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Abstract

Inverse multiplexing, or network striping, allows the construction of a high-bandwidth
virtual channel from a collection of multiple low-bandwidth network channels. Strip-
ing systems usually employ a packet scheduling policy that allows applications to be
oblivious of the way in which packets are routed to specific network channels. Though
this is appropriate for many applications, many other applications can benefit from an
approach that explicitly involves the application in the determination of the striping
policy.

Horde is middleware that facilitates flexible striping over Wireless Wide Area
Network (WWAN) channels. Horde is unusual in that it separates the striping policy
from the striping mechanism. It allows applications to describe network Quality-of-
Service (QoS) objectives that the striping mechanism attempts to satisfy. Horde can
be used by a set of data streams, each with its own QoS policy, to stripe data over a set
of WWAN channels. The WWAN QoS variations observed across different channels
and in time, provide opportunities to modulate stream QoS through scheduling.

The key technical challenge in Horde is giving applications control over certain
aspects of the data striping operation while at the same time shielding the application
from low-level details. Horde exports a set of flexible abstractions replacing the
application’s network stack. Horde allows applications to express their policy goals
as succinct network-QoS objectives. Each objective says something, relatively simple,
about the sort of network QoS an application would like for some data stream(s).

We present the Horde architecture, describe an early implementation, and examine
how different policies can be used to modulate the quality-of-service observed across
different independent data streams. Through experiments conducted on real and
simulated network channels, we confirm our belief that the kind of QoS modulation
Horde aims to achieve is realistic for actual applications.
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Chapter 1

Introduction

This thesis describes Horde, middleware that facilitates flexible network striping over

Wide Area Wireless Network (WWAN) channels. Inverse multiplexing, or network

striping, allows the construction of a high-bandwidth virtual channel from a col-

lection of multiple low-bandwidth network channels. Unlike earlier network striping

middleware, bandwidth-aggregation is not the only service provided by Horde. Horde

separates the striping policy from the mechanism. It allows applications to describe

Quality-of-Service (QoS) based policy objectives that the striping mechanism at-

tempts to satisfy. Horde can be used by a set of application data streams, each with

its own QoS policy, to flexibly stripe data over a heterogeneous set of dynamically

varying network channels (e.g., a set of WWAN channels). With such channels, dif-

ferent striping policies can provide very different network QoS to different application

data streams. The key technical challenge in Horde is giving applications control over

certain aspects of the data striping operation (e.g., an application may want urgent

data to be sent over low latency channels or critical data over high reliability chan-

nels) while at the same time shielding the application from low-level details. This

thesis discusses the design of Horde and evaluates the performance of a preliminary

implementation on both real and simulated channels.

Our work on Horde was motivated by our inability to find an existing solution

to support the development of a system on which we were working. As part of

a telemedicine project, we wanted to transmit real-time uni-directional video, bi-

1



directional audio and physiological data streams (EKG, blood pressure, etc) from a

moving ambulance using public carrier networks.

Our research leverages the widespread cellular wireless data networks. In most

urban areas, there are a large number of public carrier wireless channels providing

mobile connectivity to the Internet, using standard cellular technologies such as GSM

and CDMA2000. Notably, these providers have overlapping coverage areas, allowing us

to connect to more than one provider at the same time. Other researchers have also

investigated the use of higher bandwidth wireless technologies, such as 802.11 [3, 16],

for public networks with varying degrees of success.

Despite the 3G hype, individual cellular Wireless Wide Area Network (WWAN)

channels do not provide enough bandwidth for our telemedicine application. The

upstream bandwidth1 offered by these channels is rather limited and usually less

than the downstream bandwidth. Presently, the best WWAN channels available to

us in the greater-Boston area provide no more than a hundred and forty kilobits per

second of peak upstream bandwidth. In our experience, achievable average bandwidth

is normally lower and varies significantly over time.

Even in the near future we do not expect public carrier data networks to improve

enough to meet the upstream bandwidth requirement of our telemedicine application.

Our application’s bandwidth demand is fairly extreme for WWAN’s: our goal is to

be able to deliver video whose quality is as close to television broadcast quality as

possible. With effective compression, this video quality can be achieved with a data

rate of around one megabit-per-second2. At this time, no WWAN provider has an

economic incentive to provision their network to accommodate this demand.

Furthermore, as carriers optimize their communications infrastructure, WWAN

channels increasingly favour downstream bandwidth at the expense of upstream band-

width. Since network carrier decisions are driven by their economic needs, asymmetric

1Here the term upstream bandwidth refers to how much data we can send and the term down-
stream bandwidth refers to how much data we can receive. Our telemedicine system is primarily
concerned with sending patient data to the hospital.

2Since the video will be rendered on a relatively large screen at the hospital, we cannot assume
that the destination is a small-screen. This assumption is used to reduce the bandwidth demand of
video sent over cell-phones.
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demand leads to asymmetric provisioning3. In the US, typical individual demand for

upstream bandwidth is far lower than the levels we require for our video streaming

application. Even with the introduction of picture and video messaging, it is unlikely

that average individual upstream demand will soon grow to be on the same order of

magnitude as the upstream demand of our application.

WWAN channels also provide little in the way of quality-of-service guarantees for

data packets. WWAN channels are handicapped by low bandwidth, high and variable

round trip times, occasional outages, considerable burstiness, and much instability

when moving (see appendix A and [36, 14]). In our experiments we have observed

that WWAN’s with overlapping coverage have widely varying channel characteristics.

There is variation across channels and in time. Motion and location cause many

additional complications, the details depending on the network technology and service

provider. For example, average packet round-trip-times on different channels can

easily differ by 500ms4. Even on a single channel, at different times and locations,

individual packet times can vary by this much.

These issues led us to consider using inverse multiplexing, or network striping,

to aggregate several of these physical channels to provide virtual channels. Network

striping takes data from the larger source virtual channel and sends it in some order

over the smaller physical channels, possibly reassembling the data in the correct order

at the other end before passing it to the application.

The available diversity in present-day WWAN environments makes network strip-

ing an especially appealing approach. By taking advantage of service provider di-

versity, overlapping coverage, and network technology diversity (e.g. GPRS and

CDMA), we attempt to provide each application with the illusion that a reliable sta-

ble high-bandwidth channel is available. The existence of technological and provider

diversity—a benevolent side-effect of the competitive nature of the cellular provider

market—is likely to bolster the virtual channel, making it more reliable. The underly-

3The Verizon CDMA2000 1xEV-DO networks in the Washington DC and New York City areas seem
to provide around three times as much downstream bandwidth as the older 1xRTT network in Boston,
but both networks provide the same amount of upstream bandwidth.

4Compare the GSM/GPRS and CDMA2000 1xRTT channels in appendix A
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ing channels are more independent than if the same technology or the same provider

were being used.

A great deal of work has been done on network striping [24, 19, 7, 39, 36, 33].

Most of this work is aimed at providing improved scheduling algorithms under the

assumption that the underlying links are relatively stable and homogeneous. If this

assumption holds, there is little reason to give applications control over how the

striping is done, and allowing applications to be oblivious to the fact that striping is

taking place is appropriate.

In our environment, however, the underlying links are neither stable nor homo-

geneous. Therefore, the manner in which the middleware decides to schedule the

transmission of application packets can have a large influence on observed packet la-

tencies, stream loss rates, and bandwidth. Furthermore, the application streams in

our telemedicine system are heterogeneous with respect to which aspects of the net-

work service they are sensitive: some applications care about average latency, some

not; some care about loss more than others; and some care more about the variance

of the latency than they do about the average latency.

In our WWAN environment the packet scheduler can modulate application ob-

served QoS on a data stream and different applications can care about very different

aspects of this QoS. This leads us to want to give applications some control over how

striping is done.

The Horde middleware allows a collection of application data streams to provide

abstract information about desired behavior to a striping subsystem. The subsystem

uses this information to stripe data from these streams across a set of dynamically

varying network channels. The key technical challenge in horde is giving applications

control over certain aspects of the data striping operation (e.g., an application may

want urgent data to be sent over low latency channels or critical data over high

reliability channels) while at the same time shielding the application from low-level

details. Horde does this by exporting a set of flexible abstractions to the application,

in effect replacing the application’s network stack.
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1.1 Motivating Application

While this thesis is not about the application that motivated our work on Horde,

understanding some aspects of the application is useful in understanding many of the

design decisions underlying Horde. The application is part of a project to improve

emergency health-care. We digress briefly to provide an overview.

For every 100,000 people in the United States, it is estimated that 794 have had a

stroke [4]. Every year, 400,000 stroke survivors are discharged from hospitals. Since

many of these people will be left with life-altering disabilities, the socio-economic

impact of strokes on American society is one of the most devastating in medicine.

In many situations, the timely application of an appropriate therapy is of critical

importance. Particularly, individuals suffering from acute ischemic stroke—a signifi-

cant proportion of stroke victims—are potential candidates for thrombolytics thera-

pies [4]. Effectiveness of treatment depends upon administering the pharmaceutical

within a short time after onset of the stroke.

A diagnosis of ischemic stroke involves a fourteen step examination procedure

called the National Institute of Health Stroke Scale (NIHSS) exam. NIHSS exams

are normally conducted by a stroke specialist after the patient arrives at a medical

center. All too often, patients arrive at the hospital too late: to be most effective,

therapy must begin within around three hours of symptom onset. What should be

preventable, becomes a life-long burden.

Ideally, one would like to perform the diagnosis and administer the treatment ei-

ther at the scene of the stroke, or in an ambulance on the way to the hospital. Unfor-

tunately, while EMTs—often the first medical personnel to treat stroke victims—can

administer the therapy, they do not have the training needed to accurately administer

a NIHSS exam. The exam is necessary before therapy can be started.

Experience with inter-medical-center and mobile remote medicine suggests that

real-time video distributed over a high speed Internet connections can be a vital aid

in diagnosing ischemic stroke (and other conditions) [42]. Notably, such a real-time

video link enables the stroke specialist to remotely diagnose a patient. EMTs could
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then begin therapy en-route to the hospital.

Our overall research project aims to provide advanced remote diagnostic capabil-

ities for patients in an ambulance moving about in an urban area.

1.2 Goals

The primary goal of the work described in this document is the construction of a

stable high-bandwidth virtual communication channel. We have chosen to use the

Internet because of its ubiquity. As a necessary part of building a mobile telemedicine

application, we need to establish a stable, high-quality video stream between the

ambulance and the hospital. The video stream need not be duplex, but it must

be possible for the ambulance occupants to interact with the doctor using real-time

audio. Audio and other medical sensor streams—EKG, blood pressure and the like—

are relatively easy to deliver, compared to the video, since they require at least an

order of magnitude less bandwidth than the quality of video we wish to deliver.

The virtual channel must be as insensitive to motion as possible. While it is

possible to require that the ambulance stop every time the video link needs to be

used, a system that does not inhibit motion is closer to our aim of speeding up the

treatment of patients. Unfortunately, even when striping, some degradation in link

quality due to motion is likely to occur. Doppler effects, resulting from the motion, can

be correlated across all channels. Similarly if provider base-stations are co-located,

loss and bandwidth on the different channels may exhibit correlation.

In the context of inverse multiplexing, our system must deal with a heterogeneous

set of physical channels. The different physical channels can vary in their bandwidths,

the distributions of their packet latencies and their loss characteristics. QoS on each

channel is also likely to vary significantly in time. The motion of the ambulance can

cause this dynamic variation to increase. Our system must therefore assume that the

underlying physical channels are neither similar nor necessarily stable.

In order for the telemedicine system we design to be useful, the system must be

economically viable to build, deploy and operate in an urban environment. Many of
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our decisions related to networking technologies and hardware are driven by this goal.

Particularly, we focus on developing a system built out of conventional off-the-shelf

components and the existing communications infrastructure so that the telemedicine

application becomes easy to deploy.

A mobile telemedicine system based on WWAN striping would be fairly easy to

deploy. No special communications infrastructure would need to be set up; all that

would be required is a computer on the ambulance with the appropriate network

interfaces, equipped with standard cellular data plans. Since our system is designed

to deal with a diverse set of network interfaces, as the cellular providers improve their

networks, the virtual channel’s bandwidth would scale.

Additionally, the use of a set of channels provides choice to the maintainers of the

telemedicine system: they can decide how much bandwidth they want, and provision

accordingly, without having to involve the carriers in this decision. If a particular

ambulance decides to use a roughly 200 kilobit-per-second connection for the video,

they can achieve this by acquiring two CDMA2000 interfaces from different providers;

if instead, they decide to implement a higher-quality link at one megabit-per-second,

they only need to acquire additional interfaces and plug them into the ambulance’s

computer. No negotiations with the carriers are needed for this bandwidth flexibility.

The Horde middleware is designed to ease the development of applications that

need to use WWAN striping. By separating striping policy from mechanism, Horde

allows programmers to focus on describing desired QoS policy. Horde’s approach aims

to decreases the programming costs associated with building complex mobile systems

that use network striping.

Our research intends to develop ideas that can be generalized beyond any par-

ticular problem. In fact, we focus on building a set of flexible tools that can be

used by engineers to build high-performance mobile applications. This thesis does

not focus on telemedicine, or even the problem of wireless video streaming; we tackle

the problem of developing a general-purpose high-bandwidth wireless communication

infrastructure, using widely available technology.
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1.3 WWAN Striping: Challenges

A great deal of work has been done on network striping in the past. The simplest

network striping approach is to use round-robin: send the first packet from the virtual

channel down the first physical channel, the second packet down the second physical

channel, and so on until we come back to the first channel. Much of the past work on

network striping aims to provide improved scheduling algorithms assuming that the

underlying links are relatively stable and similar and that applications are oblivious

to the fact that striping is taking place.

Most contemporary striping systems assume that they are striping their data over

a homogeneous set of network channels. For example, across n ISDN lines [7] or over

m CDPD modems [39]. These systems compensate only for the relatively low-level

heterogeneity that exists among channels, resulting from different levels of congestion

on each channel.

This assumption of homogeneity is unrealistic for the class of applications we are

addressing. In most areas the bandwidth/latency/loss characteristics of the available

public carrier wireless channels vary by more than an order of magnitude (such as

among a set of channels containing both 2.5G and 3G cellular data channels). We

also expect there to be a high degree of dynamic variation in each wireless chan-

nel’s quality—partly due to the motion of the ambulance and partly due to the fact

that, since the WWAN is a shared resource, we are competing with other users for

bandwidth. Moreover, since Horde will be deployed in moving vehicles, the set of

available channels will change unpredictably. The experimental results documented

in appendix A provide evidence of high variability in bandwidth and packet-latency

on real WWAN channels. Spatial variation in the QoS provided by different carriers

is well-known and largely depends on the carrier’s placement of cell-towers relative to

the terminal. One of the reasons for temporal variation is that bandwidth demand

in a WWAN cell varies over time, while the total available bandwidth in that cell

remains roughly constant. Motion also causes a great deal of temporal variation.

Horde exposes certain aspects of the striping operation to the application to allow

8



a modulation of the network QoS for data streams. Since there are multiple het-

erogeneous channels available to Horde, the order in which the middleware decides

to schedule the transmission of application packets is crucial. Horde attempts to

schedule packets at the sender so as to maximize the expected utility derived by the

applications from the resulting sequence of packet receptions. The utility is defined

by the application’s expressed policy. The scheduler takes into account such things

as expected latencies, observed loss-rates, and expected loss correlations.

In contrast, most striping systems normally aim for invisibility, hoping to hide

from applications the fact that data is being striped over multiple channels. In order

to achieve this goal, the design of these striping systems must be aware, in a way

similar to NAT’s, of the application layer protocols that run on top of them. For

instance, many such systems try to minimize packet reordering within TCP-flows.

While the goal of invisibility is sensible when applications cannot, or should not,

be modified, we believe that the resulting behaviour is not always appropriate. An

invisible striping system has to make two possible choices: either optimize for the

common case (e.g. reliable in-order delivery [27, 39, 7]); or optimize for each known

protocol separately ([36, 32]). Ultimately, neither approach is flexible.

While invisible striping can ignore application QoS sensitivities, an alternative

approach that does not do so is application-specific code to perform the striping.

Many multi-path video streaming applications [37, 12, 9] exemplify this approach.

In these systems, network-striping code is intertwined with the application logic. In

contrast, Horde allows one to build a multi-channel video streaming application that

cleanly separates the network striping and network channel management operations

from the application logic.

Allowing applications to actively influence the striping operation can be beneficial.

By allowing each application to express its desired goals, Horde can arrive at efficient

transmission schedules that can lead to high aggregate application utilities. Consider,

for example, our telemedicine system. An encoded video stream may contain both

keyframes (I-frames) and unidirectionally encoded frames (P-frames). In order for P-

frames to be decoded properly at the receiver, the I-frames they depend on must have
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been successfully transmitted across the network. Clearly, on one level, an application

derives more utility from an I-frame than it does from a P-frame. This suggests that

I-frames should be sent over more reliable channels. If two I-frames from different

video layers contain similar information, it may make sense to ensure that they are

sent over channels with uncorrelated losses. Additionally, during playback the audio

must be kept synchronized with the video. In this case, an application may value

receiving an audio packet at roughly the same time as the related video packets.

Horde is ambitious: our goal is to show that striping policy can be sufficiently

decoupled from mechanism, the latter being determined by the applications in a

fairly abstract manner, thereby easing the development of diverse bandwidth-limited5

mobile-aware applications. We have designed Horde to be expressive enough to pro-

vide the application with an appropriately abstract level of control over the striping

process. In this thesis, we present results from a preliminary implementation of the

middleware to show that this decoupling of policy and mechanism is possible.

The primary challenge in the design and implementation of the Horde architecture

was deciding how applications should express their goals and how these goals should

be translated into data transmission schedules. The Horde middleware allows a group

of application data streams to provide abstract information about desired behavior to

a striping subsystem. The subsystem uses this information to stripe data from these

streams across a set of dynamically varying network channels between the application

and a host recipient. Horde gives the application control over certain aspects of the

data striping operation (e.g., latency and loss) while at the same time shielding the

application from low-level details.

Horde is most useful when dealing with:

Bandwidth-Limited Applications Situations in which applications would like to

send more data than individual physical channels can support, justify both the

network striping operation and the additional processing cost associated with

Horde’s QoS modulation framework.

5By bandwidth-limited we imply that the bottleneck in the application is the network. Particularly,
we assume that end-point processing is not constrained.
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Sensitivity to Network QoS If no application data streams are sensitive to net-

work QoS, Horde’s QoS modulation framework becomes redundant.

Heterogeneous and Dynamically Varying Network Channels With such chan-

nels, the scheduler has an opportunity to significantly modulate observed QoS.

Additionally, Horde’s approach is most useful when the available network chan-

nels have characteristics that are predictable in the short term. As we report

in appendix A, public carrier WWAN channels are of this nature.

Heterogeneous Data Streams When different streams gain value from different

aspects of network performance, trade-offs can be made when allocating network

resources among those streams. An example is an application in which some

streams value low latency delivery and others value low loss rates.

Horde is not meant to be general networking middleware: as long as most ap-

plication data can be sent down a single, stable link, using Horde is overkill. More

generally, in situations where one is dealing with a fixed set of relatively homogeneous

and stable channels, other techniques [39, 7, 27] may be more appropriate.

1.4 Thesis Contributions

This thesis makes the following major contributions:

Inverse Multiplexing Middleware

This thesis describes the design and implementation of the Horde middleware, which

provides applications with an inverse multiplexing subsystem. Horde is designed to

be flexible and modular, allowing application designers to optimize for many different

types of networks (e.g. wired, wireless, CDMA, 802.11) and also allowing for different

types of packet schedulers to be written for the middleware. We use a preliminary

implementation of Horde to explore notions about dealing with channel heterogeneity

and application policy.
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Separating Striping Policy from Mechanism

We present techniques to separate striping policy from the actual mechanism used and

evaluate how well our striping mechanism is able to interpret the policy expressed by

applications. Horde provides an objective specification language that allows QoS pol-

icy to be expressed for data streams. We have implemented a basic packet scheduler

whose striping policy can be modulated using such objectives. Through real-world

experiments and simulation we show that a system in which applications modulate

striping policy is feasible. Furthermore, our experiments demonstrate that the ability

to modulate striping policy provides tangible benefits to applications.

Heterogeneous and Unstable Channels

Horde has been designed from the ground-up with the assumption that the set of

channels being striped over are not well-behaved and can have significantly different

channel characteristics that may change unexpectedly (e.g. due to motion relative to

a base-station). Horde uses channel-specific managers to provide congestion control

and channel prediction logic for each available channel. We argue that congestion

control belongs below the striping layer and should be performed in a channel-specific

manner because of the idiosyncrasies of WWAN channels.

WWAN Channel Characteristics

Through a number of real-world experiments and discussions of two different WWAN

technology standards, we explore the characteristics of real WWAN channels. Not

part of the core thesis, these experiments are documented in appendix A. We show

that CDMA2000 1xRTT and GSM/GPRS channels are handicapped by low bandwidth,

high and variable round trip times, occasional outages, considerable burstiness, and

much instability when moving.

