
TESLA: A Transparent, Extensible Session-Layer Architecture
for End-to-end Network Services

Jon Salz
MIT Laboratory for Computer Science

jsalz@lcs.mit.edu

Alex C. Snoeren
University of California, San Diego

snoeren@cs.ucsd.edu

Hari Balakrishnan
MIT Laboratory for Computer Science

hari@lcs.mit.edu

Session-layer services for enhancing functionality and
improving network performance are gaining in impor-
tance in the Internet. Examples of such services in-
clude connection multiplexing, congestion state shar-
ing, application-level routing, mobility/migration sup-
port, and encryption. This paper describes TESLA, a
transparent and extensible framework allowing session-
layer services to be developed using a high-level flow-
based abstraction. TESLA services can be deployed
transparently using dynamic library interposition and
can be composed by chaining event handlers in a graph
structure. We show how TESLA can be used to imple-
ment several session-layer services including encryption,
SOCKS, application-controlled routing, flow migration,
and traffic rate shaping, all with acceptably low perfor-
mance degradation.

1 Introduction

Modern network applications must meet several increas-
ing demands for performance and enhanced function-
ality. Much current research is devoted to augmenting
the transport-level functionality implemented by stan-
dard protocols as TCP and UDP. Examples abound:

� Setting up multiple connections between a source
and destination to improve the throughput of a sin-
gle logical data transfer (e.g., file transfers over
high-speed networks where a single TCP connec-
tion alone does not provide adequate utilization [2,
15]).

� Sharing congestion information across connections
sharing the same network path.

� Application-level routing, where applications route
traffic in an overlay network to the final destination.

� End-to-end session migration for mobility across
network disconnections.

� Encryption services for sealing or signing flows.

� General-purpose compression over low-bandwidth
links.

� Traffic shaping and policing functions.

These examples illustrate the increasing importance of
session-layer services in the Internet—services that oper-
ate on groups of flows between a source and destination,
and produce resulting groups of flows using shared code
and sometimes shared state.

Authors of new services such as these often imple-
ment enhanced functionality by augmenting the link, net-
work, and transport layers, all of which are typically im-
plemented in the kernel or in a shared, trusted interme-
diary [12]. While this model has sufficed in the past,
we believe that a generalized, high-level framework for
session-layer services would greatly ease their develop-
ment and deployment. This paper argues that Internet
end hosts can benefit from a systematic approach to de-
veloping session-layer services compared to the largely
ad-hoc point approaches used today, and presents TESLA

(a Transparent, Extensible Session Layer Architecture),
a framework that facilitates the development of session-
layer services like the ones mentioned above.

Our work with TESLA derives heavily from our own
previous experience developing, debugging, and deploy-
ing a variety of Internet session-layer services. The earli-
est example is the Congestion Manager (CM) [4], which
allows concurrent flows with a common source and des-
tination to share congestion information, allocate avail-
able bandwidth, and adapt to changing network condi-
tions. Other services include Resilient Overlay Networks
(RON) [3], which provides application-layer routing in
an overlay network, and the Migrate mobility architec-
ture [23, 24], which preserves end-to-end communica-
tion across relocation and periods of disconnection.

Each these services was originally implemented at the
kernel level, though it would be advantageous (for porta-



bility and ease of development and deployment) to have
them available at the user level. Unfortunately this tends
to be quite an intricate process. Not only must the im-
plementation specify the internal logic, algorithms, and
API, but considerable care must be taken handling the
details of non-blocking and blocking sockets, interpro-
cess communication, process management, and integrat-
ing the API with the application’s event loop. The end re-
sult is that more programmer time and effort is spent set-
ting up the session-layer plumbing than in the service’s
logic itself. Our frustrations with the development and
implementation of these services at the user level were
the prime motivation behind TESLA and led to three ex-
plicit design goals.

First, it became apparent to us that the standard BSD
sockets API is not a convenient abstraction for program-
ming session-layer services. Sockets can be duplicated
and shared across processes; operations on them can be
blocking or non-blocking on a descriptor-by-descriptor
basis; and reads and writes can be multiplexed using sev-
eral different APIs (e.g., select and poll). It is undesir-
able to require each service author to implement the en-
tire sockets API. In response, TESLA exports a higher
level of abstraction to session services, allowing them to
operate on network flows (rather than simply socket de-
scriptors) and treat flows as objects to be manipulated.

Second, there are many session services that are re-
quired ex post facto, often not originally thought of by
the application developer but desired later by a user. For
example, the ability to shape or police flows to conform
to a specified peak rate is often useful, and being able
to do so without kernel modifications is a deployment
advantage. This requires the ability to configure session
services transparent to the application. To do this, TESLA

uses an old idea—dynamic library interposition [9]—
taking advantage of the fact that most applications today
on modern operating systems use dynamically linked li-
braries to gain access to kernel services. This does not,
however, mean that TESLA session-layer services must
be transparent. On the contrary, TESLA allows services
to define APIs to be exported to enhanced applications.

Third, unlike traditional transport and network layer
services, there is a great diversity in session services
as the examples earlier in this section show. This im-
plies that application developers can benefit from com-
posing different available services to provide interesting
new functionality. To facilitate this, TESLA arranges for
session services to be written as event handlers, with a
callback-oriented interface between handlers that are ar-
ranged in a graph structure in the system.

We argue that a generalized architecture for the de-
velopment and deployment of session-layer functionality
will significantly assist in the implementation and use of

new network services. This paper describes the design
and implementation of TESLA, a generic framework for
development and deployment of session-layer services.
TESLA consists of a set of C++ application program in-
terfaces (APIs) specifying how to write these services,
and an interposition agent that can be used to instantiate
these services for use by existing applications.

2 Related Work

Today’s commodity operating systems commonly al-
low the dynamic installation of network protocols on
a system-wide or per-interface basis (e.g., Linux ker-
nel modules and FreeBSD’s netgraph), but these exten-
sions can only be accessed by the super-user. Some
operating systems, such as SPIN [5] and the Exoker-
nel [12], push many operating system features (like net-
work and file system access) out from the kernel into
application-specific, user-configurable libraries, allow-
ing ordinary users fine-grained control. Alternatively,
extensions were developed for both operating systems to
allow applications to define application-specific handlers
that may be installed directly into the kernel (Plexus [14]
and ASHs [27]).

