
Cricket v2 User Manual

Cricket Project
MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139
http://cricket.csail.mit.edu/

January 2005

2

Contents

1 Introduction 9
1.1 System Overview . 9
1.2 Quick start . 11

1.2.1 Set up a communication terminal . 11
1.2.2 Communicate with the Cricket unit . 12
1.2.3 Configure a Cricket unit to be a beacon 13
1.2.4 Test distance measurements . 13

1.3 Installing the Cricket embedded software image 13
1.3.1 With TinyOS . 13
1.3.2 Without TinyOS . 14

1.4 Overview of this manual . 15

2 Command Interface and Troubleshooting 17
2.1 Cricket Hardware Details . 17

2.1.1 Diagnostic LEDs . 18
2.1.2 Test Switch . 18
2.1.3 Powering Crickets . 19

2.2 Serial Port Command Interface . 19
2.2.1 cricketd . 19
2.2.2 Cricket Command Interface . 21
2.2.3 Error Codes . 21
2.2.4 Default values . 21
2.2.5 Run mode command (MD) . 23
2.2.6 Configuration status command (CF) . 23
2.2.7 Get serial ID (ID) . 23
2.2.8 Get/Put space ID (SP) . 24
2.2.9 Get software version (VR) . 24
2.2.10 Distance to beacon (DB) . 24
2.2.11 Duration (DR) . 24
2.2.12 The uncorrected time of flight (TM) . 24
2.2.13 Get/Put coordinates command (PC) . 25
2.2.14 Get/Put the minimum and maximum beacon interval time (SL) 25
2.2.15 Get/Put the ultrasound maximum time-of-flight (UL) 25

3

2.2.16 Get/Put the software offset (OF) . 26
2.2.17 Get system time (TS) . 26
2.2.18 Get/Put temperature sensors (TP) . 26
2.2.19 Test switch status (TB) . 27
2.2.20 Get/Put display units (UN) . 27
2.2.21 Get the beacon listing (LS) . 27
2.2.22 Save settings to flash (SV) . 28
2.2.23 Load settings from flash (LD) . 28
2.2.24 Get/Put Output format (OU) . 28
2.2.25 Customize output format (CO) . 29

2.3 Troubleshooting and Deployment Hints . 29
2.3.1 Problem: The listener or the beacon does not respond to any command . . 29
2.3.2 Problem: The listener does not report any events 30
2.3.3 Problem: The listener returns erroneous distances 30
2.3.4 Problem: The beacon blinks but does not respond to serial commands . . . 30
2.3.5 Problem: The listener associates itself with the “wrong” space identifier . . 31

3 Sample Application 33
3.1 Setup . 33
3.2 Source Code . 33
3.3 Beacon Placement . 34
3.4 Setting Parameters . 34
3.5 Launching and RunningBeaconConfigDemo 36

3.5.1 Launchingcricketd . 37
3.5.2 LaunchingBeaconConfigDemo . 37
3.5.3 RunningBeaconConfigDemo . 37
3.5.4 Troubleshooting . 40

4 Developing Cricket Applications in Java 43
4.1 Requirements . 43
4.2 Architecture . 43
4.3 Compiling Clientlib . 44
4.4 Clientlib API . 45

4.4.1 Thecricketdaemon.clientlib.ServerBroker Class 45
4.4.2 Thecricketdaemon.clientlib.Callback Class 47
4.4.3 Thecricketdaemon.clientlib.data.CricketData Class . . . 47
4.4.4 Thecricketdaemon.clientlib.data.BeaconRecord Class . . 48
4.4.5 Thecricketdaemon.clientlib.data.DistanceStat Class . . 49
4.4.6 Thecricketdaemon.clientlib.data.Position Class 50
4.4.7 Thecricketdaemon.clientlib.data.Sample Class 50

4.5 Using Clientlib: An Example . 51
4.5.1 Source Code . 51
4.5.2 Compiling ClientlibExample . 54

4

4.5.3 Running ClientlibExample . 55

5

6

List of Figures

1.1 A Cricket hardware unit; this unit can function as either a beacon or a listener under
software control, and can also be used in a more symmetric way as both listener
and beacon. 10

1.2 Example deployments of Cricket beacons. Multiple beacons may advertise the
same space identifier if they are in the same space, but each beacon has a different
position coordinate consistent with its location in space. 10

2.1 Cricket v2 hardware components and layout. 18
2.2 Serial port command API. 22
2.3 Incorrect placement of beacons to for boundary detection between two spaces. . . . 31
2.4 Correct beacon placement. 31

4.1 Software Architecture . 44
4.2 Clientlib Architecture . 45

7

8

Chapter 1

Introduction

This document describes the key features ofversion 2 (v2)of the Cricket indoor location sys-
tem.1 It provides information to develop Cricket applications and maintain a Cricket installation.
You will find this document useful if you plan to:

• Write location-aware applications with Cricket to run on handhelds, laptops, and desktop
under Linux or Windows.

• Deploy and maintain a Cricket system.

You will also find the document useful if you plan to write location-aware embedded wireless
sensor computing applications on the Mote platform. Writing such applications will not be difficult
because the Cricket embedded software is written in TinyOS [6], the software platform for the
Motes.2 In addition, you will find this document useful if you want to make modifications to the
Cricket embedded software.

The best way to use this document is in conjunction with the Cricket hardware and software,
so you can try things out while reading. Details on how to get the hardware and software are at
http://cricket.csail.mit.edu/ . That web page has pointers to commercially available
Cricket hardware units from Crossbow Technologies (http://www.xbow.com/).

We start with a quick overview of the Cricket architecture. A more detailed technical descrip-
tion for Cricket v1 is in [5]. A more recent paper describing experiences with Cricket v1 and the
design decisions made in v2 is in [1].

1.1 System Overview

Cricket is an indoor location system. It provides two forms of location information—space iden-
tifiers andposition coordinates—and can be as accurate as between 1 cm and 3 cm in real de-
ployments. Space identifiers are user- or application-specified names associated with spaces such

1In the rest of this document, when we refer to “Cricket” without a version number, we mean v2. Any references
to v1 or other versions will be made explicitly.

2However, the current version of the Cricket v2 embedded software (2.0) does not expose the full TinyOS API
required to easily write such applications. That will change in future versions of the Cricket software.

9

Figure 1.1: A Cricket hardware unit; this unit can function as either a beacon or a listener under software
control, and can also be used in a more symmetric way as both listener and beacon.

Figure 1.2: Example deployments of Cricket beacons. Multiple beacons may advertise the same space
identifier if they are in the same space, but each beacon has a different position coordinate consistent with
its location in space.

as rooms or parts of rooms. The position coordinates are(x, y, z) Cartesian coordinates in some
coordinate system.

The most common way to use Cricket is to deploy actively transmittingbeaconson walls and/or
ceilings, and attachlistenersto host devices(handhelds, laptops, etc.) whose location needs to be
obtained. See Figures 1.1 and 1.2.

Users or administrators configure beacons with space identifiers, and optionally with posi-
tion coordinates (one can also use an auto-localization algorithm to assign position coordinates to
beacons; we provide a simple one with the Cricket v2.0 software distribution). Each beacon peri-
odically broadcasts its space identifer and position coordinates on a radio frequency (RF) channel,
which listeners within radio range can receive. Each beacon also broadcasts an ultrasonic pulse at
the same time as the RF message. Listeners that have line-of-sight connectivity to the beacon and
are within the ultrasonic range will receive this pulse. (The exact values of the RF and ultrasonic
ranges for the Cricket hardware are mentioned in the next chapter.)

Because RF travels about106 times faster than ultrasound, the listener can use thetime differ-
ence of arrivalbetween the start of the RF message from a beacon and the corresponding ultrasonic
pulse to infer its distance from the beacon. Every time a listener receives information from a bea-
con, it provides that information together with the associated distance to the attached host using

10

the API described in the next chapter. The listener (or software running on the host device) infers
its position coordinates based on distances from multiple beacons whose positions are known, and
software running on the host device can associate itself with the space corresponding to the nearest
beacon.

The spaces advertised by Cricket beacons may be demarcated by physical boundaries such
as walls, or may be virtual (e.g., different parts of a room may correspond to different spaces).
Cricket is designed to accurately demarcate virtual spaces that don’t have any walls between them.
Because ultrasound does not travel through walls, Cricket can easily demarcate spaces separated
by walls.

Cricket scales reasonably well with large numbers and high densities of devices in close prox-
imity (e.g., many devices in the same room). Cricket is relatively easy to set up and start using,
and relatively straightforward to maintain.

Because listeners need not transmit any information, Cricket makes it harder to track users if
location privacy is a desired goal. This property of Cricket makes it different from some other
indoor location systems like the Active Badge [7] and Active Bat [4] systems, in which tracking
users is inherent.

Finally, note that the Cricket infrastructure is quite flexible, in that you can run the beacon on
a moving device, and also run a more symmetric Cricket-based system where every node can be
configured to simultaneously function as both a beacon and a listener.

1.2 Quick start

This section has instructions that will allow you to get started using Crickets. Use these instructions
to test your Cricket hardware unit and to configure some of its parameters. You will need a serial
communication terminal program such asHyperTerminal or minicom .

If you get a Cricket kit from Crossbow, the embedded software will already be installed on it.
If not, then you need to install the embedded software first; see Section 1.3. The instructions for
“quick start” in this section assume that the embedded software is already loaded on the Crickets.

