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Systems

T he main challenge in P2P computing is to design and imple-
ment a robust and scalable distributed system composed of
inexpensive, individually unreliable computers in unrelated
administrative domains. The participants in a typical P2P 

system might include computers at homes, schools, and businesses, and
can grow to several million concurrent participants.

P2P systems are attractive for
several reasons:

• The barriers to starting and
growing such systems are low,
since they usually don’t require
any special administrative or
financial arrangements,
unlike centralized
facilities;

• P2P systems offer a way
to aggregate and make use
of the tremendous com-
putation and storage
resources on computers across
the Internet; and

• The decentralized and distrib-
uted nature of P2P systems
gives them the potential to be
robust to faults or intentional
attacks, making them ideal for
long-term storage as well as for
lengthy computations.

P2P computing raises many
interesting research problems in
distributed systems. In this article
we will look at one of them, the
lookup problem. How do you find
any given data item in a large P2P
system in a scalable manner, with-

out any centralized servers
or hierarchy? This problem
is at the heart of any P2P
system. It is not addressed
well by most popular sys-
tems currently in use, and it
provides a good example of

how the challenges of designing
P2P systems can be addressed.

The recent algorithms devel-
oped by several research groups for
the lookup problem present a sim-
ple and general interface, a distrib-
uted hash table (DHT). Data
items are inserted in a DHT and
found by specifying a unique key
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for that data. To implement a DHT, the underlying
algorithm must be able to determine which node is
responsible for storing the data associated with any
given key. To solve this problem, each node main-
tains information (the IP address) of a small number
of other nodes (“neighbors”) in the system, forming
an overlay network and routing messages in the
overlay to store and retrieve keys.

One might believe from recent news items that
P2P systems are mainly used for illegal music-swap-
ping and little else, but this would be a rather hasty
conclusion. The DHT abstraction appears to pro-
vide a general-purpose interface for location-inde-
pendent naming upon which a variety of
applications can be built. Furthermore, distributed
applications that make use of such an infrastructure
inherit robustness, ease-of-operation, and scaling
properties. A significant amount of research effort is
now being devoted to investigating these ideas (Proj-

ect IRIS, a multi-institution, large-scale effort, is one
example; see www.project-iris.net).

The Lookup Problem
The lookup problem is simple to state: Given a data
item X stored at some dynamic set of nodes in the
system, find it. This problem is an important one in
many distributed systems, and is the critical com-
mon problem in P2P systems.

One approach is to maintain a central database
that maps a file name to the locations of servers that
store the file. Napster (www.napster.com) adopted
this approach for song titles, but this approach has
inherent scalability and resilience problems: the
database is a central point of failure.

The traditional approach to achieving scalability
is to use hierarchy. The Internet’s Domain Name
System (DNS) does this for name lookups. Searches
start at the top of the hierarchy and, by following
forwarding references from node to node, traverse a
single path down to the node containing the desired
data. The disadvantage of this approach is that fail-
ure or removal of the root or a node sufficiently high
in the hierarchy can be catastrophic, and the nodes
higher in the tree take a larger fraction of the load
than the leaf nodes.

These approaches are all examples of structured
lookups, where each node has a well-defined set of

information about other nodes in the system. The
advantage of structured lookup methods is that one
can usually make guarantees that data can be reliably
found in the system once it is stored.

To overcome the resilience problems of these
schemes, some P2P systems developed the notion of
symmetric lookup algorithms. Unlike the hierarchy,
no node is more important than any other node as far
as the lookup process is concerned, and each node is
typically involved in only a small fraction of the search
paths in the system. These schemes allow the nodes to
self-organize into an efficient overlay structure.

At one end of the symmetric lookup spectrum,
the consumer broadcasts a message to all its neigh-
bors with a request for X. When a node receives such
a request, it checks its local database. If it contains X,
it responds with the item. Otherwise, it forwards the
request to its neighbors, which execute the same
protocol. Gnutella (gnutella.wego.com) has a proto-

col in this style with some mecha-
nisms to avoid request loops.
However, this “broadcast” approach
doesn’t scale well because of the
bandwidth consumed by broadcast
messages and the compute cycles
consumed by the many nodes that

must handle these messages. In fact, the day after Nap-
ster was shut down, reports indicate the Gnutella net-
work collapsed under the load created by a large
number of users who migrated to it for sharing music.

One approach to handling such scaling problems
is to add “superpeers” in a hierarchical structure, as
is done in FastTrack’s P2P platform (www.fast-
track.nu), and has been popularized by applications
like KaZaA (www.kazaa.com). However, this comes
at the expense of resilience to failures of superpeers
near the top of the hierarchy. Furthermore, this
approach does not provide guarantees on object
retrieval.