Operating systems such as Scout [21] and x-
kernel [16] were designed explicitly to support sophis-
ticated network-based applications. In these systems,
users may even redefine network or transport layer proto-
col functions in an application-specific fashion [6]. With
TESLA, our goal is to bring some of the power of these
systems to commodity operating systems in the context
of session-layer services.

In contrast to highly platform-dependent systems such
as U-Net [26] and Alpine [11], TESLA does not attempt
to allow users to replace or modify the system’s network
stack. Instead, it focuses on allowing users to dynami-
cally extend the protocol suite by dynamically compos-
ing additional end-to-end session-layer protocols on top
of the existing transport- and network-layer protocols,
achieving greater platform independence and usability.

TESLA’s modular structure, comprising directed
graphs of processing nodes, shares commonalities with
a number of previous systems such as x-kernel, the Click
modular router [19], and UNIX System V streams [22].
Unlike the transport and network protocols typically con-
sidered in these systems, however, we view session-layer
protocols as an extension of the application itself rather
than a system-wide resource. This ensures that they are
subject to the same scheduling, protection, and resource
constraints as the application, minimizing the amount of
effort (and privileges) required to deploy services.

To avoid making changes to the operating system or to



the application itself, TESLA transparently interposes it-
self between the application and the kernel, intercepting
and modifying the interaction between the application
and the system—acting as an interposition agent [18].
It uses dynamic library interposition [9] to modify the
interaction between the application and the system. This
technique is popular with user-level file systems such as
IFS [10] and Ufo [1], and several libraries that provide
specific, transparent network services such as SOCKS
[20], Reliable Sockets [29], and Migrate [23, 24]. Each
of these systems provides only a specific service, how-
ever, not an architecture usable by third parties.

Conductor [28] traps application network operations
and transparently layers composable “adaptors” on TCP
connections, but its focus is on optimizing flows’ per-
formance characteristics, not on providing arbitrary ad-
ditional services. Similarly, Protocol Boosters [13] pro-
poses interposing transparent agents between communi-
cation endpoints to improve performance over particu-
lar links (e.g., compression or forward error correction).
While Protocol Boosters were originally implemented
in the FreeBSD and Linux kernel, they are an excel-
lent example of a service that could be implemented in
a generic fashion using TESLA. Thain and Livny re-
cently proposed Bypass, a dynamic-library based inter-
position toolkit for building split-execution agents com-
monly found in distributed systems [25]. However, be-
cause of their generality, none of these systems provides
any assistance in building modular network services, par-
ticularly at the session layer. To the best of our knowl-
edge, TESLA is the first interposition toolkit to specifi-
cally support generic session-layer network services.

3 Architecture

As discussed previously, many tools exist that, like
TESLA, provide an interposition (or “shim”) layer be-
tween applications and operating system kernels or li-
braries. However, TESLA raises the level of abstraction
of programming for session-layer services. It does so by
introducing a flow handler as the main object manipu-
lated by session services. Each session service is imple-
mented as an instantiation of a flow handler, and TESLA

takes care of the plumbing required to allow session ser-
vices to communicate with one another.

A network flow is a stream of bytes that all share the
same logical source and destination (generally identified
by source and destination IP addresses, source and desti-
nation port numbers, and transport protocol). Each flow
handler takes as input a single network flow, and pro-
duces zero or more network flows as output. Flow han-
dlers perform some particular operations or transforma-

Input flow
from upstream Zero or more

output flows
to downstreams

Flow handler

Figure 1: A flow handler takes as input one network flow
and generates zero or more output flows.

Application

Encryption

C library

f

g

Application

Encryption

Migration

f

g

C library

h1 h2 hn

TESLA TESLA

Upstream

Downstream

Figure 2: Two TESLA stacks. The encryption flow han-
dler implements input flow f with output flow g. The mi-
gration flow handler implements input flow g with output
flows h1 : : : hn.

tions on the byte stream, such as transparent flow migra-
tion, encryption, compression, etc.

A flow handler, illustrated in Figure 1, is explicitly de-
fined and constructed to operate on only one input flow
from an upstream handler (or end application), and is
hence devoid of any demultiplexing operations. Concep-
tually, therefore, one might think of a flow handler as
dealing with traffic corresponding to a single socket only
(as opposed to an interposition layer coded from scratch,
which must potentially deal with operations on all open
file descriptors). A flow handler generates zero or more
output flows, which map one-to-one to downstream han-
dlers (or the network send routine).1 While a flow han-
dler always has one input flow, multiple flow handlers
may coexist in a single process, so they may easily share
global state. (We will expound on this point as we further
discuss the TESLA architecture.)

The left stack in Figure 2 illustrates an instance of
TESLA where stream encryption is the only enabled han-
dler. While the application’s I/O calls appear to be
reading and writing plaintext to some flow f , in reality



TESLA intercepts these I/O calls and passes them to the
encryption handler, which actually reads and writes ci-
phertext on some other flow g. The right stack in Fig-
ure 2 has more than two flows. f is the flow as viewed
by the application, i.e., plaintext. g is the flow between
the encryption handler and the migration handler, i.e., ci-
phertext. h1; h2; : : : ; hn are the n flows that a migration
flow handler uses to implement flow g. (The migration
handler initially opens flow h1. When the host’s network
address changes and h1 is disconnected, the migration
handler opens flow h2 to the peer, and so forth.) From
the standpoint of the encryption handler, f is the input
flow and g is the output flow. From the standpoint of the
migration handler, g is the input flow and h1; h2; : : : ; hn
are the output flows.

Each TESLA-enabled process has a particular handler
configuration, an ordered list of handlers which will be
used to handle flows. For instance, the configuration for
the application to the right in Figure 2 is “encryption;
migration.” Flows through this application will be en-
cryption and migration-enabled.

3.1 Interposition

To achieve the goal of application transparency, TESLA

acts as an interposition agent at the C-library level. We
provide a wrapper program, tesla, which sets up the
environment (adding our libtesla.so shared library to
LD PRELOAD) and invokes an application, e.g.:

tesla +crypt -key=sec.gpg +migrate ftp mars

This would open an FTP connection to the host named
mars, with encryption (using sec.gpg as the private key)
and end-to-end migration enabled.

We refer to the libtesla.so library as the TESLA stub,
since it contains the interposition agent but not any of the
handlers themselves (as we will discuss later).

