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Abstract

This thesis argues that session-layer services for enhancing functionality and improv-
ing network performance are gaining in importance in the Internet; examples include
connection multiplexing, congestion state sharing, application-level routing, mobil-
ity/migration support, encryption, and so on. To facilitate the development of these
services, we describe Tesla, a transparent and extensible framework that allows
session-layer services to be developed using a high-level flow-based abstraction (rather
than sockets), enables them to be deployed transparently using dynamic library in-
terposition, and enables them to be composed by chaining event handlers in a graph
structure. We show how Tesla can be used to design several interesting session-
layer services including encryption, SOCKS and application-controlled routing, flow
migration, and traffic rate shaping, all with acceptably low performance degradation.
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Chapter 1

Introduction

Modern network applications must meet several increasing demands for performance

and enhanced functionality. Much current research is devoted to augmenting the

transport-level functionality implemented by standard protocols as TCP and UDP.

Examples abound: Setting up multiple connections between a source and destina-

tion to improve the throughput of a single logical data transfer (e.g., file transfers

over high-speed networks where a single TCP connection alone does not provide ad-

equate utilization [2, 19]); sharing congestion information across connections sharing

the same network path (e.g., the Congestion Manager [4, 6, 5]); application-level

routing, where applications route traffic in an overlay network to the final destina-

tion (e.g., Resilient Overlay Networks [3]); end-to-end session migration for mobility

across network disconnections [33]; encryption services for sealing or signing flows [10];

general-purpose compression over low-bandwidth links; and traffic shaping and polic-

ing functions. These examples illustrate the increasing importance of session layer

services in the Internet—services that operate on groups of flows between a source and

destination, and produce resulting groups of flows using shared code and sometimes

shared state.

Authors of new services such as these often implement enhanced functionality

by augmenting the link, network, and transport layers, all of which are typically

implemented in the kernel or in a shared, trusted intermediary [14]. While this

model has sufficed in the past, we believe that a generalized, high-level framework
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for session-layer services would greatly ease their development and deployment. This

thesis argues that Internet end hosts can benefit from a systematic approach to de-

veloping session-layer services compared to the largely ad-hoc point approaches used

today, and presents Tesla (a Transparent, Extensible Session Layer Architecture),

a framework that facilitates the development of session-layer services like the ones

mentioned above.

Our work with Tesla derives heavily from our colleagues’ and our own previous

experience developing, debugging, and deploying a variety of session-layer services

for the Internet. The earliest example is the Congestion Manager (CM) [6], which

allows concurrent flows with a common source and destination to share congestion

information, allocate available bandwidth, and adapt to changing network conditions.

CM is currently implemented in Linux kernel, in large part because CM needs to in-

tegrate with TCP’s in-kernel congestion controller in order to support sharing across

TCP flows [4]. There is no such requirement when CM controls only UDP flows,

however—a capability that has proven quite useful [17]. In these cases, it would be

advantageous (for portability and ease of deployment) to have a session-layer imple-

mentation of CM running at user level. Unfortunately, implementing a user-level

CM is quite an intricate process [30]. Not only must the implementation specify the

internal logic, algorithms, and API provided by CM, but considerable care must be

taken handling the details of non-blocking and blocking sockets, inter-process com-

munication between CM and applications, process management, and integrating the

CM API with the application’s event loop. The end result is that more programmer

time and effort was spent setting up the session-layer plumbing than in the CM logic

itself.

This is not an isolated example—we and our colleagues have had similar experi-

ences in our work on Resilient Overlay Networking (RON) [3] and the Migrate mo-

bility architecture [33]. Both can be viewed as session-layer services: RON provides

customized application-layer routing in an overlay network, taking current network

performance and outage conditions into account; Migrate preserves end-to-end com-

munication across relocation and periods of disconnection. Our similar frustrations
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with the development and implementation of these services was the prime motivation

behind Tesla, and lead to three explicit design goals.

First, it became apparent to us that the standard BSD sockets API [28] is not a

convenient abstraction for programming session-layer services. In response, Tesla

exports a higher level of abstraction to session services, allowing them to operate

on network flows (rather than socket descriptors), treating flows as objects to be

manipulated.

Second, there are many session services that are required post facto, often not

originally thought of by the application developer but desired later by a system oper-

ator for flows being run by users. For example, the ability to shape or police flows to

conform to a specified peak rate is often useful, and being able to do so without kernel

modifications is a deployment advantage. This requires the ability to configure session

services transparent to the application. To do this, Tesla uses an old idea—dynamic

library interposition [11]—taking advantage of the fact that most applications today

on modern operating systems use dynamically linked libraries to gain access to kernel

services. This does not, however, mean that Tesla session-layer services must be

transparent. On the contrary, Tesla allows services to define APIs to be exported

to enhanced applications.

Third, unlike traditional transport and network layer services, there is a great

diversity in session services as the examples earlier in this section show. This implies

that application developers can benefit from composing different available services to

provide interesting new functionality. To facililate this, Tesla arranges for session

services to be written as event handers, with a callback-oriented interface between

handlers that are arranged in a graph structure in the system.

Figure 1-1 presents a high-level illustration of the Tesla architecture.

1.1 Related Work

Functionally, Tesla combines concepts from three areas of research. At the high-

est level, Tesla brings much of the flexibility of extensible network protocol stacks
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found in several research operating systems to commodity operating systems.Tesla’s

component-based modular structure is similar in spirit to a number of existing com-

posable network protocol platforms, yet targeted specifically towards end-to-end ses-

sion services with an eye to making these services easier to program. Unlike most

previous systems, however, Tesla does not require modified applications, special

operating system extensions, or super-user privileges. Instead, Tesla borrows well-

known interposition techniques to provide an extensible protocol framework entirely

at user level, allowing dynamic composition and transparent operation with legacy

applications.

1.1.1 Extensible network stacks

Today’s commodity operating systems commonly allow the dynamic installation of

network protocols on a system-wide or per-interface basis (e.g., Linux kernel modules

and FreeBSD’s netgraph), but these extensions can only be accessed by the super-

user. Some operating systems, such as SPIN [7] and the Exokernel [14], push many

operating system features (like network and file system access) out from the kernel into

application-specific, user-configurable libraries, allowing ordinary users fine-grained

control. Alternatively, extensions were developed for both operating systems to allow

applications to define application-specific handlers that may be installed directly into

the kernel (Plexus [18] and ASHs [36]).

Operating systems such as Scout [29] and x-kernel [21] were designed explicitly

to support sophisticated network-based applications. In these systems, users may

even redefine network or transport layer protocol functions in an application-specific

fashion [8]. With Tesla, our goal is to bring some of the power of these systems to

commodity operating systems in the context of session-layer services.

Several other projects have explored user-level networking in the context of tradi-

tional operating systems. U-Net [35] provides direct, user-level access to the network

interface and an infrastructure to implement user-level network stacks. Alpine [13]

virtualizes much of the FreeBSD network stack, moving it to the user level, although it

is highly platform-dependent and intended mostly for debugging networking modules
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which are to be moved to the kernel.

In contrast to these systems, Tesla does not attempt to allow users to replace

or modify the system’s network stack. Instead, it intends only to allow users to

dynamically extend the protocol suite by dynamically composing additional end-

to-end session-layer protocols on top of the existing transport- and network-layer

protocols.

1.1.2 Composable network protocols

Tesla’s modular structure shares commonalities with a number of previous sys-

tems, x-kernel in particular [21]. Like Tesla, the x-kernel builds a directed graph

of processing nodes and passes network data between them. However, the models

of control flow and protection differ in significant ways. Rather than create a dis-

tinct, flow-specific instance of each handler, x-kernel separates handlers into data and

code components called protocols and sessions, and passes data alternatively between

the two. Each protocol has one shared instance with multiple, separate session data

structures. Since each incoming data packet is handled by its own thread of con-

trol, protocols must explicitly handle concurrency. Further, x-kernel’s use of a single

address-space model affords no inter-protocol protection.

Unlike the transport and network protocols typically considered in x-kernel, we

view session-layer protocols as an extension of the application itself rather than a

system-wide resource. Hence, Tesla ensures they are subject to the same schedul-

ing, protection, and resource constraints as the application. This also contrasts with

the scheduling and buffer model found in the Click modular router [24]. In particular,

Click goes to great lengths to ensure that all queues are explicit and packet handling

does not stall at arbitrary locations. In contrast, our queues are intentionally im-

plicit. Since Tesla flow handlers are subject to context switches at any time, any

attempt to specify specific points at which data should be queued would be futile. In

many ways, Tesla is most similar to UNIX System V streams [32], although queues

in Tesla can never block. Tesla achieves a model of programming akin to System

V streams without requiring any kernel modifications and allows session applications
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to be written by manipulating flow handler objects.

1.1.3 Interposition agents

To avoid making changes to the operating system or to the application itself, Tesla

transparently interposes itself between the application and the kernel, intercepting

and modifying the interaction between the application and the system—acting as an

interposition agent [23]. There are many viable interposition mechanisms, including

ptrace-style system call interception, dynamic linking, and kernel hooks; the pros and

cons of these techniques are well studied [1, 11] and implemented in a variety of

systems.

A number of interposition techniques require assistance from the operating sys-

tem. Jones developed an Interposition Agent toolkit [23] using the Mach 1 system-call

redirection facility. Slic [20] is a general interposition framework usable with certain

production systems such as Solaris and Linux but requires patches to kernel struc-

tures. Tesla uses the more general technique of dynamic library interposition [11].