NOTE: The embedded software needs to be based on TinyOS 1.1.6. If you have an older
version of TinyOS, you need to upgrade. Also, we have not tested Cricket with later versions
of TinyOS; it might work, however. If you obtained a Cricket kit, verify that the CD that
came with it has TinyOS 1.1.6 rather than an older version.

Attach one of the Crickets to your computer’s serial port. If your computer doesn’t have a serial
port, you can use a USB-to-serial converter.

1.2.1 Set up a communication terminal

In Linux:

• Open a terminal and runminicom -o -s as root or as a user with the right permissions
to access the device (e.g., /dev/ttyS0) to which the cricket is connected. By starting
minicom with the-o and-s option you will see the configuration menu directly.

11

• Set echo on in minicom (CTRL-A followed by Z).

• SelectSerial port setup and set theSerial Deviceto the port to which the Cricket is con-
nected.

• SelectBps/Par/Bits to be115200 8N1. Hardware and software flow control can both be
disabled.

• Save these settings.

• To see what you are writing on the screen, turn the echo function “on”.

• Now you are ready to send commands to the Cricket; see Section 1.2.2 to continue.

In Windows:

1. Start HyperTerminal: In Windows XP, you can do this as follows:
FromStart–>All Programs –>Accessories–>CommunicationsselectHyperTerminal .

2. HyperTerminal will prompt you for aNew Connectionname; type in any name you want
(such as “Cricket”) and pressOK .

3. In the next dialog box, select theConnect usingoption and set it to the communication
port to which the Cricket is attached. For a direct serial connection, this port is likely to
be COM1, COM2, or COM3; for a USB-to-serial connection, this port is probably COM4.
PressOK after choosing the right option.

4. You now have to configure the serial communication protocol parameters. In thePort Set-
tings dialog box, setBits per secondto 115200, Data bits to 8, theParity to None, the
Stop bits to 1, theFlow control to Xon/Xoff . PressOK .

5. You can now send commands to the Cricket unit; see Section 1.2.2 to continue.

1.2.2 Communicate with the Cricket unit

Once connected to the Cricket unit over a serial communication link using a terminal program like
HyperTerminal or minicom , you can run the following test to see if the unit works.

1. Power the Cricket unit on. This switch is different from the “TEST” switch, which you don’t
have to touch. (Both switches are marked on the board.)

2. Send the following command to the Cricket unit using the terminal program:G CF <return >.

3. A multi-line output should appear giving you information about the Cricket unit’s configu-
ration.

12

1.2.3 Configure a Cricket unit to be a beacon

When you first get a Cricket unit, it will be configured as a listener. To configure it as a beacon:

1. TypeP MD 1 <return > in the terminal program.

2. TypeP SP test1<return > to set the beacon’s space ID to “test1” (or to any other string that
you want). The maximum length of the space ID is 8 bytes.

3. TypeG CF <return > to check the current configuration; you should find the new space ID
and the beacon setting.

4. Save the new configuration to the flash by sendingP SV <return >. If you don’t save the
configuration, the new settings will only remain until the Cricket unit is powered off.

1.2.4 Test distance measurements

1. Connect and turn on a Cricket configured as a listener to your host.

2. Turn on a Cricket configured as a beacon.

3. You should now see distance measurements appear in your terminal every time the listener
hears from the beacon. The output has many fields; the “DB” field gives the distance to the
beacon. The default units are centimeters (but can be changed to inches); the next chapter
documents these and other options in detail.

If the above steps work, you can now use your Crickets to write and run applications! If the
steps don’t work, you may find the troubleshooting hints in the next chapter useful.

1.3 Installing the Cricket embedded software image

1.3.1 With TinyOS

This section describes how to program and/or modify the embedded code on the Cricket units.
This chapter assumes some familiarity with the TinyOS platform; details on that platform are at
http://www.tinyos.net/

You need aprogramming board(also called a “programmer”) to program Cricket units with
the TinyOS-based software image. Cricket can be programmed using the same programmers as
Mica2 motes. We use the MIB510CA model.

The package providing the TinyOS-based embedded source code for Cricket contains only
changed/added files. The files provided are in two separate directories in the top leveltos direc-
tory:

13

/apps/Cricket/ Cricket application
/apps/Makerules Makerules with the addition of the cricket

platform.
/tos/platform/cricket/ Cricket platform directory

The current version of the Cricket embedded software works with TinyOS version 1.1.9. To
install the development environment, install TinyOS 1.1.9 and copy the files included in the Cricket
package to the corresponding TinyOS path.

The embedded source code for the Cricket units has two parts and is available fromhttp:
//cricket.csail.mit.edu :

1. The Cricket platform.

2. The Cricket application.

The Cricket platform contains all the software differences that handle the differences between
the Cricket hardware and the Mica2 hardware. The Cricket application is the software that incor-
porates the beacon and listener algorithms.

If you have a MIB510CA programmer create a Makelocal file in the apps tinyos directory and
add the following line to it:

MIB510=<SERIAL_PORT> (e.g., /dev/ttyS0)

After installing TinyOS and copying in the Cricket package, install the Cricket application by
typing:

make cricket install

The above lines assume you have a MIB510CA programmer connected to a serial port. Check
the TinyOS documentation for details on other programmers.

Note: Currently, by default, TinyOS erases the Cricket flash each time it is reprogrammed. As
a result, Cricket configuration parameters that were saved before the reprogramming action will be
lost and reset to the default values.

Note: This document does not currently discuss how to modify the embedded software or how
to write TinyOS-based Cricket applications. A future version of the document will address these
issues.

1.3.2 Without TinyOS

This section describe how to program the software onto the Crickets using a already compiled
version of the software.

You need aprogramming board(also called a “programmer”) to program Cricket units with
the TinyOS-based software image. Cricket can be programmed using the same programmers as
Mica2 motes. We use the MIB510CA model.

14

The embedded image is available fromhttp://cricket.csail.mit.edu as a firmware
only package (two compressed packages are available .zip and .tar.gz for your convenience and
both containt the same binaries).

The pacakge containt the following files:

• uisp.exe - The windows upload software

• uisp - The linux upload software

• main.srec - The cricket embedded software

Under Windows you needcygwin to be installed on your system.cygwin is available from
http://www.cygwin.com/ .

To install uncompress the package in a directory and execute the following command from that
directory after connection the programmer and placing the Cricket on the programmer:

./uisp -dprog=mib510 -dserial=/dev/ttyS0 -dpart=ATmega128 --wr_fuse_e=ff
--erase --upload if=main.srec

Where the -dserial parameter represent your COM port (e.g /dev/ttyS0 is COM1).
Note: The Cricket should be connected using a straight cable and not a null modem cable.

1.4 Overview of this manual

The next chapter describes how to configure Crickets using the serial command interface and pro-
vides troubleshooting and deployment tips. Chapter 3 describesBeaconConfigDemo , a simple
Cricket application that you can use to configure beacon coordinates and track a mobile device.
This application is part of the Cricket software release. Chapter 4 describes how to write Cricket
applications in Java using libraries that are part of the Cricket release (these libraries provide better
abstractions than using the serial API directly).

15

16

Chapter 2

Command Interface and Troubleshooting

This chapter describes some salient hardware features of Cricket, the command interface to con-
figure and read various parameters, and discusses troubleshooting and deployment issues.

The Cricket beacon and listener hardware are identical; they just run different software. In
fact, there is only one embedded software image, and a runtime configuration switch (described
below) determines whether a given unit is a beacon or a listener. By default, each Cricket node is
configured to run as a listener. The Cricket embedded software runs in the TinyOS environment [6].

At least two Crickets are needed to operate the system, at least one beacon and at least one
listener. In the current version of Cricket, the listener is usually attached to a host using a serial
cable.1

The host device (to which the listener is attached) must run software to process the data ob-
tained from the listener. One way to process this data on Linux computers (including handhelds) is
to usecricketd (Section 2.2.1), which processes information obtained over the serial interface
to obtain various location properties. In particular,cricketd runs on Familiar Linux [3] (on
iPAQ handheld computers), as well as on standard laptop/desktop versions of Linux and Windows
(under Cygwin [2]). We do not currently supportcricketd on handhelds running Windows
Pocket PC.

2.1 Cricket Hardware Details

Figure 2.1 shows the hardware components and board layout of the Cricket v2 units.
Cricket uses time-difference-of-arrival between RF and ultrasound to obtain distance estimates.

Its radio runs at a frequency of 433 Mhz, with the default transmit power level and antennas pro-
viding a range of about 30 meters indoors when there are no obstacles.2 The maximum ultrasound
range is 10.5 meters when the listener and the beacon are facing each other and there are no obsta-
cles between them. Our measurements show that the distance accuracy of the Cricket hardware is

1We expect to have a listener with a compact flash interface in the future.
2The radio range depends on the antenna and the kinds of obstacles between the two Crickets; its profile is compli-

cated, non-isotropic, and asymmetric.

17

Figure 2.1: Cricket v2 hardware components and layout.

on the order of 1 centimeter at a distance of up to 3.5 meters, and 2 centimeters in the rest of the
10.5-meter range.

2.1.1 Diagnostic LEDs

The Cricket hardware has three LEDs, which you can use to infer a few things about the device’s
state. At startup, all the LEDs light up for 500 milliseconds. At run time the LEDs light up as
shown in the following table:

LED Listener Beacon
Green (D3) lights up when a lights up for 150 microseconds

valid RF chirp during ultrasound trasmission
arrives from a beacon (may not be visible in bright light)

Red (D2) lights up when a lights up for 150 microseconds,
collision occurs (e.g., due to hidden when the beacon fails to

terminal or improper beaconing) grab a time slot to send a chirp
Yellow (D4) lights up when an Not used yet

RF message is received
but with no ultrasonic pulse

2.1.2 Test Switch

In addition to the power switch, each Cricket has atest switch. The behavior of the Cricket unit in
each test switch setting is under software control.