1.5 Thesis Organization

This thesis continues by providing some background on related problems, such as

network striping and WWAN channels in chapter 2. A more detailed characterization

12



of WWAN channels is left for appendix A. We provide an overview of the Horde

architecture in chapter 3, and follow in chapter 4 with a discussion of the abstractions

we use to decouple the Horde packet scheduling logic from details about individual

network channels and channel behaviour models. Chapter 5 begins our discussion of

packet scheduling in the domain of network striping. Chapter 6 introduces the policy

expression framework and the scheduler we have developed for Horde (a more detailed

discussion is left for appendix B). Chapter 7 evaluates an early implementation of

the Horde middleware using both real and simulated experiments. Finally, chapter 8

provides conclusions and directions for future work.
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Chapter 2

Background

This chapter covers some background material.

2.1 System Design

Our design uses the application level framing principle (ALF), as enunciated by Clark

et al [17]. Our use of application data units (ADU’s) and extensive event handler call-

backs is reminiscent of the Congestion Manager (CM) [8]. However, instead of follow-

ing the CM’s pure-callback based approach to scheduling, Horde mixes callbacks with

an abstract interface that can be used to specify complex application-specific policies.

Horde began as an incarnation of the congestion manager for multiple channels. Given

the complexity of the QoS modulation problem, the design of the library evolved to

the point where it is quite different from the CM. Additionally, the mechanism we

use to divide the total bandwidth among data streams is similar to the mechanism

used by XCP [31]. Finally, the use of transmission tokens as network transmission

capabilities borrows from capability based systems, like the MIT exokernel OS [20].

2.2 Wireless WAN’s

Figure 2-1 enumerates the various wireless wide-area data network technologies that

might be available to a terminal running Horde. 802.11 is not a WWAN technology,

15



Channel Latency Loss Throughput/Down Throughput/Up

GSM/GPRS Highest Low 40 20
CDMA2000 1xRTT High Low 120 120
CDMA2000 1xEV-DO High Low 300 120
802.11* Low Medium >1000 >1000

Figure 2-1: Characteristics of WWAN channels. The throughputs are estimated
averages in kilobits-per-second. 802.11 is only listed as a reference.

but is included as a reference point.

In most urban areas, there are a large number of public carrier cellular wireless

channels providing mobile connectivity to the Internet, using standard cellular tech-

nologies such as GSM/GPRS and CDMA2000. Notably, there are multiple providers and

these providers have overlapping coverage areas, allowing us to connect to more than

one provider at the same time. More details about these channels can be found in

appendix A; we provide a brief overview here.

In connections over these WWAN’s, the wireless link dominates in determining

the quality of the connection. Because of the restricted wireless channel throughputs

(see figure 2-1), the bottleneck link is likely the last wireless hop. Doppler effects due

to motion and the positioning of the terminal relative to the provider’s base-stations

can significantly reduce this already low throughput.

In our experiments, the last IP hop’s latency accounted for over 99% of the overall

latency of the entire route taken by packets sent from a WWAN terminal. Providers

using GPRS use IP tunnels to transfer a terminal’s data packets through the provider

network. The last IP hop in such a situation is the entire provider network, which

might explain why it dominates.

WWAN channels are handicapped by low bandwidth, high and variable round

trip times, occasional outages, considerable burstiness, and much instability when

moving. The quality of a WWAN link is highly dependent not only on the technology

used, but perhaps even more so on the way the provider has decided to set up the

network (e.g. the distribution of a provider’s base-stations).

CDMA2000 channels are better than GPRS channels. Figure 2-1 notes that a CDMA2000

link has six times the upload bandwidth as a GPRS link. For small TCP-SYN pack-
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ets and stationary terminals, we have measured average packet round-trip-times of

around 315ms on the CDMA2000 link and average times of 550ms on the GPRS link. For

larger 768-byte UDP packets and stationary terminals, on both types of channels we

have measured an average packet latency of around 800ms with a standard deviation

of around 100ms.

Motion causes the throughput of these links to degrade. Average throughputs

aren’t affected much by motion, but on both channels the standard deviation of the

throughput increases by a factor of five. Since the CDMA2000 channel’s throughput

variance is a much smaller fraction of its total throughput, this increase in variance

is less significant for CDMA2000 than it is for GPRS.

When moving, the CDMA2000 latencies are not affected much, but for the GPRS link

the average latency is multiplied by 1.5 and the standard deviation is multiplied by

4.5. On GPRS channels latency spikes are, generally speaking, correlated with motion;

when nodes are stationary the round-trip-times are relatively stable. In contrast, on

the CDMA2000 channels, we observed no significant motion artifacts and a predictable

pattern in packet round-trip-times.

Disconnections on WWAN channels are uncommon. Occasionally we experienced

disconnections on the GPRS links during our experiments. We could reconnect im-

mediately without changing location in almost all of these situations. The CDMA2000

link, never disconnected, though we did notice occasional service disruptions while

moving about Boston.

In this thesis we do not assume a high-bandwidth connection, such as 802.11, will

be available to us. If a stable 802.11 connection were available, it would make sense

to send as much data down the 802.11 channel as possible. Other researchers have

investigated the use of wireless technologies like 802.11 for public networks [3, 16, 2]

with varying goals and varying degrees of success.

802.11 is not a WWAN technology. It was not designed to be used over large dis-

tances, in multi-hop wireless networks, and with vehicular mobile terminals. There-

fore its use in this way poses a number of technological challenges. For instance,

technologies like CDMA2000 have been designed to seamlessly switch base-stations
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with soft hand-offs whenever appropriate, while 802.11 has not. 802.11 also has a

higher loss rate than the WWAN channels because the WWAN channels use heavier

coding and retransmissions on the wireless link [25].

We expect 802.11 connectivity to be rare, but possible (through the techniques

used by the Astra project [2], for example). Further, since the ambulance is moving,

this connectivity is likely to be short lived (less than thirty seconds). With the

appropriate channel manager, whenever an 802.11 connection is available the Horde

scheduler can shift to using that connection. The remainder of this thesis assumes

that 802.11 connections are never available.

2.3 Network Striping

Schemes that provide link layer striping have been around for a while [24, 19, 7, 39].

Most such schemes were pioneered on hosts connected to static sets of ISDN links.

These schemes mostly assume stable physical channels. Instabilities and packet losses

can cause some protocols to behave badly [7]. Usually IP packets are fragmented and

distributed over the active channels, if one fragment is lost, the entire IP packet be-

comes useless. This results in a magnified loss rate for the virtual channel. Horde

avoids this magnification by exposing ADU fragment losses to the application, con-

sistent with the ALF principle.

Almost all link layer striping systems optimize, quite reasonably, for TCP. Mech-

anisms are chosen that minimize reordering, and packets may be buffered at the

receiver to prevent the higher TCP layer from generating DUPACKS [7]. When loss

information must be passed to higher layers, such as in the case of fragmented IP

packets, partial packet losses can be exposed to the higher layer by rewriting TCP

headers before the striping layer passes the packets up to the TCP stack [39].

Implementing flow control under the striping scheduler is not a new idea. The

LQB scheme [39] extends the deficit-round-robin approach to reduce the load on

channels with higher losses. Adiseshu et al [7] note that they used a simple credit

based flow control scheme below their striping layer, to reduce losses on individual
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channels. The use of TCP-v, a transport layer protocol, to provide network striping

with the goal of achieving reliable in-order delivery [27] also results in per-channel

flow control. However, whereas Horde implements channel-specific flow control, past

work has used the same flow-control mechanism on each type of channel. With our

use of flow control and channel models, we take the idea of flow control below the

striping layer further than any previous system of which we are aware.

Some recent proposals for network striping over wireless links have proposed mech-

anisms to adjust striping policy. Both MAR [36] and MMTP [32] allow the core packet

scheduler to be replaced with a different scheduler implementing a different policy.

This is the hard-coded policy case discussed later.

Recently, the R-MTP proposal by Magalhaes et al [33] considered the problem of

striping over heterogeneous channels in a mobile environment. R-MTP uses a novel

congestion control scheme that is optimized for wireless channels. R-MTP is primar-

ily concerned with bandwidth aggregation and, although implemented as a transport

level mechanism, keeps the striping operation hidden from the application. In con-

trast, Horde considers the problem of bandwidth aggregation to be less important

than the QoS modulation techniques this thesis presents, and striping is exposed to

applications.

2.4 Video Encoding and Streaming

We were motivated by the need to develop a multi-path video streaming application.

This section provides some background in the area of video encoding.

Most video compression techniques, such as the ubiquitous MPEG standards [34],

not only exploit the spatial redundancy within each individual frame of video (neigh-

bouring pixels are likely to be similar), but are also able to exploit the temporal

redundancy that exists between video frames (in scenes from the real world, adjacent

frames are similar). Usually, the higher the sampling frame rate of the source video,

the more temporal redundancy exists between adjacent frames.

A simple encoder/decoder (codec) such as one for MPEG4 video transforms the
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input from a video source, a sequence of images, into a series of coded frames. Frames

are coded as either keyframes (also called intra-coded frames, I-frames), predictively

coded frames (P -frames), or bi-directionally predicted frames (B-frames). I-frames

are coded independently of all other frames (these may be coded in the same way as

JPEG images, using quantization and discrete cosine transforms to reduce the amount

of data that must be stored). P -frames are coded based on the previously coded frame.

Finally, B-frames are coded based on both previous and future coded frames. I-frames

carry the most information, followed by P -frames which carry more information than

B-frames. Various forms of motion prediction can be used to produce the P -frame

and B-frame encodings.

If a constant video quality is desired, the bit-rate of the compressed video may

vary over time. The ability of an encoder to produce the smaller P -frame and B-

frame encodings depends on the amount of redundancy, which can vary depending

on how the video scene progresses over time. If a constant bit-rate is required, the

quality may vary. Modern codecs usually provide both options [6].

When streaming video over networks, the codec must provision for the possibil-

ity that the delivery process will introduce errors. Many decoding errors can be

concealed from the human eye through prediction: spatial, simple temporal, and

motion-compensated temporal interpolation techniques can all be used. The loss of

I-frames is the most damaging: since these contain the most information, the P -

frames and B-frames that depend on them cannot be decoded properly. Forward

error correction (FEC) techniques can be used, but erode the gains made by the com-

pression mechanism. Retransmissions can also be used for lost data, but this may

not be an option for real-time video, such as ours.

Additionally, with network video streams, there are likely to be hard deadlines for

the arrival of video ADU’s. Generally, video data is useless if it arrives too late into

the decoding process. Modern players use a playout buffer to compensate for delay.

Such buffers can help mitigate for network delay, variance in this delay (or jitter),

and even to provide enough time to retransmit lost packets [21].

Scalable video coding techniques can be used to encode the video as a base layer
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and one or more enhancement layers. Multi-description (MD) video coding encodes

the video into a number of descriptions, each of roughly the same value to the decoder.

With MD coding, losing all the packets for an encoding still leads to good video qual-

ity, without the error propagation that a single-description MPEG-like codec would

suffer from. Receiving data for multiple descriptions only enhances video quality at

the decoder.

Setton et al [37] provide an example of such an application that uses multiple-

descriptions of the source video, spreading them out over the available paths, based

on a binary-metric quality of the paths. Begen et al [12] describe a similar scheme.

Horde allows more flexible scheduling of video packets over the available paths.

More comprehensive overviews of video encoding can be found elsewhere [5, 23, 6],

but are largely irrelevant for the purposes of this thesis. The following two facts are

important: different types of video ADU’s provide different amounts of utility to the

video decoder; and video ADU’s have dependencies between them: if one fails to be

delivered then the other provides less, or possibly no, utility to the decoder.
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Chapter 3

Horde Architecture

The Horde middleware can be used by applications to stripe data streams over a

dynamically varying set of heterogeneous network channels. Horde provides the ca-

pability to define independent and dynamic striping policies for each data stream.

Applications communicate with Horde by instructing it to deliver application data

units, ADU’s, which are then scheduled on the multiple available network channels.

The Horde middleware provides to applications the ability to abstractly define strip-

ing policy; per-network-channel congestion control; and explicit flow control feedback

for each stream. We have implemented Horde in user-space.

Our design of Horde grew out of our work with hosts equipped with many het-

erogeneous wireless WAN interfaces1. In practice, we observed that these WWAN

interfaces experienced largely independent intermittent service outages and provided

a network quality-of-service that varied significantly with time (see appendix A). The

service provided by such a set of WWAN interfaces represents a local resource that

must be multiplexed among independent data streams. The primary purpose of the

Horde middleware is to manage this resource. Mainly because of the large WWAN

QoS variability, the management of this resource presents a number of challenges that

have shaped the architecture presented here:

1We use the terms WWAN channel and WWAN interface interchangeably.
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Modulating QoS We observed high time-dependent variability on the WWAN in-

terfaces, additional quirks introduced by motion, and large differences in QoS across

different WWAN technologies. This presents an opportunity to significantly modu-

late observed QoS across different data streams through the use of different packet

scheduling strategies. The Horde scheduler is designed to allow applications to ex-

plicitly affect how the middleware modulates QoS. A flexible QoS policy expression

interface allows applications to drive the packet scheduling strategy within Horde.

Network Congestion Control Horde needs independent congestion control for

each channel, to determine available bandwidth and to be fair to other users of

the shared WWAN. Furthermore, channel-specific congestion control mechanisms are

needed for WWAN’s, due to the dominating effect of the wireless link. Congestion

control is not a focus of our research, but chapter 7 evaluates a WWAN-channel-

specific congestion control mechanism to provide justification for our arguments.

Stream Flow Control Horde provides explicit flow control for each data stream,

informing each stream about how much of the overall throughput has been allocated

to that stream. Horde enforces these allocations. A mediator within the middleware

divides the network bandwidth among data streams, even as total available band-

width varies widely. Since the demands of streams can outstrip the availability of the

striped-network resource, enforced bandwidth allocations and explicit flow-control

feedback become particularly important in providing graceful degradation. Although

an important component of the overall system, flow control and bandwidth allocation

mechanisms are not a focus of our research.

Bandwidth allocation vs QoS modulation Horde separates the issue of divid-

ing available bandwidth among active data streams from the issue of modulating

the network QoS for each of those streams. Given a bandwidth allocation, differ-

ent scheduling strategies can modulate QoS in different ways. The QoS modulation

mechanism has a lower priority than the bandwidth allocation mechanism: ignoring

short-term deviations, all transmission schedules obey the bandwidth allocations.
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Figure 3-1: A modular breakdown of the Horde internals. Solid lines represent the
flow of data; dashed lines represent the direction of control signals. The video and
audio applications are both using multiple data streams.

This chapter describes the overall structure of the middleware and discusses various

aspects of the architecture in more detail. In particular, we describe the basic interface

exported by Horde to applications and Horde’s network channel management layer.

Chapter 4 covers the abstractions used to decouple the packet scheduler from the

network layer. We defer a detailed discussion of the packet scheduler and Horde’s

policy expression interface till chapters 5 and 6.

3.1 Architecture Overview

This section presents a high level overview of Horde. We first summarize the archi-

tecture from an application’s perspective, outlining the capabilities the middleware

provides and the interfaces it exposes to applications. We then consider the internal

structure of our implementation of the middleware. Figure 3-1 shows a sketch of how

the middleware is structured.
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3.1.1 Application View

An application can open one or more Horde data streams (§3.2.1) and then use these

streams to send application data units, ADU’s (§3.2.2), over the striping subsystem. If

the application is sensitive to some QoS aspects on any stream, it can inject objectives

(chapter 5) into the middleware in order to modulate the observed network QoS for

those streams. For every ADU an application sends, it will eventually receive an ack,

if the ADU was delivered, or a nack if the middleware detects a loss.

Streams receive bandwidth allocations from Horde (§3.2.3). For each stream, the

application must specify some parameters related to the desired bandwidth for that

stream. Furthermore, for each stream, the middleware sends throttle events to the

application to notify it about changes in allocated bandwidth. Applications can use

this information to prevent over-running sender side buffers and for more complex

behaviour, such as, changing compression or coding strategies.

3.1.2 Horde Internals

Internally, Horde is divided into three layers (see figure 3-1). The lowest layer presents

an abstract view of the channel to the higher layers of the middleware. It deals directly

with the network channels, handling packet transmissions, flow control, and probes.

The middle layer, is composed of the inverse multiplexer and the bandwidth allocator.

The highest layer interfaces with application code.

In our implementation, the highest layer provides a simple IPC interface. Applica-

tions use this interface to inject and remove ADU’s and policies. Horde also delivers

ADU’s and invokes event handler callbacks using this interface.

In the middle layer, the outgoing packet scheduler, pScheduler, decides how

to schedule ADU’s from the unsent ADU pool over the available channels (chapter

5). Incoming packets are delivered to the relevant data streams by the pReceiver

module. The bandwidth allocator, bwAllocator (§3.2.3), decides how to divide up

the bandwidth, provided by the channel managers, among the data streams.

In the lowest layer, the various network channel managers (§3.3) deal directly
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with the network interfaces. Most importantly, they perform congestion control and

inform the rest of the middleware how much data can be sent along each interface.

The channel pool manager monitors network connectivity on all a host’s interfaces,

making sure there is a channel manager for each active interface.

3.2 Application Interface

This section describes the interface exported by Horde to applications. The highest

layer of the middleware communicates with applications. The present implementation

of the Horde API provides a set of C++ classes and methods allowing applications

to operate on streams and ADU’s. Our implementation encapsulates the middleware

as a daemon process. The API makes calls into the middleware (using standard Unix

IPC methods) to open Horde data streams, execute operations on open streams,

transfer ADU’s, or modulate scheduler policy. Horde invokes event handler callbacks

into the API code, using the same IPC pathways, to send feedback2. The remainder

of this section describes the capabilities provided by the Horde interface.

3.2.1 Horde Data Streams

Horde provides a connection based model to an application. The applications on

the source and destination hosts set up a connection, or stream, before they start

sending data to each other. A Horde stream represents a sequence of application

data units. Applications can register callbacks to manage events on each stream.

Important events for streams are: ADU ack’s, ADU losses, and flow control related

throttle events.

Establishing a Connection To accept connections from an a priori unknown

hosts, the middleware allows an application to register callbacks so that the appli-

2This implementation is appropriate when traffic along these IPC pathways is relatively low. For
our current application the largest virtual channels we expect are on the order of a megabit, so the
cost of crossing process boundaries is not prohibitive. Another, single-application implementation
is designed to run inside the application’s process, if higher bandwidth virtual channels are needed.
Only the callback/procedure-call code stubs need to be changed.
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cation can react to specific connection requests. Each connection request carries a

service identifier that allows the middleware to deliver that request to the appropriate

callback. This is analogous to a non-blocking accept on a POSIX TCP socket.

If an application wants to initiate a connection to a known host, it must make a

call into Horde—providing a service identifier, in addition to naming that host—and

then wait for the local instance of Horde to successfully negotiate a stream connection

with a remote instance of the middleware.

As in TCP, once the connection has been established, no distinction is made

between the two end-hosts.

Naming Network Hosts Since Horde is striping data over multiple interfaces, at

least one of the end-hosts is equipped with multiple interfaces. Horde uses these multi-

ple addresses—at least one address must exist for each active interface—as equivalent

aliases for naming that host. To connect, the host initiating the connection only needs

to know one alias; the handshake protocol that establishes a stream connection ex-

changes all active aliases for the end-hosts of that connection. In our implementation,

addresses are always IP addresses.

Stream Flow Control As discussed later, an application requests, and is granted,

some—possibly time-varying—amount of bandwidth for each stream. The middle-

ware maintains an independent queue for each stream and if the application sends

data at a higher rate than can be accommodated, given the bandwidth allocation for

that stream, ADU’s are dropped from the stream’s queue in an unspecified order.

3.2.2 Application Data units

When sending and receiving data on a stream, applications communicate with Horde

at the granularity of application data units (ADU’s). Horde allows ADU’s to be

injected and removed dynamically by applications.

Horde ADU’s consist of some amount of data—transmitted across the network—

and arbitrary header fields—not transmitted across the network. Header field values
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can be modified after the ADU has been injected into Horde. The header fields can be

used as part of the policy expression framework on the sender host. For example, our

video streaming application could define the frame_type field, for use within policy

definitions for video streams, set to either ‘I’, ‘P’ or ‘B’ in each video ADU.

Some fields are predefined and managed by Horde (e.g., stream_id, and latency).

Partial-ADU losses and network ADU reordering are exposed to applications. This

design decision draws from previous arguments for application level framing [17, 8].

Although ADU’s from a stream are always delivered to the scheduler in the order

they appear in the stream, they can arrive out of order and, since ADU’s may need

to be fragmented for packet based delivery3, partial-ADU losses can occur.

If stream manager callbacks are registered, applications are notified about all ADU

acknowledgment and ADU loss events. Horde network peers send acknowledgments

for each ADU fragment they receive. This is the consequence of needing feedback for

congestion control in the channel managers (§3.3). These acknowledgments can be

prioritized to be always sent along the lowest latency available network path, resulting

in the fastest possible feedback over the network.

3.2.3 Bandwidth Allocation

Every active Horde stream is allocated some fraction of the available bandwidth.

For each stream, an application either specifies the maximum rate it wants to send

data along that stream, or marks that stream as being driven by an elastic traffic

source. Horde in return informs the application the rate at which it can send on that

stream. If an application sends more than its allocated rate, ADU’s are dropped in

an unspecified order inside the middleware, because of sender-side buffer overruns.