Some previously developed systems provide file system functionality by overload-

ing dynamic library functions. This mechanism is especially popular for user-level file

systems like IFS [12], Jade [31], and Ufo [1]. The 3D File System [25] is implemented

using COLA [26], a generalized overlay mechanism for library interposition. Thain

and Livny recently proposed Bypass, a similar dynamic-library based interposition

toolkit for building split-execution agents commonly found in distributed systems [34].

Because of their generality, neither of these systems provides any assistance in build-

ing modular network services, particularly at the session layer.

Some existing libraries [9, 22] provide transparent access to a SOCKS [27] proxy

using interposition. Reliable Sockets (Rocks) protects socket-based applications from

network failures by wrapping socket-related system calls [38]; a similar method was

used to implement the transparent connection migration functionality found in the

latest iteration of Migrate [33]1. Conductor [37] traps application network operations

1We borrowed heavily from Migrate’s interposition layer in developing Tesla. Indeed, Migrate
has since discarded its original ad-hoc interposition layer in favor of Tesla.
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and transparently layers composable “adaptors” on TCP connections, but its focus is

on optimizing flows’ performance characteristics, not on providing arbitrary additional

services. To the best of our knowledge, Tesla represents the first interposition toolkit

to support generic session-layer network services.

1.2 Contributions

We argue that a generalized architecture for the development and deployment of

session-layer functionality will significantly assist in the implementation and use of

new network services. This thesis describes the design and implementation of Tesla,

a generic framework for development and deployment of session-layer services. Tesla

consists of a set of C++ application program interfaces (APIs) specifying how to write

these services, and an interposition agent that can be used to instantiate these services

for transparent use by existing applications.

We have analyzed the performance of our Tesla implementation and find that it

runs with acceptable performance degradation. It imposes overhead comparable to

that of another common interposition mechanism—using a proxy server—but is more

powerful and transparent.

To demonstrate the feasibility of developing services with Tesla, and the power

and ease of use of the interfaces it provides, we have implemented several Tesla

handlers providing services such as compression, encryption, transparent use of a

SOCKS [27] proxy, application-level routing [3], flow migration [33], and traffic shap-

ing. We find services significantly easier to write with Tesla than when developing

them from the ground up.

1.3 Organization

The next chapter describes the architecture of Tesla and how it meets the three

goals of using a high-level flow-based abstraction, transparency, and composition.

Chapter 3 shows how handlers are designed and chained together, and describes
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several implemented handlers. Chapter 4 discusses some implementation issues, and

gives experimental results that demonstrate that Tesla does not incur significant

performance degradation in practice. Chapter 5 summarizes our contributions.
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Chapter 2

Architecture

This section discusses the architecture of the Tesla framework. We introduce the

flow handler interface, the fundamental unit of abstraction which describes a par-

ticular session-layer service. We describe how flow handlers communicate with each

other and discuss the mapping between flow handlers and UNIX processes. Finally,

we describe dynamic library interposition, the mechanism that allows Tesla to act

as an interposition agent between applications and system libraries, specially han-

dling application networking calls. We identify some of this mechanism’s security

implications and possible solutions.

2.1 Flow handlers

As we discussed in Section 1.1.3, many tools exist that, like Tesla, provide an

interposition (or “shim”) layer between applications and operating system kernels or

libraries. However, Tesla raises the level of abstraction of programming for session-

layer services. It does so by making a flow handler the main object manipulated by

session services. Each session service is implemented as an instantiation of a flow

handler, and Tesla takes care of the plumbing required to allow session services to

communicate with one another.

A network flow is a stream of bytes that all share the same logical source and

destination (generally identified by source and destination IP addresses, source and
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Input flow
from upstream Zero or more

output flows
to downstreams

Flow handler

Figure 2-1: A flow handler takes as input one network flow and generates one or more
output flows.
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C library

f

g

Application
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f

g

C library

h1 h2 hn

TESLA TESLA

Upstream

Downstream

Figure 2-2: Two Tesla stacks. The migration flow handler implements input flow g

with output flows h1 . . . hn.

destination port numbers, and transport protocol). Each flow handler takes as input

a single network flow, and produces zero or more network flows as output. Flow

handlers perform some particular operations or transformations on the byte stream,

such as transparent flow migration, encryption, compression, etc.

Figure 2-1 shows a generic flow handler. Because flow handlers are explicitly

defined and constructed to operate on only one input flow from an upstream handler

(or end application), they are devoid of any demultiplexing operations. Conceptually,

therefore, one might think of a flow handler as dealing with traffic corresponding to a

single socket (network flow), allowing the session service developer to focus primarily

on the internal logic of the service. A flow handler generates zero or more output flows,

which map one-to-one with downstream handlers (or the network send routine).
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// address and data are C++ wrappers for sockaddr buffers and data

// buffers, respectively. They are very similar to STL strings.

class address, data;

class flow_handler {

protected:

flow_handler *plumb(int domain, int type);

handler* const upstream;

vector<handler*> downstream;

struct acceptret {

flow_handler *const h;

const address addr;

};

public:

virtual int connect(address);

virtual int bind(address);

virtual acceptret accept();

virtual int close();

virtual bool write(data);

virtual int shutdown(bool r, bool w);

virtual int listen(int backlog);

virtual address getsockname() const;

virtual address getpeername() const;

virtual void may_avail(bool) const;

Figure 2-3: Downstream methods in the flow handler class. See Appendix B for the
full interface declaration.

The left stack in Figure 2-2 illustrates an instance of Tesla where stream en-

cryption is the only enabled handler. While the application’s I/O calls appear to

be reading and writing plaintext to some flow f , in reality Tesla intercepts these

I/O calls and passes them to the encryption handler, which actually reads and writes

ciphertext on some other flow g. The right stack in has more than two flows. f is the

flow as viewed by the application, i.e., plaintext. g is the flow between the encryption

handler and the migration handler, i.e., ciphertext. h1, h2, . . . , hn are the n flows that

a migration flow handler uses to implement flow g. (The migration handler initially

opens flow h1. When the host’s network address changes and h1 is disconnected,

it opens flow h2 to the peer, and so forth.) From the standpoint of the encryption

handler, f is the input flow and g is the output flow. From the standpoint of the

migration handler, g is the input flow and h1, h2, . . . , hn are the output flows.
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// in each of these methods, <from> is a downstream flow.

// Downstream flow <from> has bytes available (passed in <bytes>).

virtual bool avail(flow_handler* from, data bytes);

// Downstream flow <from> has a connection ready to be accepted,

// i.e., from->accept() will succeed.

virtual void accept_ready(flow_handler *from);

// A connection attempt on <from> has

// concluded, either successfully or not.

virtual void connected(flow_handler *from, bool success);

// <from> says: you may (or may not) write to me.

virtual void may_write(flow_handler *from, bool may);

};

Figure 2-4: Upstream (callback) methods in the flow handler class definition.

2.1.1 The flow handler API

Every Tesla session service operates on flows and is implemented as a derived class

of flow handler, shown in Figure 2-3. To instantiate a downstream flow handler, a flow

handler invokes its protected plumb method. Tesla handles plumb by instantiating

handlers which appear after the current handler in the configuration.

For example, assume that Tesla is configured to perform compression, then en-

cryption, then session migration on each flow. When the compression handler’s con-

structor calls plumb, Tesla responds by instantiating the next downstream handler,

the encryption handler; when its constructor in turn calls plumb, Tesla instantiates

the next downstream handler, migration. Its plumb method creates a Tesla-internal

handler to implement an actual TCP socket connection.

To send data to a downstream flow handler, a flow handler invokes the latter’s

write, which in turn typically performs some processing and invokes its own down-

stream handler’s write method. Downstream handlers communicate with upstream

ones via callbacks, which are invoked when data becomes available for reading by the

upstream flow, for example. The parts of the flow handler class API are shown in

Figures 2-3 and 2-4. (The complete API is presented in Appendix B.)
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2. connect()
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4. connected()

9. connected()

8. avail()

7. write()5. write()

6. avail()

10. connected()

Encryption
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11. write("cmvest@... ")

12. write("1T8K4P7...") 15. avail("9B837W...")

16. avail("Charles...")

13. write("1T8K4P7...") 14. avail("9B837W...");)

establishing connection
with SOCKS server

SOCKS authentication negotiation
and connection phase
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finger server
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Figure 2-5: Methods invoked in the master process. Tesla invokes 1 and 11 in
response to system calls by the application, and 4, 6, 8, and 14 in response to network
events. Tesla handles 10 and 16 by delivering events to the application process, and
handles 3, 5, 7, and 13 by actually communicating on the network.

2.1.2 Example

Figure 2-5 shows an example of how the API might be used by Tesla handlers in a

stack consisting of encryption and a transparent SOCKS proxy handler (we describe

both in more detail in Chapter 3). In response to a connection request by an applica-

tion, Tesla invokes the connect method of the top-most handler (1), which handles

it by delegating it (2) to its downstream handler, the SOCKS handler. It handles

the encryption handler’s connect request by trying to connect to a SOCKS server (3).