3.2 The flow handler API

Every TESLA session service operates on flows and is
implemented as a derived class of flow handler, shown
in Figure 3. To instantiate a downstream flow handler, a
flow handler invokes its protected plumb method. TESLA

handles plumb by instantiating handlers which appear af-
ter the current handler in the configuration.

For example, assume that TESLA is configured to per-
form compression, then encryption, then session migra-
tion on each flow. When the compression handler’s con-
structor calls plumb, TESLA responds by instantiating the
next downstream handler, namely the encryption han-
dler; when its constructor in turn calls plumb, TESLA

class flow handler f
protected:

flow handler *plumb(int domain, int type);
handler* const upstream;
vector<handler*> downstream;

public:
// DOWNSTREAM methods
virtual int connect(address);
virtual int bind(address);
virtual pair<flow handler*, address> accept();
virtual int close();
virtual bool write(data);
virtual int shutdown(bool r, bool w);
virtual int listen(int backlog);
virtual address getsockname();
virtual address getpeername();
virtual void may avail(bool);
virtual string getsockopt(. . .);
virtual int setsockopt(. . .);
virtual int ioctl(. . .);

// UPSTREAM methods (’from’ is a downstream flow)
virtual void connected(flow handler *from, bool success);
virtual void accept ready(flow handler *from);
virtual bool avail(flow handler *from, data);
virtual void may write(flow handler *from, bool may);

g;

Figure 3: An excerpt from the flow handler class defi-
nition. address and data are C++ wrapper classes for
address and data buffers, respectively.

instantiates the next downstream handler, namely migra-
tion. Its plumb method creates a TESLA-internal handler
to implement an actual TCP socket connection.

To send data to a downstream flow handler, a flow
handler invokes the latter’s write method, which in turn
typically performs some processing and invokes its own
downstream handler’s write method. Downstream han-
dlers communicate with upstream ones via callbacks,
which are invoked to make events available to the up-
stream flow.

Flow handler methods are asynchronous and event-
driven—each method call must return immediately,
without blocking.

3.3 Handler method semantics

Many of the virtual flow handler methods presented in
Figure 3—write, connect, getpeername, etc.—have se-
mantics similar to the corresponding non-blocking func-
tion calls in the C library. (A handler class may override
any method to implement it specially, i.e., to change the
behavior of the flow according to the session service the
handler provides.) These methods are invoked by a han-
dler’s input flow. Since, in general, handlers will prop-
agate these messages to their output flows (i.e., down-



stream), these methods are called downstream methods
and can be thought of as providing an abstract flow ser-
vice to the upstream handler.

(One downstream method has no C-library analogue:
may avail informs the handler whether or not it may
make any more data available to its upstream handler.
We further discuss this method in Section 3.5.)

In contrast the final four methods are invoked by the
handler’s output flows; each has a from argument identi-
fying which downstream handler is invoking the method.
Since typically handlers will propagate these messages to
their input flow (i.e., upstream), these methods are called
upstream methods and can be thought of callbacks which
are invoked by the upstream handler.

� connected is invoked when a connection request
(i.e., a connect method invocation) on a downstream
has completed. The argument is true if the request
succeeded or false if not.

� accept ready is invoked when listen has been called
and a remote host attempts to establish a connec-
tion. Typically a flow handler will respond to this
by calling the downstream flow’s accept method to
accept the connection.

� avail is invoked when a downstream handler has re-
ceived bytes. It returns false if the upstream handler
is no longer able to receive bytes (i.e., the connec-
tion has shut down for reading).

� may write, analogous to may avail, informs the han-
dler whether or not it may write any more data
downstream. This method is further discussed in
Section 3.5.

Many handlers, such as the encryption handler, per-
form only simple processing on the data flow, have ex-
actly one output flow for one input flow, and do not mod-
ify the semantics of other methods such as connect or
accept. For this reason we provide a default implemen-
tation of each method which simply propagates method
calls to the downstream handler (in the case of down-
stream methods) or the upstream handler (in the case of
upstream methods).

We further discuss the input and output primitives,
timers, and blocking in the next few sections.

3.4 Input/output semantics

Since data input and output are the two fundamental op-
erations on a flow, we shall describe them in more de-
tail. The write method call writes bytes to the flow. It re-
turns a boolean indicating success, unlike the C library’s

write call which returns a number of bytes or an EA-
GAIN error message (we will explain this design deci-
sion shortly). Our interface lacks a read method; rather,
we use a callback, avail, which is invoked by a down-
stream handler whenever bytes are available. The up-
stream handler handles the bytes immediately, generally
by performing some processing on the bytes and passing
them to its own upstream handler.

A key difference between flow handler semantics and
the C library’s I/O semantics is that, in flow handlers,
writes and avails are guaranteed to complete. In partic-
ular, a write or avail call returns false, indicating fail-
ure, only when it will never again be possible to write
to or receive bytes from the flow (similar to the C li-
brary returning 0 for write or read). Contrast this to the
C library’s write and read function calls which (in non-
blocking mode) may return an EAGAIN error, requiring
the caller to retry the operation later. Our semantics make
handler implementation considerably simpler, since han-
dlers do not need to worry about handling the common
but difficult situation where a downstream handler is un-
able to accept all the bytes it needs to write.

Consider the simple case where an encryption han-
dler receives a write request from an upstream handler,
performs stream encryption on the bytes (updating its
state), and then attempts to write the encrypted data to the
downstream handler. If the downstream handler could re-
turn EAGAIN, the handler must buffer the unwritten en-
crypted bytes, since by updating its stream encryption
state the handler has “committed” to accepting the bytes
from the upstream handler. Thus the handler would have
to maintain a ring buffer for the unwritten bytes and reg-
ister a callback when the output flow is available for writ-
ing.

Our approach (guaranteed completion) benefits from
the observation that given upstream and downstream
handlers that support guaranteed completion, it is easy to
write a handler to support guaranteed completion. 2 This
is an inductive argument, of course—there must be some
blocking mechanism in the system, i.e., completion can-
not be guaranteed everywhere. Our decision to impose
guaranteed completion on handlers isolates the complex-
ity of blocking in the implementation of TESLA itself (as
described in Section 5.1), relieving handler authors of
having to deal with multiplexing between different flows
(e.g., with select).3

3.5 Timers and flow control

As we have mentioned before, TESLA handlers are
event-driven, hence all flow handler methods must return
immediately. Clearly, however, some flow control mech-



anism is required in flow handlers—otherwise, in an ap-
plication where the network is the bottleneck, the appli-
cation could submit data to TESLA faster than TESLA

could ship data off to the network, requiring TESLA to
buffer a potentially unbounded amount of data. Sim-
ilarly, if the application were the bottleneck, TESLA

would be required to buffer all the data flowing upstream
from the network until the application was ready to pro-
cess it.