Currently, this switch is used when the Cricket runs as a beacon. If the test switch is placed in
the “ON” position before the Cricket is turned on, it will disable the onboard RS232 chip during
start-up, to save energy while running. Even when the onboard RS232 chip is disabled, the Cricket
serial port can be accessed using a programming board (see Section 1.3).

To enable the RS-232 chip again, restart the Cricket with the test switch in the OFF position.

18

2.1.3 Powering Crickets

Cricket comes equipped with a battery pack and an external power connector. It can be powered
using two standard AA batteries or with an external power supply that provides 3-6 volts regulated
at 300-1000 mA.

It is also possible to power Crickets using solar panels. Details are available athttp://
cricket.csail.mit.edu/ .

2.2 Serial Port Command Interface

The Cricket listener provides data in ASCII format to software running on the attached host over
an RS232 interface. The serial command interface parameters are:

Transmission speed 115200 bits/second
Data format 8 bits, no parity

Flow control Xon/Xoff (“software”)
Stop bits 1

The ASCII-based serial port command interface is similar to the “AT” command interface that
modems use. The command interface is accessible using standard utilities likeHyperTerminal
or minicom . Section 1.2 describes how to use these utilities to send commands to Cricket.

2.2.1 cricketd

cricketd is a daemon used to access the command interface over the network.cricketd binds
to port 2947 and can be accessed usingtelnet (or another TCP application) by connecting to port
2947 on the machine runningcricketd (connect to port 2947 onlocalhost if cricketd
runs on the same machine).

telnet <IP address of the machine running cricketd> 2947

When connected, the API can be used the same way as withHyperTerminal or minicom .
cricketd supports multiple TCP clients and can provide location information to more than one
application.

After connecting tocricketd , type “r ” in the console (or send the ASCII character “r ” over
the TCP connection) to tellcricketd to start and stop sending the data flow to the console (or
TCP connection). This command does not affect other connected clients.

Compiling cricketd

In Linux or on Windows running a version cygwin≥ v1.5.10, run the following inCricket2.
0/src/cricketd/ :

19

autoconf
./configure
make

To cross-compile for IPAQs, do the following:

1. Install toolchain 2.95 fromhandhelds.org (http://handhelds.org/download/
toolchain/cross-2.95-3.tar.bz2).

2. Unpack file in the “/ ” directory.

3. Type:

make clean; make -f Makefile.arm

Running cricketd :

First, make sure you are running with root/administrator privileges.

./cricketd -h gives the listing of command line options.

./cricketd -p <SERIAL PORT> -s 115200 runscricketd . SERIAL PORT is
usually /dev/ttyS0 in Linux or cygwin when the Cricket unit is connected to the serial port,
/dev/ttyS3 when the Cricket is connected using a USB-to-serial converter, and/dev/ttySA0
on iPAQ handhelds. Note that in version 1.5 and later of cygwin,/dev/ttyS0 is used in place
of COM1.

The above settings are not authoritative, however. Please consult your local system administra-
tor if you need help in finding the correct serial port device.

Connecting, Sending, and Receiving Messages

1. telnet 〈HOSTIP ADDR〉 2947 (or open a TCP connection).

2. Type “r” to enable or disable the connection (or send “r” over your TCP socket.

3. After connecting (and powering the Cricket on), you should start receiving Cricket messages,
if the host is connected to a listener. You may enter the Cricket command followed by
“ENTER” to manipulate the Cricket unit.

You may find theREADMEfile included in thesrc/cricketd directory useful.

20

2.2.2 Cricket Command Interface

All commands have the same general format, using one of two directives. GET (“G”) returns the
values corresponding to the parameters specified in the command. PUT (“P”) sets the value of the
specified parameter to the specified command argument.

The general command format is:

<directive> <command> <parameters>

〈directive 〉 The character “G” or “P” for “get” or “put”.
<command> One of the commands from the “command” column in the table on the next

page.
<parameters > The argument(s) to the command.

In response to any command, the Cricket listener or beacon echoes the specified command
followed by the result:

<command><result>

2.2.3 Error Codes

The Cricket output the following set error codes when a command sent using the serial port contain
a error:

Error description Code
Invalid command Err 1
Missing parameters Err 2
Value out of range Err 3
Not defined Err 4

2.2.4 Default values
Variable Default values
Run mode (MD) Listener
Space ID (ID) NULL
Ultrasonic timeout (UL) 45000µs
Coordinates (PC) (0,0,0)
Sleep range (SL) 668 and 1332 ms (average 1000 ms)
Offset (OF) 550 clock ticks
Temperature (TP) enabled
Units (UN) Metric and Celsius
Output format 3
Custom format VR,ID,SP,DB,DR,TM,TS

The rest of this section describes the commands summarized in the table on the next page.

21












































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































F
ig

ur
e

2.
2:

S
er

ia
lp

or
tc

om
m

an
d

A
P

I.

N
o

te
:

T
h

e
ty

p
e

“s
h

o
rt

”
is

a
1

6
-b

it
si

g
n

e
d

va
lu

e.

22

2.2.5 Run mode command (MD)

To place a Cricket device in “beacon” mode, set this parameter to 1. To place a Cricket device in
“listener” mode, set this parameter to 2.
Example:

P MD 1<return>

Result:

MD BEACON

2.2.6 Configuration status command (CF)

The configuration command triggers a report that gives the values of all the Cricket parameters.
An example of the output of this command, with explanations on the side, is shown below.
Example (get configuration):

G CF<return>

Result:

Cricket configuration:
Software version: 2.0 // Cricket software version
Mode: Listener // Running mode (Listener/Beacon)
Unique id: 1:c8:6a:b3:a:0:0:dc // Unique Cricket ID
Space id: MIT-6 // User-defined space ID
Uptime: 16:32:14 // Uptime of Cricket from last power cycle (hh:mm:ss)
Ultrasound attenuation time(us): 45000 // Time Cricket should wait for the ultrasound to attenuate
Timer Offset(us): 550 // Offset to compensate for software processing time
Minimum beacon interval(ms): 668 // Minimum wait time between beacon messages
Maximum beacon interval(ms): 1332 // Maximum wait time between beacon messages
Average beacon interval(ms): 1000 // Average interval between beacon messages
Compensation value(us): 48 // Time in us that one bit takes to travel over the Cricket radio
Distance Units: Metric // Units used to display the distance measurement (DB)
Local temperature value (Celsius): disabled // Temperature from the onboard sensor
Speed of sound value(m/s): not used // Speed of sound calculated based on the temperature
Test switch status: On // Position of the test switch on the Cricket
Event output format: 3 // Event reporting format
Output variable(s): VR ID DB DR SP TM TS // Variables output (configurable using the CO command)

Massachusetts Institute of Technology
http://nms.csail.mit.edu/cricket

2.2.7 Get serial ID (ID)

The Cricket ID is a 64-bit number that is permanent and cannot be changed; it is taken from a
serial number DS204 chip and is analogous to the MAC address on a network card. This number
is returned in the form of 8 hexadecimal numbers.

Example:

23

G ID<return>

Result:

ID 81:23:a1:34:01:43:12:e3

2.2.8 Get/Put space ID (SP)

The space ID is an 8-byte string that can provide more information about a beacon. The space ID
has to be set by the user at least once to have a value different from NULL. If the string is longer
that 8 bytes the excess bytes are dropped.

Example (set space ID to “MIT-6”):

P SP MIT-6<return>

Result:

SP MIT-6

2.2.9 Get software version (VR)

Return the software version of the Cricket being queried. The current version is 2.0.

2.2.10 Distance to beacon (DB)

The listener reports the distance to a beacon each time the listener hears an RF message and a
concurrent ultrasonic signal from that beacon. The reported distance is in the units set using the
UN command (Section 2.2.20).

2.2.11 Duration (DR)

The duration is reported by the listener under the same conditions as in “DB”, above. The duration
represents the time-of-flight of the ultrasonic pulse, compensating for the various time offsets for
accuracy. This value can be used to calculate a distance with with more precision then the DB
distance, because the latter uses a (temperature-compensated) value for the speed of sound, which
may introduce some error. For example, to determine which of multiple beacons is closest to the
listener, compare the DR values. The units of the reported duration is microseconds.

2.2.12 The uncorrected time of flight (TM)

This value is the same as the duration (DR) but without any compensation. It is also reported by
the listener each time a distance measurement arrives.

24

2.2.13 Get/Put coordinates command (PC)

Thex, y, andz coordinates can be preset for a beacon. Each value ranges between 0 and 65536
and are in the units specified by the “P UN” command.

Example (set the coordinates to (32,2,3)):

P PC 34 2 3<return>

Result:

PC (32,2,3)

2.2.14 Get/Put the minimum and maximum beacon interval time (SL)

The minimum and maximum sleep times between beacon chirps can be set using the SL command.
The valid range for the minimum value is 200 to 65536 ms and the maximum value needs to be
higher than the minimum by at least twice the attenuation time of the ultrasound (45 ms), but can-
not exceed 65536 ms. The average beacon chirp interval depends on the minimum and maximum
values, because the sleep time is randomly chosen to be in this range.

Example (set the interval to minimum of 500 ms and a maximum of 1500 ms):

P SL 500 1500<return>

Result:

SL 500 1500

The average sleep time in this example is (500 + 1500) / 2 = 1000 ms.