Once the SOCKS server responds (4) the handler instructs the proxy server to connect

to the remote host (5–7). When the server indicates (8) that the connection to the

remote host has been established, SOCKS invokes its upstream connected method

(9)—that of the encryption flow handler—which calls its own upstream connected

method (10). At this point Tesla notifies the application that the connection has

succeeded, i.e., by indicating success to the connect system call which initiated the

process. The right diagram in Figure 2-5 illustrates the methods invoked when the
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application writes a message to the server (11–13) and receives a response (14–16).

2.1.3 Handler method semantics

Most of the virtual flow handler methods presented in Figure 2-3 have semantics

similar to the corresponding non-blocking function calls in the C library. A handler

class may override these methods to implement it specially, i.e., to change the behavior

of the flow according to the session service the handler provides.

Downstream methods

The following methods are invoked by the handler’s input flow. Since in general han-

dlers will propagate these messages to their output flows (i.e., downstream), these

methods are called downstream methods and can be thought of as providing an ab-

stract flow service to the upstream handler.

• connect initiates a connection to the specified remote host. It returns zero if

the connection is in progress, or a nonzero value if the connection is known

immediately to have failed.

• bind binds the socket to a local address. It returns zero on success.

• accept returns a newly created flow encapsulating a new connection; it also

returns the address from which the connection was accepted. accept is generally

invoked immediately in response to an accept ready callback (see below).

A handler overriding the accept method typically uses its downstream handler’s

accept method to actually accept a flow, then instantiates itself with the new

downstream handler set to the accepted flow. This effectively makes a deep

copy of the network stack from the bottom up.

accept returns the newly created handler, and the peer address of the accepted

connection. It returns a null handler/address pair if it fails.

• write outputs bytes to the connection, returning true on success; for precise

semantics, see the next section.
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• shutdown closes the socket for reading and/or writing. It returns zero on success.

• listen begins listening for up to backlog connections on the socket, returning zero

on success.

• getsockname and getpeername return the local and remote addresses of the con-

nection, respectively. Each returns a null address on failure. (A null address

is false when coerced to a boolean; thus one can test for connection using a

construct such as the following:

address = h->getsockname();

if (address) {

// Connected

} else {

// Not connected

}

• may avail informs the handler whether or not it may make any more data avail-

able to its upstream handler. This method is further discussed in Section 2.1.5.

Upstream (callback) methods

The following methods are invoked by the handler’s output flows; each has a from

argument which specifies which handler is invoking the method. Since typically han-

dlers will propagate these messages to their input flow (i.e., upstream), these methods

are called upstream methods and can be thought of callbacks which are invoked by

the upstream handler.

• connected is invoked when a connection request (i.e., a connect method invo-

cation) on a downstream has completed. The argument is true if the request

succeeded or false if not.

• accept ready is invoked when listen has been called and a remote host attempts

to establish a connection. Typically a flow handler will respond to this by calling

the downstream flow’s accept method to accept the connection.
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• avail is invoked when a downstream handler has received bytes. It returns false

if the upstream handler is no longer able to receive bytes (i.e., the connection

has shut down for reading).

We further discuss the input and output primitives, timers, and blocking in the

next few sections. See Appendix B for the complete flow handler API.

2.1.4 Handler input/output semantics

Since data input and output are the two fundamental operations on a flow, we shall

describe them in more detail. The write method call writes bytes to the flow. It

returns a boolean indicating success, unlike the C library’s write call which returns

a number of bytes or an EAGAIN error message (we will explain this design decision

shortly). Our interface lacks a read method; rather, we use a callback, avail, which

is invoked by a downstream handler whenever bytes are available. The upstream

handler handles the bytes immediately, generally by performing some processing on

the bytes and passing them to its own upstream handler.

A key difference between Tesla flow handlers’ semantics and the C library’s

I/O semantics is that, in Tesla, writes and avails are guaranteed to complete. In

particular, a write or avail call returns false, indicating failure, only when it will

never again be possible to write to or receive bytes from the flow (similar to the C

library returning 0 for write or read). Contrast this to the C library’s write and read

function calls which (in non-blocking mode) may return an EAGAIN error, requiring

the caller to retry the operation later. Our semantics make handler implementation

considerably easier, since handlers do not need to worry about handling the common

but difficult situation where a downstream handler is unable to accept all the bytes

it needs to write.

Consider the simple case where an encryption handler receives a write request

from an upstream handler, performs stream encryption on the bytes (updating its

state), and then attempts to write the encrypted data to the downstream handler. If

the downstream handler could return EAGAIN, as in an earlier design of Tesla, the

28



handler must buffer the unwritten encrypted bytes, since by updating its stream en-

cryption state the handler has “committed” to accepting the bytes from the upstream

handler. Thus the handler would have to maintain a ring buffer for the unwritten

bytes and register a callback when the output flow is available for writing. This would

make the handler significantly more complex.

Our approach (guaranteed completion) benefits from the observation that given

upstream and downstream handlers that support guaranteed completion, it is easy to

write a handler to support guaranteed completion.1 This is an inductive argument,

of course—there must be some blocking mechanism in the system, i.e., completion

cannot be guaranteed everywhere. Our decision to impose guaranteed completion on

handlers isolates the complexity of blocking in the implementation of Tesla itself

(as described in Section 4.2), relieving handler authors of having to deal with I/O

multiplexing.

Tesla handlers are asynchronous and event-driven—all method calls are expected

to return immediately—but, in the next section, we also present mechanisms to reg-

ister timers and simulate blocking.

2.1.5 Timers and blocking

So far we have not discussed any way for flow handlers to prevent data from flowing

upstream or downstream through them, i.e., to block. Clearly some blocking mecha-

nism is required in flow handlers—otherwise, in an application where the network is

the bottleneck, the application could submit data to Tesla faster than Tesla could

ship data off to the network, requiring Tesla to buffer potentially large amounts of

data. Similarly, if the application were the bottleneck, Tesla would be required to

buffer all the data flowing upstream from the network until the application was ready

to process it.

To the list of virtual methods in flow handler we now add may write and may avail.

1The inverse—“given upstream and downstream handlers that do not support guaranteed com-
pletion, it is easy to write a handler that does not support guaranteed completion”—is not true, for
the reason described in the previous paragraph.
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A flow handler may ask its input flow to stop sending it data by invokingmay write(false);

it can later restart the handler by invoking may write(true). Likewise, a handler may

throttle an output flow, preventing it from calling avail, by invoking may avail(false).

This does not seriously interfere with our guaranteed-completion semantics, since a

handler which (like most) lacks a buffer in which to store partially-processed data can

simply propagate may writes upstream and may avails downstream to avoid receiving

data that it cannot handle.

A handler may need to register a time-based callback, e.g., to re-enable data

flow from its upstream or downstream handlers after a certain amount of time has

passed. For this we provide the timer abstract class. A handler may define a subclass

of timer that overrides the fire method, then instantiate the subclass and arm it to

instruct the Tesla event loop to invoke it at a particular time. For convenience we

provide a subclass of timer, method timer, which invokes an object method (generally

a handler method) rather than requiring the handler to create its own timer subclass.

See Figure 2-6 for the timer API and Section 3.2 for an example of how timers and

the may write and may avail methods may be used to implement traffic shaping.

2.1.6 Default method implementations

Many handlers, such as the encryption handler, perform only simple processing on

the data flow, have exactly one output flow for one input flow, and do not modify

the semantics of other methods such as connect or accept. For this reason we provide

a default implementation of each method which simply propagates method calls to

the upstream handler (in the case of upstream methods, listed in Figure 2-4) or the

downstream handler (in the case of of downstream methods, listed in Figure 2-3).

The flow handler class provides the protected upstream and downstream instance

variables, presented in Figure 2-3, for use by the default implementations in flow handler.

Figure 2-7 illustrates the semantics of the default avail and write. These are representa-

tive of the semantics for the default implementations of the upstream and downstream

methods, respectively. The default methods only work for handlers with exactly one

output flow (hence the assert statements).
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class timer {

public:

enum from { /* ... */ };

static const from FROM_EPOCH, FROM_NOW;

static const long long CLEAR;

// Arm the timer for <when> microseconds from now or from the epoch.

// Use CLEAR to reset the timer.

void arm(long long when = CLEAR, from what_base = FROM_NOW);

void arm(struct timeval when, from what_base = FROM_NOW);

protected:

// Called by the TESLA event loop when the timer expires.

virtual void fire() = 0;

};

// A convenient subclass of timer which invokes

// obj->method(arg, *this) when it fires.

template <class H, class T = int>

class method_timer : public timer {

public:

typedef void(H::*M)(method_timer<H,T>&);

method_timer(H* obj, M method, T arg = T());

T& arg();

};

// An example use

class foo_handler {

public:

typedef method_timer<foo_handler, int> my_timer;

my_timer timer1;

foo_handler() : timer1(this, &foo_handler::go, 0) {

// Call one second from now

timer1.arm(1000000LL);

}

void go(my_timer& t) {

// Increment counter t.arg()

cerr << "Invocation #" << ++t.arg() << endl;

// Call again five seconds from now

t.arm(5000000LL);

}

};

Figure 2-6: The API for timer and method timer, and an example usage. Tesla will
invoke go(timer1) on the foo handler one second (1,000,000 µs) after the handler is
created and every five seconds thereafter.
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virtual bool flow_handler::write(data bytes)

{

// Other downstream methods (listen, connect, getpeername, etc.)

