
A Stream Redirection Architecture for Pervasive

Computing Environments

by

Jorge Rafael Nogueras

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2001

c© Jorge Rafael Nogueras, MMI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2001

Certified by. .
Hari Balakrishnan

Assistant Professor
Thesis Supervisor

Certified by. .
Stephen J. Garland

Principal Research Scientist
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Stream Redirection Architecture for Pervasive Computing

Environments

by

Jorge Rafael Nogueras

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2001, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

We describe a framework for redirecting data streams to devices best equipped to han-
dle them as users move around in a building. This is a useful capability for emerging
pervasive computing environments such as MIT’s Project Oxygen, as it allows a mo-
bile user with a handheld device to easily control and benefit from specialized devices
(e.g., speakers, large displays, etc.) available at various locations. For instance, as
a user moves around, this system makes it possible for a sound or video stream to
“follow” her, with the stream being played at whichever best-equipped, available out-
put device is nearest to her at any point in time. The key challenges in building this
system involve discovering resources identified by their location and in developing an
architecture that achieves seamless stream redirection. We describe how our design
and implementation meets these challenges.

Thesis Supervisor: Hari Balakrishnan
Title: Assistant Professor

Thesis Supervisor: Stephen J. Garland
Title: Principal Research Scientist

2

Acknowledgements

I would like to thank the following people who have helped me with my project and

my thesis: Kalpak Kothari (for writing the Swing GUI for the prototype application

and helping me with all things iPAQ), Bodhi Priyantha and Allen Miu (for taking

the time to help me with Cricket), everyone in the Networks and Mobile Systems

group, my family and friends (who have supported me in many ways), and of course

my professors, Hari Balakrishan and Stephen Garland, for giving me their time, their

expertise, and their keen eye for grammatical and typographical errors. May I make

all of them proud.

3

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Goals . 10

1.3 System Overview . 11

1.4 Contributions . 12

2 Related Work 13

2.1 Mobility . 13

2.1.1 Mobile IP . 13

2.1.2 Migrate . 15

2.2 Physical Location Support Systems 16

2.2.1 Cricket . 16

2.2.2 Active Badges . 17

2.2.3 Global Positioning System . 18

2.3 Network Resource Discovery Systems 18

2.3.1 INS . 18

2.3.2 Jini . 20

3 Design 22

3.1 Introduction . 22

3.2 Design Challenges . 22

3.3 Design Overview . 24

3.3.1 Components . 24

4

3.4 Media Server . 25

3.4.1 Rationale . 25

3.4.2 Description . 26

3.5 Media Sink . 26

3.5.1 Rationale . 26

3.5.2 Description . 27

3.6 Media Sink Proxy . 27

3.6.1 Rationale . 27

3.6.2 Description . 28

3.7 Controller . 28

3.7.1 Rationale . 28

3.7.2 Description . 28

3.8 System Interaction . 29

3.8.1 Physical Location Discovery 29

3.8.2 Announcement of Sink Resources 30

3.8.3 Controller-Sink Proxy Communication 31

3.8.4 Establishing a Connection . 33

3.8.5 Example of Stream Migration 40

3.9 Summary . 43

4 Implementation 44

4.1 Introduction . 44

4.2 Controller Internals . 44

4.2.1 Location Awareness . 45

4.2.2 The Controller Library Class 45

4.2.3 Controller Prototype Implementation 47

4.3 Sink Proxy Internals . 48

4.3.1 Sink Proxy Intentional Names 48

4.3.2 The SinkProxy Library Class 50

4.3.3 Sink Proxy Prototype Implementation 51

5

4.4 Summary . 56

5 Results and Discussion 57

5.1 Introduction . 57

5.2 Design and Implementation Issues . 57

5.2.1 Resource Access Control . 57

5.2.2 Authentication and Security 58

5.2.3 Media Player Issues . 59

5.3 Achieving Flexibility . 60

5.3.1 Media Server Independence 60

5.3.2 Transport Independence . 63

5.4 Results . 64

5.5 Conclusions . 67

6

List of Figures

3-1 Framework Components . 24

3-2 Physical Location Discovery Using Cricket 30

3-3 Announcement of Sink Resources Using INS 31

3-4 Connection Establishment . 41

3-5 Ending a Connection . 42

3-6 Resuming a Connection . 43

4-1 Use of Web Proxy . 54

7

Chapter 1

Introduction

1.1 Motivation

With every passing year, we find that smaller devices with greater computational

power are becoming increasingly popular. It is now common to see people walking

around with handheld computing devices that are small enough to carry everywhere.

Chips performing computation and communication are being embedded into all sorts

of appliances, enabling them to perform sophisticated operations and empowering

them with network connectivity. Terms such as “pervasive computing” [5] have been

coined to describe this tendency to integrate computing and communication into our

daily lives.

An even more futuristic view is held by MIT’s Project Oxygen [16], which believes

that in the future, computation will be freely available everywhere, “like oxygen in

the air we breathe.” We will not need to carry personalized devices around with us.

Instead, “anonymous” devices, either handheld or embedded in the environment, will

bring computation to us, no matter where we are. These devices will personalize

themselves in our presence by finding whatever information and software we need.

We will not need to type or click; instead, we will communicate naturally, using

speech, vision, and phrases that describe what we really want to do, leaving it to the

computer to locate appropriate resources and carry out our intent.

No matter how useful the ubiquity of mobile devices may be, however, their prac-

8

tical utility is curtailed by the following two facts: first, small devices generally lack

many features that larger (but fixed) devices boast (for example, a small handheld

personal digital assistant (PDA) is usually not equipped with high-quality speakers

or a screen large enough for conveniently viewing large documents or digital video).

Second, software running on today’s mobile devices generally lack one very important

piece of information: context. Most of these devices have no concept of their envi-

ronment, such as their location, the identity of the person using them, the existence

of nearby devices that may be used to complement or augment their capabilities,

etc. We feel that knowledge of environmental context will enable interesting new

applications.

If we could somehow leverage the capabilities of larger devices while still benefit-

ting from the practicality and portability of handheld devices, we could provide the

user with a computing environment in which information is seamlessly directed to

the device best-equipped to handle it.

We can thus conceive of a “coalition” of devices in which context-aware devices

discover one another and make use of each other’s capabilities to enhance the user’s

productivity. Imagine, for instance, walking into a room with a handheld device that

lacks speakers: you notice, however, that there are computers with speakers in the

room. In the current paradigm, you would simply have to forgo the use of your

handheld device and somehow gain access to one of these computers, retrieve the

desired media file and play it there. If you move to another room, the process would

have to be repeated, and if the audio file was only played in part, you would have to

manually advance the time counter to continue playing it from where it left off.

We see that to benefit from the resources of a fixed computing device, the user

was forced to simply stop using the mobile handheld device. When the user moved

from one room to another, she was unable to benefit from the handheld’s inherent

portability.

This thesis describes a new paradigm, based on a generic stream redirection frame-

work.1 Our framework describes several components that work together to allow a

1A stream is simply a sequence of bytes; when a file is being transferred from the server where it

9

user to use a handheld device to play media files using the resources of fixed devices

in her surroundings.

1.2 Goals

Ideally, we would like to attain a balance between the better or more suitable re-

sources usually offered by fixed devices with the portability and convenience of hand-

held devices. It is by achieving this synergism that we can truly benefit from both

computational paradigms.

Specifically, we are interested in the possibility of using room resources for the

playing of media files, using the user’s handheld device as a “remote control” from

where the user can specify which file should be played and where it should be played.

One important consideration is the limited network bandwidth usually available to

portable devices. Handhelds usually use a wireless network connection that provides

them with less network bandwidth than wired connections.

Also, handheld devices generally have limited permanent storage capacity, and

some lack it completely. Media files tend to be as large as several megabytes, so it is

unlikely that the handheld device could store many media files at a time.

For these reasons, it makes sense to store the media files not in the handheld

device itself, but in some media file server that can be accessed through the wired

network. Even if the handheld device did have enough permanent storage to maintain

a collection of media files, since they are going to be played elsewhere, it does not

seem prudent to have to transfer the media files over the wireless link to the fixed

device where they will be played.

We can identify several goals that guided us in the design and implementation of

our project:

1. First, we wanted to design a framework where handheld devices may be used to

discover the existence of other devices based on their physical location, and be

resides to another host through the network, we can view the sequence of the bytes that make up
said file as a stream.

10

able to use the resources of these devices to initiate the playing of media files.

We were also interested in leveraging the mobility of these handheld devices by

having the data stream “follow” the user to other appropriate devices as the

user moves from room to room.

2. Another goal of our project was to make our framework platform-independent2

and flexible.3 We also wanted to offer a simple object-oriented application

programming interface (API) that developers could use to write their own ap-

plications.4

3. The final goal of our project was to build a working prototype implementation

that showcases the features and benefits of our framework.

1.3 System Overview

In this thesis we present and describe in detail an architecture for achieving applica-

tion-level stream redirection that enables a user to begin playing a media file and

have the data stream follow her as she moves from room to room. We also describe

a working implementation that showcases our architecture’s flexibility.

Our design uses two technologies to achieve the aforementioned requirements: it

uses the Cricket location support system (see Section 2.2.1) so that the system can

learn of the user’s physical location wherever she goes, and it uses the Intentional

Naming System (INS) network resource location system (see Section 2.3.1) to find

out which speakers or displays are available for use in each room.

The user carries a handheld mobile device with network connectivity wherever she

goes. This handheld device has attached to it a piece of hardware called a Cricket

listener, which learns of its location by listening to signals coming from Cricket beacons

2Our implementation was done in the Java programming language [10, 4], so the framework can
be deployed on any system for which a Java Virtual Machine (JVM) exists.

3By flexible we mean that it should be able to accommodate different file servers and output
devices without having to modify any system component other than those in our framework.

4These applications may use stream redirection to make any other type of data other than media
files follow a user, for instance.

11

installed in every room. Our software, running on the user’s handheld device, learns of

the user’s location thanks to Cricket and asks INS if there are any available speakers

in that room that may be used for playing music. If there are, the user can select

which media file she wants to play and it will begin playing in a speaker in the current

room.

As the user moves to another room, the software detects this change and asks INS

for speakers in the user’s new location; as soon as one is found, it instructs the new

speaker to begin playing the media file from the point where the other one left off.

As far as the user is concerned, the media file has automatically “followed her” from

one room to another.

1.4 Contributions

Our main contribution is that our framework and implementation present an applica-

tion-level and platform-independent solution for dynamic stream redirection. While

other schemes for mobility [18, 20] have been devised, they often involve changing the

end-points’ protocol stacks (either at the network or at the transport level). Having

to do this just so that an application will work can range from being an annoyance

to being unfeasible (like modifying the protocol stack on a Windows machine). We

argue that there is a way of making this application work without such operating

system modifications and that this is a desirable property.