2.2.15 Get/Put the ultrasound maximum time-of-flight (UL)

This parameter is used by the beacons to wait for the ultrasound to attenuate. The beacon waits for
at least this much time (in microseconds) after hearing another beacon’s chirp before attempting a
chirp. The default value is 45000 (45 ms). Valid values are from 0 to 65536 (65 ms).

Example (set ultrasound lifetime to 40000 microseconds):

P UL 40000<return>

Result:

UL 40000

25

2.2.16 Get/Put the software offset (OF)

The software offset can be changed from the preset value (550µs) to any value between 0 and
65536. This offset compensates for processing time during the reception of beacon messages. It
depends on the processor speed.

Example (set offset to 500µs):

P OF 500<return>

Result:

OF 500

Note: This command only useful for user change the Cricket embedded software installed on
the Cricket node. You should not have to change this parameter, and if you do, it has to be changed
with extreme care.

2.2.17 Get system time (TS)

Report the elapsed time (32 bits long) since the last power-up of the Cricket unit. This time is
reported in milliseconds.

Example (get the system time):

G TS<return>

Result:

TS 32983

2.2.18 Get/Put temperature sensors (TP)

The temperature command reports the temperature of the Cricket unit. It is also used to enable
the temperature sensor in the first place. When the temperature sensor is enabled, the embedded
Cricket software calculates distances using the speed of sound at the ambient temperature. The
temperature is returned in the units specified by the UN command (Section 2.2.20). By default the
temperature is specified in degrees Celsius.

By sending “P TP 1/0”, you can enable(1)/disable(0) the temperature sensor.

Example (enable the temperature sensors):

P TP 1<return>

Result:

TP 1

26

2.2.19 Test switch status (TB)

The TB value represents the test switch position on the Cricket beacon that caused this report.
When queried using the G directive (“G TB”), the TB value that’s returned represents the status of
the test switch on the Cricket unit connected to the serial port.

Example:

G TB<return>

Result:

TB On

2.2.20 Get/Put display units (UN)

The display units parameter is used to set or get the units used to display the information reported
by the Cricket over the command interface. The command take two parameters: the first one is the
distance units and the second the temperature units. The distance units can be “1”, meaning Metric
(centimeters), or “2”, meaning Imperial (inches). The temperature can be “1”, in degrees Celsius
or “2”, degrees Fahrenheit. When queried, the command returns the current settings.

Example (put Imperial and Celsius units):

P UN 2 1<return>

Result:

UN Imperial and Celsius

Note: The default setting of the units is “Metric” and “Celsius”.

2.2.21 Get the beacon listing (LS)

The listing command lists all beacons heard (up to a maximum of 15 beacons) in the past 15 sec-
onds and the last 5 distances measured for each of these beacons. Each output line reports the
unique ID of the beacon heard and the last 5 distance measurement received for that beacon.

LS 0: 1:f2:66:b3:a:0:0:df 165 165 169 175 180
LS 1: 2:f2:32:67:a:0:0:45 40 40 40 40 40
LS 2: a:62:0:b3:a:0:0:21 17 16 15 12 10

Note: Currently only the ID and the distances are reported. The distances reported are in the units
set by the UN command (Section 2.2.20).

27

2.2.22 Save settings to flash (SV)

The SV command is used to save the current settings into the flash. The red light will light up
during the “save” operation. The saved parameters will be loaded each time the Cricket powers up
or when the “P LD” command is sent to the Cricket unit.

Note: The flash is erased each time the Cricket is reprogrammed with new software. Non-
default configuration parameters that were previously saved willnotbe retained across reprogram-
ming actions.

2.2.23 Load settings from flash (LD)

The LD command reloads the parameters from the flash.
Note: The LD command is equivalent to restarting the unit, and the same rules apply to the test

switch in terms of enabling or disabling the serial port (see Section 2.1.2).

2.2.24 Get/Put Output format (OU)

Cricket v2 has a few pre-programmed output formats for backward-compatibility with Cricket v1
(this feature is probably not useful for most users). By using the OU command the output format
can be set to be compatible with previous Cricket versions, as follows:

Parameters Description
0 No output at all
1 Cricket version 1 with decimal distances
2 Cricket version 1 with hexadecimal distances
3 Cricket version 2 output format (default)

The output format is for each parameter is as follows:
Output 1:

$Cricket2,ver=3.0,id=45,dist=17,duration=1435,time=1195

Output 2:

$Cricket2,ver=3.0,space=MIT-0,id=45,dist=11,duration=1435

Output 3:

VR=2.0,ID=1:5e:3c:3c:a:0:0:ba,SP=MIT-0,DB=14,DR=423,TM=1045,TS=207040

Note: The version number (VR) in output 1 and output 2 do not reflect the same version scheme
as in the current version (output 3) of the software. They should only be used by legacy Cricket
applications that were created for Cricket v1.

28

2.2.25 Customize output format (CO)

The custom output command is used to change format of the information reported from the listener
via the command interface. It allows the user to specify which parameters should be reported. The
parameters are the names of the commands from the tables.

For example, by sending “P CO DB VR” over the command interface, the reports from the lis-
tener will look like:

VR=2.0,DB=98

Note: The user cannot specify the order in which the parameter values should be reported.
We provide two special settings:

• ∗ corresponds to every available parameter symbol.

• − corresponds to the default reporting line.

For example, by sending “P∗” the report of the distance will look like

VR=2.0,ID=01:dd:be:be:09:00:00:95,SP=MIT-2,DB=224,DR=6479,TM=6789,TS=455424,PC=(0,0,0),TB=2,TP=0

Note: The custom output command works only when the output format is set to 3. The example
also assumes that all the options are enabled on the beacon and that the listener can measure
distances from the beacon.

2.3 Troubleshooting and Deployment Hints

This section tells you how to resolve some common problems.

2.3.1 Problem: The listener or the beacon does not respond to any command

• Verify that TinyOS version 1.1.6 has been installed and the Cricket embedded software
loaded. If not, do so using a programming board.

• Verify that the serial parameters are set to 115200 baud 8N1.

• Check that the Cricket is ON.

• Check that the batteries are not dead.

• Make sure no other instance of a program likeminicom or cricketd is already running,
which has locked access to the serial port.

29

2.3.2 Problem: The listener does not report any events

• Check if the green light on the listener lights up from time to time; if not, check if the beacon
is ON and that its green light blinks.

• Check if the output format (using the OU command) is set to something different then 0;
type “P OU 3” to set it to report information. If this step works, typing “P SV” will save the
configuration.

2.3.3 Problem: The listener returns erroneous distances

If the reported distances are wrong by more than a few centimeters, then something is amiss.

• If the results are wrong for every beacon, the most likely problem is that the batteries on the
listener are weak.

• If the wrong distance comes from a beacon that was previously correct, then that beacon’s
batteries are probably weak.

• Check the setting of the units in which the distance reports are being made. You can use “G
UN” or “P UN” to set these units. See Section 2.2.20.

• If the listener reports erroneous distance at certain locations but not others, then you may
have sources of interference on the path from beacon to listener. Some objects block ultra-
sonic signals and some others reflect them; some even generate ultrasonic signals at the same
frequency as Cricket. All these objects cause the Crickets to report wrong distances.

Obstructions close to the beacon’s ultrasonic transmitter or listener’s ultrasonic receiver cause
the biggest problems. These obstructions could be walls or doors (through which ultrasound does
not pass), or could be people. Large metallic plates or cabinets on the path from beacon to listener
can disrupt distance estimation by affecting both ultrasound and RF propagation. We have also
found that some fluorescent lamps generate 40 kHZ ultrasonic waves that can interfere with the
Crickets.

Don’t place beacons too close to large objects; if a large object is within 10 or 15 centimeters of
a beacon, that beacon’s transmissions may be blocked. Dealing with interfering fluorescent lamps
could be harder; however, we have found that the intererference usually comes from lamps that are
close to dying, so you might think of this intereference as an early-warning system to replace the
lamp!

2.3.4 Problem: The beacon blinks but does not respond to serial commands

If the Cricket was turned on with the test switch in the “ON” position, then the serial port is
disabled to save energy while running. You have two options if you want to communicate with the
beacon over the command interface:

30

Beacon Beacon

Figure 2.3: Incorrect placement of beacons to for boundary detection between two spaces.

Beacon Beacon

x x

Figure 2.4: Correct beacon placement.

• Restart the Cricket with the test switch in the “OFF” position. Note that this configuration
consumes more power.

• Connect the Cricket to a MIB510CA programmer. The serial port is then accessible without
using the on-board RS232 controller.

2.3.5 Problem: The listener associates itself with the “wrong” space identi-
fier

When using Cricket beacons to delimit spaces that are not separated by a wall, both RF and ul-
trasound from the beacons in the two different spaces may traverse the other space. Because the
listener associates itself with the space advertised by the nearest beacon, you need to place beacons
with some care to achieve proper spatial demarcation. Figure 2.3 illustrates a bad configuration of
beacons, where a listener on the left side of the partition could be closer to the beacon on the right,
causing it to associate itself with the wrong space.

Place the beacons corresponding to the different spaces at equal distances from the boundary
between the spaces, as shown in Figure 2.4.

31

32

Chapter 3

Sample Application

We have developed a sample Cricket application (which we will also call the “demo” program),
BeaconConfigDemo , that lets a user make simple drawings using Cricket. This application
demonstrates the following features of the Cricket location system:

• Assisted configuration of an adhoc beacon coordinate system

• Accuracy of distance measurements

• Accuracy and latency of real-time tracking of the listener’s position within the adhoc beacon
coordinate system

This chapter explains how to setup, launch and use theBeaconConfigDemo application.