// look just like this.

assert(downstream.size() == 1);

return downstream[0].write(bytes);

}

virtual bool flow_handler::avail(data bytes)

{

// Other upstream methods (accept_ready, etc.) look just like this.

assert(upstream && downstream.size() == 1 && from == downstream[0]);

return upstream.avail(bytes);

}

Figure 2-7: The semantics of default flow handler methods.

2.2 Process management

The issue of how handlers map on to processes and whether they run in the same

address space as the application using the session services involves certain trade-offs.

If each flow handler (session service module) were run in the same address space as the

application generating the corresponding flow, the resulting performance degradation

would be rather small. Furthermore, this approach has the attractive side effects of

ensuring that the flow handler has the same process priority as the application using

it and there are no inter-handler protection problems to worry about.

Unfortunately, this approach proves problematic in two important cases. First,

there are session services (e.g., shared congestion management as in CM) that require

state to be shared across flows that may belong to different application processes, and

making each flow handler run linked with the application would greatly complicate

the ability to share session-layer state across them. Second, significant difficulties

arise if the application process shares its flows (i.e., the file descriptors corresponding

to the flows) with another process, either by creating a child process through fork

or through file descriptor passing. Ensuring the proper sharing semantics becomes

difficult and expensive. A fork results in two identical Tesla instances running in

the parent and child, making it rather cumbersome to ensure that they coordinate

correctly. Furthermore, maintaining the correct semantics of asynchronous I/O calls

like select and poll is rather difficult in this model. We have implemented a version
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Figure 2-8: Possible inter-process data flow for an application running under Tesla.
M is the migration handler, E is encryption, and CM is the congestion manager.

of Tesla that uses this architecture, which we describe in Appendix A.

A solution to this, of course, is to separate the context in which Tesla flow

handlers run from the application processes that generate the corresponding flows.

In this model, an application running through the tesla wrapper, and hence linked

against the stub, is called a Tesla-enabled application. When such an application is

invoked, the stub library creates or connects to a master process, a process dedicated

to executing handlers.

Each master process has a particular handler configuration, an ordered list of han-

dlers which will be used to handle flows. For instance, the configuration for master

process #1 in Figure 2-8 is “TCP migration; TCP encryption.” TCP flows through

this particular master process will be migration-enabled and encrypted. Master pro-

cess #2 is configured only for congestion management. When the application estab-

lishes a connection, the master process determines whether the configuration contains

any applicable handlers. If so, the master instantiates the applicable handlers and

links them together in what we call a Tesla instance.

Every master process is forked from a Tesla-enabled application, so master pro-

cesses are also linked against the Tesla stub. Once a master process is forked, the
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application and master process communicate via a Tesla-internal socket for each

application-level flow, and all actual network operations are performed by the ded-

icated Tesla process. When the application invokes one of the socket operations

listed in Figure 4-1, Tesla traps it and converts it to a message which is transmitted

to the master process via the master socket. The master process must return an

immediate response (this is possible since all Tesla I/O is non-blocking).

In this fashion Tesla instances can be chained, as in Figure 2-8: an application-

level flow may be connected to an instance (#1A) in a master process, which is in

turn connected via its stub to an instance in another master process (#2A). Chaining

enables some handlers to run in a protected, user-specific context, whereas handlers

which require a system-scope (like system-wide congestion management) can run in

a privileged, system-wide context.

In particular, UNIX semantics dictate that child processes inherit the same char-

acteristics as thier parent, hence master processes receive equal privilege, scheduling

priority, and protection as the initial application process. Further, when file descrip-

tors (flows) are passed between Tesla-enabled applications, the handlers continue

to run in the scope of their original master process. Hence, applications may interact

with multiple master processes: their original master process and those associated

with any file descriptors (flows) passed to it by other Tesla-enabled applications.

Ideally, Tesla could start in internal mode and move to master-process mode if

flows ever become shared (e.g., because of a fork). While we have implemented an in-

process version of Tesla (described in Appendix ??), we have not yet implemented

this dynamic optimization.

2.3 Interposition

To achieve the goal of application transparency, Tesla can be configured as an inter-

position agent at the C-library level. When a dynamically-linked application is run

on an operating system like Linux, the dynamic linker is called to load the shared

libraries which the program needs to function. Such libraries typically include imple-

34



mentations of system-wide services such as compression (e.g., zlib, or libz), graphic

functions (e.g., libX11), user interface libraries (e.g., libgtk), and most notably for our

purposes, the C library libc, which provides implementations of standard C functions

(including interfaces to network socket and I/O functions).

However, before the linker loads libraries such as the C library, it checks the

LD PRELOAD environment variable, loading any shared libraries named therein.

Function definitions in these preloaded libraries take first precedence. Tesla is ac-

tivated by placing the stub library, libtesla.so, in LD PRELOAD. A simple wrapper

program, tesla, is used to set up the environment and invoke an application, e.g.:

tesla +encrypt -key secring.gpg +migrate telnet beacon

This would open a telnet connection to the host named beacon, with encryption

(using secring.gpg as the private key) and end-to-end migration enabled.

We chose to keepTesla invocation explicit, but another straightforward approach

would be to put libtesla.so in one’s LD PRELOAD all the time (e.g., in system-wide

or user-specific shell initialization scripts) and introducing a configuration file (per-

haps /etc/tesla.cf, or .tesla.cf in the user’s home directory) to control when Tesla is

enabled.

2.4 Security Considerations

Like most software components, flow handlers can potentially wreak havoc within

their protection context if they are malicious or buggy. Our chaining approach allows

flow handlers to run within the protection context of the user to minimize the damage

they can do; but in any case, flow handlers must be trusted within their protection

contexts. Since a malicious flow handler could potentially sabotage all connections

in the same master process, any flow handlers in master processes intended to have

system-wide scope (such as a Congestion Manager handler) must be trusted.

Currently setuid and setgid applications, which assume the protection context of

the binary iself rather than the user who invokes them, may not be Tesla-enabled:
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one cannot trust a user-provided handler to behave properly within the binary’s

protection context.

Even if the master process (and hence the flow handlers) run within the protection

context of the user, user-provided handlers might still modify network semantics to

change the behavior of the application. Consider, for example, a setuid binary which

assumes root privileges, performs a lookup over the network to determine whether the

original user is a system administrator and. If a malicious user provides flow handlers

that spoof a positive response for the lookup, the binary may be tricked into granting

root privileges to the malicious user.

Nevertheless, many widely-used applications (e.g., ssh [15]) are setuid, so we do

require some way to support them. We can make the tesla wrapper setuid root, so

that it is allowed to add libtesla.so to the LD PRELOAD environment variable even

for setuid applications. The tesla wrapper then invokes the requested binary, linked

against libtesla.so, with the appropriate privileges. libtesla.so creates a master process

and begins instantiating handlers only once the process resets its effective user ID

to the user’s real user ID, as is the case with applications such as ssh. This ensures

that only network connections within the user’s protection context can be affected

(maliciously or otherwise) by handler code.

36



Chapter 3

Example handlers

This chapter describes a few flow handlers we have implemented. Our main goal is

to illustrate how non-trivial session services can be implemented easily with Tesla,

showing how its flow-oriented API is both convenient and useful. We describe our

handlers for transparent use of a SOCKS proxy, traffic shaping, encryption, compres-

sion, and end-to-end flow migration.

The compression, encryption, and flow migration handlers require a similarly con-

figuredTesla installation on the peer endpoint, but the remaining handlers are useful

even when communicating with a remote application that is not Tesla-enabled.

3.1 SOCKS and application-level routing

Our SOCKS handler is functionally similar to existing transparent SOCKS libraries [9,

22], although its implementation is significantly simpler. As we alluded in our de-

scription of Figure 2-5, it overrides the connect handler to establish a TCP connection

to a proxy server, rather than a TCP or UDP connection directly to the requested

host. When its connected method is invoked, it does not pass it upstream, but rather

negotiates the authentication mechanism with the server and then passes it the actual

destination address, as specified by the SOCKS protocol.

If the SOCKS server indicates that it was able to establish the connection with

the remote host, then the SOCKS handler invokes connected(true) on its upstream
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handler; if not, it invokes connected(false). The upstream handler, of course, is never

aware that the connection is physically to the SOCKS server (as opposed to the

destination address originally provided to connect). We provide pseudocode for our

SOCKS server (sans error handling) in Figure 3-1.

We plan to utilize the SOCKS server to provide transparent support for Resilient

Overlay Networks [3], or RON, an architecture allowing a group of hosts to route

around failures or inefficiencies in a network. We will provide a ron handler to allow a

user to connect to a remote host transparently through a RON. Each RON server ex-

ports a SOCKS interface, so ron handler can use the same mechanism as socks handler

to connect to a RON host as a proxy and open an indirect connection to the remote

host. ron handler also utilizes the end-to-end migration of migrate handler (presented

below in Section 3.5) to enable RON to hand off the proxy connection to a different

node if it discover a more efficient route from the client to the peer.

3.2 Traffic shaping: timeouts and throttling

It is often useful to be able to limit the maximum throughput of a TCP connection.

For example, one might want prevent a background network operation such as mirror-

ing a large software distribution to impact network performance. We had always had

the goal of providing rate control as an interesting session service, so we took special

interest in the following email message sent to our group by one of our colleagues:

Subject: Slow file distribution?

To: nms@lcs.mit.edu

Date: Sun, 30 Sep 2001 13:47:46 -0400 (EDT)

Before I start hacking ’sleep’ statements into rsync, can anyone think of any very-

network-friendly file distribution programs?

