? multiple
 Need information from other routing protocols? (IGP)
 Need a specification of intended behavior? yes
 Need external information? no
 Single AS, or more than one? single AS
 Can static analysis catch the error? yes

 Towards Intent-based Configuration

 Verification requires a specification of intent,
 which can inspire configuration language design.

 Expressing intended behavior will improve routing.
 Verification: check existing configurations against intent.
 Synthesis: generate configurations according to intent.

 Example: Controlling propagation of eBGP routes
 ACLs, filters, communities, etc. are prone to mistakes.
 Why not simply specify the intended policy?

 Example: Aggregation
 Tradeoffs: hiding information about failures, TE, scalability.
 Operator should specify intended goals, not the mechanism.