As available bandwidth changes, throttle events—reflecting the new bandwidth

allocations—are generated by Horde and delivered to each stream manager callback.

In practice, the total available bandwidth can vary significantly with time. Simple

3For simplicity, this thesis largely ignores the fragmentation issue. The Horde implementation
discussed in this thesis never fragments ADU’s. ADU fragmentation has been studied in other real
systems [8], and is less interesting to us than other aspects of Horde, such as QoS modulation.
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applications can ignore these events, always sending at their maximum rates, letting

the middleware decide which ADU’s to drop. Conversely, adaptive applications can

use the information conveyed by throttle events to guide changes to their behaviour.

Some applications may respond to throttle events by simply ramping their send-

ing rates up or down. Others may change their behaviour in more complex ways,

for example: down-sampling the stream; changing stream encodings; omitting the

transmission of less important data, etc.

Enforced bandwidth allocations and explicit flow-control feedback are important

in providing graceful degradation when independent data streams exist. The set of

active network managers can provide only a finite—and time varying—amount of

bandwidth to be distributed among the active data streams. This amount will often

be outstripped by total demand. As alluded to in figure 3-1, multiple independent

applications may simultaneously be using Horde data streams to try to send data

over the network. Further, for a single application, callbacks managing different

streams can be independent of each other. A mediator is therefore needed inside the

middleware to divide the bandwidth. This mediator transforms changes in available

bandwidth into some set of changes in the bandwidth of each stream. In Horde,

stream managers only need to respond to throttle events; the applications do not

need to consolidate bandwidth management code.

The present implementation of Horde uses a simple adaptive min-max fairness

policy to allocate available bandwidth among streams. The pseudo-code in figure

3-2 illustrates the bandwidth allocation process. This process is managed by Horde’s

bandwidth allocator (bwAllocator) module. The set of active streams is repeatedly

iterated over until all available bandwidth has been allocated. In each iteration an

additional unit of bandwidth is allocated to every stream that has less bandwidth

than it requested. An elastic stream is assumed to request an infinite amount of

bandwidth.
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unallocated := total available bandwidth

extra := max((unallocated -
∑

∀xrequested(x)), 0)

while (unallocated ≥ extra)

for ∀x ∈ {streams}
if (x.allocated < x.requested)

then unallocated := unallocated - 1

x.allocated := x.allocated + 1

Figure 3-2: Pseudo-code for the bandwidth allocation process.

This approach to allocation has some notable properties: no stream is ever allocated

more bandwidth than it requests; any extra bandwidth is wasted; and if

min∀x(x.requested) ≥
total

|{streams}|

then bandwidth is divided evenly among all streams.

When multiple destinations exist, a different bandwidth allocation process might

be needed. When Horde is striping multiple streams to multiple end-hosts, the achiev-

able throughput to one host may be larger than the achievable throughput to another

host. Dividing the overall total bandwidth using the earlier process can waste band-

width. To avoid wastage streams can be divided into different classes—based on the

destination hosts—before bandwidth allocations are derived. However, if the sending

interface is the bottleneck, this approach can result in the same number of transmis-

sion slots used for every end-host. This is not appropriate unless all destinations are

equally important for applications. Since our telemedicine application stripes to a

single destination host, our work on Horde all but ignores the multi-destination case.

Bandwidth allocation is separated from QoS modulation in Horde. This is be-

cause different scheduling strategies with a bandwidth allocation can modulate QoS

in different ways. For example, n bytes of data from a stream can be sent on a fast

channel instead of spreading those n bytes over fast and slow channels. The same

amount of bandwidth is used, but the stream is provided different QoS.

In Horde, the QoS modulation mechanism has a lower priority than the bandwidth

allocation mechanism. When producing transmission schedules, the amount of data
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sent for each stream is restricted based on the stream allocations4.

3.2.4 Application Policy

Using Horde, an application is able to define a dynamically varying policy, which

in turn impacts the packet scheduling strategy within the middleware. Chapter 6

contains a more detailed discussion of the various ways in which applications can

express policies within the framework of our middleware and how these policies affect

the scheduler.

In short, Horde applications can define independent local objectives for each data

stream (e.g., degree of reordering in the stream), between streams (e.g., that losses

should be uncorrelated), or at the granularity of ADU’s. An objective specifies a

particular QoS property that can be achieved using some packet transmission sched-

ule for that stream. The application also defines how much utility it derives from

the fulfillment of each objective. The Horde scheduler’s goal then is to pick packet

transmission schedules that provide high utility to applications.

3.2.5 Reporting Network Latency

Applications sometimes need estimates for average network round-trip-time and the

round-trip-time variance. These estimates might be used, for example, to set timers

for timeouts, or to size video play-out buffers. One option is for Horde to provide

a single number that professes to estimate the average network latency—possibly

a weighted average across all channels. Horde does not attempt to provide such

a number. Applications using Horde are not oblivious to the fact that multiple

and heterogeneous channels are being used, so there is no reason to collapse latency

information into a single number.

An application can calculate its own estimates for a stream, using that stream’s

ack event sequence. ack events for ADU fragments are exposed to stream manager

4Over small time-scales this may not be true. The scheduler can produce imbalanced transmission
schedules if it determines ADU’s from some stream(s) should be delayed and sent on a channel that
is not ready to accept data.
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callbacks. Every ack event specifies the round-trip-time for the related ADU fragment

transmission.

Instead of explicitly exposing the number of channels to the application, the Horde

interface instead reveals the channel equivalence classes. Horde allows an application

to acquire a set of latency average-variance pairs. This set provides the major modes

of the latency distribution seen by the Horde scheduler. Each element of this set

either represents a single channel5, or multiple channels that Horde has determined

are equivalent (e.g., two channels with the same average latency and correlated vari-

ations). With two GPRS channels and one CDMA2000 channel (§7.1), the smallest

number of major modes seen by the Horde scheduler is two—one for GPRS and one

for CDMA2000—and the largest number of modes is three—one for each channel.

Both sets of modes are valid interpretations of the Horde interface specifications.

3.3 Network Channel Management

This section describes the part of Horde that deals directly with the underlying net-

work channels. Other parts of the middleware are built on the layer outlined here.

3.3.1 Channel Manager Modules

Horde uses a set of Network Channel Manager modules (the ncManagers) to manage

the available network channels. Each ncManager manages a single network interface.

ncManagers maintain an internal model of their channels and perform dynamic mea-

surements to determine the present state of their channels. This may involve active

probing. The ncManagers are responsible for sending and receiving all packets from

these channels and also perform channel-specific congestion control.

The purpose of an ncManager is to provide higher layers with an abstract interface

to each channel, an interface that is independent of the underlying channel technol-

ogy. There may be different implementations of the ncManager interface for different

networks (e.g., 802.11, CDMA2000 1xRTT, GSM/GPRS, EDGE).

5Our implementation always reports a unique mode for each channel.
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The primary utility of using different channel manager implementations lies in

allowing different channel models and congestion control schemes to coexist with-

out complicating the packet scheduler. Other researchers have presented congestion

control schemes optimized for different WWAN channels (e.g., [38]). Furthermore,

channel technology specific knowledge can be easily incorporated into a probabilistic

model for that channel (§7.4.2). Such models can provide better predictive capabili-

ties than generic models. The use of different ncManager implementations allows us

to abstractly use channel optimized flow control and predictive logic for each channel.

3.3.2 Channel Pool Manager

A separate module instantiates the ncManagers, based on the set of available net-

work channels. The Channel Pool Manager (chPoolMan) periodically monitors the

host computer’s network interfaces and activates or deactivates the ncManager’s ap-

propriately, in response to changes in network connectivity.

The use of the chPoolMan facilitates software hand-offs. Normally, hand-offs for

streams occur in response to interactions between feedback from the ncManagers,

application policy, and the scheduling algorithms. A stream may be shifted off a

channel by the scheduler if the QoS on that channel changes. The chPoolMan ensures

that, when channel connectivity varies, the scheduler has enough information to shift

streams on to or off the affected channels.

3.3.3 Congestion Control

Congestion control in a striping system should be implemented below the striping

layer, independently for each channel. When data is being striped, since there are

multiple, independent channels, there are multiple, independent congestion domains.

Thus each channel manager should run an independent congestion control session6.

An application, above the striping layer, does not have enough information to im-

plement efficient congestion control, unless the application can perfectly simulate

6When there are multiple destination hosts, each ncManager may need to maintain a unique
congestion control session for each of these hosts.
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the scheduling algorithm. We do not believe that having a single congestion con-

trol session straddling channels—as previous striping systems have done—is the right

approach. For instance, approaches based on ADU loss as an indicator for network

congestion may either be inefficient (e.g., if some of the underlying channels provide

explicit congestion notification ECN feedback) or just plain wrong (e.g., a loss on

one channel may only indicate that the application should send less data down that

particular channel; not that it should decrease it’s overall sending rate since other

channels may have spare bandwidth). Even older systems [7, 39] realized the need

for some form of minimal per-channel congestion control below the striping layer.

Congestion control for WWAN channels should be implemented in a channel-

technology specific manner. The behaviour of the last hop wireless link can often

dominate in determining how well a congestion control scheme works on a given

channel technology [10, 28]. WWAN links exhibit many idiosyncrasies (appendix

A). Researchers have investigated congestion control schemes for wireless channels

[10, 38] and we demonstrate a channel-specific congestion control scheme (§7.4.1) that

performs better than generic congestion control on the type of channel it was designed

for.

3.3.4 Transmission Tokens

Using a congestion-control mechanism, a channel model and recent measurements as

its guides, each ncManager generates tokens in the form of transmission slot, txSlot,

objects. These objects provide an abstract interface for the scheduler to access chan-

nel information, providing transmission capabilities and expectations about channel

behaviour. We will discuss this abstraction in more detail in chapter 4.

3.4 Summary

The Horde API provides many services to applications. The API defines calls into the

middleware to open Horde data streams, execute operations on open streams, transfer

ADU’s, and modulate scheduler policy. Horde invokes callbacks in applications, to
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send stream-related feedback (e.g., ADU loss and acknowledgment events). Every

active Horde stream is allocated some fraction of the available bandwidth. This

allocation is based on available bandwidth, and negotiations between Horde and all

active data streams. As available bandwidth changes, throttle events are generated

for streams. Horde also allows applications to modulate network QoS for streams

using a flexible policy expression framework, discussed more fully in chapter 6.

Horde uses channel-specific managers to provide congestion control and channel

prediction logic for each available channel. The primary utility of using different chan-

nel manager implementations lies in allowing different channel models and congestion

control schemes to coexist without complicating the packet scheduler. We have also

argued that congestion control should be implemented below the striping layer.

The remainder of this thesis largely deals with issues related to the Horde packet

scheduler. Chapter 4 examines the interface between the network layer and the sched-

uler; chapters 5 and 6 develop the notion of objective driven network striping; and

chapter 7 mainly evaluates our scheduler implementation using real and simulated

packet traces.
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Chapter 4

Transmission Tokens

Horde uses the notion of transmission tokens, in the form of txSlot objects, to provide

a well-defined and abstract interface between the channel manager modules and the

packet scheduler. The scheduler makes its decisions based solely on the information

contained in the txSlot objects. A txSlot is an abstract representation for the

capability to transmit some amount of data on some network channel at a given time,

along with the expected QoS that will be derived from that transmission.

Each channel manager can also be asked to look ahead into the near future (e.g.

the next second) and estimate how many more slots are likely to become available

on that channel. Phantom transmission tokens provide an abstract interface to this

look-ahead logic. Phantom txSlot’s cannot be used to transmit data, but encapsulate

expectations about future channel behaviour.

This chapter covers the transmission token abstractions in Horde. We first describe

the basic txSlot abstraction. The remainder of the chapter discusses the phantom

txSlot abstraction.

37



Field Description Range
channelID Parent network channel for this slot.
sequence The sequence number for this slot on its

parent channel.
lossProbability The estimated loss probability for a

packet transmitted in this slot.
loss ∈ [0, 1]

expectedRTT Expected time between the transmis-
sion of data in this slot and the recep-
tion of an acknowledgment.

milliseconds ≥ 0

lossCorrelation(other) Compares two transmission slots to see
if packet losses in the two slots are ex-
pected to correlate. This is an estimate
for P (both lost | either one lost).

corell ∈ [0, 1]

cost(x) Cost of transmitting x bytes in this slot. cost(x) ≥ 0
maximumSize The maximum number of bytes that can

be transmitted in this slot.
size > 0

Figure 4-1: The components of the txSlot abstraction.

4.1 The txSlot Abstraction

txSlot objects represent transmission slots on specific network channels. The main

fields of the txSlot abstraction are outlined in figure 4-1.

Transmission Capabilities Each txSlot object represents a capability that the

ncManager grants to the scheduler, allowing the transmission of some data along

that channel. txSlot’s are produced by a ncManager whenever its congestion control

algorithms determine it is safe to transmit data on the underlying channel. The

packet scheduler acquires these txSlot’s from all active channel managers, maps

ADU fragments to txSlot’s, and passes that data-to-txSlot assignment back down

to the channel managers, resulting in data being transmitted by the channel managers

that generated those txSlot’s.

Latency and Loss Expectations Each txSlot encapsulates information about

the expected characteristics of the transmission slot, derived from a dynamically

updated probabilistic model of the channel’s behaviour.

When it creates a txSlot the ncManager uses a channel model to derive the
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expectations for that slot. A simple ncManager implementation could use a weighted

moving average of RTT values to determine the expected latency and a simple average

( total delivered
total lost

) for the loss probability. While moving-averages seemed to work well

in our experiments, we found better estimators could be constructed using WWAN

channel-technology specific knowledge (§7.4.2). More elaborate estimators plug in

easily into our framework: a ncManager that uses signal strength readings to estimate

a loss probability, or one that uses an accelerometer input to predict when a motion

sensitive channel will start experiencing more losses, could be added without any

complications.

Correlated Loss When two slots suffer losses, we say that the losses in those slots

are correlated. There are two types of correlated losses that are important to us:

burst losses on a single channel and correlated losses on different channels. In our

experiments (appendix A) we observed that burst losses were common on wireless

WAN channels. Correlated losses on different wireless WAN channels can occur be-

cause of signal fading or external factors that cause cross-channel loss correlation

(e.g., because two channels have antennas on a tower that is occluded).

The txSlot interface provides a loss correlation metric to help the scheduler make

judgments about correlated losses. Reasoning about loss correlations can be impor-

tant in some application domains. Applications such as those streaming multiple

description video [9] can be sensitive to correlated losses. As figure 4-1 indicates, two

txSlot objects can be compared to see if a loss in one slot is expected to correlate

with a loss in the other slot. The result of this comparison is a conditional probability

for the event that both slots will experience losses if either of them experiences a loss.

Suppose it is known that on a single channel 90% of the losses occur in bursts of

length 2 or greater, but only 3% of the packets are actually lost. Comparing two

back-to-back slots on this channel would yield a correlated loss probability of 0.9.

Striping presents multiple opportunities to reduce correlated losses. ADU’s can

be sent down different channels, provided these channels exhibit uncorrelated losses.

ADU’s can also be spaced out temporally on the same channel, interleaving multiple
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data streams to maximize throughput and reduce correlated losses on any one stream.

When a scheduler is comparing two txSlot objects, it does not need to know which of

these factors (temporal or spatial) is causing losses for those slots to be uncorrelated.

Transmission Costs There are often monetary costs associated with the trans-

mission of each bit on each channel. For some applications, it will be appropriate

to let cost influence decisions, e.g., to prefer a lower-cost higher-loss txSlot over a

higher-cost lower-loss one.

Each ncManager maintains its own cost model configured with provider-specific

information. For instance, for a WWAN account with a data transmission quota,

the cost for each txSlot above the quota is higher than for earlier slots. Since the

cost model for each parent channel is accessible from the appropriate txSlot’s, cost

models can be used in policy decisions by the scheduler.

Notice that the only difference between low and higher bandwidth channels is that

higher bandwidth channels will result in more txSlot’s being generated. This simpli-

fies the scheduler. Similarly, channels exhibiting a great deal of dynamic variation in

their latency and loss characteristics—such as our WWAN channels—do not represent

special cases. The scheduler treats two txSlot’s from the same channel, but with

widely different loss rates or RTT’s, as if they were txSlot’s from different channels.

The abstraction of txSlot’s makes it easier to reason about scheduling algo-

rithms and application policy, especially when we are dealing with unconventional

or ill-behaved channels with high QoS variances. By encapsulating channel-specific

information inside one ncManager implementation tailored for GPRS channels and

another ncManager tailored for the CDMA2000 channel (§7.4), we can build relatively

simple schedulers that make use of this channel specific information (§6.4).

4.2 Scheduler Look-Ahead: Phantom Tokens

Phantom transmission tokens provide an elegant way for the scheduler to make de-

cisions based upon expected future channel behavior. Each channel manager can be

40



asked to look ahead into the near future (e.g. the next second) and estimate how

many more transmission slots are likely to become available on that channel. Using

their channel models, ncManager’s can provide phantom txSlot objects tagged with

a confidence level, a measure of how sure the channel manager is of its prediction.

Phantom slots are only useful for their expectations; unlike other txSlot’s, they do

not represent capabilities to transmit data, so the scheduler cannot actually use them

to send data on any channel.

A good scheduler needs this sort of look-ahead logic. Depending on network con-

figurations and policies, in some scheduling cycles the available txSlot’s are too few—

or may lack critical information that can be easily predicted by a channel model—to

make good decisions about schedules. Imagine, for example, that at some point in

time only high latency txSlot’s are available. If a low latency slot will be avail-

able shortly, it may be better to defer scheduling an urgent packet. Experiments

(§7.3) show that the use of phantowm slots boosts the accuracy of our policy driven

scheduler. The alternative to predictive logic is to use infrequent scheduling cycles,

increasing average queuing delays for ADU’s.

The look-ahead logic needs to be in the channel managers. This logic is part of

the Horde network layer, and must lie below the scheduler. Furthermore, this logic is

derived from the channel-specific model and congestion control algorithms. We have

used a simple look-ahead algorithm that relies on average transmission and loss rates

from the past to predict the future. This predictor works reasonably well but, as with

the logic for deriving expected latencies for txSlot’s, this predictor can be improved

by incorporating additional knowledge about the underlying channel technology.

Phantom transmission tokens provide a good way to capture expected future chan-

nel behavior. Using the basic txSlot interface to facilitate the use of look-ahead logic

allows us to keep the interface between the scheduler and the channel managers sim-

ple. Phantom txSlot’s look the same as normal txSlot’s—except for being marked

as phantoms and tagged with confidence levels below 100%.

Phantom slots allow us to simplify the implementation of our schedulers. Pre-

dicted slots can be examined and compared the same way as actually available slots.
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With phantom slots, factoring channel predictions into scheduling decisions does not

require special-cases inside the scheduler1.

Our random-walk scheduler implementation (§6.4) uses phantom slots. In any

scheduling cycle, our scheduler uses application policies in conjunction with both

normal and phantom txSlot’s to find a good schedule. The scheduler only transmits

as much data as it can on the normal txSlot’s. In the next cycle, the process of finding

a good schedule starts afresh; the scheduler does not try to remember assignments

made to phantom slots. Our present scheduler does not use the confidence levels inside

phantom slots, but a more sophisticated scheduler could easily use this additional

information to make more informed decisions.

4.3 Summary

The interface between the Horde network layer and the Horde scheduler is composed,

almost entirely, of a single abstraction: the transmission slot. txSlot’s serve two

purposes: they represent transmission capabilities and they encapsulate expectations

about channel behaviour. Channel latency and loss expectations are part of txSlot’s

that can be used to transmit data. Phantom txSlot’s, on the other hand, cannot

be used for transmissions and represent expectations about future slot availability.

Phantoms encapsulate latency and loss predictions for these expected slots.

The use of txSlot’s decouples the scheduler from the channel-specific models and

congestion control algorithms inside the channel managers. With phantom txSlot’s,

channel-specific look-ahead logic can be incorporated elegantly into the scheduler.

1Depending on the scheduler design, the constraints imposed by the bwAllocator can introduce
wrinkles in how phantom slots are used. The scheduler must obey the constraints imposed by the
bwAllocator. These constraints require that a stream get a certain number of actual txSlot’s
over a period of time, sometimes preventing the scheduler from delaying that stream’s data using
phantom slots. In our implementation, we found that these wrinkles were more than compensated
for by the other advantages of using phantoms.
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Chapter 5

Network Scheduling

At the core of any striping system lies a packet scheduler that decides how to transmit

packets on the multiple outgoing links. In Horde, the packet scheduler does not

determine the data-rate for a stream, but it can modulate the Quality-of-Service

(QoS) for that stream. The bandwidth allocator’s policy, in conjunction with the

congestion control algorithms running within the channel drivers, ultimately limit

the rate at which ADU’s can be sent on each data stream. After the application

data streams have been appropriately rate-limited, the scheduler must decide which

transmission slot carries which ADU. These decisions have the potential to modulate

the latency and loss QoS observed by applications on each data stream. For example,

by consistently picking slots with low expected latencies for ADU’s from data stream

x, the scheduler can decrease the average latency observed by the parent application

on stream x.