Finally, our framework requires that the stream redirection occur not because

either of the end hosts has changed its network attachment point, but rather as an

asynchronous event at the request of a third party that has moved in a physical (as

opposed to network) sense. Having a third party make either end-point migrate a

connection would require further modification on the mobility schemes we will discuss

in Section 2.1 and could present serious security risks. Our framework, even if it is

misused by a malicious user, could not do anything more than redirect a connection

started by our own application and could not be used to allow a third party to redirect

any connection in the host.

12

Chapter 2

Related Work

In this chapter we discuss several other projects that have concerned themselves with

the concepts of redirecting data dynamically, giving devices a context of location, or

network resource location. We will emphasize in particular Cricket and the Inten-

tional Naming System since we will be using them in our project.

2.1 Mobility

Dynamic host mobility has been the topic of many research projects. We will discuss

a few of them and see how they relate to our work.

2.1.1 Mobile IP

Mobile IP [18] is an enhancement to the Internet Protocol (IP) that allows transparent

routing of IP datagrams to mobile nodes on the Internet. Each mobile node is always

identified by its home address, regardless of its current point of attachment to the

Internet. While away from its home, a mobile node is also associated with a “care-

of” address, which provides information about its current point of attachment to the

Internet. Mobile IP provides for registering the care-of address with a home agent.

The home agent sends datagrams destined for the mobile node through a tunnel to

the care-of address. After arriving at the end of the tunnel, each datagram is then

13

delivered to the mobile node.

In Mobile IP parlance, there are the following components:

Mobile Node — This is the host that changes its point of attachment from one

network to another. A mobile node may change its location without changing

its IP address; it may continue to communicate with other nodes at any location

using its (unchanging) IP address.

Home Agent — This is a router on a mobile node’s home network which tunnels

datagrams for delivery to the mobile node when it is away from home, and

maintains current location information for the mobile node.

Foreign Agent — This is a router on a mobile node’s “visited” network which

provides routing services to the mobile node while registered. The foreign agent

detunnels and delivers datagrams to the mobile node that were tunnelled by

the mobile node’s home agent. For datagrams sent by a registered mobile node,

the foreign agent may serve as a default router.

A mobile node is given a long-term unchanging IP address on its home network.

When away from its home network, a “care-of” address is associated with the mobile

node and reflects the mobile node’s current point of attachment. The mobile node

normally uses its home address as the source address of all IP datagrams that it sends.

Thus, this protocol describes a “triangular routing” scheme: packets meant for the

mobile node are not sent directly to it, but rather to the mobile node’s home agent,

which then forwards them to the mobile node in the remote network.

As stated in [17], there are several performance problems in Mobile IP that should

be mentioned. First, Mobile IP’s tunnelling scheme creates the aforementioned trian-

gle routing problem, causing packets to take a sub-optimal route. Second, packets in

transit when a handoff 1 occurs are often lost because they are sent to the wrong ad-

dress, due to out-of-date information. When the mobile host is changing its location

frequently, this results in frequent handoffs; requiring a registration with a distant

1A handoff takes place when the mobile host moves from one coverage area to another.

14

home agent for each handoff causes higher overhead and further aggravates packet

loss.

2.1.2 Migrate

Migrate [20] is an end-to-end architecture for Internet host mobility using dynamic

updates to the Domain Name System (DNS) [14] to track host location. Existing TCP

connections are retained using secure and efficient connection migration, enabling

established connections to seamlessly negotiate a change in endpoint IP addresses

without the need for a third party. The mobile host itself is in complete control of its

mobility mode, so there is no need to have a home agent to receive packets on behalf

of the mobile host, like in Mobile IP.

DNS is used as a level of indirection between a host’s current location and an

unchanging endpoint identifier. Migrate takes advantage of the fact that DNS is

widely deployed, provides automatic hostname lookup for most applications, and

supports secure dynamic updates. This means that when the mobile host detects

that it has changed its point of attachment, it must immediately update the DNS

mapping between its hostname and its IP address. To make sure this change is

immediately perceived by other hosts trying to communicate with the mobile host,

the DNS mapping update specifies a “time-to-live” (TTL) value of zero: this prevents

the name entry from being cached in other hosts, which means that new connections

to the same host must first initiate contact with the mobile host’s name resolver to

retrieve its current IP value.

Migrate proposes a new Migrate TCP option that serves to identify a connection

as part of a previously established connection rather than a new one. This Migrate

option includes a token that identifies a previously established connection to the

same address and port. This token is used to identify the previous connection so that

the host may retrieve its state and continue the connection from where it left off.

The implementation of Migrate required the modification of the Linux 2.2.15 kernel,

specifically, modifying the TCP stack to support Migrate options.

Mobile IP and Migrate solve a different problem than our framework. While we

15

are concerned with application-initiated, third-party requests for stream redirection

in an asynchronous manner, Mobile IP and Migrate solve the problem of either end-

host changing its network address while the communication is in progress. In our

framework, no end-host changes its network address: both the server and the sink

proxy are fixed hosts. It is the controller, a third party that is not an endpoint of the

connection, that is mobile (in a physical, as opposed to network, sense) and instructs

the stream to be redirected to another host.

2.2 Physical Location Support Systems

2.2.1 Cricket

Cricket [19] is a location support system for in-building, mobile, location-dependent

applications developed at MIT’s Networks and Mobile Systems (NMS) Group [15]. It

relies on hardware components called “beacons” that broadcast their physical location

and their counterparts, the “listeners,” that receive the signals sent by the beacons

to determine the closest beacon and thus the listener’s physical location.

It was designed with the following goals in mind: user privacy, decentralized

administration, network heterogeneity, and low cost. It does not explicitly track the

location of the users; instead, Cricket aids them in figuring out their location and

lets them decide whether or not to advertise this information and to whom. By not

tracking users and services, user-privacy concerns are adequately met. Furthermore,

Cricket does not rely on any centralized management or control, and there is no

explicit coordination between beacons.

A Cricket deployment consists of a set of beacons that are installed across a

building. Each beacon periodically transmits (using radio frequency and ultrasound

signals) its location information. Devices that have an interest in learning about

their location have Cricket listeners attached to them. By listening to the beacon

advertisements, each listener determines its location, and informs the attached device

of said location. Listeners use the inter-arrival time between the radio frequency and

16

ultrasound signals to estimate the location of each beacon.

Note that there may very well be more than one beacon per room, so in fact the

location being received by the listener might be more specific than simply a room

name or number (the location could specify, for example, the north or south half of

a room); however, for the sake of simplicity we will henceforth assume that there is

only one beacon per room, so that “changing location” and “moving from one room

to another” are interchangeable for our purposes.

2.2.2 Active Badges

The Active Badges project [1, 21] provides a means of locating individuals within a

building by determining the location of their “Active Badge.” This small device worn

by the users transmits a unique infrared (IR) signal for approximately a tenth of a

second every 15 seconds. Each office within a building is equipped with one or more

networked sensors that detect these transmissions. The location of the badge (and

hence its wearer) can thus be determined on the basis of information provided by

these sensors. A master station, also connected to the network, is given the task of

polling the sensors for badge ‘sightings,’ processing the data, and then presenting it

in a useful visual form.

Pulse-width modulated IR signals were used for signalling between the badge and

the sensor mainly because: IR emitters and detectors can be made very small and

very cheaply, they can be made to operate with a 6-meter range, and the signals are

reflected by partitions and therefore are not directional when used inside a small room.

Also, the signals will not travel through walls like radio signals that can penetrate

partitions found in office buildings.

However, since there is a centralized database that keeps track of each user’s

location, privacy becomes an issue. Also, infrared suffers from “dead-spots,” which

are places in a room where no signal is received; Cricket is immune to this problem

because it uses ultrasound.

17

2.2.3 Global Positioning System

The Global Position System [9, 8] is a worldwide radio-navigation system formed from

a constellation of 24 satellites and their ground stations. Each satellite has an atomic

clock and emits radio frequency (RF) signals that include the time and a code telling

its location. By analyzing signals from at least four of these satellites, a receiver on

the surface of the Earth with a built-in microprocessor can display the location of the

receiver (latitude, longitude, and altitude). Consumer receivers are approximately

the size of a handheld calculator and provide a position accurate to 100 meters or so.

The receiver clock times the reception of each signal, then subtracts the emission

time to determine the time lapse and hence how far the signal has travelled (at the

speed of light). This is the distance the satellite was from the receiver when it emitted

the signal. In effect, three spheres are constructed from these distances, one sphere

centered on each of the three satellites; the receiver is located at the single point

at which the three spheres intersect. Since the clock in the handheld receiver is

not nearly so accurate as the atomic clocks carried in the satellites, the signal from

a fourth satellite is employed to check the accuracy of the clock in the handheld

receiver. This fourth signal enables the handheld receiver to process GPS signals as

though it contained an atomic clock.

GPS can be very precise for outdoor use. However, there is a lot of RF noise,

the signals have low power, and metallic objects can cause signal reflections; this can

sometimes make GPS inappropriate for use inside buildings, where Cricket is a better

solution.

2.3 Network Resource Discovery Systems

2.3.1 INS

Also developed at MIT’s NMS group, the Intentional Naming System (INS) [3, 2, 13]

is a resource discovery and service location system for dynamic and mobile networks

of devices and computers. Mobile environments require a naming system that is:

18

expressive (to describe and make requests based on specific properties of services),

responsive (to track changes due to mobility and performance), robust (to handle

failures), and easily configurable.

Applications in an INS network are defined by their intentional names, which

describe what they are or what they do (i.e., their intent). The naming language

they use is based on (possibly hierarchical) attribute-value pairs that describe the

application’s intent. For instance, a color printer in the third-floor lounge might

describe itself as follows:

[service =printer

[type = color]

[location = lounge

[floor = 3]]]

INS implements a late binding mechanism that integrates name resolution and

message routing, enabling clients to continue communicating with end-nodes even

if the name-to-address mappings change while a session is in progress. Intentional

Name Resolvers, or INRs, self-configure to form an application-level overlay network,

which they use to discover new services and perform late binding.

Using late binding, a client sends the packet payload through the INR overlay

network; the packet is identified with the intentional name of the service where the

packet should be sent. INRs then forward the packet to any entity that has announced

the specified intentional name (this is what is called intentional anycast). Optionally,

the client may specify that the packet should be sent to all the entities with the

specified intentional name: this is what is called intentional multicast.

An alternative to late binding is early binding, where the INR resolver network

is used to get the current IP addresses of the entities with the specified intentional

name. This is useful when the entities are relatively static. In this fashion INS is

used much like the DNS, simply providing a mapping between a high-level name and

a network binding.