3.1 Setup

You need Java installed on your system. Please download the latest Java runtime environment
(JRE) or software development kit (SDK) (version≥ 1.4) from http://www.javasoft.
com/

On Windows systems, you needcygwin to run cricketd (see Chapter 2) and to run the
scripts provided with the demo. Please download the latest version ofcygwin from http:
//www.cygwin.com/

3.2 Source Code

The source code forBeaconConfigDemo is located under the Cricket distribution directory
src/app/beaconconfig/

A set of pre-compiled binaries is already included in the Cricket distribution. If you wish to
compile the source code, simply runmake in the source directory. You’ll need the Java SDK on
your machine to complie the code.

33

3.3 Beacon Placement

TheBeaconConfigDemo application requires at least three beacons mounted on a flat surface
(either floor or ceiling or along the sides of walls). The listener must be able to listen toall the
beacons at once when placed under each beacon. The typical beacon operating range of a Cricket
beacon is≈ 10 meters (with the antenna and power levels that are set by default).

Don’t place a large number of beacons (> 8) within a given area as that will cause excessive
contention and could increase the latency of position tracking in this demo.

Finally, if four or more beacons are used, the beacons cannot be placed such that any four of
them are on the same circle (in particular, you cannot place them at the four corners of a rectangle
or square).1

3.4 Setting Parameters

Next, edit the parameters inNMSDemo/2004/BeaconConfigDemo/launchall.sh You
will probably need to change theCRICKET IPADDRto 127.0.0.1 and may need to changeNUMBEACONS
and/orBEACONSELECT.

MODE=‘‘normal’’ or ‘‘simulation’’
NUMBEACONS=4
BEACONSELECT=0
CRICKETD_IPADDR=10.0.0.100
CRICKETD_PRINT_ENABLE=‘‘-r’’
REMOTE_ENABLE=‘‘-r’’
ENOUGHSAMPLES=2
SEPDIST_CM=10
STDDEV_TOLERANCE_CM=10
FILTER_WINDOW_MS=4000
WIN_SIZE=500
GRID_SIZE_CM=61
SAMPLEMONHISTORY_MS=5000
SAMPLEMONMAXY_CM=400
STREAMERSAMPLINGPERIOD_MS=50
STREAMERDELAY_MS=3000
JAVAHOTSPOT_ENABLE=‘‘-server’’

MODEsets normal or simulation mode (see Section 3.5.3)

NUMBEACONSsets the number of active beacons being used.

1When the beacons are all on the same circles, the resulting system of equations is degenerate and the listener will
show up at a position on the imaginary plane!

34

BEACONSELECTspecifies an optional list of beacons to be used byBeaconConfigDemo .
When enabled, readings from beacons not in theBEACONSELECTlist will be ignored. Thus,
BEACONSELECTis useful in situations where many beacons are deployed but only a subset
of those beacons are to be used for BeaconConfigDemo.BEACONSELECTis disabled when
set to 0. Otherwise, its value is a comma-delimited list of beacon identifiers:

space1%id1,space2%id2,...

where each beacon identifier is defined by aspace string and aid number.2 NUMBEACONS
will be overridden by the number of elements in this list.

CRICKETDIPADDRsets the IP address of the listener’s host device that is runningcricketd
(see Section 2.2.1). Use 127.0.0.1 ifcricketd is running on localhost.

CRICKETDPRINT ENABLEenables CricketDaemon to print the raw information sup-
plied bycricketd and lets you see the activity in the data path betweencricketd and
CricketDaemon . This is useful for trouble shooting purposes. When the beacon recep-
tion rate is high, the screen output may cause a very high CPU load. This option may be
disabled by prepending the line with a ’#’ symbol.

REMOTEENABLEenables connection with BeaconConfigRemote (see Section 3.5.3). If
this option is enabled ANDBeaconConfigRemote is not running, BeaconConfig may
“hang” due to network timeouts. This option may be disabled by prepending the line with a
’#’ symbol.

ENOUGHSAMPLESis used to filter corrupted data. Beacons with fewer thanENOUGHSAMPLES
within a history window (defined byFILTER WINDOWMSare ignored. This is useful to fil-
ter invalid beacons as a result of noise generated by poor serial port connections or RF errors
that corrupt the beacon information. Usually, a value of 2-3 is enough for effective filtering.
This filter has no effect on the accuracy of the distance measurement between a beacon and
a listener.

SEPDIST CMdefines themaximum separation distance(in centimeters) between the lis-
tener and a beacon during the beacon coordinate configuration phase (see Section 3.5.3).
That is, the listener must be held withinSEPDIST CMcm directly below a beacon during
calibration. WhenSEPDIST CMis large relative to the distances between beacons (1.5x or
greater), the user should move swiftly from one beacon to another during the calibration pro-
cess. Otherwise, BeaconConfig might start a measurement while the listener is not directly
underneath a beacon and cause errors in the beacon coordinate computation.

STDDEVTOLERANCECMdefines the threshold in which distance readings are consid-
ered stable the beacon coordinate configuration phase (see Section 3.5.3). Distance esti-
mation with respect to a beacon is considered stable if the readings collected within the past
FILTER WINDOWMSmilliseconds has a standard deviation belowSTDDEVTOLERANCECM.

2The id is currently not supported and should be set to 0.

35

During tracking phase, sample distances that are greater than 3*STDDEVTOLERANCECM
will also be filtered.

FILTER WINDOWMSspecifies the window size (in milliseconds) of the sliding-window
filter used to reject erroneous distance readings from the Cricket listener. Higher value im-
proves accuracy but increases the position tracking latency. For example, a value 10000 will
cause the program to keep a history of all the distance samples collected over the past 10
seconds. For Cricket v2, the recommended value is 4000. The mode value of the distances
collected in the history window is used to estimate the true distance between a beacon and
the listener.

WIN SIZE PIX sets the size of theBeaconConfig GUI (square) window in pixels.

GRID SIZE CMsets the grid size in centimeters. TheGUI will automatically adjust the
drawing scale so the size of the grid as appear on the screen may vary.

SAMPLEMONHISTORYMSsets the size of the sample monitor (in theBeaconFinderApp
window) history window in milliseconds.

SAMPLEMONMAXYCMsets the max value for the y-axis (cm) in the sample monitor (in the
BeaconFinderApp window).

STREAMERSAMPLINGPERIODMSsets the density of the streamer. The streamer draws
the trail of the Cricket listener during tracking mode. A smaller period will draw more dots
per time unit for the trail.

STREAMERDELAYMSdefines how long the streamer trail dots stay on the screen before
disappearing.

JAVAHOTSPOTENABLEenables Sun’s Java HotSpot Server mode. When enabled, the jvm
will perform dynamic just-in-time compiling to increase performance. However, the start up
time will be quite slow. In general, the applications will run sluggishly in the first minute
or so (depending on the computer speed) until the compilation is complete. After the first
minute, the CPU load should drop significantly. This option may be disabled by prepending
the line with a ’#’ symbol.

3.5 Launching and RunningBeaconConfigDemo

TheBeaconConfigDemo application has two operating phases. The first phase configures an
ad hoc beacon coordinate system for the set of active beacons, and the second phase tracks the
listener’s position in real time.BeaconConfigDemo then uses the position tracking to let user
draw polylines, rectangles, and circles in its window.

36

3.5.1 Launchingcricketd

To runBeaconConfigDemo , cricketd must be running on the listener’s host device (whose
IP address isCRICKETDIPADDR). To compile and runcricketd , see Section 2.2.1.

3.5.2 LaunchingBeaconConfigDemo

At the shell prompt, type the following commands:

cd NMSDemo/2004/BeaconConfigDemo
./launchall.sh

Two programs will be launched. The first is called theBeacon Finder , which displays
the distance measurement statistics for each beacon. The second application is calledBeacon
Configuration , which executes the two phases of configuring the adhoc beacon coordinate
system and position tracking.

Use theBeacon Finder to verify that the listener is within range of all beacons. Do this by
holding the listener underneath each beacon and verify that 1) it has a row entry forNUMBEACONS
different beacons and 2) none of the entries have excessively long last-update times (> 5000ms).

Otherwise, some beacons are out of range of the listener and cause the beacon coordiante
configuration phase to fail. Please adjust the beacon placement until all the beacons are within
range.

Below the numerical statistics are two sub-windows. The first sub-window is a graphical rep-
resentation of the standard deviation of the measured distances of each beacon within a history
window defined byFILTER WINDOWMS. The second sub-window is a time “sweep” stick plot
of the distance measurements (stick height) in the history window. The color of each stick is
encoded to correspond to the beacon from which the distance sample is measured.

3.5.3 RunningBeaconConfigDemo

Phase 1: Configuring the Beacon Coordinate System

This phase discovers the coordinates of each active beacon being used in the demo. The user needs
to hold the listener still withinSEPDIST CM(default is 5 meters, see Section 3.4) directly below
3 differentreference beacons, perpendicular to the plane on which the beacons are deployed. Only
3 reference beacons need to be measured regardless to the number of active beacons being used.
The action of steadily holding a listener underneath a reference beacon lets the system measure the
distances to all other beacons with respect to the reference beacon.

In general, it does not matter which three among the set of installed beacons are selected for ref-
erence. However, coordinate accuracy should improve if the position of the three selected beacons
circumscribe the tracking area.