When dealing with a set of homogeneous and stable channels, simple round-robin

schedulers work reasonably well. If all the network channels are similar in terms of

average latency and loss, and per packet latencies and loss probabilities are close

to these averages, transmitting a given packet on one channel instead of the other

is not likely to affect the expected loss or latency of that packet. Therefore, it is

not surprising that research in striping over wired and/or homogeneous channels

has primarily been concerned with scheduling packets so as to prevent reordering

[24, 19, 7, 39].
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Conversely, with a heterogeneous and/or dynamically unstable set of available

channels, the scheduler’s task becomes more complicated. The available transmission

slots, from the different channels at different points in time, can vary significantly in

terms of expected loss and latency characteristics. Consequently, the manner in which

the scheduler decides to transmit application packets can be crucial in determining

the network QoS seen by an application on a given data stream.

We expect horde to be used in situations where available channels differ by nearly

an order of magnitude, in terms of bandwidth and latency. Furthermore, even on a

single WWAN channel we have observed packet latencies to vary in time by up to an

order of magnitude (see appendix A). Therefore, packet scheduling techniques and

their effects on application observed QoS are an important part of our research.

In this chapter we introduce the scheduling problem for network striping. We cover

application utility functions and their relation to scheduling policy; we argue that it

is beneficial to separate policy and mechanism in a striping scheduler for WWAN

channels; we define what we consider to be optimal scheduling; and finally we review

simple approaches to striping schedulers. Chapter 6 discusses the novel objective

driven scheduler and policy expression interface we have developed for Horde.

5.1 Application Perspective: Derived Utility

Before we delve into different approaches to scheduling, it helps to consider what

aspects of the network service are important from an application’s perspective.

During some period of network service in which an application actively sends

ADU’s, it obtains some utility from the consumption of its ADU’s at another host.

We refer to this abstract utility as the application’s utility function and represent

it as a numerical value function—much in the same way microeconomics textbooks

choose to model the utility consumers assign to goods that they consume [35]. A

utility function defines a partial order on possible transmission schedules, which can

be used by the scheduler to rank its scheduling choices.

The application’s utility function represents net utility. Gross utility refers to
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the total value derived by the application. Net utility is the difference between the

gross utility and the cost of the network service. Gross utility is never negative, but

net utility may well be, if the cost of using the network exceeds the utility derived

from that service. Expected net utility can be obtained by using latency and loss

expectations as inputs to the utility function.

In our formulation, a sender application’s utility function is based solely on the

ADU header fields, the sequence of packet transmissions and the sequence of ack

receptions. Non-zero transmission costs may cause utility to be affected by channel

usage and transmission times. Utility can also be directly related to the number,

identity or delivery time of the delivered ADU fragments. However, since the sender

doesn’t know the delivery times, we work with network round-trip-times, derived from

the ADU fragment transmission sequence and the ack arrival sequence. When ADU

fragments have been sent but ack’s have not been received, the expected round-trip-

times and, therefore, the expected utility can be used. Finally, factors such as local

queuing time, parent stream identity and ADU type (e.g. I-frame) can also impact

utility. The ADU header fields provide this information.

The idealized form of the utility function can be written as:

utilityapp(τ) ∼ fapp

(

history{tx}(τ), history{rx}(τ)
)

Where, over a period τ : packet transmission history (historytx) is a set of triples

of the form (adu, fragment, txslot); ack reception history (historyrx) is a set of

(adu, fragment, time) triples; and fapp is an arbitrary application defined function.

The remainder of this section considers in more detail the factors influencing utility

in our formulation.

ADU Transmission Cost Non-zero transmission costs may cause net utility to

be affected by channel usage and transmission times. Fragments can be transmitted

on multiple channels, each channel having a different time-varying cost model asso-

ciated with it. Using a more costly transmission slot to deliver an ADU fragment
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may be valued less than if that fragment could be delivered using a less costly slot.

Cost models can be accessed through the txSlot interface. Cost can be in terms of

the electrical power required for the transmission or in terms of the monetary cost

associated with transmitting on a leased channel. For example, when striping over

WWAN channels: one channel may have an unlimited data plan, another may charge

a fixed cost for the first n bytes of data and then x cents for every additional kilobyte,

and another may charge y cents for every kilobyte sent.

Delivered ADU’s Utility is directly related to the set of delivered ADU fragments.

Fewer delivered fragments are likely to result in lower utility since an undelivered ADU

fragment likely represents lost potential, the inability to do some work. However, it

is not always the case that delivering more fragments is equivalent to delivering more

value. Which ADU’s get delivered can also matter: some ADU’s can be more impor-

tant than others. For example, I-frame ADU’s in a video stream provide significantly

more utility than the B-frame ADU’s in that stream. Furthermore, with redundant

coding techniques an application might derive the same utility from the delivery of

n ADU’s as it would derive from the delivery of (n + m) ADU’s,. A simple example

is when two ADU’s and their bitwise-XOR are transmitted. Reception of any two of

these allows the recipient to reconstruct the original two ADU’s.

ACK Arrival Times Application utility may be affected by ADU network round-

trip-times. If an application is sensitive to the passage of time, then the sequence of

deliveries becomes important in determining the application’s utility. Our primary

use for a utility function is to rank possible transmission schedules. This ranking is

only useful at the sender, in the outgoing packet scheduler. However, delivery times

are in terms of events at the receiver. Without fine-grained clock synchronization

between the two end-hosts, delivery times and transmission times are not truly com-

parable. We assume that the hosts are not synchronized. Therefore, utility functions

are expressed exclusively in terms of what is known at the sender: the sequence of

receptions of acknowledgments from the receiver. Because of network queuing and
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reordering of the acknowledgments, the ack arrival times may not match the sequence

of ADU fragment deliveries.

Expected Utility The packet scheduler uses expected utility instead of actual util-

ity. A real-world scheduler will not have perfect information about the future. If our

aim is to rank possible transmission schedules, in order to pick which ones to use,

then we must account for this imperfect information. Within a period τ , a sender has

perfect information about which packets it has transmitted and about the ack’s it

has received. The scheduler lacks information about the packets for which ack’s have

not yet been received, about available transmission slots that are being considered

but have not yet been used, and about the slots that will be available in the future.

Channel models can provide expectations for this missing information. We can pass

these expectations as inputs to the utility function, to determine expected utility,

and then this expected utility can be used in our scheduling decisions. The txSlot

interface allows the scheduler to access these expectations.

ADU Fields Information in ADU header fields can be used by an application’s

utility function. Some header fields are predefined and managed by Horde. An ex-

ample is the latency field which represents the time between an ADU’s insertion

into Horde and the reception of the final ack for that ADU. In addition to the net-

work round-trip-time, this field factors in the time the ADU spends queued inside

Horde. Furthermore, ADU’s can be annotated (e.g., the application-specific video

frame-type field and the Horde stream-id field). As we demonstrate later (chapters

6 and 7) annotations can be useful in utility function definitions.

5.2 Scheduler: Policy and Mechanism

The packet scheduler has a policy. The scheduler transforms its policy into transmis-

sion schedules based on the offered load and using what it knows—through models and

measurements—about the present and near-future behaviour of those channels. For

47



example, a packet scheduler following a policy of maximizing bandwidth while mini-

mizing receiver-side ADU reordering within a single data stream will try to transmit

packets on the available channels so as to minimize that expected ADU reordering.

Such a scheduler may try to minimize reordering as it stripes the data, but—with

imperfect predictions about the future and imprecise past measurements—it may not

be able to do so.

Most contemporary striping systems use a static scheduler policy [27, 39, 7] that

cannot be modulated by applications. Often, the policy in these systems is insep-

arable from the scheduling mechanism itself1. These systems can work well, when

the assumptions they make regarding their channels and the utility functions of the

streams hold.

Using a single static policy is not always desirable. For a single data stream,

using a scheduler whose policy does not conform to that stream’s utility function can

result in significantly sub-optimal results. In the worst case, the scheduler’s policy

can be directly opposed to the stream’s utility function, yielding the worst possible

transmission schedules.

As an example of sub-optimal scheduling, consider a scheduler optimized for TCP,

like those used in [39, 7]. Such a scheduler may optimize its transmission schedules

assuming that all data units provide the same amount of value to the application.

Further, it may assume that any reordering in a stream of data units—as they pass

through the striping layer and over the network—is to be avoided as much as possible.

Suppose this scheduler were to be used with an application streaming video, encoded

as a stream of I, P and B frames. First, the data units in this stream do not all

provide the same utility to the application. I frames are the most important, followed

by P frames. B frames do not tend to provide much utility. Second, small scale ADU

reordering is not particularly important—a playback buffer will probably need to be

used to compensate for the delay jitter anyway. Reordering is therefore tolerated

by the application. If there were two channels being striped over, one having a far

1Generally speaking, this appears to be the result of choosing simplicity in mechanism as one of
the primary design goals.
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lower loss rate but a slightly larger latency than the other, the best schedule for the

video application may be to route the I-frame ADU’s consistently along the lower-loss

channel while sending the P -frames consistently along the higher-loss channel. This

approach would knowingly induce reordering within the data stream—something a

scheduler with a TCP-optimized policy is not likely to do.

Furthermore, instead of a single stream, multiple streams—each with a different

utility function—may be using the striping subsystem at the same time. In such a

case, it may be possible to adapt the scheduler’s policy to accommodate the objectives

of multiple streams.

Different streams can be sensitive to different aspects of the QoS they receive from

the striping subsystem. The streams in our telemedicine system are heterogeneous

with respect to which aspects of the network service they are sensitive to. For example,

we simultaneously transmit video and EKG data. Video ADU’s are likely to be

highly sensitive to latency. EKG ADU’s are generated at a low frequency and are

not as sensitive to latency. Additionally, the low sampling frequency gives the EKG

application time to retransmit lost ADU’s, so the EKG stream is not particularly

sensitive to ADU losses.

Appropriate transmission schedules can be constructed that accommodate both

the video and EKG streams. In order to do so, however, a single static scheduler

policy cannot be used, unless we know enough about the policies of the streams a

priori to construct an appropriate scheduler.

In Horde, the striping policy is separated from the striping mechanism itself; the

policy being dynamically driven by application-specific logic. Horde allows applica-

tions to define the striping policy at run-time, providing a generalized mechanism

within the scheduler to facilitate many different policies. Furthermore, the philoso-

phy underlying our system’s design implies that an application may decide to change

its policy on-the-fly. We use these ideas to guide our scheduling algorithms and the

design of our policy expression interface, presented in chapter 6.

49



5.3 ‘Optimal’ Scheduling

An optimal scheduler would provide a set of streams, over some time period, with the

best possible transmission schedules, given the policies expressed for those streams

and the state of the network during that period.

Since no real-world scheduler has perfect knowledge of the future, in the context of

Horde, we choose to define an optimal scheduler as one that would pick the short-term

schedules most valued by the application given expectations about the future.

For a period τ , such a scheduler has complete information about some things

(which ADU’s have been sent; which ack’s have been received) and expectations

about others (latency and loss expectations for the ADU’s that have been sent but

not yet ack’d; expectations about the currently unused txSlot’s; and expectations

about the phantom txSlot’s).

Over τ , such a scheduler would find a transmission schedule that maximizes the

sum of the utility functions for all of the applications2 using the expectations about

future channel behaviour provided to the scheduler3:

maximize

[

∑

∀app

(

utilityapp(τ)

)]

As posed above, the optimal scheduling problem is a computationally infeasible

online optimization problem. Infeasible since scheduling decisions may need to be

made many times a second in an actual system. In our scheduler we only try to find

high utility transmission schedules instead of optimal schedules.

2If fairness is of concern, this definition can be modified to take that into account. In this thesis
we restrict our consideration of fairness to bandwidth allocations. Further, since fair bandwidth
allocations for each stream are provided to the packet scheduler by another component in Horde,
fairness does not enter our definition of scheduler optimality.

3These expectations are encapsulated in concrete and phantom txSlot’s.
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5.4 Simple Scheduling Approaches

Before we move on to describe our objective driven scheduler, let us first consider some

possible ways to implement simple packet schedulers within a striping subsystem.

5.4.1 Round-Robin Scheduling

The simplest network striping approach is to use round-robin: send the first ADU

down the first channel, the second ADU down the second channel, and so on until

we come back to the first channel. A great deal of past work on network striping

has used some variant of round-robin scheduling [24, 19, 7, 39], primarily because

of its simplicity and the fact that more complex schedulers are not likely to provide

much additional utility when the underlying network channels are stable and the

applications are unaware that striping is taking place.

A powerful variant often used is deficit-round-robin: the scheduler cycles through

the different network channels, sending as many packets, as the deficit/weight for each

channel will allow. In practice, there are many different ways to derive the weights

[7, 39]. Weights can be set statically or dynamically updated, based on estimated

bandwidths, loss rates, etc.

Older systems (e.g. [7]) using round-robin schedulers assume that all packets

entering the striping subsystem are part of the same stream, the single virtual network

channel. When there are multiple input streams to the scheduler, as in Horde, we

must first pick an input (an application data stream) and then pick the output (the

txSlot). These choices could both be made in a round-robin fashion; application

ADU’s could be serviced in a FIFO manner (as in the older single virtual channel

approaches) and channels in a round-robin manner; or some other selection techniques

could be employed.
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5.4.2 Randomized Scheduling

Deterministic round-robin scheduling with multiple inputs can result in situations

where one or more inputs receive an unfair allocation from the striping subsystem.

Consider the case when ADU’s from a given input x are always mapped to the output

channel y. If all network channels are similar, always sending data from input x down

channel y is probably reasonable. However with heterogeneous channels, like those

in our set of WWAN channels, such a consistent mapping could result in some input

stream experiencing much higher average loss or latency than the other streams.

Randomization is one technique that can help avoid this behaviour within the

round-robin framework. With multiple inputs and multiple outputs, one can pick the

output using some round-robin variant and pick the input using a random variable,

or vice-versa. The randomization can evenly distribute good and bad txSlot’s.

5.4.3 Callback Scheduling

Another scheduling approach is to expose every txSlot to the application, simply

asking it to assign data to each transmission slot. This is reminiscent of the congestion

manager framework [8]. Since the application is itself forming the schedules, it can

provide specialized code to process each txSlot, to attempt to maximize the utility

it derives from the resulting schedules. The application’s policy is hard-wired in the

callback code. Some striping systems have followed this approach [36, 32].

In principle, a callback scheduler specifically implemented for a given application

policy has the potential to be more computationally efficient than the flexible sched-

uler we propose. The drawback is that such callback schedulers can be both difficult

to implement and difficult to reason about for even moderately complex applications.

This is especially true when there are multiple applications and multiple streams each

having a non-trivial local policy. The monolithic callback scheduler implementation

must take into account the state of all active data streams when processing each

txSlot. Often, it is easier to think in terms of local stream policy. Our objective

driven scheduler uses localized policy expression.
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5.4.4 Channel Pinned Scheduling

An approach popular with schedulers optimized for multi-path video streams is to

allow applications to pin each data stream to a selected network channel. Such

schedulers only send packets from stream x along some specifically defined network

channel y, discarding all packets the channel cannot hold, even if other channels

have spare capacity. Adaptive schemes based on this idea redistribute the streams

as channel conditions change. Redistribution is not frequent; short-term channel

condition variations are ignored.

5.5 Summary

The application’s utility function defines the value that the application derives from

the network service provided by Horde. In our formulation, a sender application’s

utility function is based solely on the ADU header fields, the sequence of packet

transmissions and the sequence of ack receptions. A utility function defines a partial

order on possible transmission schedules, which can be used by the scheduler to rank

its scheduling choices. An ‘optimal’ scheduler would use transmission schedules that

maximize application utility.

Most contemporary striping systems use a scheduler policy that cannot be modu-

lated by applications. This can result in transmission schedules that yield low appli-

cation utilities. Techniques such as round-robin variants, specialized schedulers and

channel-pinning have inflexible scheduler policy. The Horde scheduler, in contrast,

separates striping policy from the striping mechanism. The next chapter describes

the Horde objective driven scheduler.
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Chapter 6

Objective Driven Scheduling

By providing a specialized scheduler and a sufficiently abstract policy expression

interface, Horde allows applications to drive the striping operation. This chapter is an

overview of the Horde scheduler and the Horde Objective Specification Environment

(hose). Appendix B provides a detailed description of hose; this chapter provides an

informal introduction to the most important aspects of hose.

6.1 Objectives

An important issue in the design of Horde was deciding how applications express

their policy goals and how the scheduler translates these goals into data transmis-

sion schedules. hose allows applications to express their policy goals as succinct

objectives. Objectives represent the modular decomposition of an application’s util-

ity function. The set of expressed objectives drives the packet scheduler towards

transmission schedules that provide high utility to applications.

The set of objectives describes the application policy regarding network quality-of-

service. Each objective says something, relatively simple, about the sort of network

QoS an application would like for some stream(s). The set of objectives describes

how much an application values the assignment of a given type of txSlot to some

ADU. An application injects one or more objectives into the library. Objectives can

be injected and removed dynamically, allowing for the specification of time-varying
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utility functions. When an application does not specify an objective for some QoS

aspect along some stream, it is implicitly assumed that the application does not care

about that aspect of QoS on that stream. In the special case when no application

injected objectives exist for a given stream, the scheduler implicitly assumes that no

application is sensitive to any aspect of QoS on that stream. Such a stream is likely

to be assigned those transmission slots left over after existing objectives have claimed

the good slots for their own streams. However, bandwidth allocations are enforced

before transmission schedules are constructed, so every stream always receives its fair

share of transmission slots. Nonetheless, since a stream may receive slots more likely

to result in losses, that stream may not receive its fair share of throughput. Fair

shares do not imply that all streams are allocated equal bandwidth (refer to §3.2.3

for information on the notion of fairness used by the bandwidth allocator).

Objectives can be positive or negative. Positive objectives define the utility that

would be gained if the objective were met by a schedule. Negative objectives define

the amount of utility that would be lost if the objective’s associated property were

part of some schedule.

Objectives will usually be concerned with the policy of a single data stream but it is

possible—and sometimes useful—to define objectives that straddle multiple streams.

For instance, an objective from a multi-description video streaming application could

express the application goal of minimizing correlated frame losses on the different

video data streams.

It is likely that applications will set up competing policy objectives. For example,

one objective could value latency while another could value order preservation on

the same stream. Alternatively, two streams could both have associated objectives

valuing low latency, when not all transmission slots have low latency. The tension

between competing objectives must be resolved by the scheduler.

The modular reasoning provided by the use of objectives is intended to simplify

application development. For those applications at which we have looked, the objec-

tives tend to be relatively simple, e.g., favour lower loss txSlot’s for certain types

of ADU’s in a stream (e.g., video I-frames), favour lower latency txSlot’s for some
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specific streams, and avoid correlated losses for certain ADU’s. Conversely, the mono-

lithic utility functions of these same applications tend to become rather complex.

6.2 Objective Specification Language

The purpose of the hose language is to provide a flexible mechanism in which ap-

plication objectives can be expressed and evaluated. Using literals, ADU’s, streams,

header fields, and latency and loss probability distributions as the basic units, hose

allows the construction of complex constraints.

hose is a type-safe language. Every expression in hose has a well-defined type

and there are specific rules governing how expressions of the same or different types

can be composed and what the type of the composition will be. The numeric type

in the language definition only supports integers. Probabilities are represented as

percentage values ranging from 0 to 100.

Objective All valid fragments of hose code must start with an objective defi-

nition. An objective consists of three sections: a context (variable bindings); a

goal (a boolean predicate); and a utility section. Figures 6-1, 6-2 and 6-3 show

samples of hose code. For a schedule in which the goal predicate is true, the hose

interpreter uses the utility section of the objective to determine how that goals

fulfillment has affected the utility derived from the associated transmission schedule.

Active objectives are evaluated by the scheduler in an unspecified order.

Context An objectives context section specifies a mapping between the goal

and a set of ADU’s that can be used to achieve that goal. Each context defines

a set of filters on all possible ADU’s. For every ADU or stream variable used in

the goal or utility sections, the objectives context contains a filter predicate,

expressed in terms of ADU header fields or stream identifiers. Fields like stream_id

and stream_seq are predefined for ADU’s. Applications can arbitrarily define other

header fields to selectively activate objectives for marked ADU’s.
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objective {

context {

adu:foo { (stream_id == 17) && (frame_type == "I") }

adu:bar { (stream_id == 17) && (frame_type != "I") }

}

goal { prob(foo::lost?) < prob(bar::lost?) }

utility { foo { 100 } }

}

Figure 6-1: The objective Y1, expressing the policy that txSlot’s carrying I-frames
from stream 17 should have lower loss probabilities than slots for other frame types.

The example objectives Y1, Y2 and Y3 show different types of contexts. The

context for Y3 (figure 6-3) specifies that the objective Y3 applies to all ADU’s from

stream 937. The context for Y2 (figure 6-2) specifies that the objective Y2 applies

to stream 7. The context for Y1 (figure 6-1) is the most complex example here.

The objective Y3 is defined in terms of two ADU variables foo and bar: foo is always

bound to an I-frame ADU from stream 17; and bar refers to any non-I-frame ADU

from stream 17. The frame_type field is an example of an application-defined field.

It is used here to integrate application-specific ADU annotations into hose.

Goal The goal section specifies a predicate that can be evaluated on some sched-

ule (i.e., on a mapping of ADU’s to txSlot’s). goal predicates can be reasonably

involved: simple probability, boolean and numerical expressions can be progressively

composed to produce a complex boolean predicate.