Freenet [1] uses an innovative symmetric lookup
strategy. Here, queries are forwarded from node to
node until the desired object is found based on
unstructured routing tables dynamically built up
using caching. But a key Freenet objective—
anonymity—creates some challenges for the system.
To provide anonymity, Freenet avoids associating a
document with any predictable server, or forming a
predictable topology among servers. As a result,
unpopular documents may simply disappear from
the system, since no server has the responsibility for
maintaining replicas. Furthermore, a search may
often need to visit a large fraction of nodes in the
system, and no guarantees are possible.

The recent crop of P2P algorithms, including

One might believe P2P systems are mainly 
used for illegal music-swapping and little else, but

this would be a rather hasty conclusion.



CAN [8], Chord [11], Kademlia [6], Pastry [9],
Tapestry [2], and Viceroy [5] are both structured
and symmetric, unlike all the other systems men-
tioned here. This allows them to offer guarantees
while simultaneously not being vulnerable to indi-
vidual node failures. They all implement the DHT
abstraction. 

The rest of this article discusses these recent algo-
rithms, highlighting design points and trade-offs.
These algorithms incorporate techniques that scale
well to large numbers of nodes, to locate keys with
low latency, to handle dynamic node arrivals and
departures, to ease the maintenance of per-node
routing tables, and to bal-
ance the distribution of
keys evenly among the
participating nodes. 

A Distributed 
Hash Table
A hash-table interface is
an attractive foundation
for a distributed lookup
algorithm because it
places few constraints on
the structure of keys or
the values they name.
The main requirements
are that data be identified
using unique numeric
keys, and that nodes be
willing to store keys for each other. The values could
be actual data items (file blocks), or could be point-
ers to where the data items are currently stored.

A DHT implements just one operation:
lookup(key) yields the network location of the
node currently responsible for the given key. A sim-
ple distributed storage application might use this
interface as follows. To publish a file under a partic-
ular unique name, the publisher would convert the
name to a numeric key using an ordinary hash func-
tion such as SHA-1, then call lookup(key). The
publisher would then send the file to be stored at the
node(s) responsible for the key. A consumer wishing
to read that file would later obtain its name, convert
it to a key, call lookup(key), and ask the resulting
node for a copy of the file.

To implement DHTs, lookup algorithms have to
address the following issues:

Mapping keys to nodes in a load-balanced way.
In general, all keys and nodes are identified using an
m-bit number or identifier (ID). Each key is stored
at one or more nodes whose IDs are “close” to the
key in the ID space.

Forwarding a lookup for a key to an appropri-
ate node. Any node that receives a query for a key
identifier s must be able to forward it to a node
whose ID is “closer” to s. This rule will guarantee
that the query eventually arrives at the closest node.

Distance function. The two previous issues
allude to the “closeness” of keys to nodes and nodes
to each other; this is a common notion whose defin-
ition depends on the scheme. In Chord, the close-
ness is the numeric difference between two IDs; in
Pastry and Tapestry, it is the number of common
prefix bits; in Kademlia, it is the bit-wise exclusive-
or (XOR) of the two IDs. In all the schemes, each

forwarding step reduces
the closeness between
the current node han-
dling the query and the
sought key.

Building routing
tables adaptively. To
forward lookup mes-
sages, each node must
know about some other
nodes. This information
is maintained in routing
tables, which must adapt
correctly to asynchro-
nous and concurrent
node joins and failures.

Routing in One
Dimension
A key difference in the
algorithms is the data

structure that they use as a routing table to provide
O(log N) lookups. Chord maintains a data structure
that resembles a skiplist. Each node in Kademlia,
Pastry, and Tapestry maintains a tree-like data struc-
ture. Viceroy maintains a butterfly data structure,
which requires information about only constant
other number nodes, while still providing O(log N)
lookup. A recent variant of Chord uses de Bruijn
graphs, which requires each node to know only
about two other nodes, while also providing O(log
N) lookup. We illustrate the issues in routing using
Chord and Pastry’s data structure.

Chord: Skiplist-like routing
Each node in Chord [11] has a finger table contain-
ing the IP address of a node halfway around the ID
space from it, a quarter-of-the-way, an eighth-of-the-
way, and so forth, in powers of two, in a structure
that resembles a skiplist data structure (see Figure 1).
A node forwards a query for key k to the node in its
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finger table with the highest ID not exceeding k; the
ID of this node is called the successor of k. The
power-of-two structure of the finger table ensures
that the node can always forward the query at least
half of the remaining ID-space distance to k, leading
to O(log N) messages to resolve a query.