19

2.3.2 Jini

Jini [11, 6] is a distributed framework developed in Java by Sun Microsystems. It

is designed for the creation and management of communities of “services” (pieces of

code that perform some function); clients can find these services without previous

knowledge of network topology and minimal configuration. Services are accessed

through Java objects called proxy objects ; these are pieces of code that get transferred

to the client, which can perform local method calls on them that are carried out on

the remote service object (using any pertinent means for remote method invocation).

In Jini’s architecture there are central manager programs called lookup services

where entities can both register the services they provide to the community and

request the services they need. The most common way for clients to find these

lookup services is using IP multicast in a process called discovery. This means that

all lookup services in the network will reply to the discovery request with their own

proxy objects (in other words, lookup services are Jini services themselves).

The normal operation cycle of a Jini community is as follows: the lookup services

are started on some node(s) on the network (several lookup services can be used for

redundancy and robustness). Services start appearing on the network: they perform

discovery, find all lookup services in the network and register their proxy object with

the lookup services. When a client that requires a service appears, it does discovery

to find the lookup services and it performs a lookup call on it, asking it to return the

proxy object of the service in question. After that, the client can interact with the

proxy object directly.

As stated in [7], however, there are certain limitations with the Jini architecture:

1. The Jini infrastructure does not explicitly allow for service mobility: if a service

changes its location in the network topology, all clients connecting to that service

lose the connection and have to rediscover the service.

2. The discovery process explicitly relies on IP multicast.2 This means that institu-

2Although there are provisions for unicast discovery, this requires previous knowledge of the
network address of a service lookup.

20

tions whose networks do not allow multicast to propagate across the boundaries

separating various network segments will be forced to set up their Jini commu-

nities manually or will have to make serious alterations to their networking

infrastructure.

3. Jini service templates (which are the mechanism used by clients to describe

the services they seek) are not always the easiest or most descriptive way of

specifying the services needed.

21

Chapter 3

Design

3.1 Introduction

In this section we will explain in detail the design of our stream-redirection framework,

the rationale that went into our design choices, and finally some advantages and

disadvantages of the overall framework.

3.2 Design Challenges

Designing a framework that does dynamic stream redirection presents the following

challenges:

Making the stream redirection be transparent — Traditionally, the stream of

data being sent in a network file transfer can not be redirected automatically:

one can set up a transfer between two hosts, but once it has begun the receiving

host can not “tell” the stream to begin flowing to another host. Doing this

actually entails breaking the first connection, establishing one to the next host,

and informing the server from which byte offset it should resume the transfer.

We would like to make all of this completely transparent to the user: as far as

she is concerned, when she moves from one room to another, all that happens

is that the media file she is listening to is “magically” moved from a speaker

22

in the first room to a speaker in her new location. Our framework will be in

charge of:

1. Knowing when to redirect the stream to a new location.

2. Finding a suitable new device.

3. Finding where (i.e., at which byte offset) in the stream the transfer must

be resumed.

4. Closing down the old connection and re-starting the transfer in the new

location at the point where the previous one left off.

Giving devices a context of location — To make this work we clearly need to

endow the handheld devices and the fixed devices whose resources we will be

using with the context of their physical location. We will need a physical location

discovery system that can be interfaced with the devices so they may learn of

their location and be informed if that location should change. We have chosen

the Cricket location support system as our physical location discovery system

(see Section 2.2.1).

Discovering resources indexed by their physical location — We also need to

be able to find resources according to their physical location. How each device’s

physical location is actually described is arbitrary: we could think, for instance,

of devising a hierarchical naming system, where we start by giving a name to

the building, then identifying the floor, then the number for the room itself. An

alternative is to identify each room with a “flat” namespace where each room

has a number or a name (for instance, the name of the person who works there).

In any case, what is important is that the naming scheme is well-known and

shared by all devices. Having this uniform naming scheme enables us to use a

network resource discovery system to have each device announce its existence

and its location to the network and then being able to query said network later

to find pertinent devices. We have chosen the Intentional Naming System, or

INS, as our network resource discovery system (see Section 2.3.1).

23

Figure 3-1: Framework Components

3.3 Design Overview

3.3.1 Components

Our framework is made up of four components that interact with each other through

well-specified interfaces (as illustrated in Figure 3-1):

1. Media Server: This is the host where the media files that are to be played

reside. Our system can interact with unmodified servers (such as web servers

or FTP servers), so the media server is actually an external component of the

framework. We can use existing servers as they are, as long as they support

starting a transfer from any byte offset. No modification to the server is neces-

sary to have it interact with the rest of our framework. We will go into more

detail in Section 3.4.

2. Media Sink: This is where the media files are being played; in our previ-

ous example, the speakers are the media sink. We will go into more detail in

Section 3.5.

24

3. Media Sink Proxy: Since actual media sinks will very likely lack computa-

tional abilities, we need a piece of software that can communicate with the rest

of the system on behalf of the media sink. The media sink proxy is the piece of

software that is the actual media sink’s portal to the rest of the system. Its du-

ties include communicating with the server to get the stream data and sending

the data to the sink so the media file can be played (how this is actually done

is sink-dependent but ultimately transparent to the rest of the framework). We

will go into more detail in Section 3.6.

4. Controller: This is the piece of software running on the handheld device. Its

duties include finding out its location, detecting motion from one location to

another, and communication with a sink proxy to initiate a media file transfer.

We will go into more detail in Section 3.7.

3.4 Media Server

3.4.1 Rationale

First, let us describe the rationale behind having a media server in our framework. We

must start by realizing that most handheld devices in the market have very limited

permanent disk storage. By contrast, the number of media files that a user may wish

to play is virtually endless, and their size may surpass the permanent storage space

that some handhelds provide.

Another reason for having a media server running on some other host different from

the handheld device is limited bandwidth. Handhelds typically communicate with the

network through a wireless network interface, whose bandwidth is considerably less

than for wired networks. If the media files (whose sizes are usually several megabytes)

resided on the handheld, they would have to be transferred through the wireless

connection to the sink. Clearly it would be best to conserve the handheld’s bandwidth

and not use it unnecessarily for such large transfers.

The aforementioned reasons suggest the concept of an outside repository for the

25

media files: this is what we call the media server.

3.4.2 Description

Although we include it as one of the components of our framework because it is a vital

part of our framework’s functioning, we consider it an external component because

we have not written a specific server for our framework, opting instead to utilize

existing servers. The only restriction placed on the types of media file servers used in

our framework is that they support resumable downloads: in other words, that they

accept a byte offset from which a file can be downloaded.

We need not modify an existing server to make it work with our framework; thus,

it is perfectly acceptable to store the media files on a web server and to retrieve them

using the HTTP protocol, or to store them on an FTP server, et cetera. We will

explain how this flexibility is achieved in Section 3.8.4.

The sole responsibility of the media server is to listen for incoming file requests

and to respond with the data of the requested file. How this is done is dependent on

the type of server and the protocol it uses, but this is transparent to the rest of the

framework. All that is known is that we will have at our disposal the stream of bytes

that make up the media file so we are able to play it at the sink.

3.5 Media Sink

3.5.1 Rationale

The main purpose of our framework is to be able to utilize the resources of a room

when the resources of our handheld are not satisfactory for playing media files. This

means that there must be an appropriate sink, or recipient, of our media files that

satisfies our needs. This is what we call the media sink.

Exactly what constitutes a media sink depends on the type of media file we are

interested in playing. If we want to play an MP3 file, for instance, we would like to

have some speakers in the room where we can hear the music; if we wish to play an

26

MPEG video file, on the other hand, we would like to have a monitor in the room

where we could see the image.

3.5.2 Description

Like the media server, the media sink is actually a external component since the

framework simply utilizes already-existing sinks, which require no modification.

This means that we do not require the use of “network-aware” sinks that can

receive streaming data and play it automatically. We recognize that media sinks are

typically attached to computationally-able devices such as desktop or laptop comput-

ers, which may be accessed through the network (how this knowledge is relevant will

be discussed in Section 3.6.1).

The media sink’s only responsibility to the framework is to allow the user to play

or view the media file; again, how exactly the media sink works is hidden from the

rest of the framework. For instance, the user only need know that there is a speaker

in the room so she can play her MP3 files: what type of speaker it is, or how the

media file’s bytes are ultimately converted into sound, is of no interest to the rest of

the framework.

3.6 Media Sink Proxy

3.6.1 Rationale

Although the framework’s ultimate goal is to allow the user to play media files in

some media sink resource available in the room, most media sinks (such as speakers

or monitors) do not actually have computational ability and, as such, are unable to

communicate with the rest of the framework by themselves.

It is thus necessary to have a piece of software with knowledge of the specifics of

the sink that can communicate on its behalf with the rest of the framework. This

software component of the framework is called the media sink proxy.

27

3.6.2 Description

The media sink proxy is co-located with the actual media sink, that is, it is running

on the machine where the media sink physically resides. The sink proxy is thus in a

position to interact with the rest of the framework and instruct the sink how to play

the media file (by running a specific media player program, for instance).

Its basic responsibilities to the rest of the system consist of receiving commands

from the Controller (Section 3.7), retrieving the stream for the media file from the

media server, and instructing the sink how to play it.1

The sink proxy must also find its location (which may either be statically con-

figured or be discovered through some physical location system, like Cricket), and

announce its existence and its location to the network.

3.7 Controller

3.7.1 Rationale

To make the framework useful, there must be some piece of software that can detect

the current location of the user as she moves around. This piece of software, called

the Controller, runs in the handheld device that accompanies the user, and serves as

her interface to the rest of the system.

3.7.2 Description

The controller has two main functions in the framework: the first is to present to the

user a simple interface so she can select which media file she wants to play and allow

her to play or stop said media file. The second function is to track the user’s location:

the controller must interface with a physical location system so it can determine its

location and detect when said location has changed so the stream connection can be

1The framework makes no assumptions in terms of access control (that is, who has the “right”
to use the sink at any particular time); this gives the application developer the flexibility to let her
own sink proxy implementation utilize any admission scheme the application requires.

28

redirected to the appropriate new media sink.

Once the controller has determined the user’s current location, it must find out if

there are any available media sinks there. To do this, it must interface to a network

resource location system, like the Intentional Naming System, or INS, to ask the

network if there are in fact any media sink proxies running in the controller’s current

location.

3.8 System Interaction

Now that we have briefly introduced the components and the technologies that make

up our framework, it is time to explain how they all fit together: how the pieces

interact with each another and how the framework is flexible enough to accommodate

specific implementations with different servers.

We will explain these interactions by going step-by-step and seeing the chain of

events that are necessary to initiate the playing of a media file and the redirection of

its stream from one sink to another as the user moves from one room to another.

We will also describe the interfaces that make up the skeleton of our framework.

These interfaces, and the interactions between the objects that implement them, are

at the heart of our design. Using these interfaces in the manner that we shall describe

and knowing how to extend their functionality is what makes it easy to make good

implementations using our design.