Each of the objectives Y1, Y2 and Y3 has a different type of goal. Y2’s goal is

true whenever the average latency on stream 7 falls below one second. Y3’s goal is

met whenever an ADU from stream 937 can be sent in a slot having a loss probability

below 20%. Y1’s goal is true whenever an I-frame ADU can be sent in a slot that

has a lower loss probability than a slot used to send a non-I-frame ADU.

Utility The utility section specifies how application utility is affected when a

goal has been met. The utility section contains a numeric valued expression for

each ADU or stream variable whose utility is affected. Negative utilities bias the
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objective {

context { stream:foo { stream_id == 7 } }

goal { foo::latency_ave < 1000 }

utility { foo { 100 } }

}

Figure 6-2: The objective Y2, expressing the policy that the average latency on stream
7 should be less than one second.

objective {

context { adu:foo { stream_id == 937 } }

goal { prob(foo::lost?) < 20 }

utility { foo { 5 * min((1000 - expected(foo::latency)), 100) } }

}

Figure 6-3: The objective Y3, expressing the policy that the utility derived from the
delivery of ADU’s falls off linearly as the latency rises above one second.

scheduler against schedules with the property specified in the related goal; positive

utilities promote such schedules. The base utility of transmitting an ADU is zero.

Therefore, within the bandwidth allocator’s constraints, a scheduler implementation

can decide not to transmit an ADU whenever the set of objectives specifies that all

possible transmission slots give negative utilities for that ADU.

Complex numeric expressions are possible. Objectives Y1 and Y2 are simple,

adding a constant positive utility when their goal is met, but objective Y3 (figure

6-3) uses a fairly complex utility section. Y3’s goal is met when an ADU from

stream 937 can be transmitted in a slot with less than a 20% chance of experiencing

a loss. When the goal is met, Y3 specifies that the utility gained from transmitting

in that slot falls off linearly as the expected latency for that slot rises above one sec-

ond. If the expected latency is higher than 1100ms, Y3 becomes a negative objective,

driving the scheduler away from assigning such slots to stream 937’s ADU’s.

Probabilities The notion that the scheduler is working with imperfect information

is included in the language. hose defines special latency and lost? fields for each

ADU variable. latency represents the elapsed time between when that ADU was
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inserted into Horde by the application and when the ack event for that ADU was

delivered to the application. lost? is true in the event that the ADU was dropped.

These fields are treated in the language as typed random variables (equivalently:

as probability distributions over some type). The need for random variables exists

because manipulating these fields as normal numeric or boolean variables would ignore

the fact that they represent indefinite quantities. For example, until an ack has

been received, the actual value of latency is not known. Its value can, however, be

estimated, using channel models.

hose provides operators to covert these random variables to numeric values. The

expected operator can be used to get the expected value of a numeric random vari-

able. The prob operator can be used to get the probability (as a percentage, between

0 and 100) of a boolean random variable being true1.

hose also defines a correlated_loss operator. correlated_loss operates on

pairs of ADU’s and provides an estimate for the following probability:

P (both ADU ′s were lost | either ADU was lost)

Stream Variables stream variables are included to allow the expression of cer-

tain types of constraints. stream variables have the fields: stream_id, latency_ave

(mean stream latency), latency_sdev (stream latency standard deviation), and loss_rate

(stream loss rate). stream variables are needed, for example, in objectives based on

the ADU latency average or jitter. Constraints on stream latency variance cannot

be expressed in hose using only ADU variables. Furthermore, the average latency on

a stream is different from the expected latency of a transmission slot. The later is

what the ADU’s latency field provides. For example, the expected latency for a single

1An earlier incarnation of the hose language allowed random variables to be composed in the
same way that boolean and numeric expressions can be. The hose version described in appendix B
is a lot more restrictive. Allowing the arbitrary manipulation of random variables has the potential
to prohibitively increase scheduler complexity. Furthermore, another reason for not providing a
generalized random-variable (or PDF) type and generic PDF manipulation operators is that the
underlying network models used by Horde are not mature enough to generate probabilities for
arbitrarily conditioned network events. Correlated ADU loss, single ADU loss, and ADU ack arrival
time are well-defined network events, which Horde’s network models can handle.
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transmission slot may be high (e.g., if the channel manager noted a temporarily low

signal strength and predicted that multiple link-layer retransmits might be needed),

but the average latency for the stream may remain low in spite of instantaneous

latency spikes.

6.3 Objective Driven Scheduling

Given the set of injected objectives, the set of ADU’s and the set of available txSlot’s,

an objective driven scheduler uses those objectives to find a good high-utility trans-

mission schedule. A schedule is a mapping of txSlot’s to ADU’s. This section

describes the basic semantics governing how schedules are derived from objectives.

The optimal scheduler’s goal (from §5.3) in terms of objectives is:

maximize

[

∑

∀objective

(

utilityobjective(τ)

)]

The Horde scheduler runs in cycles. It builds a short-term transmission schedule

during each consecutive scheduling cycle, using a relaxed form of the above goal to

construct the schedules. The period τ above is the time since the last scheduling cycle.

A scheduling cycle runs at least every T milliseconds, but may run sooner if more

than m slots are available. At the start of each cycle, the scheduler collects ADU’s

from the heads of the data stream queues, and txSlot’s from the channel managers.

Then, using the injected objectives, the scheduler finds a high-value schedule.

The scheduler only considers valid transmission schedules when determining which

schedule to use. All schedules that are composed of currently available txSlot’s and

obey the allocations assigned by the bwAllocator (§3.2.3) are considered to be valid.

However, since our look-ahead mechanism (§4.2) may reveal future transmission slots

better suited to ADU’s being considered in the current cycle, the scheduler is allowed

short-term deviations from the bwAllocator allocations. In the long run, however,

the Horde scheduler must ensure that these allocations are maintained.

Given an objective and a schedule, there may be multiple valid context bindings
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for that objective. The set of valid contexts for an objective can be determined

by applying the ADU filter defined in the context to the union of the set of ADU’s

in the schedule and the ADU transmission history. The context provides bindings

for the ADU variables used in the objective and the txSlot’s (from the schedule

and the history) provide the latency and loss probability distributions that might be

referenced in the goal and utility sections.

Evaluating an objective adds (or subtracts) some amount of utility to the parent

schedule. For each valid schedule, an objective can be evaluated once for every valid

context in that schedule. When the objectives define a negative utility for some

{ADU, txSlot} pair, the scheduler may decide to assign another ADU to that slot.

Horde schedulers don’t guarantee optimal scheduling. The comprehensive evalua-

tion of objectives over all possible transmission schedules in every cycle would result

in optimal scheduling. Unfortunately, the number of valid transmission schedules

grows as the factorial of the number of transmission slots in the schedule. Therefore,

in practice, the Horde scheduler must use some other method of evaluating objec-

tives. Our implementation efficiently finds a high utility schedule, not necessarily the

highest utility schedule, by restricting the set of possible schedules it considers.

Scheduling with Look-Ahead

A good scheduler needs look-ahead logic. In some scheduling cycles the available

txSlot’s can be too few—or may lack critical information, that can be easily predicted

by a channel model—to make good decisions about schedules. Imagine, for example,

that at some point in time only high latency txSlot’s are available. If a low latency

slot will be available shortly, it may be better to defer scheduling an urgent packet.

Experiments (§7.3) demonstrate that look-ahead boosts the accuracy of our policy

driven scheduler. The alternative to predictive logic is to use infrequent scheduling

cycles, increasing average queuing delays for ADU’s.

Phantom transmission tokens (§4.2) provide a way to factor expected future chan-

nel behavior into scheduling decisions. Each channel manager can be asked to indi-

cate, by creating phantom txSlot’s, how many slots it expects to have available in the
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near future (e.g., the next second). Predicted slots can be examined and compared in

the same ways as actually available slots. With phantom slots, incorporating channel

predictions into scheduling decisions does not require special-cases in the scheduler2.

In any cycle, Horde schedulers use both normal and phantom slots to find good sched-

ules, only transmitting as much data as can be sent using the normal txSlot’s. In

the next cycle, the process of finding a good schedule starts afresh; the scheduler does

not try to remember assignments made to phantom slots.

6.4 Scheduler Implementation

This section describes our objective driven scheduler implementation: the random-walk

scheduler. In constructing our scheduler, we have consciously attempted to make it

as simple as we could. Our goal was to show that even a very simple algorithm can

provide enough benefits to justify the Horde QoS modulation framework. Chapter 7

demonstrates that this scheduler works reasonably well.

In each scheduling cycle, our scheduler uses a random bounded-search of the

transmission schedule space to find what looks like the best schedule, given the set of

active objectives. In the absence of any objectives, the random-walk scheduler works

like the randomized-round-robin scheduler: any valid mapping of slots to ADU’s is

equally likely. The scheduler creates k random transmission schedules3, evaluates

all objectives over each of these k schedules and picks the schedule with the highest

aggregate utility. A scheduling cycle runs every T milliseconds. During each cycle,

the scheduler acquires from every channel manager the currently available txSlot’s

and the phantom txSlot’s for N milliseconds into the future. Based on the number

of slots, ADU’s are collected from the data streams. The constraints imposed by

the bandwidth-allocator govern how many ADU’s can be collected from each stream.

Streams are treated as a FIFO queues. Our implementation does not drop ADU’s

2Depending on the scheduler design, the constraints imposed by the bwAllocator can introduce
wrinkles in how the scheduler uses phantom slots. In summary: the scheduler must ensure that, in
the long run, the allocations are met even though phantoms may cause short-term deviations.

3In the experiments documented here, we used 25 for the value of k.
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tx_schedule random_walk_scheduler() {

// collect all tx_slot’s with some amount of look-ahead

slots = collect_slots( LOOKAHEAD_MSECS );

// collect as many adus as there are slots

adus = collect_adus ( slots.size() );

// do a random walk

int max_util = MIN_INTEGER;

tx_schedule best_schedule = NULL;

for (int i = 0; i < WALK_LENGTH; i++) {

// get a random schedule

tx_schedule random = create_random_schedule( slots, adus );

// evaluate all objectives over this schedule and get util

int util = evaluate_objectives ( random );

// see which schedule has been the best so far

if (util > max_util) {

max_util = util;

best_schedule = random;

}

}

return best_schedule;

}

Figure 6-4: Pseudo-code for the random-walk scheduler. We used a WALK LENGTH

of 25 and the random schedule constructor given in figure 6-5. The method
evaluate objectives iterates over every active objective, evaluating that objective
for the given schedule and returns the sum of the utilities.

locally, even if including those ADU’s in the chosen schedule results in a negative

utility. T , N and k are constants.

Figures 6-4 and 6-5 describe the scheduler in pseudo-C++ code. In practice, the

scheduler is a little more complex, since it must deal with the constraints imposed by

the bandwidth allocator. Our implementation never fragments ADU’s for delivery.

The random-walk scheduler is not tied to the hose language. The language im-

poses restrictions on what types of objectives can be expressed. The scheduler itself

assumes nothing about the properties of individual objectives. The random-walk

scheduler only requires a set of functions that map schedules to numeric values.

The scheduler can even be used with a single monolithic value function replacing
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tx_schedule create_random_schedule(slots, adus) {

tx_schedule random;

// randomly reorder

random_shuffle( slots );

random_shuffle( adus );

// produce schedule:

// slot[i] contains adus[i]

for (int i = 0; i < adus.size(); i++)

random[ slots[i] ] = adus[i];

return random;

}

Figure 6-5: Pseudo-code for the random schedule constructor.

evaluate_objectives in figure 6-4. To differentiate good schedules from bad ones,

evaluate_objectives should define a partial order on the set of possible schedules.

A better scheduler could use the information in a hose objective (e.g., an objective

favours low latency for stream x) to direct the search toward better schedules. A di-

rected search, instead of the random one used here, is likely to eventually find better

schedules.

The simulations documented in chapter 7 used pre-compiled objectives. We have

implemented a hose-subset interpreter using the lex/yacc utilities but have not

integrated it into the random-walk scheduler. Interpretation would be functionally

equivalent, so the simulation results would not be affected.

One of the goals of our research was to prove that an objective driven scheduler

was feasible in a real system, in-spite of the fact that the optimal scheduling problem

itself is a prohibitive optimization problem. Our experiments demonstrate that a

very simple scheduler can provide good results. A more intelligent scheduler imple-

mentation may be able to provide QoS to streams closer to their optimal allocations.

In practice, there are many other ways to find approximate solutions to the opti-

mal scheduling problem posed earlier. For instance, the scheduling problem can be

mapped to a SAT-optimization problem, or to a graph-flow-optimization problem.
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Our present scheduler does not use the confidence levels inside phantom slots, but

a more sophisticated scheduler could easily use this additional information to make

more informed decisions.

Scheduler Processing Cost

The Horde scheduler has a higher processing cost than conventional striping sched-

ulers. It requires more computation and the maintenance of per-flow state. In prac-

tice, the cost of running the Horde scheduler is not a problem. The scheduler requires

much less processing time than other application operations (e.g. MPEG video com-

pression). Furthermore, with bandwidth limited applications, the network is the

bottleneck and processing is not particularly constrained. Finally, in our WWAN

environment, it does not help to run scheduling cycles more frequently than roughly

once every 50ms, since individual CDMA2000 channels cannot generate more than one

txSlot every 50ms. Our initial implementations of the Horde scheduler indicate that

the extra computation and state will not be a problem in practice. In our experiments

with unoptimized code containing many debugging log statements, the scheduler im-

plementation runs fast enough for our purposes.

6.5 Summary

Horde provides an abstract application policy expression interface and a flexible strip-

ing scheduler that can interpret application policy. Horde applications express their

policy as a set of modular objectives, using the hose specification language. By in-

terpreting these objectives, an objective driven scheduler attempts to provide the

network quality-of-service requested by the application for each data stream. Given

the set of injected objectives, the set of ADU’s and the set of available transmission

slots, an objective driven scheduler finds high-utility transmission schedules.

The random-walk scheduler is our implementation of an objective driven sched-

uler. This implementation demonstrates that even a very simple algorithm can

provide enough benefits to justify the Horde QoS modulation framework. In each
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scheduling cycle, the random-walk scheduler uses a random bounded-search of the

transmission schedule space to find what looks like the best schedule, given the set of

active objectives. Since a good scheduler needs channel look-ahead logic, the sched-

uler includes phantom tokens in the search.
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Chapter 7

Evaluation

The preceding chapters have covered the overall design of the Horde library and the

objective specification environment it provides. This chapter evaluates the perfor-

mance of a preliminary implementation of the library, using both real and simulated

network packet traces.

Horde provides three main services: bandwidth aggregation, network QoS mod-

ulation, and channel specific congestion control. Bandwidth aggregation is a service

almost all previous striping systems focus on providing. Therefore, the other two

services form the novel contributions of our research. This chapter focuses on these

services. We show that QoS modulation is both feasible to implement and useful

to applications. We also provide a case-study to support our earlier assertion that

having channel specific congestion control and prediction logic has advantages over

using generic methods for every type of channel.

We have implemented a very preliminary version of the Horde library, and are

working on building a mobile video streaming system using this implementation. Thus

far we have focused on implementing what we consider to be the two most interesting

parts of the Horde framework: the channel managers and the packet scheduler. The

implementation evaluated in this chapter uses stubs to simulate the simpler modules

(such as the bandwidth allocator).

The bulk of this chapter deals with the Horde scheduler: how well our implemen-

tation allows QoS to be modulated for individual streams on real WWAN channels
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(§7.1) and in simulation (§7.2); and the advantage gained by using a scheduler look-

ahead mechanism within our system (§7.3). This chapter also introduces a network

channel manager specially designed for CDMA2000 1xRTT channels (§7.4). Using ex-

perimental results from an actual WWAN channel, we argue that our specialized

manager is superior to a more generic manager that cannot use a priori knowledge

about CDMA2000 channel characteristics.

7.1 QoS Modulation: Real Channels (E1)

In this section we report on an experiment (E1) conducted over actual WWAN chan-

nels. We show that a random-walk scheduler can be used to provide low-latency for

specific data streams.

Implementation Note The E1 experiment was conducted with an older version

of the Horde implementation than the one used in the simulated-channel experiments

(§7.2). Prediction logic for txSlot’s was sparse and there was no look-ahead logic.

The scheduler implementation was a variant on the random-walk scheduler. We used

the same generic AIMD congestion control scheme for all the channels.

Experimental Setup The E1 experiment used a laptop computer connected to

a single CDMA2000 1xRTT interface and multiple GSM/GPRS interfaces. All GPRS in-

terfaces were connected to the same service provider; the CDMA2000 interface was

connected to a different provider. The GPRS interfaces used standard cell-phones con-

nected to the laptop over a bluetooth link. The CDMA2000 interface was a PCMCIA-

based modem. The devices were in close proximity to one another and did not use

specialized antennas.

The experiment reported here used three stationary WWAN interfaces. It con-

sisted of sending as many 768 byte packets1 as Horde’s congestion control layer al-

1Our UDP experiments on WWAN channels in appendix A show that packet size affects both
achievable throughput and packet latency. Generally: smaller packets experience lower latency;
larger packets yield higher raw UDP throughput. 768 byte packets seem to be a good compromise.

70



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  50  100  150  200  250  300  350

Th
ro

ug
hp

ut
 (k

bi
ts

/s
ec

)

Time (sec)

Total
CDMA

GPRS-1
GPRS-2

Figure 7-1: Throughput provided by Horde in the stationary experiment E1, using
three co-located interfaces.

lowed, from the laptop to a host on the MIT ethernet. Packet traces were collected

and used to simulate different schedulers.

Measured Throughput Figure 7-1 depicts the throughput provided. The through-

puts were calculated using a 10 second sliding window average. The GPRS band-

widths are relatively stable in this experiment. This is consistent with previous ex-

periments measuring raw UDP throughput (appendix A), which did not use Horde.

Those experiments also indicate that vehicular motion leads to significant variability

in throughput. We conjecture that the variability in CDMA throughput was either

caused by contention with other users or due to the fact that our AIMD congestion

control scheme is ill-suited to the channel, causing the throughput to oscillate. Other

experiments—including those that investigated verb congestion-control later in this

chapter—have shown the CDMA interface providing upload bandwidth of up to 120

kbits/sec on its own. Generally speaking, bandwidths on all of these WWAN inter-

faces varied greatly, over short time scales (as seen in the figure), over longer time

scales, and geographically.
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Figure 7-2: Packet round-trip-time distributions for each of the channels in the E1

experiment. The three interfaces were co-located and stationary.

Measured Packet Latencies Figure 7-2 shows the packet latency distributions

for each channel. The Horde congestion control layer was configured to always send

acknowledgments back over the lowest latency channel (the CDMA channel in this

case). Consequently, the GPRS distributions do not represent the packet round-trip-

time distributions that would be seen for those channels in isolation. Typically, those

are longer and more variable.

All of our observations, in this and in other experiments, show that the CDMA

interface has significantly lower average packet latencies than the GPRS interfaces.

However, the GPRS latencies reported here are higher than reported elsewhere. In
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experiments conducted in other settings, we found that the median was usually within

2 seconds for 768 byte packets. We conjecture that the higher RTT’s in this experi-

ment may have been caused by a low quality wireless link to the GPRS base station.

GPRS uses link layer retransmits, often elevating the RTT in order to mask channel

losses [25, 14].

Channel Heterogeneity Figure 7-2a and 7-2c exemplify the very large differences

that exist between two co-located WWAN channels using different technologies and

providers. Figure 7-2b and 7-2c show that even two WWAN channels from the same

provider and using the same technology can provide significantly different QoS. The

existence of such marked differences highlights the potential impact of scheduling

decisions on the network QoS observed by each application data stream.

Scheduling The results of figure 7-3 were obtained by simulating the Horde sched-

uler on the packet traces from the above experiment, using simple channel models2

and no look-ahead. Using the packet traces in this way, we could compare the effects

of using different schedulers and policies under identical network conditions. Figure

7-3 does not include the queuing delay packets would experience within the library

due to the cycle delay of the Horde scheduler; actual ADU latencies would therefore

be slightly larger.

Figure 7-3 compares a randomized round robin scheduler to the schedule generated

by Horde with a single objective that implied streams 2 and 4 were latency sensitive.

We set up four data streams, each of which demanded and received the same amount

of bandwidth from the bwAllocator.

As expected, when using randomized round robin, there were only small variations

in the latency distributions across the four streams. Figure 7-3a shows the distribution

of the latencies observed by each stream when using a round robin scheduler.

The objective driven scheduler was able to provide a much lower mean latency to

the two latency sensitive streams at the cost of a slight increase in the mean latencies

2In the txSlot expectations, expected packet latency was calculated using a weighted moving
average of known packet latencies. Loss probabilities were, similarly, averages.
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Figure 7-3: Round-trip-time distributions with two different schedulers. The graphs
show the median and the upper and lower quartiles for the round-trip-time experi-
enced by ADU’s in each stream.

objective {

context { adu:foo { (stream_id == 2) || (stream_id == 4) } }

goal { true }

utility { foo { 5 * (1000 - expected(foo::latency)) } }

}

Figure 7-4: An objective expressing the fact that the utility derived by an application
from an ADU from stream 2 or 4 falls off, or rises, linearly depending on how close
the expected latency of that ADU is to one second.

of the other two streams. Figure 7-3b shows the distribution of observed latencies

when the objective driven scheduler was used. No objective was specified for streams 1

and 3, indicating that the application wasn’t sensitive to any aspects of QoS on those

streams. Streams 2 and 4 were given the objective in figure 7-4. This objective states

that added value is derived in proportion to how far the expected round-trip-time

(RTT) deviates from one second; expected RTT’s above one second yield negative

values3. Based on this single objective, the scheduler was able to infer that it should

preferentially assign transmission slots with an expected low latency to ADU’s from

streams 2 and 4. Figure 7-3b clearly shows that the scheduler recognized that QoS

unfairness can be beneficial to the application.