I have to transfer some decently-sized logfiles from the RON boxes back to MIT, and

I’d like to do so without impacting the network much at any given time, so that I

don’t have a synchronized slowing-down of the entire RON network that’ll affect my

measurements.
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class socks_handler : public flow_handler {

int state;

address dest;

method_timer<socks_handler> timer1;

public:

socks_handler(...) : timer1(this, &socks_handler::timeout, 0) {

timer1.arm(10000000LL); // timeout in 10 seconds

}

int connect(address a) {

dest = a;

downstream[0]->connect(proxy server address);

}

void connected(flow_handler *from, bool success) {

if (!success) {

upstream->connected(this, false);

return;

}

downstream[0]->write(supported authentication mechanisms);

state = HELLO;

}

bool avail(flow_handler *from, string data) {

if (state == ESTABLISHED) return upstream->avail(this, data);

if (state == HELLO) {

// Select an authentication mechanism based on data

downstream[0]->write(...);

state == AUTHENTICATING;

return true;

}

if (state == AUTHENTICATING) {

if (data indicates that authentication failed) {

upstream->connected(this, false);

return false; // I’m closed for reading!

}

downstream[0]->write(connect to <dest>);

state = CONNECTING;

return true;

}

if (state == CONNECTING) {

if (data indicates that connecting to remote host succeeded) {

state = ESTABLISHED;

upstream->connected(this, true);

} else

upstream->connected(this, false);

}

}

void timeout(method_timer<foo_handler>& t) {

upstream->connected(this, false);

}

// no need to implement write; just pass it through to downstream[0]

};

Figure 3-1: Pseudocode for a SOCKS handler (lacking error-handling).
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Anything come to mind?

This is an excellent example of functionality that can be provided using a session-

layer service, but one that needs to be done transparent to the end application (in

this case, RON clients). We developed a traffic shaping handler to provide this

functionality.

The traffic shaper keeps count of the number of bytes it has read and written

during the current 100-millisecond timeslice. If a write request would exceed the

outbound limit for the timeslice, then the portion of the data which could not be

written is saved, and the upstream handler is throttled via may write. A timer is

created to notify the shaper at the end of the current timeslice so it can continue

writing and unthrottle the upstream handler when appropriate. Similarly, once the

inbound bytes-per-timeslice limit is met, any remaining data provided by avail is

buffered, downstream flows are throttled, and a timer is registered to continue reading

later.

Figure 3-2 provides code for a shaper which restricts outbound traffic only. Here

we introduce the flow handler::init context class, which encapsulates the initialization

context of a flow handler, including user-provided parameters (in this case, timeslice

length and bandwidth limit).

3.3 Triple-DES encryption/decryption

crypt handler is a triple-DES encryption handler for TCP streams. We use OpenSSL

[10] to provide the DES implementation. Figure 3-3 shows how crypt handler uses

the Tesla flow handler API. Note how simple the handler is to write: we merely

provide alternative implementations for the write and avail methods, routing data first

through a DES encryption or decryption step (des3 cfb64 stream, a C++ wrapper we

have written for OpenSSL functionality).
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class shape_handler : public flow_handler {

int timeslice; // 100000 = 100 ms

int limit_per_timeslice; // 1024 = 10 KB/s

method_timer<shape_handler> reset;

int limit_this_timeslice; // bytes we can still write in this timeslice

string buffer;

public:

shape_handler(init_context& ctxt) :

flow_handler(ctxt), reset(this, &handle_reset)

{

// Read configuration

timeslice = ctxt.int_arg("timeslice", 100000);

limit_per_timeslice = ctxt.int_arg("limit_per_timeslice", 1024);

// Initialize per-timeslice state and timer

limit_this_timeslice = limit_per_timeslice;

reset.arm(timeslice);

}

bool write(data d) {

if (limit_this_timeslice >= d.length()) {

// just write the whole thing

limit_this_timeslice -= d.length();

return downstream[0]->write(d);

}

// Write whatever we can...

downstream[0]->write(data(d.bits(), limit_this_timeslice));

// ...and buffer the rest.

buffer.append(d.bits() + limit_this_timeslice,

d.length() - limit_this_timeslice);

// Don’t accept any more bytes!

upstream->may_write(this, false);

return true;

}

void reset(method_timer<shape_handler> t) {

t.arm(timeslice);

limit_this_timeslice = limit_per_timeslice;

if (buffer.length() == 0) return;

if (buffer.length() <= limit_this_timeslice) {

// Clear the buffer!

downstream[0]->write(data(buffer.data(), buffer.length()));

buffer.resize(0);

// Now accept more bytes for writing.

upstream->may_write(this, true);

} else {

// Write whatever we can, and buffer the rest.

downstream[0]->write(data(buffer.data(), limit_this_timeslice));

buffer = string(buffer, limit_this_timeslice,

buffer.length() - limit_this_timeslice);

limit_this_timeslice = 0;

}

}

};

Figure 3-2: Complete code for an outbound traffic shaper.
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class crypt_handler : public flow_handler {

des3_cfb64_stream in_stream, out_stream;

public:

crypt_handler(init_context& ctxt) : flow_handler(ctxt)

in_stream(des3_cfb64_stream::ENCRYPT),

out_stream(des3_cfb64_stream::DECRYPT)

{}

bool write(data d) {

// encrypt and pass downstream

return downstream[0].write(out_stream.process(d));

}

bool avail(flow_handler *from, data d) {

// decrypt and pass upstream

return upstream.avail(this, in_stream.process(d));

}

};

Figure 3-3: Complete code for a transparent triple-DES CFB encryption/decryption
layer.

3.4 Compression

Initially our compression handler was very similar to our encryption handler: we

merely wrote a wrapper class (analogous to des3 cfb64 stream) for the freely available

zlib stream compression library. Noting that many useful handlers can be imple-

mented simply by plugging in an appropriate stream class, we decided to generalize

crypt handler into a templatized stream handler. Figure 3-4 presents complete code

for zlib handler.

3.5 Session migration

We have used Tesla to implement transparent support in the Migrate session-layer

mobility service [33]. In transparent mode, Migrate preserves open network connec-

tions across changes of address or periods of disconnection. Since TCP connections

are bound to precisely one remote end point and do not survive periods of discon-

nection in general, Migrate must synthesize a logical flow out of possibly multiple

physical connections (a new connection must be established each time either end-
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template <class T>

class stream_handler : public flow_handler {

protected:

T input_stream;

T output_stream;

stream_handler(init_context& ctxt) : flow_handler(ctxt) {}

public:

bool write(data d) {

data out = output_stream.process(d);

bool success = downstream[0].write(out);

// allow stream to free any internal buffers it may have

// needed to allocate

output_stream.release(d);

return success;

}

bool avail(data d) {

data in = input_stream.process(d);

bool success = upstream.avail(this, in);

input_stream.release(in);

return success;

}

};

class zlib_handler : public stream_handler<zlib_stream> {

public:

zlib_handler(init_context& ctxt) :

stream_handler(ctxt),

input_stream(zlib_stream::DEFLATE),

output_stream(zlib_stream::INFLATE)

{}

};

Figure 3-4: Complete code for stream handler, a “convenience” handler simplying
implementation of handlers which perform straightforward transformations on data.
We use stream handler to implement zlib handler, our compression handler.
transparent compression layer
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point moves or reconnects). Further, since data may be lost upon connection failure,

Migrate must double-buffer in-flight data for possible re-transmission.

This basic functionality is straightforward to provide in Tesla. We simply create

a handler that splices its input flow to an output flow, and conceals any mobility

events from the application by automatically initiating a new output flow using the

new end-point locations. The handler stores a copy of all outgoing data locally in

a ring-buffer and re-transmits any lost bytes after re-establishing connectivity on a

new output flow. Incoming data is not so simple, however. Because it is possible

that received data has not yet been read by the application before a mobility event

occurs, Migrate must instantiate a new flow immediately after movement, but con-

tinue to supply the buffered data from the previous flow to the application until it is

completely consumed. Only then will the handler begin delivering data received on

the subsequent flow(s).

Note that because Migrate wishes to conceal mobility when operating in trans-

parent mode, it is important that the handler be able to override normal signaling

mechanisms. In particular, it must intercept connection failure messages and pre-

vent them from reaching the application, instead taking appropriate action (e.g., the

CONNECTION RESET messages typically experienced during long periods of discon-

nection) to manage and conceal the changes in end points. In doing so, the handler

also overrides the getsockname() and getpeername() calls to return the original end-

points, irrespective of the current location.
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Chapter 4

Implementation

This chapter discusses some of the important implementation choices made in Tesla.

We describe how we implement the Tesla stub, which, when dynamically linked

against an application, captures the application’s network input and output events

and sends them to the master process. We discuss two special handlers, top handler

and bottom handler, present in all master processes. top handler martials events

between the application and applicable flow handlers, and bottom handler martials

events between the flow handlers and the underlying network streams. Finally, we

describe how master processes’ event loops are structured to handle blocking input

and output flexibly, and examine the performance overhead of our implementation.