3.8.1 Physical Location Discovery

The first thing that will happen when the controller software is run is that the Cricket

listener attached to it will inform it of its physical location (see Figure 3-2). Said

location is opaque to the controller; this means that it is simply a string of characters

that the controller receives but need not interpret.

In general, location information is simply used to figure out which sink proxies

are running in the same location as the controller. It is unimportant exactly what

this location string is or how it is constructed; it suffices only that the location string

29

Figure 3-2: Physical Location Discovery Using Cricket

determined by the controller matches the one being announced by the sink proxy.

Sink proxies, thus, must also figure out their location information. In the case

of a sink proxy, the location information (which is also opaque) may be given as a

static, non-changing string (which may be useful if the sink proxy is running on a

desktop computer whose location is known and fixed). However, it is also possible to

interface a physical location system such as Cricket to the computer where the sink

proxy is running so that its location may be given by the beacon in the room.

3.8.2 Announcement of Sink Resources

When the media sink proxy software is run, it must first figure out its location (as

explained in Section 3.8.1). Once it does so, it must announce itself to the network

so that it may be found by controllers interested in initiating a connection.

For this purpose, the sink proxy communicates with a network resource location

system such as INS, sending it an announcement informing it of its existence and its

location information (see Figure 3-3). Other information should be included in this

network announcement; the sink proxy should reveal not only its physical location,

30

Figure 3-3: Announcement of Sink Resources Using INS

but also some information the controller may use to contact it (such as its network

address and port), as well as which type of sink it is (if it can play audio or video, for

example) and the transport type it accepts (transports are explained in Section 3.8.3).

3.8.3 Controller-Sink Proxy Communication

Now that the sink proxy has announced itself to the network, controllers interested in

starting a connection need only request the network resource locator system to inform

it of any entities whose announced name includes the controller’s current location (see

Figure 3-3). If there are, the controller will receive a response with their information

and the controller can use that information to determine with which sink proxy it

should establish a connection.

We thought it would be a useful property if the communication between the con-

troller and the sink proxies could be carried out in any one of different ways and not

restricted to just one; this is why we have the concept of a transport.

Transports

Transports specify how the communication between the controller and a sink proxy

occurs. For instance, the two might communicate by establishing a TCP connection,

31

or by sending UDP datagrams, or perhaps even by using INS’s late binding feature

(as explained in Section 2.3.1).

The way this works is as follows: our architecture defines two interfaces that must

be implemented to enable communication between the controller and the sink proxy:

Transport and ListeningTransport. The controller must use an object that implements

the Transport interface, which defines the methods that may be used to communicate

with a sink proxy (we will see these commands in Section ref.

Who must care about about the Transport and ListeningTransport interfaces and

why are they important? It is the application developer that decides how the con-

troller and the sink proxies must communicate in the way that is most convenient

for her specific application.2 Transports are important because they allow the appli-

cation writer to have the controller and the sink proxy communicate in the manner

that best suits the application; for instance, a transport that provides some type of

authentication scheme and/or data encryption could be implemented and seamlessly

integrated with the rest of the framework.

The concrete class that implements the Transport interface must make sure that

each of these methods conveys the corresponding message to the sink proxy: how

this is done (through an established TCP connection, by sending a UDP datagram,

et cetera) is totally dependent on the concrete implementation of the transport pair.

Of course, the sink proxy must in turn use an object that implements the Listen-

ingTransport interface: the job of this object is to listen for incoming messages from

a controller and relay them to the sink proxy.

The concrete implementation of the Transport interface used by the controller

must be the counterpart of said ListeningTransport. In other words, if the sink proxy

has a ListeningTransport that is listening for TCP connections, the controller should

connect to it using a Transport implementation that uses TCP.

How does the controller know which transports the sink proxy it wants to connect

to has available? The sink proxy must include a “transport type” attribute/value

2We have written a transport pair implementation that uses TCP sockets, which are ready to
use and may be good enough for many applications.

32

pair in its announcement that the controller can retrieve to determine how to connect

to it (we will learn more about this attribute in Section 4.3.1).

3.8.4 Establishing a Connection

Once the method of communication (transport) between the controller and the sink

proxy has been determined, the controller is now ready to send the necessary com-

mands to initiate the playing of a media file or to manipulate (e.g., stop) an already-

existing connection. Later we will go into the methods available to the Transport

interface, which are the commands that the controller may call in the sink proxy,

but first we shall discuss three concepts related to controller-sink proxy connections:

leases, ServerConnection objects, and Command objects.

leases A lease specifies a period of time that the controller can use the sink proxy. If

the controller goes away (e.g., if the handheld device is shut off), the sink proxy

will close the connection to that controller after some period of time. It is thus

the controller’s responsibility to renew the lease before it expires by signalling

to the sink proxy that it is still running and that it still wants to use the sink

proxy .

ServerConnection We have already stated that our framework allows the media file

to reside in any type of (unmodified) server. For this to work, however, the

sink proxy must know how to communicate with each type of server and how

to retrieve the desired media file. Since it is impossible for the sink proxy to

know beforehand about every server that may be utilized and which protocols

they speak, an abstract and dynamic approach is required. For this purpose

our framework describes an interface called ServerConnection that defines the

methods necessary to connect to a server and to retrieve a media file (we will

explain each of these methods later in this section). A concrete implementation

of this interface knows how to connect to a specific type of server and how

to retrieve a media file from it. For instance, for communicating with a web

server, a HTTPServerConnection concrete implementation exists that knows how

33

to connect to a web server and how to send correct HTTP requests to it. The

specific ServerConnection object necessary to retrieve a particular media file

is determined at run-time by the controller and sent to the sink proxy upon

connection establishment (as will be explained later in this section).

Command The Command interface describes a command that may be sent between

the controller and the sink proxy. In reality there are no specific methods that

describe a Command: it is merely what is called a tagging interface since it

serves simply to tag or group objects that share the same abstract functionality

(in this case, objects that embody a command that can be sent to the sink

proxy). There are two types of Command objects: ServerCommand objects and

SinkCommand objects. As the name suggests, ServerCommand objects are those

meant to be sent to the media server and SinkCommand objects are those meant

to be sent to the sink itself (how they are sent will be explained later). When

the sink proxy receives a Command object, it can determine by its type whether

it is meant for the media server or the sink, and forward it to the appropriate

one (we will see how this is done when we describe the ServerConnection and

SinkConnection interfaces later in this section).

Let us now examine the methods that describe the Transport interface to discover

how the controller communicates with the sink proxy in an abstract way:

ping () The ping() method is used to verify the existence of a corresponding Listen-

ingTransport instance. When the controller finds a sink proxy on the network,

it uses this method to verify that the sink proxy has an actual ListeningTrans-

port ready to listen for incoming connections before informing the user that

such a proxy was found. How the existence of the corresponding ListeningTrans-

port is actually verified is left up to the actual concrete implementation of the

transport.

establishConnection () This is the method that actually informs the sink proxy

that this controller wants to initiate a media file transfer on behalf of the user.

34

As a parameter to this call, the controller sends an object that implements

the ServerConnection interface and knows how to interact with the server from

where the media files are to be retrieved. In other words, this ServerConnection

object knows to which server it should connect and how to communicate with it

in order to retrieve the media files that will later be requested (a more detailed

explanation on the ServerConnection interface follows below). The sink proxy

will keep a reference to this ServerConnection object and will create some state

for the connection in an internal table (a more complete explanation of these

details follows in Section 4.3). The sink proxy will return a long integer value

(called a cookie) that uniquely identifies the connection just established: the

controller will use it in all future commands regarding that same connection so

the sink proxy knows to which connection those commands apply.

sendCommand () After the connection has been established, the controller may now

send commands to the sink proxy to retrieve a particular media file and to

play it on the sink. A command object is a concrete implementation of the

Command interface; it is an opaque object that is sent to the sink proxy to

be processed by the corresponding ServerConnection or SinkConnection object,3

depending on its type. That is, when the sink proxy receives a concrete Server-

Command object from the controller, it forwards it to the ServerConnection’s

sendCommand() method (explained below); when the sink proxy receives a con-

crete SinkCommand object from the controller, it forwards it to the SinkCon-

nection’s sendCommand() method (explained below). These methods, in turn,

know how to use that Command object to send a command to the media server

or the sink. For instance, if we are talking about a web server, the HTTPCom-

mand object sent encapsulates an HTTP request for a specified media file: the

HTTPServerConnection object knows how to convert an HTTPCommand object

into an actual HTTP request that the web server can understand.

renewLease () As explained before, the controller must keep renewing its lease on

3The SinkConnection interface is explained later in this section

35

the connection it has established; for this purpose, it must call the renewLease()

method periodically, before the time of the lease runs out.

endConnection () When the controller is no longer interested in sending commands

to the sink proxy with which it is connected, it should call the endConnection()

method to signal to the sink proxy that it should close the connection between

the media server and the sink and that it may release any state information

it has been keeping. The endConnection() method is also called when the

controller has detected that the user has changed her location; the controller

will end the connection with the sink in the previous location and then re-

sume the connection in the new sink from where the previous one left off. The

endConnection() method returns a Command object that the controller can

later use to resume the connection in a new sink proxy from where it left off

(we will see how this works in Section 3.8.5).

Communicating with Different Media Servers

As explained previously, the way our framework achieves connectivity with different

types of media servers is through the use of ServerConnection objects. The controller

decides at run-time which concrete implementation of ServerConnection to send to the

sink proxy when a connection to a specific server is desired.

Note that the controller should know all the information relevant to playing a

specific media file, namely, the server where the media files reside (network address

and port), the media type of the file (if it is an MP3 music file or an MPEG video

file, for instance), and the type of server where it resides. Using this knowledge the

controller is in a position to decide which concrete implementation of ServerConnection

it should send to the sink proxy upon connection establishment.

However, we have yet to describe how this object is used by the sink proxy to

actually communicate with the media server. Let us now go through the methods

available in the ServerConnection interface and how they are used by the sink proxy.

establishServerConnection () This is the method the sink proxy calls in order

36

to connect to the media server. Note that it is expected that the concrete

implementation of the ServerConnection object has embodied within it the ap-

propriate information to connect to the server (this may include, for instance,

the network address and port for the server). The sink proxy, thus, does not

know (and does not care about) the process by which this connection is estab-

lished or what it entails: it is simply understood that all the sink proxy needs

to do to establish a connection to the media server is to call this method on the

appropriate ServerConnection object.

sendCommand () This method is passed a ServerCommand object that describes the

command that must be sent to the server; this command is then written out to

the media server (using the previously-established connection) using the server’s

own protocol. The sendCommand() method is called by the sink proxy when-

ever the sink proxy’s ListeningTransport receives the sendCommand() call from

the controller. Note that the sink proxy does not need to examine or under-

stand the command it received before it can forward it to the ServerConnection

object: the ServerCommand object is thus said to be opaque. If for instance

we are communicating with a web server, an example of a ServerCommand that

might be sent would be a HTTPGetCommand object: the HTTPServerConnec-

tion object’s sendCommand() method will take the HTTP request embodied in

this HTTPGetCommand object and write it out to the web server (in this case,

initiating the retrieval of the specified resource on the web server).

setOutputStream () We have talked about retrieving the data that makes up the

specified media file, but we have said nothing of what is being done with said

data. Where does it go? This is where the setOutputStream() method comes

into play: it specifies the output stream where the data being received from the

server should be written. An output stream is simply an object to which stream

data is written. Note that it is the ServerConnection object’s responsibility to

connect to the media server and initiate the transfer of the media file, but it

does not know what to do with the stream of data being sent by the server.