3The choice of the constant 5 was arbitrary during the related experiment, and is ultimately
unimportant, given that there are no other objectives.
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Channel Bandwidth Latency µ Latency σ Loss Loss Burst Size

cdma1 120 (kbits/sec) 600 ms 50 ms 0-1% 1, 2, 4, 8, and 16
cdma2 · · · 300 ms 15 ms ≈20% · · ·
gprs1 22 (kbits/sec) 900 ms 100 ms 1-5% 1, 2 and 4
gprs2 · · · · · · · · · · · · · · ·
gprs3 · · · 1000 ms 100 ms · · · · · ·
gprs4 · · · · · · · · · · · · · · ·

Figure 7-5: The characteristics of the simulated channels.

7.2 QoS Modulation: Simulated Channels

In this section we report on experiments using simulated WWAN channels. These

experiments investigate how well our scheduler can handle a set of objectives derived

from our telemedicine application.

7.2.1 Simulation Setup

We felt it was necessary to use simulation to fully evaluate the performance of the

Horde scheduler. Our simulated channels are based on measurements from actual

WWAN channels (appendix A). Our use of simulated channels was motivated by the

fact that the set of real channels available to us (a single CDMA2000 interface connected

to one provider and multiple GPRS interfaces connected to another provider) did not

provide enough QoS modulation options to the scheduler. For instance, any sort

of loss or latency QoS sensitivity would drive a stream to the CDMA2000 channel.

Using a more diverse set of simulated channels allowed us to better investigate the

performance of the scheduler.

We simulated the set of channels shown in figure 7-5. cdma1 was based on a model

of a standard CDMA2000 1xRTT interface; cdma2 was based on a model of a CDMA2000

1xRTT interface from a different provider with link-layer retransmissions disabled4.

4For cdma2 we have conjectured that disabling link level retransmissions on a CDMA2000 channel
causes losses to rise by an order of magnitude, but reduces the packet latency. Furthermore, we
have assumed that the provider for cdma2 has optimized their network for latency, unlike the cdma1

provider. While this model may not be entirely accurate for any real-world CDMA2000 channel, it
provides us a high-loss low-latency channel in our simulations. An 802.11 interface would also
provide a high-loss low-latency channel, but with an order of magnitude more bandwidth and an
order of magnitude lower latency than CDMA2000.
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Figure 7-6: The Markov process used to model bursty packet losses on the simulated

channels. q is the packet loss parameter and s = Σ
i≤dlog

2
(max burst size)e

i=1

(

0.2
)i

.

The gprs channels were based on a model of GSM/GPRS channels. gprs1 and gprs2

were assumed to be from one provider, and gprs3 and gprs4 were assumed to be

from another provider. The first GPRS provider was assumed to provide a slightly

better average packet latency.

Each simulated channel was modeled using two random variables: Ti (round-trip-

time) and Li (loss). Ti was a Gaussian random variable5 for the latency experienced by

packet i on the channel. Statistics collected from actual WWAN channels (appendix

A) show that the latency distributions are approximately Gaussian6. Li was a boolean

random variable denoting whether packet i was lost. Since our experiments with

WWAN channels show a bursty loss nature, Li was derived using the multi-state

Markov process shown in figure 7-6. Whenever a simulated slot was generated, if the

Markov process’s state was a non-zero state, that slot had Li = true. Furthermore,

the process had a state transition after each generated slot. The given Markov process

is equivalent to using a boolean random variable to determine if a burst-loss should

start (with probability q of being true) and then an exponentially decaying random

variable to determine how long that burst should last7. In the interest of simplicity,

instead of arbitrary burst sizes we only used burst sizes that were powers of two. The

possible burst sizes used for each simulated channel are given in figure 7-5.

Each experiment used a different packet trace. We ran the scheduler using channel

managers that produced txSlot’s based on the simulated channel models described

above. The packet traces for all the experiments had the same latency and loss

distributions.

5Using the means and standard deviations given in figure 7-5 for each channel.
6With means and variances similar to those noted in figure 7-5.
7The exponential decay is based on our measurements in appendix A.
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The channel managers for the simulated channels produced txSlot’s with a constant-

bit-rate (τ). In E1 txSlot’s were produced based on the ack arrival times. When

asked to provide phantom slots for λ milliseconds into the future, the simulated chan-

nel managers used their generation rate to figure out how many phantom slots should

be returned (bλ
τ
c).

Both phantom and normal txSlot expectations were initialized using simple mod-

els. An exponentially-weighted-moving-average of past round-trip-times was used for

latency, and loss probabilities were derived from a simple average ( losses
total

). The chan-

nel managers used a exponentially decaying estimator, based on the Markov model

in figure 7-6, to determine the correlated loss probability for two transmission slots.

Slots from different channels were predicted to be perfectly uncorrelated (probability

of zero): adjacent slots from the same channel were predicted to be perfectly corre-

lated (a 100% correlated loss probability); and slots more than eight transmissions

apart on the same channel were also predicted to be perfectly uncorrelated.

The simulations documented here used pre-compiled objectives. We implemented

a hose-subset interpreter using lex/yacc but have not integrated it into the random-walk

scheduler. Interpretation would be functionally equivalent, so the simulation results

would not be affected.

7.2.2 Randomized-Round-Robin (S0)

The first simulated experiment, S0, reported here used a randomized-round-robin

scheduler on the simulated channels from figure 7-5. The results of S0 establish a

stream QoS baseline reference for the subsequent simulations. Four streams were

created, each requesting the same throughput. Figure 7-7a shows how the data from

these streams was striped over the six available channels. Figure 7-7b shows the

streams’ ADU latency distributions. All streams have similar latency distributions

because the scheduler stripes each stream in roughly the same way. The cdma1

channel carries about six times the amount of data as the gprs1 channel for each

stream because of the bandwidth ratio of the two channels.
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Figure 7-7: Experiment S0 results. The RRR scheduler (a) stripes every stream in the
same way over the available channels; (b) giving similar latency distributions.

objective {

context { adu:foo { (stream_id == 0) || (stream_id == 3) } }

goal { expected(foo::latency) <= 700 }

utility { foo { 700 - expected(foo::latency) } }

}

Figure 7-8: The low-latency objective X1. Limited to streams 0 and 3, this objective
assigns 0 utility to an ADU with an expected round-trip-time greater than 700ms;
and linearly increasing utilities for ADU’s with lower round-trip-times.

7.2.3 Policy: Low Latency (S1)

The simulated experiment S1 used the low-latency objective X1 (The hose form is

given in figure 7-8), to drive down the median round-trip-times for streams 0 and

3. S1 is similar to the earlier experiment E1. Figures 7-9, 7-10, and 7-15a show the

relevant results from the experiment. No other objectives were used.

X1 causes the scheduler to reduce latencies for streams 0 and 3. Comparing figure

7-11a to the randomized-round-robin case (figure 7-7b) shows that median latencies

for streams 0 and 3 are reduced in S1. The latencies of the other two streams rise.

Figure 7-10b shows that the objective X1 causes slots from the lowest latency

channel cdma2 to be shifted from streams 1 and 2 to the latency-sensitive streams 0

and 3. Because of the bandwidth allocator’s fairness constraints, the latency sensitive

streams must give up some of their slots on the medium latency cdma1 channel.
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Figure 7-9: Round-trip-time distributions in experiment S1. The graph shows the
median and the upper and lower quartiles for the stream ADU RTT’s.
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(a) Channel Usage in S1 (b) Usage Change: S0 → S1

Figure 7-10: Channel usage in experiment S1. Compared to S0, slots from the lowest-
latency channel are shifted to the latency sensitive streams. This is shown by a
negative cdma2 usage change for streams 1 and 2, and a positive change for 0 and 3.

Our scheduler is not perfect. Even though streams 0 and 3 have approximately

the same inter-quartile range and both upper quartiles are below the 700ms specified

in the objective, nevertheless the fact that stream 3 is given more slots from the cdma2

channel than stream 0 exposes the suboptimality of the random-walk scheduler. This

suboptimality is not significant because, although median latencies are about 250ms

apart, the mean latencies are close, within 50ms (µ0 = 524ms and µ3 = 476ms)8.

8The large difference in median stream RTT’s is likely due to the large 300ms difference in mean
latency between cdma1 and cdma2.
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Figure 7-11: Round-trip-time distributions in experiments S1 and S2.

objective {

context { adu:foo { stream_id == 3 } }

goal { prob(foo::lost?) < 10 }

utility { foo { 100 * (prob(foo::lost?) - 10) } }

}

Figure 7-12: The low-loss objective X2. This objective specifies that if an ADU from
stream 3 has a probability of loss less than 10%, its utility rises linearly with the
probability that it is delivered.

Furthermore, an optimal scheduler would send all ADU’s from the latency sensitive

streams down the CDMA channels. The random-walk scheduler sends a small propor-

tion of latency sensitive ADU’s down the high-latency GPRS channels. Part of this

problem might be due to the way in which our implementation handles the bandwidth

allocator’s constraints: if a stream x hasn’t been serviced for a while (e.g., because

of phantom slot related delays), x will get priority in the next scheduling cycle. This

might result in streams being assigned CDMA slots even though they shouldn’t be.

7.2.4 Policy : Low Latency and Low Loss (S2 and S3)

The simulated experiment S2 used the objective X1, as before, and additionally used

the objective X2 (figure 7-12) to specify that stream 3 was sensitive to losses. Figures

7-11b, 7-13, 7-14 and 7-15b show the relevant results from the experiment.
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(a) Channel usage in S2 (b) Usage Change: S1 → S2

Figure 7-13: Channel usage for streams in experiment S2. The loss and latency
sensitive stream 3 is assigned slots on the low-loss medium-latency channel cdma1 in
exchange for slots on the lowest-latency channel cdma2. All other streams gain slots
on cdma2 and lose slots on cdma1.
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Figure 7-14: Loss rates in experiment S2.

The existence of X2 for stream 3 clearly reduces the losses on that stream. Figure

7-14a shows that stream 3 has the lowest loss-rate of all the streams in S2. Compared

to S1, the scheduler assigns far fewer stream 3 ADU’s to the cdma2 channel in S2

(see figure 7-13b). The cdma2 channel has an order of magnitude higher packet loss-

rate than the other channels (see figure 7-14b), so moving stream 3 ADU’s away

from cdma2 reduces that stream’s loss-rate and raises the overall utility. Figure 7-15b

shows that compared to S1, loss rates for all the other streams increase, as low-loss

slots are shifted over to stream 3.
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Figure 7-15: Comparing loss rates in experiments S1 and S2.

objective {

context { adu:foo { stream_id == 3 } }

goal { expected(foo::latency) <= 700 }

utility { foo { 700 - expected(foo::latency) } }

}

Figure 7-16: The low-latency objective X3. Identical to X1, except for the fact that
this objective is restricted to stream 3.

While the average latency on stream 3 is still below 700ms9 because of the objec-

tive X1, figure 7-11b shows that a significant number of ADU’s experience latencies

higher than 700ms. Even though X1 specifies that low-latency slots provide higher

utility on stream 3, the existence of X2 causes the scheduler to sometimes use the

low-loss high-latency GPRS channels for stream 3 ADU’s. This scheduling choice ei-

ther represents the suboptimality of the random-walk scheduler or is a consequence

of X2 dominating in the determination of utility for the stream.

To investigate this, the simulated experiment S3 used the X3 objective (figure 7-16)

in addition to the other two. The X3 objective further increases the utility gained on

stream 3 from low-latency transmissions. Figure 7-17a shows that in S3 the scheduler

assigned most ADU’s from the latency-sensitive stream 0 to the high-loss low-latency

cdma2 channel, and most ADU’s from the loss-and-latency-sensitive stream 3 to the

9The mean is 673ms and the median is 617ms.
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Figure 7-17: Channel usage and latency distributions for streams in experiment S3.
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Figure 7-18: Loss rates in experiment S3.

low-loss medium-latency cdma1 channel. Figure 7-17b shows that the use of X1 and

X3 kept most stream 3 ADU’s latencies below 700ms. Figure 7-18 shows that in S3

stream 3 still has the lowest loss rate, but this loss rate is slightly higher than it was

in S2 (shown clearly in figure 7-18b, which compares figure 7-18a to figure 7-14a).

An optimal scheduler would always send ADU’s from stream 3 on cdma1 and

ADU’s from stream 0 on cdma2. It would never use the GPRS channels to send latency-

sensitive ADU’s. As before, in S3 the random-walk scheduler sends a small fraction

of latency sensitive ADU’s in high-latency slots. The scheduler also occasionally uses

high-loss low-latency slots for loss-and-latency sensitive ADU’s.
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objective {

context { adu:foo { stream_id == 0 }

adu:bar { stream_id == 0 }

}

goal { correlated_loss(foo, bar) <= 25 }

utility { foo { 125 } }

}

Figure 7-19: The low-correlated-loss objective X4. This objective adds positive utility
whenever two ADU’s from stream 0 have a correlated loss probability below 25%.

7.2.5 Policy: Low Correlated Loss (S4)

Correlated loss10 objectives are more complicated than objectives that prioritize either

loss or latency, such as X2 and X3. For instance, the objective X4 (see figure 7-

19) specifies a desired relationship between two ADU’s in a transmission schedule.

Earlier objectives like X3 specify a property that can be derived directly from a single

transmission slot, without any knowledge about which other ADU’s occupy slots in

the candidate transmission schedule. The existence of combinatorial objectives such

as X4 complicates the use of a directed search inside the scheduler. The need to handle

multi-ADU objectives such as X4 is one of the reasons behind the zero-knowledge

approach used by the random-walk scheduler. If only single-ADU objectives like X3

were allowed, relatively simple, deterministic schedulers could be constructed that

would be more accurate than the random-walk scheduler in situations like S1.

The primary mechanism the random-walk scheduler can use to reduce correlated

losses for a stream is to spread ADU’s from that stream over multiple channels. The

scheduler can always determine that correlated losses can be reduced by spreading

ADU’s from a stream over multiple channels (comparing txSlot’s from different

channels for loss correlation always returns 0; see simulation notes below). The use of

phantom slots ensures that the scheduler considers transmission slots from all channels

in every cycle. Since the scheduler works with a relatively small number of slots11

for each channel in a scheduling cycle, the scheduler is not likely to reduce correlated

10Earlier, we defined a correlated loss for ADU’s X and Y as the event that both ADU’s were lost.
11In our simulations, the scheduler’s window was smaller than the size of the maximum burst-loss.
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Figure 7-20: Stream loss rates and ADU round-trip-time distributions for S4.

losses by spacing out ADU’s temporally on the same channel. In the absence of any

objectives, the randomization inherent in the scheduler spreads streams over channels

by default.

Simulation Notes Our simulated channel models assume that the channels are not

correlated with each other. Consequently, in our simulations, correlated losses mainly

occurred as a result of the bursty-loss nature of the simulated channels. In reality,

WWAN channels do seem to exhibit cross-channel correlation (see appendix A) but—

lacking a reasonable analytical model for this cross-channel correlation—we chose not

to model it in our simulations. For simulation, we assumed that all channels were

from different providers, connected to different base-stations, and therefore exhibited

temporally uncorrelated losses.

Since our correlated loss model may not be entirely realistic, the results in this

section should be viewed as demonstrating the random-walk scheduler’s ability to

handle combinatorial objectives in general rather than as this scheduler’s ability to

handle correlated loss objectives in particular.

The simulated experiment S4 added the low-correlated-loss objective X4 (figure 7-

19), in addition to X1, X2 and X3 from the previous experiment S3. Figures 7-20,

7-21, 7-22 and 7-23 show results from the experiment.
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Figure 7-21: The fraction of stream packets lost in correlated losses in S3 and S4.

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

stream 0 stream 1 stream 2 stream 3

Fr
ac

tio
n 

of
 p

ac
ke

ts

-0.015

-0.01

-0.005

 0

 0.005

stream 0 stream 1 stream 2 stream 3

Fr
ac

tio
n 

of
 p

ac
ke

ts

(a) Loss rate change: S3 → S4 (b) Correlated loss change: S3 → S4

Figure 7-22: Comparing losses on the streams in S3 with losses in S4.

The introduction of X4 drove down both the correlated losses and overall losses

for stream 0. Figures 7-21 and 7-22b show that the fraction of correlated losses in S4

was roughly two-thirds the fraction of such losses in S3. Additionally, as figure 7-22a

shows, reducing the correlated losses on stream 0 caused the overall loss rate to fall.

The change in the loss rate was about twice the change in the correlated loss rate.

X4 caused ADU’s from stream 0 to be spread out over the GPRS channels to reduce

correlated losses (see figure 7-23). In S3, stream 0 ADU’s were concentrated on the

medium-latency cdma2 channel because of X1. When a stream’s ADU’s are transmit-

ted on the same channel, multiple ADU’s from that stream can be lost together in
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Figure 7-23: Channel usage in the experiment S4. Compared to S3, almost 10% of
the stream 0 ADU’s are moved from the cdma2 channel and spread over the GPRS

channels, in order to reduce correlated losses.

a channel burst-loss. Because of X2 and X3, displacing stream 3 ADU’s from cdma1

would have reduced the overall utility. Stream 0 ADU’s were therefore transmitted

on the GPRS channels. The objective X1 was not met for any GPRS transmission slots

due to their high latencies, but the utility gained from uncorrelated losses (X4) offset

the utility lost by raising the latency of some ADU’s.

Figure 7-20b shows the latency distributions of the four streams in S4. In S4, the

ADU latency distribution of stream 0 was still centered at a low latency, but compared

to S3, it had a longer tail. The use of the GPRS channels to reduce correlated loss

caused the upper quartile latency of stream 0 to rise above the 700ms goal from X1.

We found that correlated losses could be reduced further by tweaking X4. For

instance, using 150 instead of 125 halved correlated losses for stream 0, but shifted

the median latency for that stream up by 200ms. Using a value of 300 caused X4 to

dominate the policy for stream 0, causing all streams other than stream 3 to have the

same latency distribution. Using 300 in X4 implied that stream 0 received as much

utility by avoiding a likely correlated loss as it did by using a slot with an expected

latency of 400ms. X1, X2 and X3 together prevented X4 from displacing stream 3 from

the low-latency slots.

An optimal scheduler would probably not be able to do much better. Ignoring
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the use of temporal spacing, spreading out stream 0 ADU’s onto the high-latency

low-loss GPRS channels is probably optimal. X3 and X2 effectively reserve the low-loss

low-latency cdma1 for stream 3. Therefore stream 0 correlated losses can only be

reduced by interleaving that stream’s ADU’s on cdma2 and the GPRS channels. .

7.3 Impact of Varying Scheduler Look-Ahead

To quantify the effects of using phantom txSlot’s, we ran a large number of simulated

experiments, in which we varied the scheduling cycle period and the look-ahead time.

We used a single low-latency objective similar to X312, four streams and the earlier

channels. We set the loss rates and latency variances to zero on all the channels

to keep the experiments simple. The mean latency achieved by X3 was used as the

metric of scheduler accuracy.

Without the use of phantom txSlot’s the random-walk scheduler can degenerate

to perform as badly as the randomized-round-robin scheduler. For example, if the

cycle period is 50ms, most scheduling cycles might never consider the GPRS slots as

candidates for less important ADU’s. This is because the CDMA channels each generate

one slot every 48ms13 and the GPRS channels each generate one slot every 279ms14.

We were interested in how low an average latency the scheduler would provide to

the only latency sensitive stream. Figure 7-24 shows how this average ADU latency

varied with the two scheduler parameters (cycle period and look-ahead duration).

Our experiments demonstrate that some look-ahead is advantageous. With no

look-ahead and a scheduling period less than 200ms, the random-walk scheduler per-

formed almost as badly as the randomized-round-robin scheduler. Adding look-ahead

made the scheduler perform significantly better. As we increased look-ahead, for all

the cycle periods in figure 7-24, the accuracy of the scheduler initially improved. This

improvement was dramatic for cycle periods less than 500ms. Look-ahead periods

12In these experiments we replaced 700 with 500 in the objective, to make it so that the objective
would not be met on cdma1.

13120 kbits/sec with 768 byte packets.
1420 kbits/sec with 768 byte packets.
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Figure 7-24: The results of varying look-ahead in the random-walk scheduler with
a solitary low-latency objective. The graphs show—for various scheduling cycle
periods—the mean ADU round-trip-time for the stream with the objective. The
upper-bound of 580ms is the mean RTT with a randomized-round-robin scheduler.

greater than 280ms15, didn’t seem to increase the accuracy of the scheduler as much.