A flow handler may signal its input flow to stop send-
ing it data, i.e., stop invoking its write method, by in-
voking may write(false); it can later restart the handler
by invoking may write(true). Likewise, a handler may
throttle an output flow, preventing it from calling avail,
by invoking may avail(false). Flow handlers are required
to respect may avail and may write requests from down-
stream and upstream handlers. This does not compli-
cate our guaranteed-completion semantics, since a han-
dler which (like most) lacks a buffer in which to store
partially-processed data can simply propagate may writes
upstream and may avails downstream to avoid receiving
data that it cannot handle.

A handler may need to register a time-based call-
back, e.g., to re-enable data flow from its upstream or
downstream handlers after a certain amount of time has
passed. For this we provide a timer facility allowing han-
dlers to instruct the TESLA event loop to invoke a call-
back at a particular time.

3.6 Handler-specific services

Each flow handler exposes (by definition) the
flow handler interface, but some handlers may need
to provide additional services to applications that wish
to support them specifically (but still operate properly if
TESLA or the particular handler is not available or not
enabled). For instance, the end-to-end migration handler
can “freeze” an application upon network disconnection,
preserving the process’s state and re-creating it upon
reconnection. To enable this functionality we introduced
the ioctl method to flow handler. A “Migrate-aware”
application (or, in the general case, a “TESLA-aware”
application) may use the ts ioctl macro to send a control
message to a handler and receive a response:

struct freeze params t params = f . . . g;
struct freeze return t ret;
int ret = ts ioctl(fd, “migrate”, MIGRATE FREEZE,

&params, sizeof params, &ret, sizeof ret);

We also provide a mechanism for handlers to send
events to the application asynchronously; e.g., the migra-
tion handler can be configured to notify the application
when a flow has been migrated between IP addresses.

3.7 Process management

Flow handlers comprise executable code and runtime
state, and in designing TESLA there were two obvious
choices regarding the context within which the flow han-
dler code would run. The simplest approach would place
flow handlers directly within the address space of appli-
cation processes; TESLA would delegate invocations of
POSIX I/O routines to the appropriate flow handler meth-
ods. Alternatively, flow handlers could execute in sepa-
rate processes from the application; TESLA would man-
age the communication between application processes
and flow handler processes.

The former, simpler approach would not require any
interprocess communication or context switching, mini-
mizing performance degradation. Furthermore, this ap-
proach would ensure that each flow handler has the same
process priority as the application using it, and that there
are no inter-handler protection problems to worry about.

Unfortunately, this approach proves problematic in
several important cases. First, some session services
(e.g., shared congestion management as in CM) require
state to be shared across flows that may belong to differ-
ent application processes, and making each flow handler
run linked with the application would greatly complicate
the ability to share session-layer state across them. Sec-
ond, significant difficulties arise if the application pro-
cess shares its flows (i.e., the file descriptors correspond-
ing to the flows) with another process, either by creat-
ing a child process through fork or through file descrip-
tor passing. Ensuring the proper sharing semantics be-
comes difficult and expensive. A fork results in two iden-
tical TESLA instances running in the parent and child,
making it rather cumbersome to ensure that they coordi-
nate correctly. Furthermore, maintaining the correct se-
mantics of asynchronous I/O calls like select and poll is
very difficult in this model.

For these reasons, we choose to separate the context
in which TESLA flow handlers run from the application
processes that generate the corresponding flows. When
an application is invoked through the tesla wrapper (and
hence linked against the stub), the stub library creates
or connects to a master process, a process dedicated to
executing handlers.

Each master process has its own handler configura-
tion (determined by the user, as we shall describe later).
When the application establishes a connection, the mas-
ter process determines whether the configuration con-
tains any applicable handlers. If so, the master instan-
tiates the applicable handlers and links them together in
what we call a TESLA instance.

The application and master process communicate via



Unmodified
Application

stub

Application Process

M

E

E

M E

Master Process #1

Instance #1A

Instance #1B

CM

Master Process #2

Instance #2A

stub
to C library

stub

to C library

Upstream Downstream

CM

CM

Shared CM state
across flowsCM flow

handlers

Figure 4: Possible interprocess data flow for an application running under TESLA. M is the migration handler, E is
encryption, and CM is the congestion manager handler.

a TESLA-internal socket for each application-level flow,
and all actual network operations are performed by the
master process. When the application invokes a socket
operation, TESLA traps it and converts it to a message
which is transmitted to the master process via the mas-
ter socket. The master process returns an immediate re-
sponse (this is possible since all TESLA handler opera-
tions are non-blocking, i.e., return immediately).

Master processes are forked from TESLA-enabled ap-
plications and are therefore linked against the TESLA

stub also. This allows TESLA instances to be chained, as
in Figure 4: an application-level flow may be connected
to an instance in a first master process, which is in turn
connected via its stub to an instance in another master
process. Chaining enables some handlers to run in a pro-
tected, user-specific context, whereas handlers that re-
quire a system-scope (like system-wide congestion man-
agement) can run in a privileged, system-wide context.

3.8 Security considerations

Like most software components, flow handlers can po-
tentially wreak havoc within their protection context if
they are malicious or buggy. Our chaining approach al-
lows flow handlers to run within the protection context
of the user to minimize the damage they can do; but in
any case, flow handlers must be trusted within their pro-
tection contexts. Since a malicious flow handler could
potentially sabotage all connections in the same master
process, any flow handlers in master processes intended
to have system-wide scope (such as a Congestion Man-

ager handler) must be trusted.

In general, TESLA support for setuid and setgid ap-
plications, which assume the protection context of the
binary iself rather than the user who invokes them, is a
tricky affair: one cannot trust a user-provided handler
to behave properly within the binary’s protection con-
text. Even if the master process (and hence the flow
handlers) run within the protection context of the user,
user-provided handlers might still modify network se-
mantics to change the behavior of the application. Con-
sider, for example, a setuid binary which assumes root
privileges, performs a lookup over the network to de-
termine whether the user is a system administrator and,
if so, allows the user to perform an administrative op-
eration. If a malicious user provides flow handlers that
spoof a positive response for the lookup, the binary may
be tricked into granting him or her administrative privi-
leges.