37

This is why the sink proxy tells the ServerConnection object where it should

direct its stream of data using the setOutputStream() method: after all, it is

the sink proxy that ultimately knows what to do with the stream.

getResumeCommand () The ServerConnection object is burdened with the responsibil-

ity of keeping track of how far the media file transfer has gone. In other words,

it should be able to respond, at any moment, with information regarding the

offset of the last byte read from the media server, and it should be able to con-

struct a ServerCommand object that allows the transfer to be resumed from that

offset. Concretely, the getResumeCommand() method will be called by the sink

proxy when the controller calls the endConnection() method, and it should

return a ServerCommand object that embodies the knowledge of resuming the

connection from the appropriate byte offset. If for instance we are connecting

to a web server, this method would return an HTTPResumeCommand, which is

simply a HTTPGetCommand with an HTTP range-request header stating from

which byte offset the file should be retrieved. Note however that the sink proxy

does not concern itself with analyzing this ServerCommand object; it simply calls

this method to get the resume ServerCommand and returns it to the controller

as-is.

closeServerConnection () This method closes the connection that was previously

established with the media server. It is called when the controller has signalled

that the transfer of the media file should be terminated.

Thus far we have said nothing of how the media file being retrieved from the server

is actually being played by the sink. What does the sink proxy do with this stream

being retrieved from the media server?

The answer is that the framework is very flexible in what is done with this stream.

Just as there is a ServerConnection interface that describes the interaction with the

media server, there is a SinkConnection interface that describes the interaction with

the sink.

38

Sink proxies have a default SinkConnection object that knows how to interact with

the actual sink. Also, upon connection establishment, the controller may optionally

send a SinkConnection object to the sink proxy, specifying exactly what to do with the

stream it receives from the server. In most cases, however, the sink proxy’s default

SinkConnection object will be used for all connections.

What could be the use of having the controller send a SinkConnection object to the

sink proxy? This SinkConnection object could specify that the stream retrieved from

the server should be written to a file or even to a remote socket: the framework is not

restrictive. However, we remark that it is not necessary to specify any SinkConnection

object (as it is to specify a ServerConnection object) upon connection establishment:

the framework will use the sink proxy’s default SinkConnection object without any

problems.

The SinkConnection interface is very similar to that of the ServerConnection: we

will therefore describe it briefly, pointing out the main differences between the two:

establishSinkConnection () This is the method the sink proxy calls in order to

connect to the sink. For instance, if our sink is a pair of speakers physically

attached to the computer and there is an audio device file (e.g. /dev/audio),

the sink proxy may connect to (or open) this device file and write the media

file’s contents to it, and the audio device (i.e. the speakers) would automatically

play the media file. However, note that in many cases it may be impossible to

“connect” with the sink in any meaningful way (if, for instance, in order to

play a media file an external player must be started). This would indicate that

perhaps a SinkConnection is not necessary for that specific implementation: in

fact, our standard library includes a NullSinkConnection that is simply a concrete

implementation of the SinkConnection interface that does nothing (we will see

how a framework implementation like this works in Section 4.3.3).

sendCommand () Much as a media server might receive commands from the con-

troller, our framework allows for sinks to receive commands as well. Whatever

SinkCommand object is sent to the sink proxy will be forwarded to the sink

39

through SinkConnection’s sendCommand() method. How the SinkCommand is

interpreted by the SinkConnection depends on the actual implementation: the

sink proxy knows nothing about the commands themselves.

setInputStream () The same way we need to tell the ServerConnection object where

to write the stream it receives from the media server (by calling the setOutput-

Stream() method), we must instruct the actual sink from where it should read

the stream data. With this method we specify to the sink the input stream it

should use for reading.

closeSinkConnection () This method closes the connection that was previously

established with the sink when the controller asks that the connection be closed.

3.8.5 Example of Stream Migration

Now that we have defined the different components of the system and their interaction,

we are ready to explain how the framework handles stream redirection and migrates

a specific connection from one sink to another. We shall do so with an example:

1. When a sink proxy is started, it finds out its location (either through a physical

location discovery system or by having it statically defined) and it announces

its existence (along with its physical location and other parameters explained

in Section 4.3.1) to the network.

2. A user comes into the room, and the controller software running on her hand-

held device discovers its current location through a physical location discovery

system. It uses the network resource discovery system to find out which sinks

are available for playing media files.

3. The user decides she wants to play a media file and tells the controller the name

of the resource and on which media server it resides (more information on this

in Section 4.2.3).

40

Figure 3-4: Connection Establishment

4. The controller will contact a sink proxy (which may be a local sink, that is,

one in the user’s current location, or possibly any other sink) and establish

a connection with it. As explained before, a ServerConnection object of the

appropriate concrete type (which depends on the media server from which the

file resides) will be sent to the sink proxy (see Figure 3-4).

5. The controller creates a ServerCommand object that embodies the information

about the name of the media file the user specified. This ServerCommand object

specifying that the transfer should be started will be sent to the sink proxy

through the sendCommand() method (see Figure 3-4).

6. The sink proxy will pass this ServerCommand object to the ServerConnection

object, which will write it out to the media server, initiating the transfer of the

media file.4 The data stream is sent to the sink so it can play the media file.

7. Now let us suppose that the controller detects that the user has changed her

location while this transfer is ongoing. The controller will query the network

4As stated before, the ServerConnection must keep track of the number of bytes that have been
sent by the media server.

41

Figure 3-5: Ending a Connection

resource location system for any sink proxies active in the controller’s new lo-

cation.

8. When it finds a suitable new sink proxy, the controller will send the original

sink proxy a endConnection() command and wait for its response.

9. The sink proxy will close the connection to the media server and to the sink

by calling the closeServerConnection() and closeSinkConnection() on the

ServerConnection and SinkConnection objects, respectively. It will also call the

getResumeCommand() in the ServerConnection object to get the ServerCommand

object that can be used to resume the connection: it sends this object to the

controller as the return value to the endConnection() command (see Figure 3-

5).

10. The controller establishes a connection to the new sink proxy as in Step 4.

11. Now, however, instead of generating a ServerCommand object, the controller

uses the resume ServerCommand object it received from the old sink proxy to

instruct the new sink proxy which media file to retrieve, from which server, and

42

Figure 3-6: Resuming a Connection

more importantly, starting at which byte offset. This way the media file will

begin playing from where it left off in the previous sink (see Figure 3-6).

3.9 Summary

In this chapter we have seen the main components of our framework, how they fit

together and interact with one another, and we have seen the main classes that make

the framework flexible by being configurable at run-time.

In the next chapter we will see in more detail how we have implemented some of

these components and we will describe a specific prototype implementation we have

written using our framework.

43

Chapter 4

Implementation

Now that we have described the overall design of our framework we can go into more

detail about its implementation. We also describe a prototype implementation that

uses our framework to allow a user to play media files residing on a web server.

4.1 Introduction

As mentioned in Chapter 1, we implemented our object-oriented design in the Java

programming language. We have taken advantage of Java’s dynamic class loading

mechanisms to make our implementation not only flexible, but also very lightweight

(more information on how this works will be given in Section 5.3.1).

We have strived to provide classes that abstract away many of the inner workings

of the system, so developers wanting to write their own application (perhaps providing

their own controller or sink proxy implementations) can do so using our API.

Let us start by describing the classes used to implement the controller and the

API that developers may use to interface with our framework.

4.2 Controller Internals

The main class for the controller implementation is, aptly enough, named Controller.

It interfaces with Cricket to determine its location, and it allows others to register their

44

interest in finding out when this location changes through the LocationUpdateListener

interface (Section 4.2.1). It also provides the methods necessary to find sink proxies,

in the current location or anywhere else on the network.

First we describe how location awareness is managed, and then we describe the

methods provided by the Controller class API that a developer may use to interface

with the rest of the network.

4.2.1 Location Awareness

The application that is using the Controller class will probably be interested in be-

ing notified when the current location changes. Said application need only imple-

ment the LocationUpdateListener interface, which simply contains a method called

updateLocation() that will get called whenever Cricket detects a change in location.1

Clearly, what should happen when a location change occurs is application-dependent,

and it is the application that should decide what should be done. For instance, what

happens if there are several sinks in the new location: which one should be chosen?

Or what should happen if there are no sinks in the new location, but perhaps there

is one somewhere else? The application should use its own policies to decide where

the stream should be redirected: the Controller class should only make it easy for the

application to redirect the stream wherever it wants.

4.2.2 The Controller Library Class

We now go over the interface provided to the application through the Controller class:

getAllSinks () This method returns a list of all the active sink proxies it has found

on the network. By active we mean that we have called its ping() method to

verify that it is actually running.

1Note that the Controller class does not automatically redirect the stream to a new sink: it simply
notifies the application that a location change has occurred, and the application can in turn easily
request the connection to be moved (as we will see in Section 4.2.2).

45

getLocalSinks () This method returns a list of all the active local sinks, that is,

only those that are in the same location as the controller.

getAnyLocalSink () Basically a convenience method, it will get the list of the active

local sinks and return any of those (it should be used if any sink will do for the

application’s purpose).2

establishConnection () This method is used to establish a connection to a specific

sink proxy, specifying the server from where the media files will be retrieved and

the sink proxy we are connecting to. It returns a long integer number called a

cookie that uniquely identifies the connection just established.

sendCommand () Send the specified Command object to the specified sink proxy. This

method, like the next two, uses the cookie value returned by the establish-

Connection() method to identify the connection where this command should

be sent.

endConnection () This method specifies that the connection to a specific sink proxy

should be ended; it returns a ServerCommand object that allows the connection

to be resumed later where it left off.3

moveConnection () This method takes care of all the details necessary to move an

existing connection to another sink proxy. It only needs to know the cookie

of the connection that needs to be moved and the new sink’s information; it

returns the cookie of the connection established with the new sink.

This API provides great functionality and a high level of abstraction while still

affording flexibility to the application.4

2A basic application may only need this method, and not even concern itself with what the
current location is.