In figure 7-24, all the graphs show that additional look-ahead stops being useful

at some point, and beyond that point the mean RTT begins to rise. We believe

this has to do mainly with the details of our implementation: the stream bandwidth

constraints cause the scheduler to make sub-optimal decisions if it determines that

some ADU’s have been delayed in phantom slots for too long. Furthermore, because

of the nature of the bounded random walk used by our scheduler, we expect scheduler

accuracy to deteriorate when the number of phantom slots becomes too large. With

more slots, the random search covers a smaller fraction of the possible schedules, so it

15One phantom slot per GPRS channel.
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is less likely to find the better schedules. Nonetheless, figure 7-24 clearly shows that

even a large amount of look-ahead is much better than having no look-ahead at all.

These graphs plot the mean network latencies for stream ADU’s, not the actual

latencies experienced by the application. Actual latencies include the queuing delays

within the Horde library. Longer scheduling cycle periods can reduce the rate at

which streams are serviced, increasing the queuing delay.

With respect to overall ADU latency, a shorter scheduling cycle period is preferable

to a longer period. For instance, while using a 500ms cycle period without look-ahead

can lower the network latency of the stream reasonably well, the queuing delay is likely

to significantly delay transmissions. A transmission slot may be delayed up to 500ms

before having an ADU assigned to it.

Processing cost concerns may dictate that a very small scheduling cycle period

cannot to be used. In our earlier experiments, S0 through S4, we had used a 100ms

cycle period with look-ahead in the neighbourhood of 300ms.

7.4 Network Channel Managers: CDMA2000 1xRTT

This section sketches out the techniques that can be used to implement a Horde

network channel manager optimized for CDMA2000 channels. This implementation

incorporates a congestion control mechanism that looses fewer packets than TCP-

style AIMD in the steady-state and seems to do as well when the channel is not

providing a stable bandwidth. Furthermore, we outline effective channel prediction

mechanisms that work well for CDMA2000 channels.

This CDMA2000 manager would not necessarily work well for other types of chan-

nels. Both our congestion control and latency prediction mechanisms make use of the

fact that distinct queuing artifacts are normally visible in a sequence of round-trip-

times for back-to-back packets on a CDMA2000 channel (see figure 7-25 and appendix

A). These kinds of artifacts are normally not present on other types of channels.

Other researchers have proposed congestion control schemes optimized for GPRS

channels [38, 15]. Such schemes can be incorporated into the GPRS channel manager.
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Figure 7-25: Queuing on a CDMA2000 channel using a constant-bit-rate sender.

7.4.1 Congestion Control: verb

We outline a congestion control scheme for CDMA2000 channels that performs better

than generic AIMD congestion control when the channel is stable (e.g., when station-

ary) and about as AIMD the same when the channel is unstable. Our main goal is

to minimize losses and avoid throughput oscillation on a stable channel.

The verb implementation is meant to be a proof-of-concept (designed and imple-

mented over three days). There is significant room for improvement. We discuss it

here to demonstrate that a channel specific congestion control scheme can outperform

generic congestion control by using a priori knowledge about channel characteristics.

verb provides a high average goodput16, without oscillating unnecessarily when

the channel is stable17. Figure 7-26 shows the measured goodput achieved by different

16Goodput here is the number of bytes whose reception was successfully acknowledged by the
network peer.

17verb parameters allow trade-offs to be made between steady state packet losses and the aggres-
siveness of the bandwidth probing. The parameters can be changed dynamically while the channel
manager is running, from the horde daemon terminal window. verb parameters can be optimized
for whether the application is mobile or stationary.
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Figure 7-26: Comparing verb goodput to other congestion control schemes. This
graph shows the distribution of a windowed-average for each scheme.

congestion control schemes on a real CDMA2000 channel. The median goodput of verb

when stationary is comparable to the average goodput during a bulk TCP transfer.

Figure 7-27 shows that the goodput does not vary as much as an AIMD scheme

would (e.g., see figure 7-1), primarily because verb does not back off from the 120

kbits/sec sending rate unless the network can no longer support such a high rate.

When moving, verb varies about as much as a naive binomial congestion control

implementation [11] does when stationary, but verb has a higher median goodput.

Raw UDP gives us the lowest median goodput; most packets are lost. The achieved

UDP rate is the same whether we send at a constant-bit-rate of 60 or 120 kbits/sec.

It is possible that senders who refuse to back-off are penalized by the base-station

we were next to during these experiments. Another possibility is that a high sending

rate pushed the CDMA2000 channel into an abnormal network state (appendix A), and

without back-off the channel did not recover.

verb uses a coarse timer to periodically reset it’s sending rate to the measured

goodput from the previous period. The notion is to use feedback to stabilize to a

sending rate to a rate not greater than the available bandwidth. In this way verb

uses increasing packet round-trip-times as a signal that queues in the network are

building up, backing off preemptively instead of waiting for a loss to occur. This

avoids the unnecessary losses resulting from the constant probing used by generic

AIMD TCP-style network congestion control. Using latency as a congestion signal

is not a new idea [13, 33], but verb has been tailored to our CDMA2000 channel, by

92



 0
 20
 40
 60
 80

 100
 120
 140

 0  200  400  600  800  1000  1200  1400

G
oo

dp
ut

 (k
bi

ts
/s

ec
)

Time (s)

 0

 20

 40

 0  200  400  600  800  1000  1200  1400

Pa
ck

et
s 

lo
st

Time (s)

Figure 7-27: Packet losses and goodput in a stationary experiment using verb on an
actual CDMA2000 1xRTT channel.

incorporating constant factors derived from our knowledge about such channels.

When the verb sending rate stabilizes—when verb is not sending more data than

the network can support—verb tries to probe for additional bandwidth. There are

two ways verb probes for bandwidth: non-aggressive AIMD; and by trying to move

to the next throughput plateau.

verb can be parameterized with a set of plateaus18. The algorithm tries to stabilize

the sending rate around a plateau. It always tries to edge upwards, using AIMD within

the plateau boundaries, restrained by feedback containing increasing packet latencies.

Once it has stabilized, the algorithm tries to ramp up, to see if the next plateau

is viable. Once it has reached the top plateau, bandwidth probing is essentially

turned off, avoiding unnecessary packet losses. Probing for more bandwidth than the

CDMA2000 specification supports is pointless.

Figures 7-27 and 7-28 show the dynamic behaviour of a network channel manager

using verb congestion control for a CDMA2000 channel in both stationary and mobile

18For CDMA2000, plateaus placed roughly 5 kbits/sec apart, ranging from 5 to 133 kbits/sec.
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Figure 7-28: Measured packet losses and goodput in a mobile experiment using verb.

settings19. A CDMA2000 channel’s raw bandwidth varies significantly due to motion

(see appendix A), so there is not much verb can do to stabilize the throughput when

the terminal is moving.

7.4.2 Expected Latencies for txSlot’s

An objective driven scheduler may rely heavily on the expected latencies contained

within txSlot’s to build transmission schedules that accurately reflect application

policy. Inaccurate predicted latencies are likely to be a serious handicap.

Both in normal and abnormal network conditions, a generic TCP-style exponentially-

weighted-moving average (the srtt) is a reasonable way to predict future latencies

on a CDMA2000 channel. Figure 7-29 shows how well such an estimator tracks mea-

sured packet round-trip-times in the verb experiments. The earlier experiments (E1

and S1 through S4) used the srtt to fill in the txSlot latency expectations. The

19Some annotations for figure 7-28: [80s-120s] crossing the Harvard bridge; [200s] goodput dips at
underpass near BU; [500s] goodput maxima when passing the starbucks near the Prudential; [750s]
blackout on corner of Dartmouth and Comm. Ave.; [1050s] dip when crossing the Harvard bridge.
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experimental results show that, while often inaccurate by over 100ms, this estimator

does not cause any serious problems for the scheduler.

Nevertheless, the queuing effects on the channel (figure 7-25) and the presence of

verb congestion control, allow us to build a better latency predictor than the srtt.

On a CDMA2000 channel, if the last packet-round-trip time was low, it is highly likely

that the next one will be higher; and if the last round-trip-time was high, it is likely

that verb will back-off and the next round-trip-time will fall as the queues drain.

The round-trip-time for packet i contains information about the round-trip-time

for i+k, for small k. To see this, we can condition the probability distribution of the

latency of the (i + 1)’th packet on the latency of the i’th packet:

pk(x | z) = P (rtti+k = x | rtti = z)

Figure 7-30 shows the above distribution, derived from the stationary verb experi-

ment trace, for some values of z and k = 1.

A priori knowledge of the pk(x | z) distribution can be used to augment the srtt

predictions. The srtt is often inaccurate by hundreds of milliseconds in figure 7-29.

Using pk(x | z) has the potential to narrow this gap.

7.5 Summary

Through real and simulated experiments this chapter demonstrated that the random-walk

objective driven scheduler implementation can be used to modulate the network

quality-of-service provided to application data streams. This chapter also demon-

strated that network look-ahead is important for an accurate scheduler with low

queuing delays. Additionally, this chapter introduced verb congestion control, opti-

mized for CDMA2000 channels, demonstrating that channel-specific congestion control

can be superior to generic congestion control. Finally, we discussed how a priori

knowledge about the CDMA2000 channel’s latency distributions can be used to build

an improved latency estimator for that channel.
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Figure 7-29: Comparison of how well an exponentially-weighted moving-average (the
srtt) tracks the actual packet rtt on a CDMA2000 channel, when the RTT’s are (a)
normal; and (b) elevated. In both cases, the srtt is often inaccurate by over 100ms.
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Figure 7-30: Conditioned RTT probability distributions derived from the station-
ary verb experiment traces. These graphs show the distributions of the conditional
probabilities p1(x | z) = P (rtti+1 = x | rtti = z), where z in each graph is given
by the rtt(now) line. These graphs demonstrate that the current RTT can provide
significant information regarding what the next RTT will look like.
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Chapter 8

Conclusions

In this chapter we conclude the thesis with a summary of its goals and contributions

followed by proposed improvements and directions for future work.

8.1 Goals and Contributions

Our research leverages the cellular wireless data networks and the technique of inverse

multiplexing to develop flexible user-space networking middleware. This thesis devel-

oped the Horde middleware, discussing its design and evaluating the performance of

a preliminary implementation on both real and simulated channels.

Horde facilitates flexible network striping in WWAN environments for a diverse

range of applications. Horde is unusual in that it separates the striping policy from

the striping mechanism. It allows applications to describe objectives for each stream

that the striping mechanism attempts to satisfy. Horde can be used by a set of

application data streams, each with its own QoS policy, to flexibly stripe data over a

highly heterogeneous set of dynamically varying network channels.

Horde is most useful when dealing with:

Bandwidth-Limited Applications Situations in which applications would like to

send more data than individual physical channels can support, justify both the

network striping operation and the additional processing cost associated with

Horde’s QoS modulation framework.
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Sensitivity to Network QoS If no application data streams are sensitive to net-

work QoS, Horde’s QoS modulation framework becomes redundant.

Heterogeneous and Dynamically Varying Network Channels With such chan-

nels, the scheduler has an opportunity to significantly modulate observed QoS.

Additionally, Horde’s approach is most useful when the available network chan-

nels have characteristics that are predictable in the short term. As we report

in appendix A, public carrier WWAN channels are of this nature.

Heterogeneous Data Streams When different streams gain value from different

aspects of network performance, trade-offs can be made when allocating network

resources among those streams. An example is an application in which some

streams value low latency delivery and others value low loss rates.

The primary challenge in the design and implementation of the Horde architecture

was deciding how applications should express their goals and how these goals should

be translated into data transmission schedules. We wanted to give the application

control over certain aspects of the data striping operation (e.g., applications may

want more urgent data to be sent over lower latency channels or more critical data

over higher reliability channels) while at the same time shielding the application from

low-level details.

In this thesis, we described the basic abstractions upon which Horde is built.

The two key abstractions are transmission tokens (txSlot’s) and policy objective’s.

The txSlot’s are generated by Horde to abstractly capture the expected short-term

performance of the network channels. The objectives are written by application

programmers to abstractly specify network-QoS related objectives for individual data

streams. The Horde scheduler uses txSlot’s and objectives to derive transmission

schedules that provide better value to applications than do conventional scheduling

algorithms.

Horde is ambitious: the problem of deriving good transmission schedules from

application objectives is a complex one. We have implemented a simple scheduler

that can be modulated by objectives. Experiments with this initial implementation
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confirm our belief that the kind of QoS modulation Horde aims to achieve is both

realistic and advantageous to actual applications.

In summary, our research makes the following major contributions:

Inverse Multiplexing Middleware

This thesis describes the design and implementation of the Horde middleware, which

provides applications with an inverse multiplexing subsystem. Horde is designed to

be flexible and modular, allowing application designers to optimize for many different

types of networks (e.g. wired, wireless, CDMA, 802.11) and also allowing for different

types of packet schedulers to be written for the middleware. We use a preliminary

implementation of Horde to explore notions about dealing with channel heterogeneity

and application policy.

Separating Striping Policy from Mechanism

We present techniques to separate striping policy from the actual mechanism used and

evaluate how well our striping mechanism is able to interpret the policy expressed by

applications. Horde provides an objective specification language that allows QoS pol-

icy to be expressed for data streams. We have implemented a basic packet scheduler

whose striping policy can be modulated using such objectives. Through real-world

experiments and simulation we show that a system in which applications modulate

striping policy is feasible. Furthermore, our experiments demonstrate that the ability

to modulate striping policy provides tangible benefits to applications.

Heterogeneous and Unstable Channels

Horde has been designed from the ground-up with the assumption that the set of

channels being striped over are not well-behaved and can have significantly different

channel characteristics that may change unexpectedly (e.g. due to motion relative to

a base-station). Horde uses channel-specific managers to provide congestion control

and channel prediction logic for each available channel. We argue that congestion

control belongs below the striping layer and should be performed in a channel-specific

manner because of the idiosyncrasies of WWAN channels.
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WWAN Channel Characteristics

Through a number of real-world experiments and discussions of two different WWAN

technology standards, we explore the characteristics of real WWAN channels. Not

part of the core thesis, these experiments are documented in appendix A. We show

that CDMA2000 1xRTT and GSM/GPRS channels are handicapped by low bandwidth,

high and variable round trip times, occasional outages, considerable burstiness, and

much instability when moving.

8.2 Directions for Future Work

Much additional work is possible within the context of this thesis. The Horde im-

plementation at this point is more of a proof-of-concept than a deployable, real-world

system. We are continuing our work on it.

Two possibilities for future work are obvious:

Scheduling Algorithms

The random-walk scheduler presented in chapter 7 was purposefully meant to be as

simple as possible. Our goal was to show that even a very simple algorithm can

provide enough benefits to justify the Horde QoS modulation framework. Simplicity,

however, led to sacrifices being made in terms of the scheduler’s accuracy.

We have experimented with more efficient schedulers. Some use heuristics, based

on the objective language’s semantics, to find good schedules. We are optimistic that

a better scheduler implementation can both reduce the processing requirements of

the striping subsystem as well as yielding transmission schedules closer to optimal.

Telemedicine Application

The application that initially motivated our work remains, as yet, incomplete. This

thesis tackles many computer science problems not directly related to building the

telemedicine system we outlined in chapter 1. Nonetheless, having the Horde middle-

ware provides a good basis on which to build upon in the future.
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Appendix A

WWAN Channel Characteristics

This chapter characterizes, at a high level, the characteristics of the service provided

by WWAN’s, in the greater-Boston area. We document a number of our end-to-

end WWAN experiments. We also refer to previously published results. We restrict

our attention to CDMA2000 1xRTT and GSM/GPRS channels. Where possible, we offer

explanations for interesting experimentally observed behaviour. However, we are not

attempting to build a definitive model for these WWAN links, nor to explain their

observed idiosyncrasies. Such a detailed digression into the nature of the WWAN

channels is beyond the scope of this thesis.

Given the ubiquity of WWAN’s and the small number of core WWAN IP packet-

data technologies being used (mostly CDMA2000 and GSM/GPRS) throughout the world,

one would expect there would be a reasonable amount of publicly available infor-

mation about the performance characteristics of these networks. Details about the

underlying networking technologies are well documented [25], but performance data

is notoriously sparse.

Part of the problem is that the quality of a WWAN link is highly dependent

not only on the technology used, but perhaps even more so on the way the provider

has decided to set up the network. For example, the distribution of a provider’s

base-stations can significantly impact the quality of service experienced by a WWAN

interface using that provider. Indeed, as the average cell-phone user must be acutely

aware, the quality of a cellular network can vary dramatically from place to place,
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even over short distances. With vehicular motion, base-station hand-offs, Doppler and

other electromagnetic effects such as multi-path fading can cause further disruptions

in the channel.

Presumably, WWAN providers frequently measure and optimize the performance

of their own data networks, but it is not in their interest—given the nature of the

market—to disclose detailed performance estimates. In fact, estimates published by

providers are often hyped—theoretical optimals and word-play—in order to entice

consumers into adopting the more costly data service plans. Some publicly available

data provides information on GSM/GPRS channels [14, 36] and postings in online fo-

rums can help determine what average behaviour can be be expected from different

providers in different cities. However, there is not enough information in these sources

to adequately characterize WWAN links. The discussions in this thesis require a more

detailed characterization.

It is widely accepted that the packet-data services provided by today’s CDMA2000

and GSM/GPRS networks are characterized by low and variable bandwidths and high

and variable round-trip-times. This is confirmed by our experiments. The advertised

bandwidth of GPRS is almost a third the advertised bandwidth of CDMA2000 networks;

and the CDMA2000 standard is expected to provide significantly lower round-trip-times

than the GSM/GPRS standard. Furthermore, given our expectation that Doppler and

multi-path effects will impact CDMA based communication less than TDMA based

communication [25], we expect the performance of GPRS to be affected more than that

of CDMA2000 by motion.

Before delving into the detailed WWAN statistics, figure A-1 shows the mean

throughput obtained by TCP bulk data transfers on the two interfaces. The figure

illustrates both the asymmetry between the upstream and downstream paths in the

GPRS network, and the fact that the CDMA2000 interface provides over six times as

much upload bandwidth as the GPRS interface. Somewhat surprisingly, in these ex-

periments the CDMA2000 interface provides greater upload bandwidth than download

bandwidth. A possible explanation is that the provider equally provisioned both

downstream and upstream paths, but contention for the upstream path is lower.
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Figure A-1: Observed mean TCP throughputs for bulk data transfers using different
WWAN interfaces. Each set shows the throughputs obtained for three independent
bulk data transfers for: downloading data from an MIT host over the CDMA2000

interface; uploading to MIT from the CDMA2000 interface; downloading from MIT over
the GPRS interface; and uploading data using GPRS. The GPRS interface is significantly
asymmetric and the CDMA2000 interface provides much more bandwidth than GPRS.

WWAN links are primarily used for web browsing, and service providers have

optimized their networks keeping this in mind. Some providers and cell-phones pro-

vision resources asymmetrically, allocating more resources to handle downloads and

fewer resources to handle data uploads. This results in observed instances, such as in

figure A-1 where downstream bandwidth can be as much as three times as large as

upstream bandwidth. Additionally, the preeminence of web browsing seems to have

led to optimizations for TCP-like bursty traffic (as argued in §A.3.5).

Our experiments almost exclusively focus on the characteristics of the upload path.

Our telemedicine application rarely uses the download path.

This chapter is structured as follows: §A.2 sketches out the basic experimental

setup; §A.3 investigates the characteristics of a CDMA2000 data link; §A.4 exam-

ines the characteristics of a GSM/GPRS data link; §A.5 discusses experiments with

multiple interfaces operating in close proximity; and §A.1 summarizes the chapter,

providing a high-level view.
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A.1 Summary

Before continuing, we present summarized characterizations of the WWAN channels.

CDMA2000 1xRTT When stationary, the CDMA2000 interface provides around

130kbits/sec of upload bandwidth with little variance (σ = 5). Vehicular mo-

tion causes the quality of the link to deteriorate: while moving it provides around

120kbits/sec with a high variance (σ = 22). Packet round-trip-times are high, do not

seem to be affected by motion, and are dependent on packet size. For small TCP-

SYN packets, we measured a mean round-trip-time of 316ms; and for large packets,

we measured mean round-trip-times close to 800ms. traceroute’s show that the bulk

of this transmission delay (over 90%) occurs inside the WWAN service provider’s net-

work. When sending a sequence of back-to-back packets, we found consistent queuing

artifacts in the resulting packet times: latencies were periodic, gradually decreasing

from a maxima and then jumping back up. Losses on the CDMA2000 channel were

bursty. We experienced no disconnections, but temporary communication blackouts

occurred, which seemed to depend entirely on the interface’s spatial location. We

also observed many periods of elevated round-trip-times during which packet laten-

cies jumped well above two seconds.

GSM/GPRS When stationary, the GSM/GPRS interface can provide around 25kbps

of upload bandwidth with little variance (σ = 0.7). Vehicular motion causes the qual-

ity of the link to deteriorate rapidly: when moving it provides around 19kbits/sec

with a very high variance (σ = 5.3). Packet round-trip-times are high, are affected

significantly by motion, and are dependent on packet size. The minimum average

packet round-trip-times measured on stationary GPRS interfaces were around 550ms

for small TCP-SYN packets (with vehicular motion these packets took 200ms longer).