System call Possible responses
socket 〈“filehandle”, f〉 〈“nak”〉
connect 〈“ack”〉 〈“nak”〉
bind 〈“ack”〉 〈“nak”〉
listen 〈“ack”〉 〈“nak”〉
accept 〈“filehandle”, f〉 〈“nak”〉
getsockname 〈“address”, a〉 〈“nak”〉
getpeername 〈“address”, a〉 〈“nak”〉

Figure 4-1: Socket operations trapped by Tesla and converted to messages over the
master socket.
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4.1 Tesla stub implementation

When the application invokes the socket library call, the Tesla stub’s wrapper for

socket—in the application process—sends a message 〈“socket”, domain, type〉 to the

master process. (domain and type are the arguments to socket, e.g., AF INET and

SOCK STREAM respectively.) If the master process has no handlers registered for

the requested domain and type, it returns a negative acknowledgement and the ap-

plication process uses the socket system call to create and return the request socket.

If, on the other hand, there is a handler class (a subclass of handler, declared in

Figure 2-3) registered for the requested domain and type, the master process instan-

tiates the handler class. Once the handler’s constructor returns, the master process

creates a pair of connected UNIX-domain sockets. One is retained in the master

process, and one is passed to the application process and closed within the master

process. The application process notes the received filehandle (remembering that it

is a Tesla-wrapped filehandle) and returns it as result of the socket call.

The application process handles operation on wrapped filehandles specially. The

Tesla library overloads connect, bind, listen, accept, getsockname, and getpeername

with wrapper functions. When the application invokes any of these calls on a Tesla-

wrapped filehandle, the wrapper function sends a message to the master process,

which invokes the corresponding method on the handler object for that flow. Based

on the return result of the method, the master process returns a message to the client

as in Figure 4-1. The client process receives the message, returning the result to the

application.

4.1.1 Reading, writing, and multiplexing

The Tesla stub does not need to specially handle reads, writes, and multiplexing

on wrapped sockets. The master process and application process share a socket for

each application-level flow, so to handle a read, write, or select, whether blocking or

non-blocking, the application process merely uses the corresponding unwrapped C

library call. Even if the operation blocks, the master process can continue handling
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I/O while the application process waits.

4.1.2 Connecting and accepting

The semantics for connect and accept are necessarily different than for other socket

operations, since unlike listen, bind, etc., they may not return immediately, but instead

cause a potentially long-running operation to begin in the master process.

How can the application process be notified when the connect or accept is complete

(whether successfully or not)? For blocking operations, the application process could

simply wait for a message on the master socket indicating completion. However, if

the connect or accept is non-blocking, the response could be received on the master

socket at any time. This would complicate our simple synchronous request/response

model on the master socket: we would have to be prepared at any time to receive the

result of a connect or accept operation.

Furthermore, we would have to provide some sort of wrapper around select and

poll. If the application attempts to block on write availability to wait for a connect

operation to complete, select will return immediately (since our logical filehandle is

always connected and immediately ready for writing). If it blocks on read availability

to wait for an accept operation to complete, select will never return a read event, since

no bytes are ever exchanged on a “server socket” being used for an accept.

We use the following trick to circumvent this problem. Within the master pro-

cess, we modify the semantics of accept to write a single byte to the logical server

socket whenever a connection is accepted. Hence when the application blocks on

read availability on the server socket, select naturally returns a read event whenever

a connection has been accepted. Our accept wrapper in the client process consumes

the byte and synchronously requests and receives the newly accepted logical socket

from the master process.

We use a similar trick for connect, which always returns a single byte on the logical

filehandle when a connecting is accepted by the master process. Our connect wrapper

consumes the byte and notes that the connection is ready for reading and writing.

Unfortunately, this doesn’t quite work for selecting on connect, since to detect
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connection success one selects on writing rather than reading, but the master returns a

byte to be read. (Since the connection between the application and the master process

is a connected UNIX-domain socket, there is no way to force the application to block

on a write to emulate the desired behavior.) Therefore, we must still wrap the select

system call to handle this special case. In general, our approach is still beneficial,

because handling this special case is far easier than switching to an asynchronous

model for application/master communication.

4.1.3 Forking and filehandle duplication

Implementing fork, dup, and dup2 is quite simple. We wrap the fork library call so

that the child process obtains a new connection to the master process. Having a

single logical flow available to more than one application process, or as more than

one filehandle, presents no problem: application processes can use each copy of the

filehandle as usual. Once all copies of the filehandle are shut down, the master process

can simply detect via a signal that the filehandle has closed and invokes the handler’s

close method.

4.2 top handler and bottom handler

In Chapter 2 we described at length the interface between handlers, but we have not

yet discussed how precisely handlers receives data and events from the application.

We have stated that every handler has an upstream flow which invokes its methods

such as connect, write, etc.; the upstream flow of the top-most handler for each flow

(e.g., the encryption handler in Figures 2-2 and 2-5) is a special flow handler called

top handler.

When Tesla’s event loop detects bytes ready to deliver to a particular flow via

the application/master-process socket pair which exists for that flow, it invokes the

write method of top handler, which passes the write call on to the first real flow handler

(e.g., encryption). Similarly, when a connect, bind, listen, or accept message appears

on the master socket, the Tesla event loop invokes the corresponding method of the
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top handler for that flow.

The dual of this process occurs when the top-most handler invokes a callback

method (e.g., avail) of its upstream handler, the top handler for the flow. In the case

of avail, top handler writes the data to the application; in the case of connected or

accept ready, it writes a single byte to the application as described in Section 4.1.2.

Similarly, each flow handler at the bottom of theTesla stack has a bottom handler

as its downstream. For each non-callback method—i.e., connect, write, etc.—bottom handler

actually performs the corresponding network operation.

top handlers and bottom handlers maintain buffers, in case a handler writes data

to the application or network, but the underlying filesystem buffer is full (i.e., sending

data asynchronously to the application or network results in an EAGAIN condition). If

this occurs in a top handler, the top handler requests via may avail that its downstream

flow stop sending it data using avail; similarly, if this occurs in a bottom handler, it

requests via may write that its upstream flow stop sending it data using write.

4.3 The event loop

As with most event-driven programs, at Tesla’s core is a select system call. Tesla

blocks on the following events:

1. Data available on the master socket, i.e., a control message from the application.

2. Data available on a top handler file descriptor, i.e., a write from the application.

3. Write readiness on a top handler (application) socket if the top handler has bytes

which still need to be sent to the application, i.e., the last attempt to write to

the application resulted in an EAGAIN condition.

4. Data available on a bottom handler file descriptor, i.e., bytes ready to be read

from the network.

5. Write readiness on a bottom handler (network) socket if the bottom handler has

bytes buffered, i.e., the last attempt to write to the network resulted in an
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EAGAIN condition.

6. Expiration of timers (registered via a timer::arm call, as described in Section 2.1.5).

Tesla maintains timers in a set structure sorted, decreasing with respect to

time left until expiration, so it is a simple operation to set the select timeout to

the time until the next timer expiration.

If a handler invokes may write(h, false) on a top handler which is its input flow,

Tesla will suspend receiving data on this flow from the application, since there would

be nowhere to pass along data written to it by the application. Eventually this may

cause the application’s writes to block. This behavior is desirable in, e.g., a traffic

shaper (see Section 3.2), which calls may write(this, false) to notify the upstream

handler (and eventually Tesla) to stop writing, causing the application’s flow to

block. Tesla implements this behavior by simply removing the filehandle from the

rfds input to the select call (case 2 above).

Likewise, if a handler invokes may avail(false) on a bottom handler which is its out-

put flow, Tesla will suspend receiving data on this flow from the network, since there

would be nowhere to pass along data received on the network. This feedback mech-

anism may cause the underlying transport mechanism (e.g., TCP) to slow down the

connection from the peer. To implement this behavior, Tesla removes the filehandle

from the rfds input to the select call (case 4 above).

Figure 4-2 demonstrates what may happen when an application performs a write

of 100 bytes to a Tesla flow (compressed down to 50 bytes by the compression

layer). Tesla receives the bytes from the application on file descriptor 3 (a UNIX-

domain stream socket), but the underlying network connection (file descriptor 6, a

TCP socket) can only accept 30 bytes to be sent. The bottom handler buffers the

remaining 20 bytes and requests to be notified by the Tesla event loop when it

becomes possible to write to file descriptor 6. The bottom handler then throttles the

compression handler, which in turn throttles the top handler, which causes Tesla

to stop reading bytes on file descriptor 3. The bottom handler still returns true (a

successful write).
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compress_handler

bottom_handler

3. compress_handler
compresses data
down to 50 bytes

5. bottom_handler uses
write() system call to write 50
bytes to network on FD 6

6. write() system call
returns "only 30 bytes written;
network is ’full’".  bottom_handler
asks TESLA to notify it when
FD 6 is available for writing

7. bottom_handler
buffers 20 bytes

10. top_handler receives
may_write(false) and
temporarily stops
examining FD 5 in its
event loop

11. bottom_handler
returns true from
write(50 bytes)
method

top_handler

1. application writes 100
bytes to a wrapped file
descriptor, caught by the stub
and passed to TESLA on FD 5.
application is immediately told:
100 bytes written

2. top_handler calls
downstream->write(100 bytes)

4. compress_handler calls
downstream->write(50 bytes)

8. bottom_handler calls
upstream->may_write(false)
to throttle compress

9. compress propagates
may_write(false)
upstream

12. compress_handler
returns true from
write(100 bytes)
method

Figure 4-2: An application writes to a network flow which cannot presently deliver
all the bytes via the underlying transport protocol (a TCP stream on file descriptor
6).
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4.4 Performance

When adding a network service to an application, we may expect to incur one or both

of two kinds of performance penalties. First, the service’s algorithm, e.g., encryp-

tion or compression, may require computational resources. Second, the interposition

mechanism, if any, may involve overhead such as inter-process communication, de-

pending on its implementation. We refer to these two kinds of performance penalty

as algorithmic and architectural, respectively.