The coordinate system axes are defined by the order of listener placement underneath each
of the three reference beacons. The first reference beacon that is being “calibrated” by the lis-
tener defines the origin of the coordinate system in the lower left corner. The distance mea-
surements can be noisy and ther user must hold the listener still (or tilting the listener slightly)

37

until after the standard deviations of the distance measurements for all of the beacons fall below
STDDEVTOLERANCECM(default 10 cm). When this happens, theBeacon Configuration
window will then show a dot (and sound a beep), representing the origin defined by this beacon.
Note that a dot willnot show the distance measurements if any one of the beacons are faulty (i.e.
either the distances have high variations or the beacon is out of range or if there is not enough
samples to make a distance estimate).

Repeat the same process for the second reference beacon. When done, theBeacon Configuration
window will display a second dot (and sound two beeps), representing the position of the second
reference in the coordinate system. Thus, the line extended between the first and second beacon
becomes the horizontal axis of beacon coordinate system.

Repeat the process again for the third reference beacon. When done, the coordinate system
configuration is complete and theBeacon Configuration window will display all the dots
representing the positions of all the beacons that have been configured. The third reference beacon
doesnot define the y-axis. Rather, it defines the direction of the positive y-axis. This should
become intuitive after the user gains experience with performing the steps described here.

We summarize the steps for configuring the beacon coordinate system below:

1. Lay out 3 or more beacons on a flat surface (ceiling or floor, etc.). If 4 beacons are being
used, make sure they don’t form a square or rectangle.

2. Select 3 beacons as references.

3. Steadily hold the listener directly above (below) a reference beacon for a few seconds until
all the error bars in theBeacon Finder window falls under the indicated threshold. When
a new dot appears in theBeacon Configuration window, move to next step.

4. Repeat step 3 two more times to configure the other two reference beacons. The order in
which you calibrate the reference beacons defines the directions of the coordinate system
axes.

5. Once all the refereces have been calibrated, theBeacon Configuration program en-
ters tracking mode, which shows the listener’s position with respect to the beacons.

Phase 2: Tracking/Drawing Mode

After the beacon coordinates have been configured, theBeacon Configuration program
will automatically enter the tracking mode, which displays the listener’s position (represented by
a red square) in real time. The user may now use the listener device as a virtual mouse in free
space to draw various objects such as polylines, circles and rectangles. The drawing interface is
based on a “pen up” and “pen down” model, much behaves much like an old-fashioned plotter. For
example, click on the check box forLine once will anchor the firstendpoint in the line. Click on
the check box again (after moving the listener to a different position) will anchor anintermediate
point on the polyline. The secondendpoint of the polyline is anchored when the user clicks on
“PenUp”.

38

To erase a drawn object, move the mouse to high-light the object to be erased and click on the
right mouse button. Clicking on the “EraseAll” button would wipe all the drawn objects from the
screen.

This drawing program can be used to capture the general shape and position of various objects
(e.g. furniture) in the environment by outlining the objects with the listener. If the listener can
be set steadily for a length of time during the outlining process, one can produce an amazingly
accurate capture of the environment!

Due to the sliding window distance filtering algorithm, there is a lag in tracking the listener’s
position. Depending on the beacon range, the level of contention, the noise in the distance readings,
and various other factors, this lag may increase up to the size of the sliding window, which has
default value of 4 seconds.

The “Aggressive” option bypasses the sliding window and enables CricketDaemon to com-
pute position estimates based on the very last distance sample measured from each beacon. The
tracking latency is reduced at the cost of increased errors from the occasional incorrect distance
measurement

When enabled, the “Streamer” option draws the trail of the Cricket listener during tracking
mode.

Finally, there is an option to display the distanceannunus, which graphically represents the
distance measured by the listener with respect to each beacon. The thickness of the annunus
represents one half standard deviation of the measured distance. Thus, the intersection of the
annuni graphically depicts the approximate position of the listener. The annunus display offer
some intuition about how the position estimation works in real time.

Running the BeaconConfigDemo Remote User Interface

There is a program that allows the user toremotelycontrol the user interface of theBeacon
Configuration window. This remote control is especially useful when the listener’s host de-
vice is a handheld and its distance readings are being forwarded to a desktop or laptop computer
that is running theBeaconConfigDemo (see Section 2.2.1 for more explanation about this usage
model).

The remote control application should be launched on the device that will be running the re-
mote. To launch the remote, run

cd NMSDemo/2004/BeaconConfigDemo
./launchremote.sh \texttt{IPADDR}

whereIPADDR is the IP address of the computer running theBeacon Configuration
program.

Simulation Mode

One can run the entireBeaconConfigDemo in simulation mode. In this mode, everything works
the same way as described above except that the user controls the listener’s position in a virtual
environment. To launchBeaconConfigDemo in simulation mode, run

39

cd NMSDemo/2004/BeaconConfigDemo
set the MODE line in launchall.sh to ‘‘simulation’’
./launchall.sh

In addition to the program windows described in earlier sections, there is now a new window
that displays the virtual environment. The environment contains 5 beacons and a listener (repre-
sented by a short black segment). When a beacon transmits a signal, a red circle centered at the
transmitting beacon will appear.

The user can use the following set of keys to navigate the listener in the virtual environment.

i north

k east

msouth

j west

u up (altitude)

d down (altitude)

For example, to calibrate the beacon coordinates, the user should

1. move the listner first to Beacon A and wait until a dot appears in theBeacon Configuration
window

2. move the listner to Beacon C, wait until another dot appears,

3. move the listener to Beacon D, wait until the third dot appears

Then the user can move the listener in the virtual environment and watch how its position
is being tracked in theBeacon Configuration window. Thebeacon.conf file sets the
location of the beacons in the virtual environment window.

3.5.4 Troubleshooting

The following commands are useful for low-level debugging.

1. telnet localhost 5001 and type “register”, ENTER (taps data from CricketDaemon—
you should see readable numbers and characters)

2. telnet localhost 2947 and type ’r’ and ENTER (taps data fromcricketd —you
should see readable numbers and characters)

3. hyperterminal to COM1 (115200 baud 8N1) (taps data directly from listener)

40

Some common causes of errors are:

1. Low battery

2. Loose cable

3. Network connectivity or incorrectCRICKETDIPADDRsetting inlaunchall.sh

4. Running an incompatible version of cygwin (¡ 1.5.10). (Currently, there are some issues
with cygwin. To detect this error, try telnetting from a Linux machine tocricketd
running in the cygwin/Windows. If the Linux terminal produces garbage output, then the
BeaconConfigDemo will crash, even if it runs on the same machine runningcricketd .
We are working to resolve this issue.)

5. Some lighting fixtures (especially flourescent tubes that are about to die) may produce noise
in the ultrasonic range that interferes with Cricket and cause distance measurements to fluc-
tuate rapidly. Turn off these fixtures to see if the distance measurements becomes more
stable.

6. Although Cricket does not require line-of-sight for distance ranging, objects in the environ-
ment may deflect signals and cause a systematic error in distance ranging.

41

42

Chapter 4

Developing Cricket Applications in Java

The software package includes a library to help developers create Cricket applications in Java.
This chapter describes our software architecture and our Java Cricket client library API called
Cricketlib . At the end of the chapter, we show how to create a simple Cricket application in
Java usingCricketlib . We recommend developers to use this sample application as a template
to create their own Cricket applications in Java.

4.1 Requirements

Java must be installed on your system. Please download the latest Java software development kit
(SDK) (version>= 1.4) from

http://www.javasoft.com

Our code containsMakefile and shell scripts to automate the compilation and program load-
ing steps. They run readily in Linux. But to run them on a Windows system,cygwin needs to be
installed. Please download and install the latest version ofcygwin from

http://www.cygwin.com

4.2 Architecture

Figure 4.1 illustrates the Cricket software architecture. At the lowest layer,cricketd allows a
Cricket host device to access the Serial Port API to configure low-level Cricket parameters and ob-
tain raw measurements from the Cricket hardware device (see Section 2.2). Our software package
includes aCricketDaemon server application that connects tocricketd to filter and process
raw Cricket measurements to infer the listener’s spatial location and compute its position coordi-
nates. Java applications may access the processed location information via the Java Cricket client
library (Clientlib), which interfaces between the application and theCricketDaemon . At run-
time, oneCricketDaemon processes location information for exactly one Cricket device. A

43

Cricket
ListenerListener Interface (cricketd)

Java Applications (Clientlib)

Host Software

Processor (CricketDaemon)

Cricket
Beacon

Serial
Port

TCP (port 5001)

TCP (port 2947)

Figure 4.1: Software Architecture

CricketDaemon may serve location information of a Cricket device to numerous applications
at the same time.

4.3 Compiling Clientlib

TheClientlib is part ofCricketDaemon . A precompiled binary (cricketdaemon.jar)
is located in

NMSDemo/2004/BeaconConfigDemo

You may modify theCricketDaemon source code for your own experimentation. To com-
pile CricketDaemon , do:

cd src/cricketdaemon
make clean
make

You should change theROOTparameter to point to the location of the Cricket software package.
Also, change theSEPparameter as instructed in theMakefile . The compiledcricketdaemon.jar
binary will be located in thebin directory.

By default the scripts in our software package uses the binaries and configuration files (beacons.conf)
contained in theBeaconConfigDemo directory. Be sure to copy thecricketdaemon.jar
binary from thebin directory to theBeaconConfigDemo directory.

44

ServerBroker
Object

Object 1 Object 2 Object N...

