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1 Introduction

There is a large class of emerging applications in which
data, generated in a distributed environment, is pushed asyn-
chronously to servers for processing. Some example applica-
tions for which this “push” model for data processing is ap-
propriate include financial services (e.g., price feeds), asset-
tracking services (e.g., reporting the status of objects and
equipment in real-time), fabrication line management (e.g.,
real-time monitoring and control of manufacturing systems),
network management (e.g., intrusion detection), medical ap-
plications (e.g., monitoring devices and sensors attached to
patients), environmental sensor/actuator systems (e.g., cli-
mate, traffic, building, bridge monitoring), and military ap-
plications (e.g., missile or target detection).

Several characteristics distinguish stream-processing ap-
plications from more classical data processing applications.
First, unlike a traditional database management system
(DBMS) where queries made by “active” human users op-
erate on “passive” stored data, stream processing requires
“active” streaming data to be processed by “passive” con-
tinuous queries that run for long periods of time. Second,
stream processing applications require large volumes of data
to be processed, with rates varying with time and often ex-
ceeding tens of thousands of messages a second. It is possi-
ble to model the bulk of the processing required in these ap-
plications in terms of standard well-defined streaming oper-
ators, such as filters, windowed aggregates, windowed joins,
etc. Third, stream processing applications are naturally dis-
tributed. Many applications including weather monitoring,
traffic management, and financial feed analysis process data
from either geographically distributed sources or different
autonomous organizations.

Early efforts in stream-oriented processing have focused
on designing new operators and new languages [1, 15],
as well as building high-performance engines operating at
a single site [2, 5, 9]. More recently, the attention has
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shifted toward extending these engines to distributed envi-
ronments [6, 7].

Medusa is a distributed stream-processing system built
using Aurora [1] as the single-site processing engine.
Medusa takes Aurora queries and distributes them across
multiple nodes. These nodes can all be under the control
of one entity or can be organized as a loosely coupled feder-
ation under the control of different autonomous participants.

A distributed stream-processing system such as Medusa
offers several benefits:

� It allows stream processing to be incrementally scaled
over multiple nodes.

� It enables high-availability because the processing
nodes can monitor and take over for each other when
failures occur.

� It allows the composition of stream feeds from differ-
ent participants to produce end-to-end services, and to
take advantage from the distribution inherent in many
stream processing applications (e.g., climate monitor-
ing, financial analysis, etc.).

� It allows participants to cope with load spikes with-
out individually having to maintain and administer the
computing, network, and storage resources required for
peak operation. When organized as a loosely cou-
pled federated system, load movements between partic-
ipants based on pre-defined contracts can significantly
improve performance.

Medusa facilitates query distribution and composition. It
also provides schemes for high-availability and load man-
agement. In the following sections we describe the Medusa
system architecture. We also present an overview of high-
availability and load management.

2 Stream Processing

In stream-processing applications, data streams produced
by sensors or other data sources are composed and aggre-
gated by operators to produce some output of interest. A
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Figure 1. Example of distributed Medusa
query.

data stream is a continuous sequence of attribute-value tu-
ples that all conform to some pre-defined schema (sequence
of typed attributes). Operators are functions that transform
one or more input streams into one or more output streams.
A loop-free, directed graph of operators is called a query
network and all queries are continuous, because they contin-
uously processes tuples pushed on their input streams.

Figure 1 shows an example of Medusa/Aurora query us-
ing a subset of the Aurora operators. The query takes a
stream of “car sightings” as input, and produces streams of
“toll notifications” and “tow truck dispatch”. The query first
applies two windowed aggregate operators to compute the
average speed (a) and traffic volume (b) on each segment of
road, every minute. These values are then used to compute
tolls on these segments (c). Toll values are in turn joined
(d) with car locations to produce toll notifications to these
cars. Only cars whose speed is greater than zero (e and f) are
billed. The query also filters (g) cars identified as tow trucks
and joins (h) them, on the location field, with cars that have
broken down.