If the service is implemented directly within the application, e.g., via an application-

specific input/output indirection layer, then the architectural overhead is probably

minimal and most of the overhead is likely to be algorithmic. However, adding an

interposition agent like Tesla outside the context of the application may add signif-

icant architectural overhead.

To analyze Tesla’s architectural overhead, we constructed several simple tests

to test how using Tesla affects latency and throughput. We compare Tesla’s

performance to that of a tunneling, or proxy, agent, where the application explicitly

tunnels flows through a local proxy server.

We provide three benchmarks. rbandwidth(s) establishes a TCP connection to a

server and reads data into a s-byte buffer until the connection closes. wbandwidth(s) is

similar: it accepts a TCP connection and writes a particular s-byte string repeatedly

until a fixed number of bytes have been sent. latency(s) connects to a server, sends it

s bytes, waits for an s-byte response, and so forth, until a fixed number of exchanges

have occurred.

The left graph in figure 4-3 shows the results from running rbandwidth under sev-

eral configurations, both with and without a transparent network service (triple-DES

stream encryption/decryption in CBC [chaining block cipher] mode, as implemented

by the OpenSSL library [10]). We run all the benchmarks on a single machine to

eliminate network performance as a variable. The first three configurations perform

no encryption:

1. The benchmark program running unmodified.
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Figure 4-3: Results of the rbandwidth test. In the left graph, we show error bars at
±1 standard deviation; in the right graph, the variance was consistently very small.
(wbandwidth yielded results similar to rbandwidth.)

2. The benchmark program, with each connection passing through a proxy server

that performs no processing on the data. The benchmark program connects to

the proxy server via a UNIX-domain socket, and the proxy contacts the server

via TCP on behalf of the benchmark program.

3. The benchmark program running under Tesla with the dummy handler en-

abled. dummy is a trivial handler which performs no processing on the data.

4. The benchmark program, with each connection passing through a TCP proxy

server that performs no processing on the data. The benchmark program con-

nects to the proxy server via a TCP connection, and the proxy contacts the

server via TCP on behalf of the benchmark program.

We can think of these configurations as providing a completely trivial transparent

service, an “identity service” with no algorithm (and hence no algorithmic overhead)

at all. Comparing the unmodified benchmark with the following three tests isolates,

respectively, the architectural overhead of a UNIX-domain proxy server (i.e., an extra

UNIX-domain socket stream through which all data must flow), Tesla (i.e., an extra

UNIX-domain socket stream plus any overhead incurred by the master process) and a

typical TCP proxy server (i.e., an extra TCP socket stream for all data), respectively.
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The next four configurations, whose performance is illustrated in the right graph

in Figure 4-3, provide a nontrivial service, triple-DES encryption:

1. A modified version of the benchmark, with triple-DES encryption and decryp-

tion performed directly within in the benchmark application.

2. The benchmark program, with each connection passing through a UNIX-domain

socket stream proxy server. The proxy server performs encryption/decryption.

3. The benchmark program, running underTesla, with the crypt (encryption/decryption)

handler enabled.

4. The benchmark program, with each connection passing through a TCP proxy

server. The proxy server performs encryption/decryption.

Comparing each of these tests with the corresponding benchmark above in the

left graph illustrates the algorithmic overhead of the service.

The throughput graph shows that for trivial services (like the “dummy” service)

using a proxy server or Tesla incurs a significant performance penalty compared to

implementing the service directly within the application. This is due to the over-

head of inter-process communication. In the first configuration without DES (#1),

data flow directly from the server to the client, i.e., through a single socket. In the

next three configurations (#2–3) data must flow through one UNIX-domain socket

stream to the intermediary process, i.e., the Tesla master process or proxy server,

and through another socket to the client. With two sockets instead of one, the

kernel must handle twice as many system calls, and perform twice as many copy

operations between address spaces. In the final configuration, data flow through two

TCP streams; the extra overhead of IP/TCP processing (as opposed to a UNIX-

domain socket stream, which requires none of the network-layer functionality of IP or

transport-layer functionality of TCP) causes a small but noticable performance hit

compared to configurations (#2 and 3).

In contrast, for nontrivial services such as encryption/decryption, the algorith-

mic overhead dominates the architectural overhead, and the performance differences
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Figure 4-4: Results of the latency tests for a block size of one byte.

between the various configurations are barely noticeable. For large block sizes, the

bottleneck is simply the speed at which the test computer can perform DES encryp-

tion. For small block sizes, the bottleneck is handling the 1-byte write system call in

the application; the intermediary process (Tesla or the proxy) receives larger chunks

of data at once, since bytes aggregate in the operating system’s buffer between the

application and the intermediary.

The latency benchmark yields different results: since data rates never exceed a

few tens of kilobytes per second, the computational overhead of the algorithm itself is

negligible and the slowdown is due exclusively to the architectural overhead. We see

no difference at all between the speed of the trivial service and the nontrivial service.

Again, the TCP proxy server is slower due to IP/TCP overhead in the kernel.

We conclude that when inter-process communication is a bottleneck, using a proxy

server or Tesla as an interposition agent shows a marked slowdown. In the more

typical case that the bottleneck lies elsewhere (in the transparent service’s algorithm,

or certainly in the network) then neither Tesla nor a proxy server incurs significant

overhead.
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Chapter 5

Conclusion

This thesis described the design and implementation of Tesla, a framework to imple-

ment session layer services in the Internet. These services are gaining in importance;

examples include connection multiplexing, congestion state sharing, application-level

routing, mobility/migration support, compression, and encryption.

Tesla incorporates three principles to provide a transparent and extensible frame-

work: first, it exposes network flows as the object manipulated by session services,

which are written as flow handlers without dealing with socket descriptors; second,

it maps handlers on to processes in a way that provides for both sharing and pro-

tection; and third, it can be configured using dynamic library interposition, thereby

being transparent to end applications.

We showed how Tesla can be used to design several interesting session layer

services including encryption, SOCKS and application-controlled routing, flow mi-

gration, and traffic rate shaping, all with acceptably low performance degradation.

In Tesla, we have provided a powerful, extensible, high-level C++ framework which

makes it easy to develop, deploy, and transparently use session-layer services.

5.1 Future Work

Currently, to use Tesla services such as compression, encryption, and migration that

require Tesla support on both endpoints, the client and server must use identical
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configurations of Tesla, i.e., invoke the tesla wrapper with the same handlers spec-

ified on the command line. We plan to add a negotiation mechanism so that once

mutual Tesla support is detected, the endpoint can dynamically determine the con-

figuration based on the intersection of the sets of supported handlers. We also plan to

add per-flow and configuration so that the user can specify which handlers to apply

to flows based on the flow attributes such as port and address.

We plan to continue developing Tesla flow handlers such as Congestion Manager.

We are also developing a handler which has no output flows but rather connects to

a network simulator, facilitating the use of real applications to test protocols and

network topologies in simulators such as ns [16]. Finally, we plan to explore the

possibility of moving some handler functionality directly into the application process

to minimize Tesla’s architectural overhead.
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Appendix A

Alternate Design: In-process Flow

Handlers

In our initial implementation, the Tesla library operated entirely within the con-

text of the wrapped application’s process. The major theoretical advantage of this

approach is that data need not flow through an extra process intermediating between

the application and the network. However, we find that this method makes it difficult

to maintain the correct filehandle semantics for many input/output and process con-

trol system calls. Further, it compromises our goals of enabling information sharing

between flows.

In this design, application-level I/O calls such as read, write, connect, and select

are intercepted by Tesla and routed directly to the first applicable handler on the

stack. For instance, in an encryption layer, a single application-level read call might be

intercepted by Tesla and routed to the encryption handler. The encryption handler’s

implementation of read, shown in Figure A-1, reads a chunk of data from the output

flow (using the TS NEXT macro, which delegates control to the next handler on the

stack or to the C library if there are no more handlers), and then decrypt the results

in place. These steps are all performed within the context of the application process,

so there is no additional latency penalty due to interprocess communication.

An in-process architecture has several significant drawbacks, however. First, when

an application invokes the fork system call, each open file descriptor, as viewed by
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int crypt_read(int fd, char *buffer, int length,

ts_context ctxt)

{

/* TS_DATA macro obtains connection state. */

crypt_state *state = TS_DATA;

/* TS_NEXT invokes the next handler. */

int bytes = TS_NEXT(read, fd, buffer, length);

if (bytes > 0)

decrypt_data_inplace(buffer, bytes,

&state->decryption_state);

return bytes;

}

Figure A-1: The read method for a simple encryption/decryption handler using the
in-process implementation of Tesla.

the application, becomes available to both the parent and child processes. Since

the parent and child would share application-level flows, the Tesla handlers in the

two processes would need to coordinate. We could have been supported this case

by shuttling handler state between parent and child processes, or retaining a pipe

between the parent and child so each would have access to the handler stack, but either

method would have added significant complexity and eliminated any performance

advantage.