Callback

Commands

CricketDaemon

TCP/IP
Java App

Figure 4.2: Clientlib Architecture

4.4 Clientlib API

The Java Cricket Client library (Clientlib) uses callbacks to feed location information to the ap-
plication. As shown in Figure 4.2, a Java application instantiates oneServerBroker object.
The ServerBroker object is an independent thread that interfaces between a set of callback
handlers in the Cricket application and theCricketDaemon . At least one object in the Java ap-
plication implements a callback handler and registers with theServerBroker . In the callback
registration, the callback handler object specifies acallback maskthat selects the type(s) of loca-
tion updates that should trigger the callback handler being registered. TheServerBroker dis-
patches the callback handlers whenever it receives a location update from theCricketDaemon
that matches the callback mask.

4.4.1 Thecricketdaemon.clientlib.ServerBroker Class

TheServerBroker class implements the following public methods:

public ServerBroker()
public ServerBroker(String addr, int portNum)

These are constructors forServerBroker . The default constructor attempts to connect to
theCricketDaemon running on thelocalhost via port 5001. Otherwise, the IP address of
the host runningCricketDaemon and the port it binds to may be specified through theaddr
andportNum parameters via the alternate constructor.

45

public boolean clearBeaconTable()
public boolean clearBeaconTableEntry(String space, int id)
public boolean setBeaconTableEntry(String space, int id,

double x, double y, double z)

CricketDaemon implements abeacon tablethat maps a uniquely-identified beacon to an
arbitrary coordinate value. By default, the beacon table is empty andCricketDaemon uses
coordinate values advertised by the beacon if it cannot find a matching entry in the beacon table.
But if a beacon does not advertise its coordinates and it has no entry in the beacon table, the
distance measurements from it will not be used to compute the position coordinates of the listener.

The*BeaconTable* methods manipulate the beacon table. A beacon is uniquely identified
by its space andid values.1 As the name of the methods suggests, theclearBeaconTable
method clears the entire beacon table,clearBeaconTableEntry method clears an entry for
a specific beacon andsetBeaconTableEntry maps a beacon withspace andid to coordi-
nates(x, y, z) .

The returnboolean value indicates whether the command succeeded (true) or failed (false).

public boolean setPositionAggressive(boolean v)

By default,CricketDaemon uses the mode distance value collected from each beacon within
its history window (seeFILTER WINDOWMSin Section 3.4) to compute the position coordinates
of the listener. When this method is invoked withv=true , CricketDaemon will use only the
last measurement taken from each beacon heard in the history window to compute the position of
the listener. This will reduce the latency of position tracking at the expense of using unfiltered
distance estimates to compute the location of the listener.

The returnboolean value indicates whether the command succeeded (true) or failed (false).

public synchronized void register(Callback c, BitSet fieldMask)
public synchronized void deRegister(Callback c, BitSet fieldMask)

These methods registers/deregisters a callback object with theServerBroker , wherec is a
callback object that implements theCallback interface andfieldMask specifies the type(s)
of location update that should trigger a callback. Table 4.4.1 lists the available callback type bits.

By default, all distance/coordinate values are in centimeter units, unless the unit is changed
via the Serial Port API described in Section 2.2.

ThePOSERRtype bit requires further explanation.ServerBroker invokes the callback han-
dler method (see next section) with thePOSERRbit set when the position solver inCricketDaemon
cannot solve the listener’s position. In the current implementation, the position solver requires at
least 3 beacons to be within the listener’s range and at least 3 of those beacons need to have
sufficiently low standard deviations among the distance samples collected in the current history
window (seeSTDDEVTOLERANCECMin Section 3.4). If either of these conditions are not met,
the callback handler will receive a callback withPOSERRvalue set in the callback mask.

1In the near future, the API might change so that a beacon is uniquely identified by the unique hardware identifier
value .

46

TYPE DEFINITION

ALL selects all types
SPACE current spatial location
DEVICECOORD current position coordinates
BEACONSHEARDLISTset of beacons heard in history window
BEACONSTAT distance measurement to a beacon
POSERR exceptions in position computation

Table 4.1: Callback types.

public void run()
public void start()

All applications should call either therun() or thestart() method to start the callback
loop in ServerBroker . Therun() method blocks whilestart() forks a new thread to run
the callback loop.

4.4.2 Thecricketdaemon.clientlib.Callback Class

As mentioned above, all applications should have at least one callback handler object that imple-
ments theCallback interface in order to receive location updates from theCricketDaemeon .

void callback(CricketData data, BitSet mask);

This method gets invoked whenever CricketDaemon updates a location value type that matches
a type bit that has been set in thefieldMask parameter when the callback was registered. The
updated value is packaged in theCricketData object. The callback maskmask specifies which
type of value is available inCricketData .

Beware that the samedata object gets passed to every callback handler. As a result, any mod-
ifications made todata becomes visible to another callback handler. Ideally, theCricketData
object should be immutable. But it is not immutable for efficiency reasons. Thus,be warned that
modifications todata may cause unexpected errors in your applications.

4.4.3 Thecricketdaemon.clientlib.data.CricketData Class

The callback handler accepts aCricketData object, which contains updates to location values
computed by theCricketDaemon . CricketData implements the following observer meth-
ods for accessing location values.

Before invoking an observer method, the callback handler should verify that the corresponding
type bit is set in the callback mask. If the type bit is not set in the callback mask, the corresponding
observer methods inCricketData will return null or an invalid value.

47

public long getHWTimeStamp()
public long getTimeStamp()

These methods return a millisecond time stamp value of the latest distance measurement that
causedServerBroker to generate the current location update.getHWTimeStamp returns the
hardware time stamp from the Cricket device whilegetTimeStamp returns the time stamp from
the host device runningCricketDaemon . ThegetHWTimeStamp is more accurate because
the high-level host device time stamp suffers from jitters that last up to several hundred millisec-
onds. The less accurategetTimeStamp method is provided to allow applications to set timers
that use the host device’s local clock.

public String getCurrentSpace()
public BeaconRecord getCurrentSpaceObject()

A callback handler may invoke these methods when theSPACEtype bit is set in the call-
back mask. ThegetCurrentSpace method returns the string describing the current space in
which the listener is located (i.e., the string advertised by the beacon.that is currently closest to
the listener). ThegetCurrentSpaceObject method returns aBeaconRecord object that
contains various attribute values that describe the beacon that is currently closest to the listener.

public ArrayList getBeaconsHeard()

A callback handler may invoke this method when either or both ofBEACONSHEARDLISTor
BEACONSTATtype bits are set in the callback mask. It returns anArrayList of BeaconRecord s
containing various attribute values that describe the set of beacons that the listener has detected in
CricketDaemon ’s current history window.

public Position getDevicePosition()

A callback handler may invoke this method when either or both of theDEVICECOORDor
POSERRtype bits are set in the callback mask. It returns aPosition object that describes the
current location coordinates of the Cricket listener.

4.4.4 Thecricketdaemon.clientlib.data.BeaconRecord Class

TheBeaconRecord class contains the following attribute values associated with a beacon.

public String uniqueName;
public String space;
public Long lastUpdate;
public DistanceStat distStat;
public Position pos;

48

uniqueName is a string that uniquely identifies the beacon. Currently, this is a concate-
nation of thespace and an integer. In the near future, this will be the unique hardware
identifier value described in Section 2.2.

space is the space string advertised by the beacon.

lastUpdate is a millisecond hardware time stamp of the last distance measurement heard
from this beacon.

distStat is aDistanceStat object representing the statistics of the distance samples
from this beacon inCricketDaemon ’s history window.

pos is aPosition object representing the coordinate location of the beacon. It is null if
the beacon does not advertise its coordinates and if there is no entry for this beacon in the
beacon table (see 4.4.1).

4.4.5 Thecricketdaemon.clientlib.data.DistanceStat Class

DistanceStat represents the statistics of the distance samples from this beacon inCricketDaemon ’s
history window. It contains the following fields:

public double dist;
public double median;
public double mean;
public double mode;
public double max;
public double min;
public double stddev;
public double variance;
public ArrayList samples;

dist is the filtered distance estimate computed byCricketDaemon . By default, this is
the mode value of the distance samples collected in the history window.

median is the median value of the distance samples collected in the history window.

mean is the mean value of the distance samples collected in the history window.

mode is the mode value of the distance samples collected in the history window.

max is the maximum value of the distance samples collected in the history window.

min is the minimum value of the distance samples collected in the history window.

stddev is the standard deviation of the distance samples collected in the history window.

variance is the variance of the distance samples collected in the history window.

49

samples is anArrayList of Samples containing all the measured distance samples
from a beacon currently inCricketDaemon ’s history window.

4.4.6 Thecricketdaemon.clientlib.data.Position Class

Position represents a coordinate location. It contains the following fields:

public double x, y, z;

wherex, y, z are the (x, y, z) coordinate values (default unit=centimeters, unless changed
by the Serial Port API described in Section 2.2). More specifically, it has the same unit as the
distance unit that the Cricket device is configured to use. In addition, thePosition class imple-
ments the following methods:

public boolean equals(Object o)

Returnstrue if objecto is aPosition with the same (x, y, z) coordinate.

public double dist(Position o)
public double dist(double ox, double oy, double oz)

These methods compute and return the distance between positiono or the specified coordinates
(ox , oy , oz) and the position represented by this object.

public boolean invalid()

Returns true if this position is invalid. (Typically an invalid listener position value is also
indicated by thePOSERRbit in the callbackmask.)

public static Position weightSum(double w1, Position p1,
double w2, Position p2)

Returns aPosition that is a weighted sum of two positions:w1 ∗ p1 + w2 ∗ p2.