The phrases in italics in the previous paragraph corre-
spond to well-defined operators. While the system allows
user-defined code to be written in its runtime, our expec-
tation and experience with a few applications suggests that
most applications will implement large amounts of their
logic with the built-in operators. In addition to simplify-
ing application construction and providing query optimiza-
tion opportunities, using the in-built operators facilitates
Medusa’s task movements.

3 System Architecture

Medusa is a distributed infrastructure that provides ser-
vice delivery among a collection of participants. The infras-
tructure is designed as an application-level overlay network.
A Medusa participant is a financial and administrative en-
tity that is capable of entering into Medusa contracts. Each

Transport Independent RPC 
(XML−RPC, TCP−RPC, Local, Flow−Multiplexer) 

Query Processor 
(Aurora) 

IOQueues 

Local Partition of 
Distributed 

Catalog (Lookup) 
Brain 

Medusa Node 

Queries from 
clients and 

results to clients 

Tuples from 
data sources 

Messages and 
tuples to/from 

other Medusa nodes 

Administrative 
Commands 

DHT 
(Chord) 

Figure 2. Medusa software structure.

participant owns and administers a collections of overlay-
network nodes, sensors, and sensor proxies. A participant
may or may not provide query resolution capabilities. There
is a single global name space for participants, and each par-
ticipant has a unique global name.

3.1 Software Components

Figure 2 shows the software structure of a Medusa node.
There are two components in addition to the Aurora query
processor: Lookup and Brain.

The Lookup component is a client of an inter-node cata-
log that holds information on streams, schemas, and queries
running in the system. Each participant manages and admin-
isters its own catalog. The catalog allows Medusa nodes to
seamless communicate each other information on the objects
that exist in the system and the objects’ current locations.
Such information allows all nodes to carry out client requests
that operate on any of these objects. For instance, Medusa
clients push events on streams by sending them to any node.
Nodes lookup the detailed stream information and forward
tuples to appropriate locations. Similarly, when a client sub-
mits a query, it only needs to name the streams on which
the query operates. Medusa nodes seamlessly bind queries
to their input streams and setup all necessary tuple forward-
ing. The catalog can be implemented as a central server or it
can be distributed using, for instance a distributed hash-table
such as Chord [19]. The latter approach avoids the single
point of failure and splits the burden of servicing the catalog
across all Medusa nodes within a participant.

The Brain component handles definitions of new
schemas or streams and handles query setup operations.
Brain components at different nodes communicate with
each other to re-allocate queries and improve load distribu-
tion. To do so, each Brain monitors local load using infor-
mation about the queues (IOQueues) feeding Aurora and
connecting query processors on separate nodes. It also uses
statistics on individual box load provided by Aurora. The
Brain uses this information to take selfish load manage-
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ment decisions that together converge to good load distri-
bution. Brain also handles failure recovery. Nodes detect
failures of other nodes through the incapacity of their IO-
Queues to forward tuples or by periodically sending keep-
alive messages to subsets of other nodes. When a node de-
tects a failure, it informs a pre-assigned secondary, which
takes over all queries and tuple forwarding that were previ-
ously under the responsibility of the failed node.

To move operators with a relatively low effort and over-
head compared to full-blown process migration, Medusa par-
ticipants use remote definitions. A remote definition maps
an operator defined at a node on to an operator defined at an-
other. At runtime, when a path of operators in the boxes-and-
arrows diagram needs to be moved to another node, all that’s
required is for the corresponding operators to be instantiated
remotely and for the incoming streams to be diverted to the
appropriately named inputs on the new node.

For some operators, internal operator state may need to
be moved when a task moves between machines, unless
some “amnesia” is acceptable to the application. Our current
prototype restarts operator processing after a move from a
fresh state and the most recent position of the input streams.
To minimize the amount of state moved, we are exploring
freezing operators around the windows of tuples on which
they operate, rather than at random instants. When Medusa
moves an operator or a group of operators, it handles the for-
warding of tuples to their new locations.

3.2 System API

Table 1 summarizes the API through which clients com-
municate with Medusa. Medusa implements this API as
RPC. To support a variety of clients and facilitate application
development, Medusa handles both TCP-RPC and XML-
RPC.