Nevertheless, many widely-used applications (e.g.,
ssh) are setuid, so we do require some way to support
them. We can make the tesla wrapper setuid root, so that
it is allowed to add libtesla.so to the LD PRELOAD envi-
ronment variable even for setuid applications. The tesla
wrapper then invokes the requested binary, linked against
libtesla.so, with the appropriate privileges. libtesla.so
creates a master process and begins instantiating han-
dlers only once the process resets its effective user ID
to the user’s real user ID, as is the case with applications
such as ssh. This ensures that only network connections
within the user’s protection context can be affected (ma-
liciously or otherwise) by handler code.



4 Example handlers

We now describe a few flow handlers we have imple-
mented. Our main goal is to illustrate how non-trivial
session services can be implemented easily with TESLA,
showing how its flow-oriented API is both convenient
and useful. We describe our handlers for transparent use
of a SOCKS proxy, traffic shaping, encryption, compres-
sion, and end-to-end flow migration.

The compression, encryption, and flow migration han-
dlers require a similarly configured TESLA installation
on the peer endpoint, but the remaining handlers are use-
ful even when communicating with a remote application
that is not TESLA-enabled.

4.1 Traffic shaping

It is often useful to be able to limit the maximum
throughput of a TCP connection. For example, one
might want prevent a background network operation
such as mirroring a large software distribution to im-
pact network performance. TESLA allows us to provide
a generic, user-level traffic-shaping service as an alterna-
tive to building shaping directly into an application (as in
the rsync --bwlimit option) or using an OS-level packet-
filtering service (which would require special setup and
superuser privileges).

The traffic shaper keeps count of the number of bytes it
has read and written during the current 100-millisecond
timeslice. If a write request would exceed the outbound
limit for the timeslice, then the portion of the data which
could not be written is saved, and the upstream han-
dler is throttled via may write. A timer is created to no-
tify the shaper at the end of the current timeslice so it
can continue writing and unthrottle the upstream handler
when appropriate. Similarly, once the inbound bytes-per-
timeslice limit is met, any remaining data provided by
avail is buffered, downstream flows are throttled, and a
timer is registered to continue reading later.

We have also developed latency handler, which de-
lays each byte supplied to or by the network for a user-
configurable amount of time (maintaining this data in an
internal ring buffer). This handler is useful for simulating
the effects of network latency on existing applications.

4.2 SOCKS and application-level routing

Our SOCKS handler is functionally similar to existing
transparent SOCKS libraries [7, 17], although its imple-
mentation is significantly simpler. Our handler overrides
the connect handler to establish a connection to a proxy
server, rather than a connection directly to the requested

class crypt handler : public flow handler f
des3 cfb64 stream in stream, out stream;

public:
crypt handler(init context& ctxt) : flow handler(ctxt),

in stream(des3 cfb64 stream::ENCRYPT),
out stream(des3 cfb64 stream::DECRYPT)

fg

bool write(data d) f
// encrypt and pass downstream
return downstream[0]�>write(out stream.process(d));

g

bool avail(flow handler *from, data d) f
// decrypt and pass upstream
return upstream�>avail(this, in stream.process(d));

g
g;

Figure 5: A transparent encryption/decryption handler.

host. When its connected method is invoked, it does not
pass it upstream, but rather negotiates the authentication
mechanism with the server and then passes it the actual
destination address, as specified by the SOCKS protocol.

If the SOCKS server indicates that it was able to es-
tablish the connection with the remote host, then the
SOCKS handler invokes connected(true) on its upstream
handler; if not, it invokes connected(false). The upstream
handler, of course, is never aware that the connection is
physically to the SOCKS server (as opposed to the desti-
nation address originally provided to connect).

We utilize the SOCKS server to provide transparent
support for Resilient Overlay Networks [3], or RON, an
architecture allowing a group of hosts to route around
failures or inefficiencies in a network. We provide a
ron handler to allow a user to connect to a remote host
transparently through a RON. Each RON server exports
a SOCKS interface, so ron handler can use the same
mechanism as socks handler to connect to a RON host
as a proxy and open an indirect connection to the remote
host. In the future, ron handler may also utilize the end-
to-end migration of migrate handler (presented below in
Section 4.4) to enable RON to hand off the proxy con-
nection to a different node if it discover a more efficient
route from the client to the peer.

4.3 Encryption and compression

crypt handler is a triple-DES encryption handler for TCP
streams. We use OpenSSL [8] to provide the DES im-
plementation. Figure 5 shows how crypt handler uses
the TESLA flow handler API. Note how simple the
handler is to write: we merely provide alternative im-
plementations for the write and avail methods, routing



data first through a DES encryption or decryption step
(des3 cfb64 stream, a C++ wrapper we have written for
OpenSSL functionality).

Our compression handler is very similar: we merely
wrote a wrapper class (analogous to des3 cfb64 stream)
for the freely available zlib stream compression library.

4.4 Session migration

We have used TESLA to implement transparent support
in the Migrate session-layer mobility service [23]. In
transparent mode, Migrate preserves open network con-
nections across changes of address or periods of discon-
nection. Since TCP connections are bound to precisely
one remote endpoint and do not survive periods of dis-
connection in general, Migrate must synthesize a logi-
cal flow out of possibly multiple physical connections (a
new connection must be established each time either end-
point moves or reconnects). Further, since data may be
lost upon connection failure, Migrate must double-buffer
in-flight data for possible re-transmission.

This basic functionality is straightforward to provide
in TESLA. We simply create a handler that splices its
input flow to an output flow and conceals any mobil-
ity events from the application by automatically initiat-
ing a new output flow using the new endpoint locations.
The handler stores a copy of all outgoing data locally
in a ring buffer and re-transmits any lost bytes after re-
establishing connectivity on a new output flow. Incoming
data is trickier: because received data may not have been
read by the application before a mobility event occurs,
Migrate must instantiate a new flow immediately after
movement but continue to supply the buffered data from
the previous flow to the application until it is completely
consumed. Only then will the handler begin delivering
data received on the subsequent flow(s).