4.4.7 Thecricketdaemon.clientlib.data.Sample Class

Sample represents a distance measurement sample with respect to a beacon.

public long time;
public double dist;

time is the hardware time stamp of the measurement generated by the Cricket device.

dist is the measured distance (default unit=centimeters, unless changed by the Serial Port
API described in Section 2.2).

50

4.5 Using Clientlib: An Example

Our software package includes a template application calledClientlibExample to help devel-
opers create Cricket applications in Java. In this section, we will explain how to use this template
application to create a Java application that prints the current space and coordinate location of the
listener. You can find theClientlibExample source code under the path:

Cricket/src/app/cricketlibexample

4.5.1 Source Code

The ClientlibExample.java file contains all the source code for the sample application.
For convenience, we list the source code here. The code includes instructive comments that ex-
plains how to use this template to create your own Cricket application.

package clientlibexample;

import gnu.getopt.*; // OPTIONAL: package that process command line args
import java.util.*;

// All Cricket apps should include the following two paths
import cricketdaemon.clientlib.*;
import cricketdaemon.clientlib.data.*;

/**
* An example of how to use the CricketDaemon Java clientlib.
*
* It simply prints a line containing space and position
* information whenever they are updated by the CricketDaemon
* processing stack.
*
* @author Allen Miu
*/

// A Cricket callback handler class implements
// the Callback interface
class ClientlibExample implements Callback
{

/**
* Handle to cricket
*/

Broker cricket;

51

/**
* Data structures
*/

String currentSpace = null;
Position currentPosition = null;

public ClientlibExample()
{

/**
* Established TCP connection to the CricketDaemon running on
* localhost. The ServerBroker will trigger a callback
* whenever the CricketDaemon decides to push information out to
* the clients. An application may the alternate
* ServerBroker constructor:
*
* public ServerBroker(String addr, int portNum)
*
* to connect to a CricketDaemon running on <code>addr</code>
* (may be numeric IP or hostname), using portNum (normally,
* should use 5001).
*/
cricket = new ServerBroker();

/**
* Create a bitmask specifying the type of Cricket information
* that should trigger a callback on this object. The following
* table shows all the valid bit types:
* ALL selects all types
* SPACE current spatial location
* DEVICECOORD current position coordinates
* BEACONSHEARDLIST set of beacons heard in history window
* BEACONSTAT distance measurement to a beacon
* POSERR exceptions in position computation
*/
BitSet mask = new BitSet();
mask.set(Broker.SPACE);
mask.set(Broker.DEVICECOORD);
mask.set(Broker.POSERR);

/**
* Register this object’s callback handler with ServerBroker.
* An application can create and register multiple handlers.
* Here, we register only one handler.
*/
cricket.register(this, mask);

52

cricket.start(); // fork thread, runs forever
System.out.println("ClientlibExample created");

}

/**
* The ServerBroker object invokes the callback handler
* with location updates contained in <code>data</code> and
* <code>mask</code> indicates which location type()s is(are)
* readable in \texttt{CricketData}. All Cricket callback handler
* classes must implement this method.
*/

synchronized public void callback(CricketData data, BitSet mask)
{

boolean update = false;

// check for space updates
if(mask.get(Broker.SPACE)) {

BeaconRecord cs = data.getCurrentSpaceObject();
if(cs != null && cs.uniqueName != null) {

if(currentSpace == null || !(currentSpace.equals(cs.uniqueName))) {
// if space string is different from before, update it
update = true;
currentSpace = cs.uniqueName;

}
}

}

// check for coordinate updates
if(mask.get(Broker.DEVICECOORD) || mask.get(Broker.POSERR)) {

Position p = data.getDevicePosition();
if(p != null) {

if(currentPosition == null || !(currentPosition.equals(p))) {
if(p.invalid()) {

// CricketDaemon cannot produce a position estimate
// because it does not hear enough different beacons
System.err.println("ignoring invalid position");

}
else {

// if the coordinates are different from before,
// update them
update = true;
currentPosition = p;

}
}

}

53

}

if(update)
printState();

}

/**
* Prints the current space and coorinates of the Cricket listener
*/

private void printState()
{

System.out.println("space="+currentSpace+" pos="+currentPosition);
}

public static void main(String[] args)
{

/* OPTIONAL: example of gnu-style getopt to parse cmd line args */
Getopt g = new Getopt("ClientlibExample", args, "c:");
int c;
try {

while((c = g.getopt()) != -1) {
switch(c) {
case ’c’:

System.out.println("wassup! "+g.getOptarg());
break;

}
}

}
catch (Exception e) {

//usage();
}

// The ClientlibExample constructor launches the ServerBroker
// thread so all we have to do is to invoke it.
ClientlibExample client = new ClientlibExample();

}
}

4.5.2 Compiling ClientlibExample

TheClientlibExample application includes aMakefile to compile the source code. Before
compiling, modify theROOTandSEPvariables as instructed in theMakefile . The binary will
be located in

src/app/clientlibexample

54

The most important detail in compiling a Java Cricket application is to include thecricketdaemon.jar
in your classpath. You can find this file in

NMSDemo/2004/BeaconConfigDemo/cricketdaemon.jar

In addition, you may find thegnu.getopt.jar file in the lib directory if the package is
used to process command line arguments.

For example, you may compileClientlibExample by

cd src/app/clientlibexample
export CD="../../../NMSDemo/2004/BeaconConfigDemo/cricketdaemon.jar"
export GO="../../../lib/gnu.getopt.jar"
javac -classpath "$CD:$GO" *.java

Then, create ajar file by

cd src/app
jar cvf clientlibexample.jar clientlibexample/*.class
mv clientlibexample.jar clientlibexample

4.5.3 Running ClientlibExample

To run the compiled ClientlibExample application, we must include the following files in the class-
path:

cricketlibexample.jar
cricketdaemon.jar
gnu.getopt.jar

TheClientlibExample application includes a script calledlaunch.sh that shows how
to include these files in the classpath and launch the application. Please modify theROOTvariable
as instructed in the script file.

Before runningClientlibExample , you need to first runcricketd andCricketDaemon .
Furthermore, at least 3 beacons must be placed according to the instructions in Section 3.3 and their
coordinates must be configured.

Please refer to Section 2.2.1 for instructions to runcricketd . To launchCricketDaemon
and configure beacon coordinates, please follow the instructions in Chapter 3.

Note: As explained in Section 4.2, applications that use processed location information of
the same listener device should connect to the sameCricketDaemon server. In our exam-
ple, bothBeaconConfigDemo and ClientlibExample connects to the same instance of
CricketDaemon server.

Alternatively, you may hard code the beacon coordinates in a file and use the
launch-cricketdaemon.sh script to runCricketDaemon . Please modify the user-defined

55

parameters in the script before running the script. Section 3.4 explains the function of the param-
eters in the script. The hard coded coordinate values are specified by the file indicated in the
COORDINATEFILE parameter. Please seebin/beacons.conf for a sample coordinate file.

To summarize, you may launch ClientlibExample (after runningcricketd on the listener’s
host device and modifying the paramters in thelaunch*.sh scripts) by doing the following:

cd NMSDemo/2004/BeaconConfigDemo
./launchall.sh &
cd src/app/clientexampleapp
./launch.sh

For the “hard-coded coordinates” approach, modifybin/beacons.conf and do:

cd src/app/clientexampleapp
./launch-cricketdaemon.sh &
./launch.sh

The following is a snippet of the output from executing theClientlibExample application.
The first three lines shows that theServerBroker correctly established a connection with the
CricketDaemon .

ServerBroker::connect() connecting to CricketDaemon at 127.0.0.1
CricketDaemon accepting new connection from /127.0.0.1:32864
ServerBroker::connect() connected
ClientlibExample created
space=C-32 pos=null
space=C-32 pos=(110.68068181818181 51.996363636363654 74.20246458136243)
space=C-32 pos=(105.02765151515152 49.79030303030304 70.9467680654887)
space=A-32 pos=(105.02765151515152 49.79030303030304 70.9467680654887)
space=A-32 pos=(99.99583333333334 47.826666666666675 67.46006180099782)
space=A-32 pos=(84.18386363636364 39.73272727272729 70.51112894364283)
space=A-32 pos=(71.51304924242424 49.99484848484849 77.07008845356134)

Applications can expect some delay in receiving location updates due to the sliding window
filter used inCricketDaemon . We can reduce this delay by specifying a small value for the
FILTER WINDOWMSvariable (see Section 3.4) in thelaunch-cricketdaemon.sh script.
In addition, the application can use thesetPositionAggressive method described in Sec-
tion 4.4.1 to reduce the position estimation delay.

56

Bibliography

[1] BALAKRISHNAN , H., ET AL . Lessons from Developing and Deploying the Cricket Indoor Lo-
cation System. Available fromhttp://cricket.csail.mit.edu/ , November 2003.

[2] http://www.cygwin.org/ .

[3] Familiar linux distribution.http://familiar.handhelds.org .

[4] HARTER, A., HOPPER, A., STEGGLES, P., WARD, A., AND WEBSTER, P. The Anatomy of
a Context-Aware Application. InProc. 5th ACM MOBICOM Conf.(Seattle, WA, Aug. 1999).

[5] PRIYANTHA , N., CHAKRABORTY, A., AND BALAKRISHNAN , H. The Cricket Location-
Support System. InProc. 6th ACM MOBICOM Conf.(Boston, MA, Aug. 2000).

[6] http://webs.cs.berkeley.edu/tos/ .

[7] WANT, R., HOPPER, A., FALCAO , V., AND GIBBONS, J. The Active Badge Location System.
ACM Transactions on Information Systems 10, 1 (January 1992), 91–102.

57