Within the Medusa library, a MedusaClient class fa-
cilitates application development even further by wrapping
RPC calls inside simple function calls and providing some
utilities such as a start query method that changes the
query status to RUNNING and an event loop. Appendix 6
shows code snippets from a typical Medusa client applica-
tion.

4 Load Management

Medusa employs an agoric system model to create in-
centives for autonomous participants to handle each others’
load. Clients outside the system pay Medusa participants for
processing their queries and Medusa participants pay each
other to handle load.

Unlike other computational economies that implement
global markets to set resource prices at runtime, our mecha-
nism is based on pairwise contracts negotiated offline be-

create schema: Defines a new schema with a unique name.
create stream: Defines a new stream with a unique name and
associated with a previously defined schema.
create query: Defines a new query that operates on pre-defined
streams. create query xml is a convenience method through
which clients can submit an xml query description directly.
set query status: Changes the status of a pre-defined query.
Possible stata are SETUP, RUNNING, STOPPED, and DELETED.
RUNNING
subscribe: Subscribes a client to receive all tuples on a named
stream. The client must then listen for tuples.
receive events: Pulls Medusa for tuples on a specific stream.
post event: Pushes tuples to Medusa on a named stream.
lookup object: Looks-up the description of an object in a par-
ticipant’s catalog.

Table 1. Medusa system API.

tween participants. These contracts set tightly bounded
prices for migrating each unit of load between two partic-
ipants and specify the set of tasks that each is willing to
execute on behalf of the other. Compared to previous ap-
proaches, participants therefore have tight control over their
interactions with others—they decide with whom to estab-
lish contracts, they can constrain the price of each unit of
load transferred even to a fixed price (thus controlling the
predictability and variability of prices), and they can con-
strain the tasks they will shed or accept. The mechanism
also has a lower runtime overhead and efficiently re-allocates
excess load without excessive load migrations even under
changing load conditions. Such tight control and reduced
load movements are desirable in federations where partic-
ipants are real economic entities whose goal is to operate
within their capacity and not necessarily achieve optimal
load balance.

With this bounded-price mechanism, runtime load trans-
fers between participants seeking to shed load and those will-
ing to accept load occur only between participants that have
pre-negotiated contracts, and at a unit price within the con-
tracted range. The load transfer mechanism is simple and
easy to implement: a participant moves load to another if the
cost of processing a task locally is larger than the payment
it would have to make to the other participant for the pro-
cessing (plus the migration cost). The bounded-price mech-
anism provides incentives for selfish participants to handle
each other’s excess load, improving the system’s load distri-
bution. It is sufficient for contracts to specify a small price-
range, for the mechanism to produce acceptable allocations
where either no participant operates above its capacity or if
the system as a whole is overloaded, then all participants op-
erate above their capacity.

Although motivated by stream processing, our load man-
agement mechanism is applicable to a variety of federated
systems, such as peer-to-peer systems [8, 10, 14, 16, 19,
22, 23], Web services, and cross-company workflows where
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the end-to-end service requires processing by different or-
ganizations [3, 13], computational grids [4, 11, 18, 21], and
overlay-based computing platforms such as Planetlab [17].

Figure 3 shows the simulation results of a 995-node
Medusa system running the bounded-price load management
mechanism. Figure 3(a) shows that convergence from an
unbalanced load assignment to an almost optimal distribu-
tion is fast with our approach. Figure 3(b) shows the excess
load remaining at various nodes for increasing numbers of
contracts. A minimum of just seven contracts per node in a
network of 995 nodes ensures that all nodes operate within
capacity when capacity exists in the system. The key advan-
tages of our approach over previous distributed load man-
agement schemes are (1) incentives for selfish participants
to collaborate, (2) lower runtime overhead, (3) fast conver-
gence to acceptable allocations, and (4) relatively invariant
prices that a participant pays another for processing a unit of
load.