Note that because Migrate wishes to conceal mobility
when operating in transparent mode, it is important that
the handler be able to override normal signaling mecha-
nisms. In particular, it must intercept connection failure
messages (the “connection reset” messages typically ex-
perienced during long periods of disconnection) and pre-
vent them from reaching the application, instead taking
appropriate action to manage and conceal the changes in
endpoints. In doing so, the handler also overrides the get-
sockname() and getpeername() calls to return the origi-
nal endpoints, irrespective of the current location.

5 Implementation

The TESLA stub consists largely of wrapper functions for
sockets API functions in the C library. When an applica-

tion creates a socket, TESLA intercepts the socket library
call and sends a message to the master process, inquir-
ing whether the master has any handlers registered for
the requested domain and type. If not, the master returns
a negative acknowledgement and the application process
simply uses the socket system call to create and return
the request socket.

If, on the other hand, there is a handler registered for
the requested domain and type, the master process in-
stantiates the handler class. Once the handler’s construc-
tor returns, the master process creates a pair of connected
UNIX-domain sockets, one retained in the master and the
other passed to the application process. The application
process notes the received filehandle (remembering that
it is a TESLA-wrapped filehandle) and returns it as result
of the socket call.

Later, when the application invokes a socket API call,
such as connect or getsockname, on a TESLA-wrapped
filehandle, the wrapper function informs the master pro-
cess, which invokes the corresponding method on the
handler object for that flow. The master process returns
this result to the stub, which returns the result to the ap-
plication.

In general the TESLA stub does not need to specially
handle reads, writes, or multiplexing on wrapped sock-
ets. The master process and application process share
a socket for each application-level flow, so to handle a
read, write, or select, whether blocking or non-blocking,
the application process merely uses the corresponding
unwrapped C library call. Even if the operation blocks,
the master process can continue handling I/O while the
application process waits.

Implementing fork, dup, and dup2 is quite simple.
Having a single flow available to more than one appli-
cation process, or as more than one filehandle, presents
no problem: application processes can use each copy of
the filehandle as usual. Once all copies of the filehan-
dle are shut down, the master process can simply detect
via a signal that the filehandle has closed and invokes the
handler’s close method.

5.1 top handler and bottom handler

We have described at length the interface between han-
dlers, but we have not yet discussed how precisely han-
dlers receives data and events from the application. We
have stated that every handler has an upstream flow
which invokes its methods such as connect, write, etc.;
the upstream flow of the top-most handler for each flow
(e.g., the encryption handler in Figure 2) is a special flow
handler called top handler.

When a TESLA master’s event loop detects bytes ready



to deliver to a particular flow via the application/master-
process socket pair which exists for that flow, it invokes
the write method of top handler, which passes the write
call on to the first real flow handler (e.g., encryption).
Similarly, when a connect, bind, listen, or accept mes-
sage appears on the master socket, the TESLA event loop
invokes the corresponding method of the top handler for
that flow.

Similarly, each flow handler at the bottom of the
TESLA stack has a bottom handler as its downstream.
For each non-callback method—i.e., connect, write,
etc.—bottom handler actually performs the correspond-
ing network operation.

top handlers and bottom handlers maintain buffers, in
case a handler writes data to the application or network,
but the underlying system buffer is full (i.e., sending data
asynchronously to the application or network results in
an EAGAIN condition). If this occurs in a top handler, the
top handler requests via may avail that its downstream
flow stop sending it data using avail; similarly, if this oc-
curs in a bottom handler, it requests via may write that its
upstream flow stop sending it data using write.

5.2 Performance

When adding a network service to an application, we
may expect to incur one or both of two kinds of per-
formance penalties. First, the service’s algorithm, e.g.,
encryption or compression, may require computational
resources. Second, the interposition mechanism, if
any, may introduce overhead such as additional mem-
ory copies, interprocess communication, scheduling con-
tention, etc., depending on its implementation. We refer
to these two kinds of performance penalty as algorithmic
and architectural, respectively.

If the service is implemented directly within the appli-
cation, e.g., via an application-specific input/output indi-
rection layer, then the architectural overhead is probably
minimal and most of the overhead is likely to be algorith-
mic. Services implemented entirely within the operating
system kernel are also likely to impose little in the way
of architectural overhead. However, adding an interpo-
sition agent like TESLA outside the contexts of both the
application and the operating system may add significant
architectural overhead.

To analyze TESLA’s architectural overhead, we con-
structed several simple tests to test how using TESLA af-
fects latency and throughput. We compare TESLA’s per-
formance to that of a tunneling, or proxy, agent, where
the application explicitly tunnels flows through a local
proxy server, and to an application-internal agent. Al-
though we do not consider it here, we expect an in-kernel

service implementation would perform similarly to the
application-internal agent.

We provide two benchmarks. In bandwidth(s), a client
establishes a TCP connection to a server and reads data
into a s-byte buffer until the connection closes, measur-
ing the number of bytes per second received. (The server
writes data s bytes at a time as well.) In latency, a client
connects to a server, sends it a single byte, waits for an
1-byte response, and so forth, measuring the number of
round-trip volleys per second.

We run bandwidth and latency under several configu-
rations:

1. The benchmark program running (a) unmodified
and (b) with triple-DES encryption performed di-
rectly within the benchmark application.

2. The benchmark program, with each connection
passing through TCP proxy servers both on the
client and server hosts. In (a), the proxy servers
perform no processing on the data; in (b) the proxy
servers encrypt and decrypt traffic between the two
hosts.

3. Same as 2(a) and 2(b), except with proxy servers
listening on UNIX-domain sockets rather than TCP
sockets. This is similar to the way TESLA works in-
ternally: the proxy server corresponds to the TESLA

master process.

4. The benchmark program running under TESLA with
(a) the dummy handler enabled or (b) the crypt han-
dler enabled. (dummy is a simple no-op handler that
simply passes data through.)

We can think of the (a) configurations as providing a
completely trivial transparent service, an “identity ser-
vice” with no algorithm (and hence no algorithmic over-
head) at all. Comparing benchmark 1(a) with the other
(a) configurations isolates the architectural overhead of a
typical proxy server (i.e., an extra pair of socket streams
through which all data must flow) and the architectural
overhead of TESLA (i.e., an extra pair of socket streams
plus any overhead incurred by the master processes).
Comparing the (a) benchmarks, shown on the left of Fig-
ure 6, with the corresponding (b) benchmarks, shown on
the right, isolates the algorithmic overhead of the service.