Second, it can be difficult to share information between handlers running in differ-

ent processes. While related handlers in different processes (e.g., multiple Congestion

Manager handlers aggregating congestion handling for several flows) could certainly

use a typical interprocess communication mechanism such as pipes, sharing state is

far easier if the handlers coexist in the same address space—this way handlers can

simply share access to high-level (C or C++) data structures and application logic.

Third, we found it extremely difficult to preserve certain semantics of file de-

scriptors in an efficient way. To illustrate the problem, we will consider a simple

application using asynchronous I/O and multiplexing to establish a connection to a

server. It would typically:
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1. Call socket, and use fcntl to make the socket non-blocking. Let f = the file

descriptor returned by socket.

2. Call connect to establish a connection to the server.

3. Enter a multiplexing loop containing a select call. Include f in writefds, the list

of file descriptors on which select is waiting for a write to become available.

4. When select returns with f set in writefds, note that the connection has been

established, and begin writing.

However, consider how Tesla must behave when the stack contains a handler to

route traffic through a SOCKS proxy. SOCKS requires an initial setup phase where

the client and server negotiate an authentication mechanism, if any. The client must

read the list of supported mechanisms from the server; this implies that a Tesla

SOCKS handler may be required to read from a output flow (the flow from the

SOCKS handler to the proxy server, which we will refer to as g) even though the

application has requested to be notified of write availability on the output flow (the

flow from the application to the SOCKS handler, f above).

To emulate the select and poll C library calls in a fully general way, we split the

functions into several steps:

1. For each input flow which the application has included in the lists of read, write,

or error events it is interested in, call an rwselect (“rewrite select”) handler

to translate events on the input flow to the corresponding output flows. For

instance, a SOCKS proxy handler in the authentication negotiation phase might

convert a input write event on f into a output read event on g. If there is

another handler beneath g on the network stack, this handler would have the

opportunity to further convert the read event on g, which is a input write event

from its standpoint, into one or more output events on its output flows. Select

rewriting is illustrated in Figure A-2.

2. Call the select system call with the set of events obtained via this transformation.
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select(read {}, write {f}, timeout Inf)

select(read {}, write {g0, g1}, timeout Inf)

select(read {h}, write {i}, timeout Inf)

Migration
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select(read {j}, write {}, timeout 0.5 sec)

Figure A-2: An example of select rewriting. Flow h is in the authentication negotia-
tion phase of the SOCKS protocol, so the input write event on g0 is transformed into
a read event on h. Flow k has used its bandwidth quota for the current timeslice, so
the traffic shaper transforms the input write event on i into a half-second timeout.
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3. Provide the results of the select system call to handlers via their ready methods,

to translate any output events that have occurred back to input events.

4. If no output events have occurred that result in application-level events, i.e.,

from the application’s standpoint no interesting events have occurred, repeat

the process.

We consider a timeout to be an “event” as well — a traffic-shaping handler could,

for instance, convert a input write event into a half-second timeout, in the event that

the shaper wishes to prevent the application from writing for a second in order to

impose a bandwidth limitation.

To ensure consistent behavior, all input/output operations within Tesla han-

dlers are non-blocking. To provide blocking I/O to the application, Tesla provides

wrappers which implement blocking operations in terms of the aforementioned mul-

tiplexing framework and non-blocking operations.

The process of selection rewriting, while providing fully correct semantics for

blocking I/O, adds an extraordinary amount of overhead to select (and, in general, to

all potentially blocking I/O operations) which eliminates any performance advantage

of an in-process architecture.

Emulating the proper semantics of filehandle duplication proves a challenge as

well. In particular, an application may use dup2 to duplicate a filehandle on top

of some filehandle which a Tesla handler is using behind the scenes. We resolve

this problem by adding a layer of indirection on top of filehandles whereby Tesla

automatically renumbers filehandles which were about to be dup2ed out of existence,

but this abstraction adds complexity to handler code.

Recall that one of Tesla’s goals is to move certain network functionality from

the kernel to the user level where it belongs. However, we found that the in-process

approach requires us to move too much functionality away from the kernel — we have

to do a lot of work to emulate filehandle semantics at the user level, within a single

process. Essentially we are required to implement a user-level threads package, where

each handler gets an opportunity to run whenever a potentially blocking system call
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is invoked by the application. This is clearly outside the scope of our intended usage.

Rather, we should use the kernel’s scheduling mechanisms to implement concurrency

behavior, i.e., between the wrapped application and its handlers.

For these reasons we instead chose to implement Tesla with handlers running in

Tesla-dedicated processes (master processes). This makes it much easier to maintain

the proper semantics for filehandles, improves scheduling by relying on the kernel

scheduler rather than an ad hoc user-level thread package, and facilitates sharing of

data between handlers.
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Appendix B

Application Program Interfaces

In this section we provide several APIs in their entirety—most importantly, the

flow handler class, which we presented piece by piece in Chapter 2. For convenience,

rather than using pointers directly, the flow handler API relies on several nontrivial

utility classes, which we document here as well. The address class encapsulates an

address structure, i.e., a sockaddr buffer. The data class encapsulates a pointer to a

data buffer and the length of the data.

For the timer API, which we have already presented in its entirety, see Sec-

tion 2.1.5.

B.1 Flow Handler API

To create a session-layer service, one writes a subclass of flow handler that over-

rides some of its methods (e.g., write and avail) to provide the desired functional-

ity. flow handler provides default implementations of all virtual methods that simply

propagate messages upstream or downstream, as described in Section 2.1.6.

class flow_handler {

protected:

// Create a downstream flow of the given type.

handler *plumb(int domain, int type);

// The upstream and downstream flows. Default method implementations

// of the virtual functions below work when there is exactly one element

// in downstream.
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flow_handler* const upstream;

vector<flow_handler*> downstream;

public:

// A structure used only to return results from accept.

struct acceptret {

handler *const h;

const address addr;

acceptret(); // Null constructor (operator bool returns false)

acceptret(handler *, address);

operator bool() const;

};

// A class encapsulating handler initialization parameters.

class init_context {

public:

// Domain and type that we handle

int get_domain() const;

int get_type() const;

// Get user-provided configuration parameters

string arg(string name, string default = string()) const;

int int_arg(string name, int default = -1) const;

};

// Constructor sans init context.

flow_handler(const handler& h);

// Constructor with init context. If plumb is true, the flow_handler

// constructor will create downstream[0] automatically with plumb.

flow_handler(const init_context& ctxt, bool plumb = true);

/**

*

* Downstream methods; these messages pass downstream.

*

*/

// Initiate connection request. Return zero on success.

virtual int connect(address);

// Bind to a local address. Return zero on success.

virtual int bind(address);

// Accept a connection. Return null acceptret on failure.

virtual acceptret accept();

// Close the connection. Return zero on success.

virtual int close();

// Write data. Return false only if the connection has shut down

// for writing.
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virtual bool write(data);

// Shut down the connection for reading and/or writing.

virtual int shutdown(bool r, bool w);

// Listen for connection requests.

virtual int listen(int backlog);

// Return the local/remote host address.

virtual address getsockname() const;

virtual address getpeername() const;

// upstream says: "You {may|may not} call my avail method."

virtual void may_avail(bool) const;

/**

*

* Upstream methods; these messages pass upstream.

*

* In each of these methods, <from> is a downstream flow.

*

*/

// Downstream flow <from> has bytes available (passed in <bytes>).

virtual bool avail(flow_handler *from, data bytes);

// Downstream flow <from> has a connection ready to be accepted,

// i.e., from->accept() will succeed.

virtual void accept_ready(flow_handler *from);

// A connection attempt on <from> has concluded, either successfully

// or not.

virtual void connected(flow_handler *from, bool success);

// <from> says: "You {may|may not} write to me."

virtual void may_write(flow_handler *from, bool may);

};
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B.2 Addresses

An address is a data buffer encapsulating a sockaddr structure. Each copy may be

freely modified—addresses have the same copy semantics as STL strings. addresses

are used as arguments to connect and bind methods, and are returned by accept,

getsockname, and getpeername methods.

class address {

public:

// Null address (operator bool returns false)

address();

// Make a copy of the sockaddr buffer in addr.

address(const void *addr, socklen_t len);

// Returns a pointer to the address.

const sockaddr *addr() const;

// Returns the length of the address.

const socklen_t addrlen() const;

// Returns true if the address is valid (i.e., was not created

// with the null constructor)

operator bool() const;

// Returns a string representation of the address.

operator string() const;

};

B.3 Data

A data object is precisely a tuple: a pointer to an immutable data buffer and its

length. data do not have STL string-like copy semantics—copying a data only makes

a copy of the pointer, not the buffer. We use data instead of string because creating

a string generally incurs a copy operation.

class data {

public:

// Empty data buffer

data() {}

// Create from a null-terminated string (which must stay alive

// as long as the data object.

data(const char *cstr);
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// Create from a buffer and length. The buffer must stay alive

// as long as the data object.

data(const char *bits, unsigned int length);

// Create from a string. Equivalent to data(s.data(), s.length()),

// so the string must stay alive and unmodified as long as the

// data object.

data(const string& str);

// Return a pointer to the data buffer.

const char *bits() const;

// Return the length of the buffer.

unsigned int length() const;

// Allocate a string which is a copy of the data buffer.

operator string() const;

// Return the indexth byte of the buffer.

const char & operator[](unsigned int index) const;

};
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