Packet Loss Recovery for Streaming Video

Nick Feamster and Hari Balakrishnan
M.I.T. Laboratory for Computer Science
{feamster,hari}@lcs.mit.edu

11th International Packet Video Workshop
April 25, 2002
Overview

- Want: High quality streaming video over the Internet

- Problems:
 - Variable bandwidth
 - Variable delay
 - Packet loss

- Packet losses in compressed video are aggravated by propagation of errors.

We present a protocol that enables receiver-driven packet loss recovery using selective retransmission and receiver postprocessing.
Packet loss degrades video quality. Why?
Propagation of Errors
Packet Loss Model
Where does Selective Reliability Fit In?

- **TCP**
 - Favors complete reliability over timely delivery
 - Inordinate buffering
 - Might not want to use TCP’s AIMD congestion control

- **Forward Error Correction**
 - Requires additional (maybe unnecessary) bandwidth
 - FEC packets themselves might be lost!

- **Coding Approaches**
 - Generally must be done offline
Selective Reliability is Beneficial

- Selective reliability can increase perceptual quality of video by up to 3 times.
Challenges

- **Compatibility with existing protocols**
 - *Solution:* SR-RTP, a backwards-compatible extension to RTP that allows for receiver-driven selective retransmission

- **Easy application integration**
 - *Solution:* Expose simple SR-RTP API to applications

- **Recourse in the event of high loss/latency**
 - *Solution:* Retransmissions are receiver-driven, and API exposes mechanism for cancelling spurious retransmissions. Easy integration with postprocessing techniques.
Append SR-RTP extension to 12-byte RTP header.

Extension allows for application level framing:

- Detect lost portions of bitstream
- Optionally request retransmission (depending on priority of surrounding fragments)
SR-RTP API Overview

- Client application is in control:
 - Callback-based mechanism upon frame arrival
 - Can force incomplete frames to be read
 - Can cancel retransmissions on played frames
SR-RTP API Overview

- Application
 - receives callback upon arrival of complete ADUs
 - can force read of incomplete ADU

- What can we do if loss is in an important frame?
Receiver-driven Postprocessing

- Use past motion and texture information to recover from lost packets
 - Texture from preceding P-frame
 - Motion from preceding B-frame
SR-RTP Benefits

Frame Rate vs. Packet Loss Rate

- PSNR > 25
- PSNR > 25 (w/o I-frame retransmissions)
If network latency precludes selective retransmission, postprocessing can help mask errors.
Conclusions

- Streaming compressed video must account for packet loss.

- SR-RTP protocol allows for receiver-driven retransmission of only the most important packets.

- SR-RTP API gives application control over packet loss recovery.

- ALF principle allows easy integration with other techniques, such as receiver postprocessing.
Outline

• Motivation
• Packet Loss Model
• Application-Level Framing with SR-RTP
• SR-RTP Protocol/Library
• Receiver Postprocessing using SR-RTP and ALF
Packet Loss Model

![Graph showing the relationship between Frame Rate and Packet Error Rate with different PSNR thresholds and Model Fit.](#)