To eliminate the network as a bottleneck, we first ran
the bandwidth test on a single host (a 500-MHz Pentium
III running Linux 2.4.18) with the client and server con-
necting over the loopback interface. Figure 6 shows these
results. Here the increased demand of interprocess com-
munication is apparent. For large block sizes (which we
would expect in bandwidth-intensive applications), in-
troducing TCP proxies, and hence tripling the number



1 16 256 4K 16K 64K

Block size (bytes)

0

20

40

60

80

100

 N
ul

l T
hr

ou
gh

pu
t (

M
B

/s
)

Internal

TCP Proxy

UNIX Proxy

TESLA

1 16 256 4K 16K 64K

Block size (bytes)

0

1

2

3

3-
D

E
S

 T
hr

ou
gh

pu
t (

M
B

/s
)

Internal

TCP Proxy

UNIX Proxy

TESLA

Figure 6: Results of the bandwidth test on a loopback interface.

of TCP socket streams involved, reduces the throughput
by nearly two thirds. TESLA does a little better, since it
uses UNIX-domain sockets instead of TCP sockets.

In contrast, Figure 7 shows the results of running
bandwidth with the client and server (both 500-MHz Pen-
tium IIIs) connected via a 100-BaseT network.4 Here
neither TESLA nor a proxy server incurs a significant
throughput penalty. For reasonably large block sizes ei-
ther the network (at about 89 Mb/s, or 11 MB/s) or the
encryption algorithm (at about 3 MB/s) becomes the bot-
tleneck; for small block sizes the high frequency of small
application reads and writes is the bottleneck.

We conclude that on relatively slow machines and very
fast networks, TESLA—or any other IPC-intensive in-
terposition mechanism—may cause a decrease in peak
throughput, but when used over typical networks, or
when used to implement nontrivial network services,
TESLA causes little or no throughput reduction.

The latency benchmark yields different results, as il-
lustrated in Figure 8: since data rates never exceed a few
kilobytes per second, the computational overhead of the
algorithm itself is negligible and any slowdown is due
exclusively to the architectural overhead. We see almost
no difference between the speed of the trivial service and
the nontrivial service. Introducing a TCP proxy server on
each host incurs a noticeable performance penalty, since
data must now flow over a total of three streams (rather
than one) from client application to server application.
TESLA does a little better, as it uses UNIX-domain sock-
ets rather than TCP sockets to transport data between
the applications and the TESLA masters; under Linux,
UNIX-domain sockets appear to have a lower latency
than the TCP sockets used by the proxy server. We con-
sider this performance hit quite acceptable: TESLA in-
creases the end-to-end latency by only tens of microsec-
onds (4000 round-trips per second versus 7000), whereas
network latencies are typically on the order of millisec-
onds or tens of milliseconds.

1 16 256 4K 16K 64K

Block size (bytes)

0

5

10

15

 N
ul

l T
hr

ou
gh

pu
t (

M
B

/s
)

Internal

TCP Proxy

UNIX Proxy

TESLA

Figure 7: Results of the bandwidth test on a 100-BaseT
network. Only the null test is shown; triple-DES perfor-
mance was similar to performance on a loopback inter-
face (the right graph of Figure 6).

Null 3-DES

Handler type

0

2000

4000

6000

8000

 R
ou

nd
-t

rip
s 

pe
r 

se
co

nd

Internal

TCP Proxy

UNIX Proxy

TESLA

Figure 8: Results of the latency test over a 100-BaseT
network. The block size is one byte.



6 Conclusion

This paper has outlined the design and implementation
of TESLA, a framework to implement session layer ser-
vices in the Internet. These services are gaining in impor-
tance; examples include connection multiplexing, con-
gestion state sharing, application-level routing, mobil-
ity/migration support, compression, and encryption.

TESLA incorporates three principles to provide a
transparent and extensible framework: first, it exposes
network flows as the object manipulated by session ser-
vices, which are written as flow handlers without deal-
ing with socket descriptors; second, it maps handlers to
processes in a way that enables both sharing and protec-
tion; and third, it can be configured using dynamic li-
brary interposition, thereby being transparent to end ap-
plications.

We showed how TESLA can be used to design several
interesting session layer services including encryption,
SOCKS and application-controlled routing, flow migra-
tion, and traffic rate shaping, all with acceptably low per-
formance degradation. In TESLA, we have provided a
powerful, extensible, high-level C++ framework which
makes it easy to develop, deploy, and transparently use
session-layer services. We are pleased to report that other
researchers have recently found TESLA useful in deploy-
ing their own session layer services, and even adopted it
as a teaching tool.

Currently, to use TESLA services such as compression,
encryption, and migration that require TESLA support on
both endpoints, the client and server must use identical
configurations of TESLA, i.e., invoke the tesla wrapper
with the same handlers specified on the command line.
We plan to add a negotiation mechanism so that once
mutual TESLA support is detected, the endpoint can dy-
namically determine the configuration based on the in-
tersection of the sets of supported handlers. We also plan
to add per-flow configuration so that the user can specify
which handlers to apply to flows based on flow attributes
such as port and address. Finally, we plan to explore the
possibility of moving some handler functionality directly
into the application process or operating system kernel to
minimize TESLA’s architectural overhead.

TESLA is available for download at http://nms.lcs.
mit.edu/software/tesla/.

Acknowledgments

This work was funded by NTT Inc. under the NTT-MIT
research collaboration, by Acer Inc., Delta Electronics
Inc., HP Corp., NTT Inc., Nokia Research Center, and
Philips Research under the MIT Project Oxygen partner-

ship, by Intel Corp., and by IBM Corp. under a university
faculty award.

The authors would like to thank Dave Andersen, Stan
Rost, and Michael Walfish of MIT for their comments.

References

[1] ALEXANDROV, A. D., IBEL, M., SCHAUSER, K. E.,
AND SCHEIMAN, C. J. Ufo: A personal global file sys-
tem based on user-level extensions to the operating sys-
tem. ACM TOCS 16, 3 (Aug. 1998), 207–233.

[2] ALLMAN, M., KRUSE, H., AND OSTERMANN, S. An
application-level solution to TCP’s inefficiencies. In
Proc. WOSBIS ’96 (Nov. 1996).

[3] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK,
M. F., AND MORRIS, R. T. Resilient overlay networks.
In Proc. ACM SOSP ’01 (Oct. 2001), pp. 131–145.