3Note that this is provided just to allow the application more flexibility: it is simpler to use the
moveConnection() method described next to redirect the stream from one sink proxy to another.

4Note how the notion of transports is totally transparent to the application, as is the notion of
physical location awareness. In fact, the application does not need to concern itself with what the
current location is: it need only be informed when the location has changed and request that the
connection be moved to a sink proxy in the new current location.

46

4.2.3 Controller Prototype Implementation

We now briefly describe the prototype implementation we have written that uses the

Controller class to allow the user to start the playing of a media file using a graphical

user interface (GUI).

Our controller GUI was written using the Swing graphic libraries contained in

Sun’s Java Development Kit (JDK) 1.3. It gives the user the flexibility of discovering

all the sink proxies in the network (not only those in the user’s current location) and

letting her choose where the media file should be played.

It also makes it easier for the user to play her favorite media files by allowing

her to save the server and filename information in a local database. The user can

later browse this collection of media file resources and play them without having to

re-enter the server or file name information. The information that should be stored

in this database for every resource is the following: the type of server where it resides

(HTTP, FTP, etc.), the host name and port of the server, the full path to the resource

and its type (media types are explained in Section 4.3.3). Optional information that

can be stored for convenience are the size (in bytes) of the resource and a textual

description.

Aside from the code to allow for the creation and maintenance of this resource

database and the code for creating the actual GUI, the application is very small and

has to do very little. It uses the Controller library class described in Section 4.2.2,

which informs the application when the user’s location has changed. At that point, the

application asks for any sink in the user’s new location and asks that the connection

be moved there (until it finds one, the media file keeps playing at the old sink, unless

it is explicitly stopped by the user).

The user can also request to see a list of all the sink proxies that were discovered on

the network and request that the media file begin playing in any one of them (not just

the one in the user’s current location), and the user can also request that the stream

be redirected to any arbitrary sink even when her location has not changed. This

functionality serves to showcase the flexibility afforded by our API: the application

47

is free to do much more than simply have a stream follow a user.

4.3 Sink Proxy Internals

Let us now describe the implementation details of the sink proxy. Much as there is a

library class for the controller, there is a library class, called SinkProxy, that abstracts

away all the command processing operations from the sink proxy executable. The

SinkProxy object is basically in charge of processing the commands received by the

ListeningTransport: it maintains a table of connections (indexed by each connection’s

cookie) where it stores the appropriate ServerConnection and SinkConnection objects

for each connection.

This implies that there can be more than one connection to the same sink proxy

from different controllers. In fact, the framework does allow connections from different

controllers, since the application developer might want to have this flexibility. For

instance, one sink proxy might allow the playing of sound files through some speakers

while at the same time allowing video files to be played on a monitor. Clearly,

such behavior is implementation-dependent, and as such, it is not constrained by our

library classes.

4.3.1 Sink Proxy Intentional Names

Let us now describe how sink proxies identify themselves to the network in our pro-

totype implementation. As mentioned in Chapter 1, the network resource discovery

system we employ in our framework is INS.

In INS every entity has an intentional name that describes what it is or what it

does: the specific metalanguage in which this description is written is encapsulated

in an INS library class called NameSpecifier. A NameSpecifier object is initialized

with the string representation of the intentional name and can be used to parse the

attribute-value pairs contained therein.

We now describe the different attribute-value pairs that are expected from all sink

proxies:

48

1. [service = sink proxy] — This identifies the entity as a sink proxy: this will

differentiate a sink proxy from other INS services that may coexist on the same

network.

2. [location = location description] — Here is where the sink proxy’s location

is defined. As explained in Chapter 2, the exact format of the location is

application-dependent and may be hierarchical or flat: the only important detail

is that both the controller and the sink proxy agree on the location’s format,

since otherwise the controller will be unable to find any sink proxies. In our own

prototype implementation we used the following hierarchical naming scheme:

[location = name of place

[building = name of building

[floor = floor number

[room = room number or name]]]]

3. [transport type = name of transport] — The name of the transport de-

fines how the controller can communicate with the sink proxy. It is impor-

tant that the controller and sink proxy agree on the name of the transport

they are using. Furthermore, the controller must have a class file that im-

plements that transport, and is named by pre-pending the transport’s name

to the string “Transport,” and the sink proxy must have a listening coun-

terpart named by pre-pending the transport’s name to the string “‘Listening-

Transport.” For instance, in our prototype implementation we implemented a

TCP transport: this means that the sink proxy must announce the attribute-

value pair “[transport type = TCP],” the controller must have a class file

called “TCPTransport.class,” and the sink proxy must have its counterpart,

“TCPListeningTransport.class.” This naming convention should always be ob-

served since our library classes use Java’s reflection mechanism5 to load classes

at run-time.

5Reflection allows, among other things, to load classes based on their names and to inspect the
data members or methods belonging to a class at run-time.

49

4.3.2 The SinkProxy Library Class

We now describe the methods contained in the SinkProxy library class, which relieves

the application writer from having to worry about responding to commands sent by

the controller:

establishConnection () This method generates a new, unique cookie value, estab-

lishes connections with the server and the sink, and binds the ServerConnection

object’s output stream to the SinkConnection object’s input stream so that the

stream data read from the server gets written to the sink. The state pertinent

to this connection (including a lease timer that expires after some time has

passed without a lease renewal) is stored, and the newly-generated cookie value

is returned.6

sendCommand () This method checks the type of the Command object that was sent,

and if it was a ServerCommand we forward it to the ServerConnection object’s

sendCommand() method and if it was a SinkCommand we forward it to the

SinkConnection object’s sendCommand() method.

renewLease () This method renews the controller’s lease for a specific connection

with a sink proxy. As explained in Section 3.8.4, the controller must continu-

ously renew its lease on all the connections it has established: if a lease expires,

the connection will automatically be closed since it is assumed that the con-

troller has either crashed or lost network connectivity and is thus unable to end

the connection by itself at a future time.

endConnection () This method closes the connections to both the server and the

sink and asks the ServerConnection object for the resume ServerCommand: said

object is then returned to the controller.

A sink proxy implementation written using our API need not concern itself with

any of the previously-described sink proxy methods. The responsibilities of the sink

6This method, like the next ones, gets called when a command by the same name is received
from the controller.

50

proxy implementation are simply the following:

1. Create a ListeningTransport object (this is left up to the sink proxy developer,

who may choose to use a transport protocol such as TCP, UDP, et cetera).

2. Create a SinkProxy object, specifying a default SinkConnection object and a

reference to the ListeningTransport object that will be receiving the commands

from the controller. This object will take care of processing all the commands

received from the controller.

3. Announce its existence using the network resource location system (in our case,

INS). The exact information contained in this announcement is to some degree

application-dependent, but the basic information it must contain was described

earlier in Section 4.3.1.

4.3.3 Sink Proxy Prototype Implementation

Now that we have discussed the API provided by the SinkProxy object, we describe

the prototype sink proxy executable we have written. Our prototype sink proxy

implementation allows media files to be played using external applications we call

players that are able to use the HTTP protocol to retrieve the media files. During

the rest of this section we discuss the different pieces that make up our prototype

implementation and how they interact.

Players and Media Types

Players are external applications that may be used to play media files (the WinAmp

and xmms MP3 players are a couple of examples). This abstraction of a player allows

the sink proxy to be run on different platforms, since we can use whatever player is

appropriate for each platform.

A media player executable used for our prototype sink proxy implementation must

fulfill two requirements:

51

1. It must be able to use the HTTP protocol to retrieve the media files it plays

(remember that in our prototype implementation we give support only to web

servers), taking the Uniform Resource Location (URL) of the desired media file

as a command-line parameter.

2. It must be able to do so using a web proxy. A web proxy is an intermediary

between the player (which works as an HTTP client since it is requesting a file

using the HTTP protocol) and a web server. The client makes the file request

to the web proxy, which forwards it to the web server; the data stream received

by the web proxy from the server is then sent back to the originating client.

We will explain these requirements in greater detail later in this section.

We also have the concept of media types which describe the media file that is being

played. We use the Multimedia Internet Mail Extensions, or MIME types, already

standardized to describe the type of the media files. For instance, to identify the

resource as an MP3 audio file, we use the appropriate MIME type, “audio/mpeg”; if

it is a WAV audio file, then its type would be “audio/x-wav,” and so on.

Our prototype implementation has a PlayerManager class whose job it is to read

a player configuration file which associates MIME types with an executable player.

This is how we tell the sink proxy how to actually play the media files depending on

their types (since it is possible to have different audio types that need to be played

by different programs).

The PlayerManager creates a table mapping each MIME type to its external player;

when a media file must be played, this table will be queried and the appropriate player

will be started.

The PlayerManager also compiles the list of all MIME types supported by the

sink proxy for a very important reason. As we will see later in this section, our

prototype sink proxy augments its announcement information with all the MIME

types it supports; that way a controller can choose one sink proxy over another if it

supports the MIME type of the media file being requested but the other one does

not.

52

Prototype-Application Specific Attributes

Aside from the basic attributes that every sink proxy must announce described in

Section 4.3.1, our prototype application also includes other attribute-value pairs to

further describe our sink proxy implementation:

1. [hostname = host name] and [port = port] — Since our prototype imple-

mentation uses a TCP transport, we must specify the host name and the port

where the sink proxy is listening. There is no “well-known” sink proxy port:

the TCPListeningTransport class binds to a random port when it is started, and

it is this random port that is announced.

2. [MIME types = number of MIME types MIME type list] — With

this attribute-value pair we announce which MIME types are supported by our

sink: first we specify how many MIME types we support and then we include

the list of MIME types supported in attribute-value pairs, like so:

[MIME types = 2

[0 = audio/mpeg]

[1 = audio/x-wav]]

This list can then be parsed by our controller, which can then decide whether

or not the sink proxy can play the media file the user wants to play. If the

controller receives a list of several local sinks, it can use the supported media

types list to select which one is the most appropriate for the media file the user

wants to play (naturally, if all local sinks support the same media types, then

the choice becomes arbitrary since all of them are equally well-equipped to play

the media file).

Web Proxy

We have thus far described how our prototype sink proxy implementation knows how

to play a media file and how to announce to the network which media files it can

53

Figure 4-1: Use of Web Proxy

play. However, we have not yet described how the media file itself is retrieved from

the web server and ultimately played.

To understand our prototype implementation design, let us remember one impor-

tant detail of the overall framework: there is a component of the framework, namely

the ServerConnection object, that is charged with the responsibility of keeping track

of how many bytes have been played so that if the connection is ended before the

media file has finished playing, we may return the byte offset where it left off to the

controller so it can resume the connection on another sink.

How do we go about this in our prototype implementation? We make use of

a web proxy (see Figure 4-1). As explained earlier in this section, our prototype

implementation requires that the media players used be able to retrieve the media

files using the HTTP protocol and be able to do so using a web proxy.