The main emphasis in Chord’s design is robust-
ness and correctness, achieved by using simple algo-
rithms with provable properties even under
concurrent joins and failures. Chord ensures correct
lookups in the face of node failures and arrivals using
a successor list: each node keeps track of the IP
addresses of the next r nodes immediately after it in
ID space. This solution allows a query to make incre-
mental progress in ID space even if many finger-table
entries turn out to point to failed or nonexistent
nodes. The only situation in which Chord cannot
guarantee to find the current live successor to a key is
if all r of a node’s immediate successors fail simulta-
neously before the node has a chance to correct its
successor list. Since node IDs are assigned randomly,
the nodes in a successor list are likely to be unrelated,
and thus suffer independent failures. Hence, for rel-
atively small values of r (such as log N) the probabil-
ity of simultaneous failure goes down to 1/N.

A new node n finds its place in the Chord ring by
asking any existing node to look up n’s ID. All that
is required for the new node to participate correctly
in lookups is for it and its predecessor to update
their successor lists. Chord does this in a way that
ensures correctness even if nodes with similar IDs
join concurrently. The new node, and existing
nodes, will have to update their finger tables; this
happens in the background because it is only
required for performance, not correctness. The new
node must also acquire whatever data is associated
with the keys it is responsible for; the successor rela-
tionship ensures all these keys may be fetched from
the new node’s successor.

Chord repairs its successor list and finger tables
continuously using simple stabilization protocols.
For instance, each node n periodically contacts its
successor s(n) and asks s(n) for its predecessor. If the
returned predecessor is not n, then the appropriate
local corrections can be done.

Tree-like routing
Each node in the tree-based algorithms records, for
each prefix, the location of some node with that pre-
fix. Thus, each node knows a node with a prefix 0,
1, 00, 01, 10, 11, 000, and so forth. Pastry [9],
Tapestry [2], and Kademlia [6] are examples of algo-
rithms that use a tree-like data structure.

Pastry gives each node a randomly chosen ID,

indicating its position on an identifier circle. It
routes messages with a key to the live node with a
node ID numerically closest to the key, using 128-
bit IDs in base 2b, where b is an algorithm parame-
ter typically set to 4.

Each node n maintains a leaf set L, which is the
set of |L|/2 nodes closest to n and larger than n,
and the set of |L|/2 nodes closest to n and smaller
than n. The correctness of this leaf set is the only
requirement for correctness; forwarding is always
correct, unless |L|/2 nodes with adjacent IDs fail
simultaneously.

To optimize forwarding performance, Pastry
maintains a routing table of pointers to other nodes
spread in the ID space. A convenient way to view
this information is as [log2b N] rows, each with 2b
– 1 entries each. Each entry in row i of the table at
node n points to a node whose ID shares the first i
digits with node n, and whose i+1st digit is different
(there are at most 2b – 1 such possibilities).

Given the leaf set and the routing table, each
node n implements the forwarding step as follows. If
the sought key is covered by n’s leaf set, then the
query is forwarded to that node. In general, of
course, it will not be, until the query reaches a point
close to the key’s ID. In this case, the request is for-
warded to a node from the routing table that has a
longer shared prefix (than n) with the sought key.

Sometimes, the entry for such a node may be
missing from the routing table because the node
doesn’t exist, or that node may be unreachable from
n. In this case, n forwards the query to a node whose
shared prefix with the key is at least as long as n’s
shared prefix with the key, and whose ID is numer-
ically closer to the key. Such a node must clearly be
in n’s leaf set unless the query has already arrived at
the node with numerically closest ID to the key, or
at its immediate neighbor. If the routing tables and
leaf sets are correct, the expected number of hops
taken by Pastry to route a key to the correct node is
at most [log2b N]. 

Pastry has a join protocol that builds the routing
tables and leaf sets by obtaining information from
nodes along the path from the bootstrapping node
and the node closest in ID space to the new node. It
may be simplified by maintaining the correctness of
the leaf set for the new node, and building the rout-
ing tables in the background. This approach is used
in Pastry when a node leaves; only the leaf sets of
nodes are immediately updated, and routing-table
information is corrected only on demand when a
node tries to reach a nonexistent one and detects
that it is unavailable.

Pastry implements heuristics to route queries
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according to a network-proximity metric. Each node
is likely to forward a query to the nearest one of k
possible nodes, using a neighborhood set of other
nearby nodes.

Routing in Multiple Dimensions
CAN [8] uses a d-dimensional Cartesian coordinate
space to implement the DHT abstraction. The coor-
dinate space is partitioned into hyper-rectangles,
called zones. Each node in the system is responsible
for a zone, and a node is identified by the boundaries
of its zone. A key is mapped onto a point in the
coordinate space, and is stored at the node whose
zone contains the point’s coordinates. Figure 2(a)
shows a 2-dimensional [0,1] x [0,1] CAN with six
nodes.

Each node maintains a routing table of all its
neighbors in coordinate space. Two nodes are neigh-
bors if their zones share a (d – 1)-dimensional hyper-
plane. 