[4] BALAKRISHNAN, H., RAHUL, H. S., AND SESHAN, S.
An integrated congestion management architecture for In-
ternet hosts. In Proc. ACM SIGCOMM ’99 (Sept. 1999),
pp. 175–187.

[5] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER,
E. G., BECKER, D., FIUCZYNSKI, M., CHAMBERS, C.,
AND EGGERS, S. Extensibility, safety and performance
in the SPIN operating system. In Proc. ACM SOSP ’95
(Dec. 1995), pp. 267–284.

[6] BHATTI, N. T., AND SCHLICHTING, R. D. A system for
constructing configurable high-level protocols. In Proc.
ACM SIGCOMM ’95 (Aug. 1995), pp. 138–150.

[7] CLOWES, S. tsocks: A transparent SOCKS proxying li-
brary. http://tsocks.sourceforge.net/.

[8] COX, M. J., ENGELSCHALL, R. S., HENSON, S., AND

LAURIE, B. Openssl: The open source toolkit for
SSL/TLS. http://www.openssl.org/.

[9] CURRY, T. W. Profiling and tracing dynamic library us-
age via interposition. In Proc. Summer USENIX ’94 (June
1994), pp. 267–278.

[10] EGGERT, P. R., AND PARKER, D. S. File systems in user
space. In Proc. Winter USENIX ’93 (Jan. 1993), pp. 229–
240.

[11] ELY, D., SAVAGE, S., AND WETHERALL, D. Alpine:
A user-level infrastructure for network protocol develop-
ment. In Proc. 3rd USITS (Mar. 2001), pp. 171–183.

[12] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE

JR., J. Exokernel: An operating system architecture for
application-level resource management. In Proc. ACM
SOSP ’95 (Dec. 1995), pp. 251–266.

[13] FELDMEIER, D. C., MCAULEY, A. J., SMITH, J. M.,
BAKIN, D. S., MARCUS, W. S., AND RALEIGH, T. M.
Protocol boosters. IEEE JSAC 16, 3 (Apr. 1998), 437–
444.

[14] FIUCZYNSKI, M. E., AND BERSHAD, B. N. An extensi-
ble protocol architecture for application-specific network-
ing. In Proc. USENIX ’96 (Jan. 1996), pp. 55–64.



[15] GEVROS, P., RISSO, F., AND KIRSTEIN, P. Analysis
of a method for differential TCP service. In Proc. IEEE
GLOBECOM ’99 (Dec. 1999), pp. 1699–1708.

[16] HUTCHINSON, N. C., AND PETERSON, L. L. The x-
kernel: An architecture for implementing network proto-
cols. IEEE Transactions on Software Engineering 17, 1
(Jan. 1991), 64–76.

[17] INFERNO NETTVERK A/S. Dante: A free SOCKS im-
plementation. http://www.inet.no/dante/.

[18] JONES, M. B. Interposition agents: Transparently inter-
posing user code at the system interface. In Proc. ACM
SOSP ’93 (Dec. 1993), pp. 80–93.

[19] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J.,
AND KAASHOEK, M. F. The Click modular router. ACM
TOCS 18, 3 (Aug. 2000), 263–297.

[20] LEECH, M., GANIS, M., LEE, Y., KURIS, R., KOBLAS,
D., AND JONES, L. SOCKS Protocol Version 5. IETF,
Mar. 1996. RFC 1928.

[21] MOSBERGER, D., AND PETERSON, L. L. Making paths
explicit in the Scout operating system. In Proc. OSDI ’96
(Oct. 1996), pp. 153–167.

[22] RICHIE, D. M. A stream input-output system. AT&T Bell
Laboratories Technical Journal 63, 8 (Oct. 1984), 1897–
1910.

[23] SNOEREN, A. C. A Session-Based Architecture for In-
ternet Mobility. PhD thesis, Massachusetts Institute of
Technology, Dec. 2002.

[24] SNOEREN, A. C., BALAKRISHNAN, H., AND

KAASHOEK, M. F. Reconsidering Internet Mobil-
ity. In Proc. HotOS-VIII (May 2001), pp. 41–46.

[25] THAIN, D., AND LIVNY, M. Multiple bypass: Interposi-
tion agents for distributed computing. Cluster Computing
4, 1 (Mar. 2001), 39–47.

[26] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS,
W. U-Net: A user-level network interface for parallel and
distributed computing. In Proc. ACM SOSP ’95 (Dec.
1995), pp. 40–53.

[27] WALLACH, D. A., ENGLER, D. R., AND KAASHOEK,
M. F. ASHs: Application-specific handlers for high-
performance messaging. In Proc. ACM SIGCOMM ’96
(Aug. 1996), pp. 40–52.

[28] YARVIS, M., REIHER, P., AND POPEK, G. J. Conductor:
A framework for distributed adaptation. In Proc. HotOS-
VII (Mar. 1999), pp. 44–51.

[29] ZANDY, V. C., AND MILLER, B. P. Reliable network
connections. In Proc. ACM/IEEE Mobicom ’02 (Atlanta,
Georgia, Sept. 2002), pp. 95–106.

Notes

1It is important not to take the terms upstream and
downstream too literally in terms of the flow of actual
bytes; rather, think of TESLA as the session layer on the
canonical network stack, with upstream handlers placed
closer to the presentation or application layer and down-
stream handlers closer to the transport layer.

2The inverse—“given upstream and downstream han-
dlers that do not support guaranteed completion, it is
easy to write a handler that does not support guaranteed
completion”—is not true, for the reason described in the
previous paragraph.

3The guaranteed-completion semantics we discuss in
this section apply to the TESLA flow handler API only,
not to standard socket I/O functions (read, write, etc.).
TESLA makes sure that the semantics of POSIX I/O
functions remain unchanged, for transparency’s sake.

4Note the anomaly with small block sizes: on our
test machines, using a UNIX-domain socket to connect
the application to the intermediary process (whether a
proxy server or the TESLA master) incurs a severe per-
formance hit. Reconfiguring TESLA to use TCP sockets
internally (rather than UNIX-domain sockets) increases
TESLA’s performance to that of the TCP proxy server.
Since this anomaly does not seem specific to TESLA,
and occurs only in a somewhat unrealistic situation—a
high-bandwidth application using a 1- or 16-byte block
size—we do not examine it further.