This is why we have implemented a lightweight web proxy ourselves in a class called

WebProxyManager: this class listens on a well-known port (which is 8080 by default)

for HTTP connections and forwards these requests to the specified web server. The

media player program used must be manually configured to use the local machine as its

web proxy, specifying the port where our local web proxy is listening for connections.

In its overall behavior, our web proxy behaves as any other web proxy (although

54

it only supports the “GET” HTTP method, since it is the only one needed for our

purposes). The special functionality provided by the WebProxyManager class is that

for every connection it keeps some state, namely, how many bytes have been sent to

the requesting player (more on this later).

When the sink proxy receives the command to retrieve (and play) a specific media

file, it must start the appropriate external media player as explained before. The

trick here is that when the player is started, it is given as a command-line parameter

the URL that allows it to retrieve the media file from the appropriate web server

using the HTTP protocol. However, since we have previously configured the media

player to use our own web proxy running on the local machine, all the media player’s

requests for the media file are first “intercepted” by our own web proxy, which then

requests the media file’s data from the appropriate web server and sends its data

stream back to the player (see Figure 4-1). This allows the WebProxyManager to be

“in the middle” of the connection and be in the correct place to keep track of the

number of bytes sent to the media player.

Now, how can the WebProxyManager keep track of which state belongs to what

connection? When the external media player is started with a URL as its command-

line parameter, we pre-pend the connection’s cookie value to the actual path of the

resource. For instance, if the controller instructs our sink proxy to retrieve and play

the media file “/pub/mp3/music.mp3” from the web server “www.myhost.com” and

the value of the established connection’s cookie is “438502349538794,” we would start

the media player with the following command-line parameter:

http://www.myhost.com/438502349538794/pub/mp3/music.mp3

Our web proxy strips away the cookie value from the URL before connecting to

the actual web server and uses this cookie value to index the state for that specific

connection. As it sends data to the media player, it updates the connection’s state

information to reflect the latest byte offset sent.

For our prototype implementation we have created the WebProxyServerConnection

class that knows how to interact with the web proxy to query it for a connection’s

55

last byte offset: this subclass of ServerConnection is the one that is sent to our pro-

totype sink proxy upon connection. Concretely, when our sink proxy receives an

endConnection() command from the controller, it calls the WebProxyServerConnec-

tion object’s getResumeCommand() method. This method queries the WebProxyMan-

ager for the offset of the last byte sent to the player on a specific connection and

constructs a resume command using said offset.

4.4 Summary

In this chapter we have gone into more detail regarding the implementation of the

library classes described in Chapter 3 and we have seen the actual prototype im-

plementation we have written using our framework. We note that ours was just a

particular implementation, written as a proof of concept just to make use of our de-

sign and to show that it works. More sophisticated and feature-rich implementations

are certainly possible.

56

Chapter 5

Results and Discussion

5.1 Introduction

We have thus far presented the design of our framework, given details into its object-

oriented implementation and described a prototype implementation we have written

using our framework, giving some insight into the decisions that were made.

We will now discuss a few salient points of our framework, like design and im-

plementation issues, how flexibility is attained, some numerical results obtained from

our prototype implementation, and finally some conclusions.

5.2 Design and Implementation Issues

In this section we will discuss some interesting issues that concern our design and our

implementation.

5.2.1 Resource Access Control

What happens when two users try to use the same sink at the same time? What

happens if a user moves into a room where the sink is already in use? These and

similar questions refer to the issue of resource access control. Who has the “right” to

use a specific resource at a specific time? How is this access restricted to only those

57

that should be able to use it?

As mentioned in Section 3.6.2, our framework makes no assumptions in terms of

resource access control. That is, it is up to the specific implementation of the sink

proxy to enforce any kind of access control it deems necessary.

In the simplest case, the sink proxy may not need to do any explicit access control.

One may assume that there is only one user in the system, in which case contention

for resources will never happen; in other cases, the sink proxy may simply let the last

user always gain access to the sink, or it may determine that the first user to ask for

the sink should get it and the others must wait.

In any case, the developer is free to make the sink proxy implement any policy

that is appropriate for the specific application.

5.2.2 Authentication and Security

In our prototype implementation, all users are “equal” in the sense that they all have

the same permissions to use any sink proxy: they need not be distinguished from one

another. Other implementations, however, may require the use of authentication.

Authentication refers to the process of identifying the user making a request:

systems in which there are several users, each with her own level of permissions, must

have a scheme for identifying each user and assigning her a set of permissions. For

instance, there may exist the concept of the “owner” of a sink, and perhaps that user

should have preferential access to that sink over other users.

Our framework allows such a scheme to be devised: the developer may subclass the

Transport and ListeningTransport objects to send some extra information identifying

the user making the request, and the sink proxy implementation may verify the user’s

permissions in whatever way the developer deems necessary.

In the prototype implementation, the connection between the controller and the

sink proxy and the connection between the media server and the sink proxy all occur in

cleartext, that is, without any kind of encryption, enabling anyone to examine network

packets in transit. We felt no compelling reason why these communications should

be encrypted; however, if a specific implementation requires a higher level of security,

58

the developer may create her own subclasses of Transport and ListeningTransport that

instead of sending commands over a regular socket employ instead secure sockets that

do encryption.

In summary, both authentication and security can be easily integrated into our

framework without modifying any of the existing functionality and without having to

change any of the core library classes: subclassing of Transport and ListeningTransport

may be all that is necessary to gain the extra functionality.

5.2.3 Media Player Issues

As mentioned in Chapter 4, our prototype implementation uses media players, which

are external programs that play the media file on the sink. The concept of a media

player makes the prototype implementation quite flexible because we can start any

player that is appropriate for the specific operating system where the sink proxy is

running, without having to tie ourselves to playing the files in a platform-specific way.

The media player abstraction also allows many different types of media files to be

played without much configuration: if we want to play MPEG video files, we only

need to specify which player we want to use to play that media type, and the rest of

the system need not change.

However, using such a scheme does present its drawbacks, which we will now

discuss. First of all, there is a latency in starting up the media player (this latency

is greater the first time around, when the player is not yet loaded in memory, but

depending on the processor speed it may cause some small delay even after it is loaded

once). Also, most players that retrieve media files using the HTTP protocol do some

internal buffering before they start playing; this introduces a little latency before the

media file starts to play and, more noticeably, lets the media file continue playing a

few seconds after the user has ordered the playing to stop (this is because there is

data still in the media player’s buffer that it must play out).

A solution to this problem includes making the internal buffer as small as possible;

if it is made too small, however, playback may become “jumpy” or “jittery,” so a

balance must be struck between a shorter latency and a smoother playback. It helps

59

if the media server from where the media files are retrieved exists relatively “close”

to the sink proxy itself, since network delays will be less and we could get away with

a smaller buffer in the media player.

5.3 Achieving Flexibility

We will now discuss how we have achieved one of the main goals stated in Chapter 1:

flexibility. By flexibility we mean that our framework should be able to accommo-

date different file servers and output devices without having to modify any system

component other than those in our framework. It also includes making this as easy

to deploy as possible; not much is gained by making the framework very flexible at

the expense of making each component very complicated to deploy.

5.3.1 Media Server Independence

We have said how the framework allows the flexibility of permitting different types

of media file servers where media files can be retrieved; we have described how a

ServerConnection object is sent to the sink proxy upon connection establishment, and

how this ServerConnection object “knows” how to communicate with the appropriate

server.

Object Serialization

However, how do we physically get this object from the controller to the sink proxy?

We use Java’s object serialization mechanism to create a ServerConnection object in

the controller, configure it with the appropriate information (like the media server’s

network address and port, for instance), convert said object to bytes that can then be

sent over the network and reconstruct it at the sink proxy. This works by having the

Transport object in the controller write the ServerConnection object to a specialized

output stream that converts the objects to bytes and sends them across the network:

these bytes are later reconstituted in the ListeningTransport.

60

A detail to note here, however, is that Java’s serialization mechanism does not

send the bytecode1 of the actual class file being serialized; rather, it converts to bytes

the state of all the data members of the object, so that when it is de-serialized, a new

object can be initialized with the same values the original object had. Since it does

not serialize the bytecode that describes the class itself along with the state of its data

members, the bytecode for the class must be available at the JVM where the object

is being de-serialized. This may be a problem if the object is being de-serialized in a

remote JVM that does not have access to the class path of the JVM that originally

serialized the object.

Dynamic Class Loading

The situation describes previously implies that if the controller is serializing an object

of type WebProxyServerConnection, for instance, the sink proxy must also have the

bytecode for this class in order to be able to correctly de-serialize the object (otherwise

a run-time error will occur and the WebProxyServerConnection object will not be

available for the sink proxy to use).

This fact implies that one of two things must be done:

1. The class files for every conceivable ServerConnection subclass (and necessary

support files) must be given to all sink proxies so they can be found upon

de-serialization.2

2. Sink proxies must be able to do dynamic class loading to find the bytecode of

the serialized objects and use it to do the de-serialization.

The first alternative would make the framework harder to deploy: it would mean

that new ServerConnection types could not be created after an initial deployment

without having to go to every already-existing sink proxy and copying the new class

files. This would not only be unwieldy in situations where there are many sink proxies

1The bytecode of a Java class is the sequence of bytes that makes up its class definition, or in
other words, the binary description of the class’ data members and its methods.

2By this we mean that the class files for all these new classes must be copied to the class path of
each sink proxy.

61

already widely deployed, but it also means that sink proxies should keep class files

that may or may not ever be used.3

Clearly the second option is better: if a new ServerConnection subclass is intro-

duced, its class file should only have to exist at one location (the controller, which

is the one that has to be aware of its existence in the first place), and its bytecode

should be dynamically sent to the sink proxy if it needs it. We have opted to use this

mechanism for deployment of new ServerConnection subclasses.

Web Server

The way we chose to make dynamic class loading work is as follows: the controller

application is also running a lightweight web server, which is listening for connections

on a random port. This web server will only respond to “GET” commands and will

only serve a JAR file4 containing the classes that may be needed by sink proxies

running in remote JVMs.

At this point we must mention that there is a system property that may be set in a

JVM called “java.rmi.server.codebase.”5 For dynamic class loading to work, this

property must be set to reflect the local host name and the random port where the

local web server is running as well as the name of the JAR file that contains the classes

a remote JVM may need.6 For example, if the local host name is “myhost.com,” the

local web server is running on port 4562, and the name of the JAR file being served

is “streamredirector.jar,” the “java.rmi.server.codebase” property would be set

to the following:

http://myhost.com:4562/streamredirector.jar

3Note that not only would the new ServerConnection subclasses need to be distributed to all sink
proxies, but all support classes for the new server type (like new server-specific Command objects)
must be distributed as well.