The lookup operation is implemented by for-
warding the query message along a path that approx-
imates the straight line in the coordinate space from
the querier to the node storing the key. Upon receiv-
ing a query, a node forwards it to the neighbor clos-
est in the coordinate space to the node storing the
key, breaking ties arbitrarily, as shown in Figure 2(b).
Each node maintains O(d) state, and the lookup cost
is O(dN1/d).

To join the network, a new node first chooses a
random point P in the coordinate space, and asks a
node already in the network to find the node n
whose zone contains P. Node n splits its zone in two
and assigns one of the halves to the new node. The
new node can easily initialize its routing table, since

all its neighbors, except n itself,
are among n’s neighbors. Once it
has joined, the new node
announces itself to its neighbors.
This allows the neighbors to
update their routing tables with
the new node.

When a node departs, it
hands its zone to one of its
neighbors. If merging the two
zones creates a new valid zone,
the two zones are combined into
a larger zone. If not, the neigh-
bor node will temporarily handle
both zones. To handle node fail-
ures, CAN allows the neighbor

of a failed node with the smallest zone to take over.
One potential problem is that multiple failures will
result in the fragmentation of the coordinate space,
with some nodes handling a large number of zones.
To address this problem, CAN runs a node-reassign-
ment algorithm in the background. This algorithm
tries to assign zones that can be merged into a valid
zone to the same node, and then combine them.

Summary and Open Questions
The lookup algorithms described here are all cur-
rently under development. Their strengths and
weaknesses reflect the designers’ initial decisions
about the relative priorities of different issues, and to
some extent, decisions about what to stress when
publishing algorithm descriptions. Some of these
issues are summarized here to help contrast the algo-
rithms and highlight areas for future work.

Distance function. The choice of distance func-
tion has implications for other aspects of the algo-
rithms. For example, Kademlia’s XOR-based
function has the nice property of being unidirectional
(for any given point x and distance d > 0, there is
exactly one point y such that the distance between x
and y is d) and symmetric (the distance from x to y is
equal to the distance from y to x) [6]. Chord is uni-
directional, but not symmetric; Pastry is symmetric
but not unidirectional. Because the metric is sym-
metric, there is no need for a stabilization protocol
like Chord; routing tables are refreshed as a side effect
of ordinary lookups. Because the metric is unidirec-
tional, Kademlia doesn’t need a leaf set like Pastry.

Operation costs. The routing strategies described
here have all been analyzed under static conditions.
A key area for future analysis is the effect of relatively
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frequent node joins and departures in large systems;
even relatively modest costs for these operations
could end up dominating overall performance. A
promising approach is based on a notion of the
“half-life” of a system [4].

Fault tolerance and concurrent changes. Most
of the algorithms assume single events when consid-
ering the handling of nodes joining or failing out of
the system. Chord and Tapestry also guarantee cor-
rectness for the difficult case of concurrent joins by
nodes with similar IDs, as well as for simultaneous
failures. Some research focuses on algorithms that
improve efficiency under failures by avoiding time-
outs to detect failed nodes [5, 6, 10].

Proximity routing. CAN, Kademlia, Pastry, and
Tapestry have heuristics to choose routing-table
entries refering to nodes that are nearby in the
underlying network; this decreases the latency of
lookups. Chord chooses routing-table entries oblivi-
ously, so it has limited choice when trying to choose
low-delay paths—a new version uses an algorithm
proposed by Karger and Ruhl for proximity routing
[3]. Since a lookup in a large system could involve
tens of messages, at dozens of milliseconds per mes-
sage, reducing latency may be important. More
work will likely be required to find latency reduction
heuristics effective on the real Internet topology.

Malicious nodes. Pastry uses certificates to prove
node identity, allowing strong defenses against mali-
cious participants. The cost, however, is trust in a
certificate authority. All of the algorithms described
can potentially perform cross-checks to detect incor-
rect routing due to malice or errors, since it is possi-
ble to verify whether progress in the ID space is
being made. Authenticity of data can be ensured
cryptographically, so the worst a malicious node can
achieve is convincingly deny that data exists. The
tension between the desire to avoid restricting who
can participate in a P2P system and the desire to
hold participants responsible for their behavior
appears to be an important practical consideration.

Indexing and keyword search. These DHT
algorithms retrieve data based on a unique identifier.
In contrast, the widely deployed P2P file-sharing
services are based on keyword search. While it is
expected that distributed indexing and keyword
lookup can be layered on top of the distributed hash
model, it is an open question if indexing can be
done efficiently.

In summary, these P2P lookup algorithms have
many aspects in common, but comparing them also
reveals a number of issues that require further inves-
tigation to resolve. They all share the DHT abstrac-
tion, and this has been shown to be beneficial in a

range of distributed P2P applications. With more
work, DHTs might well prove to be a valuable
building block for robust, large-scale distributed
applications on the Internet.  
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