5 High Availability

We are also currently exploring the runtime overhead
and recovery time tradeoffs between different approaches to
achieve high-availability (HA) in distributed stream process-
ing. These approaches range from classical Tandem-style
process-pairs[tandem] to using upstream nodes in the pro-
cessing flow as backup for their downstream neighbors. Dif-
ferent approaches also provide different recovery semantics
where either: (1) some tuples are lost, (2) some tuples are
re-processed, or (3) operations take-over precisely where the
failure happened. We discuss these algorithms in more de-
tail in [12]. An important HA goal for the future is handling
network partitions in addition to individual node failures.

6 Conclusion

Medusa is an ongoing effort. Our current prototype
supports distributed operation. It provides load manage-
ment with the bounded-price algorithm and simple high-
availability. Our current efforts focus on moving operators’
state and adding support for handling network partitions.

We have developed several applications for Medusa. One
application provides indoor object tracking using RFID read-
ers and antennas [20]. Users can track their personal belong-
ings through a graphical interface or they can receive notifi-
cations on intelligent displays or on their cell phones. As a
second application, we have integrated our project with the
sensor-network project MIST []. We transformed a sensor-
network access point into a Medusa client providing fire
alerts and notifications.
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Appendix: Sample Medusa Application

In this section, we present a few code snippets from a typical Medusa client.

6.1 Creating a schema

The MedusaClient class is designed to facilitate application development. Client applications may perform function
calls on a client rather than directly handling the RPC calls themselves.

To talk to Medusa, a client must know the IP and port information for at least one node (medusa ip and medusa port).

MedusaClient client(InetAddress(medusa_ip,medusa_port));
string schema_xml = string() +

"<schema name=\"medusa://nms.lcs.mit.edu/locator/person\">\n" +
" <field name=\"person_name\" type=\"string\" size=\"32\"/>\n" +
" <field name=\"person_id\" type=\"int\"/>\n" +
"</schema>\n";

Schema schema;
Status s = schema.from_xml(schema_xml);
if ( !s )

FATAL << ‘‘Failed reading schema from xml ‘‘ << s;

RPC<void> r = client.create_schema(schema);
if (!r.stat())

FATAL << ‘‘Failed creating schema ‘‘ << r;

6.2 Creating a Schema

StreamDef stream_def("medusa://nms.lcs.mit.edu/locator/people", schema);
RPC<void> r = client.create_stream(stream_def);
if (!r.stat())

FATAL << ‘‘Failed creating stream’’ << r;

6.3 Submitting a Query

string query_xml = string() +
"<query name=\"medusa://nms.lcs.mit.edu/locator/FindMrX\">\n" +
" <box name=\"foo\" type=\"filter\">\n" +
" <input port=\"1\" stream=\"medusa://nms.lcs.mit.edu/locator/people\"/>\n" +
" <output port=\"1\" stream=\"medusa://nms.lcs.mit.edu/locator/MrX\"/>\n" +
" <param name=\"nexpression.0\" value=\"person_id = 2\"/>\n" +
" <param name=\"pass-on-false-port\" value=\"0\"/>\n" +
" </box>\n"
"</query>\n";

RPC<void> r = client.create_query_xml(query_xml);
if (!r.stat())

FATAL << ‘‘Failed creating query ‘‘ << r;

6.4 Subscribing to a Stream

// Setting up binding to listen for tuples
RPCBindings bindings;
TCPRPCAcceptor acceptor(client.loop(), InetAddress(my_ip,my_port), bindings);

EventSink my_tcp_sink;
bindings.bind(my_tcp_sink, "MyTCPSink");
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// print_event will be called every time a set of tuples appears on the stream
my_tcp_sink.on_event(wrap(&print_event));

RPC<void> r = client.subscribe(Subscription("medusa://nms.lcs.mit.edu/locator/MrX",
"tcp",to_string(acceptor.get_socket().getsockname()),
"MyTCPSink"),
Subscription::ADD);

if (!r.stat())
FATAL << "Failed to add subscription: " << r;

6.5 Starting Query

// start_query calls set_query_status(RUNNING)
r = client.start_query("medusa://nms.lcs.mit.edu/locator/FindMrX");
if (!r.stat())

FATAL << ‘‘Failed starting query ‘‘ << r;
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