4A Java ARchive, or JAR file is basically a zip file that archives and optionally compresses several
files, specifically Java class files.

5A codebase is a URL from where class files may be loaded.
6Note that starting the local web server and proper initialization of the

“java.rmi.server.codebase” property is all done programmatically and without interven-
tion from the developer; our API already takes care of all these details automatically so dynamic
class loading works off the bat.

62

When an object is serialized, said object is “annotated” with the value of the

“java.rmi.server.codebase” system property. When the remote JVM (where the

sink proxy is running) attempts to de-serialize the object, it will try to find the

object’s bytecode from its local class path. If it it can not find it there, it will check

the “java.rmi.server.codebase” property the object has been annotated with and

it will attempt to retrieve the bytecode from the specified codebase.

Since that codebase is a URL, it will connect to the web server being run by the

controller and retrieve the JAR file containing the new class files and load them from

there. Deployment of new ServerConnection types (and all necessary support classes)

is as simple as adding them to this JAR file: the next time a sink proxy tries to

de-serialize an object it has never seen before, it will request the JAR file from the

controller and deployment will be automatic.

5.3.2 Transport Independence

Our framework also provides another important feature that enhances its flexibility:

transport independence. By this we mean that the way in which commands are

sent and data is transferred between the controller and the sink proxy is defined

only abstractly in the Transport and ListeningTransport interfaces, and that how this

communication actually takes place may be implemented by the application developer

as she sees fit.

For the purposes of our prototype implementation, for instance, we needed nothing

too sophisticated, so we implemented a TCP-based transport that basically opens a

socket connection between the sink proxy and the controller and sends the commands,

arguments and return values over this socket. This transport may very well be all

that a particular developer’s application needs, and in that case she may simply use

our own TCPTransport and TCPListeningTransport classes as they are.

However, what if the developer wants her application to communicate over a

secure channel, encrypting the commands being sent? Or what if encryption is not

necessary, but the application would benefit from an authentication scheme where a

controller has to identify itself before a sink proxy will allow it to play a media file

63

there?

These and many other schemes are made possible by the abstract definition of

a transport: developers are free to implement the Transport and ListeningTransport

interfaces as necessary to fit their own application’s needs.

5.4 Results

Let us finally discuss the results we obtained with our working prototype implemen-

tation.

We tested our prototype implementation with the following setup:

• The controller was running on an iPAQ (running Linux).

• There were two sink proxies, both running on ThinkPad laptops running Win-

dows 98. They were both in the same room, but they were placed more than 3

feet apart and beside each one there was a beacon announcing a different room

location.7 They each had a Cricket listener attached to their serial ports so they

could learn they physical location dynamically.

• The media server was an unaltered Apache web server that was running on a

separate machine.

• The Domain Space Resolver (DSR) and Intentional Name Resolver (INR) for

INS were running on that same machine (which we will call the server host).

There is no requirement, and no limitation, for where the web sever and the

DSR and INR must run. For convenience, we ran them all on the same machine,

but they could all be in separate hosts if so desired.

The tests we ran followed the following procedure:

1. The web server, DSR and INR were started on the server host.

7A distance of more than 3 feet is sufficient so that listeners can distinguish one beacon’s signals
from the other’s.

64

2. One sink proxy was started on each laptop. This caused them both to learn of

their respective locations through Cricket and begin announcing their existence

to the INS network.

3. The controller application was started on the iPAQ; it learned of its location

using Cricket. It discovered that both sinks were on the network, but picked

the one closest to it as the local sink.

4. On the controller, a media file was selected and we instructed that it should

begin playing.

5. We moved the iPAQ running the controller closest to the laptop announcing

a different location. We measured the time from when we brought the iPAQ

closer to the “new location” until the music began playing on that laptop. This

time is what we call the redirection latency.

Notice that we are simulating walking from one room to another by bringing the

controller nearer to another beacon just a few feet away; we do this because it makes

it easier to measure the redirection latency. If we were walking from one room to

another, for instance, many other factors would come into play, like the placement

of the beacons in both rooms, the relative signal power of each beacon as we move

into the next room, et cetera. It would be unclear when we should begin timing the

redirection latency, so the results would be more inaccurate and would vary more

from one experiment to the next.

Our initial experiments show a redirection latency of around 8 to 10 seconds.

This latency is made up of the following delays in which the system incurs for stream

redirection:

1. Delays imposed by Cricket — The Cricket software takes around 5 to 6

seconds (worst-case) in realizing that the user has left one location and is now

in another one. This is because its algorithms take several measurements to be

sure it has received sufficient data to announce the location has changed and

informing the application about it.

65

2. Delays imposed by INS — The INS software takes less than 2 seconds on

average to return the list of entities that match a particular intentional name.

We have observed, however, situations in which it takes closer to 5 seconds to

get the list of active sink proxies; for this reason we have opted to take INS out

of the critical execution path. We will request all active sink proxies periodically

and use that list to find the one(s) in the user’s new location instead of querying

INS every time the user moves (in other words, we will be caching the list of

all the proxies in the system and constantly refreshing it). By employing this

technique we have made the new sink lookup time almost negligible.

3. Delays imposed by system — The delay imposed by our system is around

3 or 4 seconds: the greatest source of latency is the starting of the external

media player (which is greatest when the media player has never been loaded

in memory, but is considerably less after the player has already been loaded).

Note that some of these latencies are caused by our particular prototype imple-

mentation, which has not been completely tuned yet. We will continue our work and

strive to make the prototype implementation even faster by writing our own media

player in Java. Instead of relying on external players (with which we have a limited

interface), we will write a player using the Java Media Framework (JMF) [12]. This

will allow us to directly query how many bytes of the media file have been played

and we can request the playing to stop immediately, even if there is data on the

buffer. This way we can ameliorate response time and make stopping a media file

more instantaneous. Fortunately, the abstract treatment of players in our framework

will make integration with a native player as easy as writing its code.

We conclude that if we can decrease the time it takes Cricket to detect that the

user changed her location, we can have a more reasonable redirection latency, as

Cricket is the bottleneck of the system. Since Cricket is itself a project in progress,

we are confident that its response time can be improved upon, and that this will

immediately benefit the redirection latency of our project.

66

5.5 Conclusions

In summary, we were successful in the goals we set out for our project:

1. Design a framework allowing the discovery of other devices based on

physical location, and being able to use them to initiate the playing

of media files — We described in detail the design of this framework in Chap-

ter 3 and we showed how we use a physical location discovery system to give

our components the context of location and how we utilize a network resource

discovery system to utilize this location context to find an appropriate device

to use.

2. Make the framework flexible and configurable, and offer a simple,

feature-rich object-oriented API — We also described in Chapter 3 what

features of our design make our framework flexible and configurable and easy to

use by developers. We explained how the framework is agnostic in terms of the

server used to retrieve the media files, the way the media files are played in the

sink, and the way the communication takes place between the controller and the

sink proxy. We discussed how the ServerConnection object sent to the sink proxy

contains all the knowledge necessary to contact the media server and retrieve

the desired media file, while requiring no changes to the sink proxy. We also saw

how the sink proxy decides how to play each media file, abstracting this process

away from the rest of the framework. We discussed how the Transport and

ListeningTransport classes define abstractly the way communication between the

controller and the sink proxy is performed, allowing a developer to implement

any type of scheme at this point (such as authentication, encryption, et cetera).

Finally, we showed the basic API provided by the Controller and SinkProxy

classes and how a developer need not concern herself with any of the details of

how the framework works at its deepest level, thus enabling her to concentrate

on the details pertaining to her specific implementation’s needs.

3. Build a working prototype implementation using our framework — In

67

Chapter 4 we described the actual implementation of our core library classes

and a working prototype implementation that uses our framework to allow a

user to choose a media file residing on a web server and then allows her to play

it in any available sink. We discussed the specific design decisions made, and

we described in great detail the techniques employed to get the implementation

to work.

In conclusion, we have seen how we can design systems that greatly augment

the functionality of handheld devices, and how by giving them the context of their

location we can empower them to utilize resources in nearby devices that better serve

the user’s needs.

68

Bibliography

[1] The Active Badge Location System Homepage.

http://www.uk.research.att.com/ab.html, 2001.

[2] W. Adjie-Winoto. A Self-Configuring Resolver Architecture for Resource Dis-

covery and Routing in Device Networks. Master’s thesis, Massachusetts Institute

of Technology, May 2000.

[3] Adjie-Winoto, W., Schwartz, E. and Balakrishnan, H. and Lilley, J. The design

and implementation of an intentional naming system. In Proc. ACM Symposium

on Operating Systems Principles, pages 186–201, Kiawah Island, SC, December

1999.

[4] M. Campione and K. Walrath. The Java Tutorial. Addison-Wesley, Reading,

MA, 1996.

[5] M. Dertouzos. The Future of Computing. Scientific American, August 1999.

Available from http://www.sciam.com/1999/0899issue/0899dertouzos.html.

[6] W. K. Edwards. Core Jini. Prentice-Hall, Upper Saddle River, NJ, 1999.

[7] K. Gajos and J. R. Nogueras. Improving Jini Discovery Mechanisms Using INS,

December 1999. http://web.mit.edu/˜rafaeln/Public/JiniINS/JiniINS.pdf.

[8] Global Positioning System. http://www.eftaylor.com/pub/projecta.pdf, 2000.

[9] B. Hoffmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning

System: Theory and Practice, Fourth Edition. Springer-Verlag, 1997.

69

[10] Java (TM) Programming Language. http://java.sun.com/, 2001.

[11] Jini. http://java.sun.com/products/jini/, 1998.

[12] Java Media Framework. http://java.sun.com/products/java-media/jmf/index.html,

2001.

[13] J. Lilley. Scalability in an Intentional Naming System. Master’s thesis, Mas-

sachusetts Institute of Technology, May 2000.

[14] P. Mockapetris. Domain Names - Implementation And Specification, November

1987. RFC 1035 (http://www.ietf.org/rfc/rfc1035.txt).

[15] Networks and Mobile Systems (NMS) Group. http://nms.lcs.mit.edu/, 2001.

[16] Oxygen home page. http://oxygen.lcs.mit.edu/.

[17] C. Perkins and K. Wang. Optimized smooth handoffs in mobile ip, 1999.

[18] C. E. Perkins. IP Mobility Support, June 1996. RFC 2002

(http://www.ietf.org/rfc/rfc2002.txt).

[19] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket Location-

Support System. In Proc. 6th ACM MOBICOM Conf., Boston, MA, August

2000.

[20] A. Snoeren and H. Balakrishnan. An End-to-End Approach to Host Mobility.

In Proc. 6th ACM MOBICOM Conference, August 2000.

[21] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location Sys-

tem. ACM Transactions on Information Systems, 10(1):91–102, January 1992.

70