For large packets (768-bytes and up) and stationary transmitters, average round-trip-

times ranged from 800ms to 1500ms depending on packet size. tcptraceroute’s show

that the bulk of this transmission delay occurs inside the WWAN service provider’s

network, which makes sense since the entire GPRS providers network shows up as a
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single IP hop. Losses on the channel were bursty. We experienced frequent discon-

nections, but most were temporary, requiring nothing more than than a renegotiation

of the pppd session. Sometimes these disconnections were more serious, and we had

to move to a new location before reconnecting.

Multiple Channels Multiple CDMA and GSM/GPRS channels can be aggregated using

co-located interfaces connected to a laptop. Since these channels do not seem to

exhibit strong correlations in their throughput fluctuations, the aggregate channel

can be more robust than individual channels.

‘Optimal’ Packet Size 768-byte payload lengths appear to be optimal for both

types of WWAN channels. Smaller packets are inefficient, and result in low through-

puts. Larger packets tend to have larger average round-trip-times.

A.2 Experimental Setup

All our experiments were carried out using a Linux laptop and hosts on the MIT

ethernet. The laptop was running an updated 2.6.x kernel from the Fedora Core 2

distribution. The Linux point-to-point protocol daemon (pppd) was used to establish

connections over each WWAN interface.

CDMA2000 1xRTT For the CDMA2000 experiments, we used an Airprime-5220

PCMCIA card, enabled with a Verizon wireless data service plan which used the

CDMA2000 1xRTT option on the card (the card can also connect to 1xEV-DO networks).

The Verizon plan gave us a routable IP address and the ability to send and receive

ICMP, UDP, and TCP packets.

GSM/GPRS For the GPRS experiments we used multiple Nokia 3650 phones en-

abled with T-mobile data service plans. We had to connect to the phones using blue-

tooth, introducing an additional wireless hop. We used a bluetooth module plugged

into the USB port of the laptop to simultaneously connect to a maximum of four
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Figure A-2: The Boston-West safe-ride route.

Nokia phones. pppd was configured to work over the rfcomm devices created by the

Linux bluetooth subsystem. The effects of the bluetooth link are negligible in these

experiments; the GPRS effects dominate. The GPRS link has round-trip-times and vari-

ances some orders of magnitude greater than the bluetooth link, and has an order of

magnitude lower available bandwidth and variance.

Unfortunately the T-mobile GPRS service passed through a NAT, so we did not

have routable IP addresses. Although we could send UDP packets from these inter-

faces, we could not receive UDP packets using them.

Motion Experiments Experiments to determine the effects of motion were carried

out by placing the laptop inside the MIT ‘Boston-West’ safe-ride (see figure A-2). The

safe-ride is a shuttle service that follows a fairly constant path, making frequent short

stops, moving from the MIT campus into Boston over the Harvard bridge, east onto

the Boston University campus, and then back to MIT over the BU bridge. Since all

motion experiments were carried out late in the evening on a weekday or very early

in the morning, no adverse traffic conditions hampered the motion of the vehicle.
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A.3 CDMA2000 1xRTT Link Characterization

A.3.1 Background

This section provides an overview of the CDMA2000 standard. More detailed descrip-

tions of the standard can be found elsewhere (e.g., [25, 1]).

Based on the earlier IS-95 standard, the CDMA2000 standard uses a wide-band

spread-spectrum Radio Transmission Technology (RTT), and code division multiple

access (CDMA). CDMA2000 satisfies the bandwidth requirements for the International

Mobile Telephony 2000 (IMT-2000) standard, often perceived as the third-generation

(3G) cell-phone system standard. A number of variants of CDMA2000 have been de-

veloped: 1xRTT and 3xRTT use different radio technologies; 1xEV-DO and 1xEV-DV are

both high data rate evolutions of the basic 1xRTT architecture. In the US, 1xRTT is

widely deployed, with two of the major service providers (Sprint and Verizon) us-

ing CDMA2000 1xRTT for their wireless networks. Deployment of 1xEV-DO has begun,

but is limited to a small number of cities, primarily because of a lack of demand.

1xRTT provides average throughputs of around 120kbits/sec in real-world networks,

and 1xEV-DO and 3xRTT have the potential to provide in excess of 300kbits/sec.

The use of CDMA technology should provide better quality of service than narrow-

band systems, such as GSM, by providing robust operation in fading environments and

transparent (soft) handoffs. CDMA uses multi-path fading effects to enhance the

quality of the received signal; conversely, in narrow-band systems fading effects can

cause substantial degradation in the quality of the received signal.

The present CDMA2000 1xRTT technology supports a peak theoretical throughput

of 153.6 kits/sec, but this peak can vary based on how providers decide to place

and configure their base-stations. The underlying radio interface provides a number

of fundamental physical channels connecting the mobile device to the base station,

each having a bandwidth ranging from 750bits/sec to 14.4kbits/sec. A supplemental

channel (SCH) is also provided, having up to 16x the bandwidth of the fundamen-

tal channels, a maximum of 153.6 kbits/sec (16 x 9.6kbits/sec). The SCH has the

additional benefit of improved modulation, coding and power control schemes.
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As in IS-95, the CDMA2000 physical channels normally use fixed-length transmission

frames of 20ms but CDMA2000 also allows 5ms, 40ms and 80ms frame lengths. Frames

on a CDMA2000 channel can either contain packet data fragments, frames from the

voice encoder, or signaling information. According to the CDMA2000 standard, it is

possible for a data packet to be split among different transmission frames, with other

data (e.g. voice) interleaved between that packet’s fragments.

CDMA2000 assumes that the data being delivered over the SCH’s is bursty and

delay-tolerant traffic; particularly, consisting of small durations of traffic separated

by large durations of no traffic. In such a case, it would be very inefficient to dedicate

a permanent channel to a traffic call, since this would adversely affect voice traffic.

Consequently, SCH’s are designed so that they can be assigned and deassigned at any

time by the base-station. Furthermore, for bursty and delay tolerant traffic, assigning

a few scheduled fat pipes is preferable to dedicating many thin or slow pipes. The

fat-pipe approach exploits variations in the channel conditions of different users to

maximize sector throughput. The more sensitive the traffic becomes to delay, such

as voice, the more appropriate the dedicated traffic channel approach becomes [1].

Unfortunately, there seems to be no way for an application to inform the CDMA2000

interface that the data being sent is delay sensitive, since a standard application

communicates with the CDMA2000 interface through a point-to-point protocol stack.

Finally, the CDMA2000 1xRTT system extensively uses link-layer retransmissions

and forward-error-correction (FEC) for data packets, increasing packet delays and

delay variances, but keeping the bit-error-rate for the channel at a low level.

A.3.2 Network Hops

Figures A-3 and A-4 show the results of running traceroute over the CDMA2000

interface to a host on the MIT network. The asymmetric routing is unsurprising.

The IP-hops inside the Verizon network (*.myvzw.com) show up only in the trace

from MIT. It may be that the Verizon network is set up to ignore ICMP packets

originating from CDMA2000 interfaces.

While there are many hops in the path between MIT and the CDMA2000 interface,
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1 * * *

2 * * *

3 * * *

4 * * *

5 * * *

6 * * *

7 0.so-4-0-0.CL1.EWR6.ALTER.NET (152.63.16.78) 280.440 ms 278.414 ms 339.524 ms

8 0.so-7-0-0.XL1.NYC4.ALTER.NET (152.63.10.21) 285.572 ms 282.523 ms 274.600 ms

9 0.so-6-0-0.BR1.NYC4.ALTER.NET (152.63.21.77) 280.611 ms 322.486 ms 278.545 ms

10 so-0-0-0.edge1.NewYork1.Level3.net (209.244.160.181) 279.618 ms 279.540 ms

278.621 ms

11 ge-2-1-0.bbr2.NewYork1.Level3.net (64.159.4.149) 279.568 ms 419.340 ms 279.603

ms

12 as-2-0.mp2.Boston1.Level3.net (64.159.4.181) 279.584 ms 278.545 ms 380.478 ms

13 ge-11-1.hsa1.Boston1.Level3.net (64.159.4.162) 278.582 ms 273.541 ms 280.604 ms

14 p0-0.mit3.bbnplanet.net (4.24.88.50) 300.576 ms 300.644 ms 299.434 ms

15 NW12-RTR-2-BACKBONE.MIT.EDU (18.168.0.21) 480.354 ms 301.549 ms 299.954 ms

16 W20-575-26.MIT.EDU (18.187.0.45) 299.137 ms 300.514 ms 299.677 ms

Figure A-3: traceroute from the CDMA2000 interface to W20-576-26.MIT.EDU.

1 NW12-RTR-2-W20.MIT.EDU (18.187.0.1) 4.812 ms 0.411 ms 0.339 ms

2 EXTERNAL-RTR-2-BACKBONE.MIT.EDU (18.168.0.27) 0.443 ms 0.529 ms 0.423 ms

3 g3.ba21.b002250-1.bos01.atlas.cogentco.com (38.112.2.213) 0.889 ms 0.873 ms

1.094 ms

4 g0-2.core01.bos01.atlas.cogentco.com (66.250.14.205) 13.014 ms 1.254 ms 13.161

ms

5 p5-0.core01.jfk02.atlas.cogentco.com (66.28.4.118) 6.198 ms 5.972 ms 6.042 ms

6 p4-0.core02.dca01.atlas.cogentco.com (66.28.4.81) 12.217 ms 11.871 ms 11.711 ms

7 p15-2.core01.iad01.atlas.cogentco.com (154.54.2.254) 13.318 ms 12.968 ms 13.194

ms

8 so-0-2-0.edge2.Washington1.Level3.net (4.68.127.9) 12.158 ms 12.279 ms 12.269 ms

9 so-1-1-0.bbr2.Washington1.Level3.net (64.159.3.65) 11.944 ms 12.051 ms 12.166 ms

10 4.68.128.145 (4.68.128.145) 12.269 ms 12.331 ms 12.303 ms

11 so-10-0.hsa2.Newark1.Level3.net (4.68.121.206) 12.405 ms 12.357 ms 12.306 ms

12 h0.verizon3.bbnplanet.net (4.25.108.46) 13.956 ms 13.976 ms 13.765 ms

13 66.sub-66-174-106.myvzw.com (66.174.106.66) 14.434 ms 14.820 ms 14.446 ms

14 14.sub-66-174-107.myvzw.com (66.174.107.14) 14.988 ms 14.288 ms 14.981 ms

15 163.sub-66-174-22.myvzw.com (66.174.22.163) 14.733 ms 15.246 ms 15.101 ms

16 117.sub-66-174-120.myvzw.com (66.174.120.117) 16.645 ms 16.707 ms 16.112 ms

17 * * *

18 78.sub-70-212-131.myvzw.com (70.212.131.78) 4061.946 ms 461.507 ms 278.753 ms

Figure A-4: traceroute from W20-575-26.MIT.EDU to the CDMA2000 interface.
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Figure A-5: Median packet round-trip-times for the traceroute to the CDMA2000 in-
terface from W20-575-26.MIT.EDU. The last IP hop’s latency dominates.

it seems that the last few hops in the Verizon network dominate in determining packet

round-trip-times along the path. From figure A-3, the median round-trip-time by hop

7 is already at 278ms, within 22ms of its final value. From figure A-4, the median

round-trip-time by hop 16 is only 16ms, but spikes to 461ms by hop 18. Figure A-5

plots the median round-trip-times for each hop along the path traced to the interface,

illustrating the dominating effect of the last hops.

It is unclear whether this last hop represents the actual wireless link between

the Verizon base-station and our CDMA2000 interface. It is likely that this single IP

hop actually represents the entire CDMA2000 network, as is the case in GPRS systems

(§A.4.2). In any case, packet latency is overwhelmingly dominated by what the packet

experiences inside the provider’s network.

A.3.3 Link Capacity Estimates

To determine the capacity of the Verizon link, we used pathload and pathrate [29,

18]. Both utilities use packet pair/train dispersion techniques to estimate bandwidth.

pathrate reported an estimated upload bandwidth of 122−160kbits/sec, close to

what we expected based on the CDMA2000 standard. Figure A-6 shows selected parts

of the output from pathrate configured to use the CDMA2000 interface as the sender

and a MIT host as the receiver.
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pathrate run from 70.212.131.78 to ajrak.mit.edu on Tue Aug 24 00:54:26 2004

--> Average round-trip time: 355.8ms

...

--> Capacity Resolution: 38 kbps

-- Phase I: Detect possible capacity modes --

...

-- Local modes : In Phase I --

* Mode: 22 kbps to 59 kbps - 742 measurements

Modal bell: 775 measurements - low : 7 kbps - high : 91 kbps

* Mode: 122 kbps to 160 kbps - 97 measurements

Modal bell: 243 measurements - low : 53 kbps - high : 311 kbps

-- Phase II: Estimate Asymptotic Dispersion Rate (ADR) --

...

-- Local modes : In Phase II --

* Mode: 56 kbps to 94 kbps - 427 measurements

Modal bell: 497 measurements - low : 21 kbps - high : 178 kbps

--> Asymptotic Dispersion Rate (ADR) estimate: 88 kbps

--> Possible capacity values:

122 kbps to 160 kbps - Figure of merit: 91.60

-------------------------------------------------

Final capacity estimate : 122 kbps to 160 kbps

-------------------------------------------------

Figure A-6: Extracts from the output produced by pathrate using the CDMA2000

interface as the sender and an MIT host as the receiver.

pathrate reported a download capacity estimate of 131-133 kbps. In this down-

stream case pathrate was able to increase its capacity resolution to 2 kbps and

terminate quickly because of low measurement noise. pathload reported available

bandwidth to be 0.14 Mbps and a MTU of 1472 bytes.

A.3.4 Upload Bandwidth

We configured the CDMA2000 interface to send as many UDP packets with 1400 byte

payloads as possible to a host on the MIT network. At the receiver, we logged the

arrivals and used a 5-second sliding window to average the arrival rate. This arrival

rate is an estimate for the link’s available raw UDP bandwidth, or goodput. The

plots in figure A-7 show how the arrival rate varied during two different experiments.

Stationary When stationary, the CDMA2000 link provided a relatively stable band-

width. The mean was around 129kbits/sec, with a standard deviation that was about

3.5% of the mean. Figure A-7a shows how the available bandwidth varied with time.
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Figure A-7: Measured raw UDP upload bandwidth on a CDMA2000 interface when (a)
stationary (µ = 129.59, σ = 4.57); and (b) moving (µ = 119.45, σ = 21.49).

Moving Figure A-7b shows that the CDMA2000 link behaved very differently when

the interface was moving. Motion causes the standard deviation to be multiplied

almost by a factor of 5 while the average bandwidth dropped by around 10kbits/sec.

CDMA2000 1xEV-DO Unfortunately, Verizon does not offer its high data rate

1xEV-DO service in Boston. Some relatively informal bandwidth experiments with the

1xEV-DO networks—while on vacation in New York and Washington DC—revealed

that using the Verizon 1xEV-DO networks more than doubled the download bandwidth

over 1xRTT, but did not provide any perceptible increase in upload bandwidth.
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A.3.5 Packet Round-Trip-Times

We conducted a number of CDMA2000 latency related experiments whose results are

documented below. The average packet round-trip-times measured on the CDMA2000

link were high (the minimum measured average was around 315ms). The round-trip-

time distribution did not seem to be affected by vehicular motion. Finally, the kind of

dynamic variation that was observed in the packet latencies implies that the channel

is optimized for bursty traffic.

ICMP Pings We started by measuring the round-trip-times for single, small ICMP

packets using the ping utility. A small 56-byte ICMP packet was sent to a host on

the MIT network, echoed back, and when it returned the round-trip-time was logged

and another packet was sent out.

Figures A-8a and A-8b show how the round-trip-times we measured were dis-

tributed when the transmitter was (a) stationary and (b) when it was moving. Mo-

tion did not seem to affect the round-trip-times: the two distributions are similar;

and the moderate differences may be because these are different experiments. Figure

A-9 shows how round-trip-times varied with time in these two experiments.

It is notable that the distributions are bi-modal, the first mode occurring around

375ms and the second mode at around 550ms. For the overwhelming majority of the

round-trip-time samples, if the packet i had a low round-trip-time (around 350ms),

then the packet i + 1 had a high round-trip-time (around 550ms). This behaviour

is visible in figure A-9. Figure A-8d shows the distribution of the inter-arrival times

of the pings as they return to the CDMA2000 interface. The secondary peaks in the

distribution of figure A-8d are equally spaced at 20ms intervals, probably because the

smallest frame size used for data by CDMA2000 is 20ms in duration (§A.3.1).

Figures A-9a and A-9b plot how round-trip-times varied with time in these ex-

periments. The inter-arrival time distribution is bi-modal because of the saw-tooth

pattern seen in these figures. We consider the causes for this saw-tooth pattern later,

when we examine the latencies observed by sustained UDP packet trains.
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Figure A-8: Observed distributions of single packet round-trip-times for small packets
on a CDMA2000 link when (a) the transmitter is stationary; (b) when the transmitter
is moving; (c) when the transmitter is stationary, but the packets; are TCP-SYN
packets instead of ICMP packets; and (d) The distribution of ∆rtt = (rtti+1 − rtti)
for all ICMP round-trip-times from (a) and (b).

TCP-SYN Pings using the tcpping utility we measured the round-trip-times for

single, small TCP-SYN packets . A small SYN packet was sent to a host on the MIT

network, ACK’d, and when the SYN-ACK returned the round-trip-time was logged

and another SYN packet was sent out.

The distribution of round-trip-times measured using TCP-SYN packets, in figure

A-8c, is very different from the earlier ICMP distributions. Notably, there is only

a single mode. Furthermore, the mean round-trip-time is over 150ms shorter than

it was for the ICMP pings. Since the ICMP and TCP-SYN packets are around the

same size, the Verizon network is prioritizing the delivery of TCP-SYN packets.
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Figure A-9: Dynamic behaviour of single packet round-trip-times for small ICMP
packets on a CDMA2000 link when the transmitter is: (a) stationary and (b) moving.

UDP Packet Trains We generated UDP packets at a constant rate—spacing each

packet pair equally far apart in time. These packets were sent over the CDMA2000

interface to a host on the MIT network, and the MIT host acknowledged each received

packet. Using these acknowledgments we logged round-trip-times. We experimented

with multiple packet sizes and packet generation rates. As we discuss later, increased

packet sizes tend to elevate round-trip-times.

Figure A-10a shows how the round-trip-times varied in a typical experiment. The

sawtooth pattern from the ping experiments appears again, but the round-trip-time

distribution (figure A-11a) is no longer bi-modal. Now the latencies gradually decrease

until a minima and then increase quickly to the maxima, instead of swinging rapidly.
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Figure A-10: Observed dynamic behaviour of round-trip-times when UDP packet
trains are sent using a high rate packet generator, under varying network conditions:
(a) normal network conditions; (b) abnormal network conditions can triple times.

The packets were generated with a constant temporal spacing, so figure A-10a

shows a queuing effect causing the round-trip-time oscillation: the gradually decreas-

ing round-trip-times can be explained by a draining queue. We are not sure why this

happens; there are a number of possible explanations. It may be that the CDMA2000

network is using TCP to tunnel data packets between the base-station and the gate-

way into the provider’s data network (GPRS implementations are known to do this).

Alternatively, it may be that the radio link protocol or driver on the Airprime card

waits for a queue of packets to build up before reserving the SCH channel with the base

station to send the data. Finally, the queuing effect could be the result of the schedul-
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Figure A-11: Observed distribution of round-trip-times for packets generated at a high
constant rates, with various packet sizes, over the CDMA2000 link: (a) distribution of
round-trip-times; (b) distribution of inter-arrival times.

ing algorithms used at the base-station to manage the traffic from different senders.

This periodic round-trip-time variation would probably not affect the performance of

TCP, because of its usage of moving averages.

Figure A-11b shows the distribution of inter-arrival times for the packet acknowl-

edgments. Most of the inter-arrival times are below zero; the majority of the packets

were on the downward edge of the sawtooth. This makes sense for the packets be-

ing buffered and sent out in bursts: the packet at the head of the burst will have

the highest round-trip-time, being delayed the longest, but since the queuing will

have compressed the spacing between this packet and the others later in the burst,

round-trip-times will decrease as the burst progresses.
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A.3.6 Packet Size

We conducted a number of experiments (summarized in figure A-12) to investigate

the impact of picking a specific packet size on the performance of the CDMA2000 link.

The CDMA2000 interface allows a maximum transmission unit of 1472 bytes.

UDP Throughput Figure A-12a shows the achievable goodput when UDP packets

were sent at a constant rate defined by the following formula:

ratesender =
bitratemax

sizepacket

≈
130kbits/sec

sizepacket

Where sizepacket is the size of the packet payload; and bitratemax is based on the

maximum observed UDP goodput on the channel from our earlier experiments.

The least squares fit obtained by considering only small packets (payloads smaller

than 384 bytes) implies that the goodput rises linearly as packet size is increased.

The trend probably exists because small data packets are less efficient in throughput

terms than medium or large ones.

The least squares fit obtained by considering only medium and large packets (384

bytes and above) shows that goodput falls, slightly, as packet size is increased. This

weak trend may be an artifact. It could also be explained by the fact that larger

packets may experience more wireless frame losses, increasing their round-trip-times

as link-layer retransmits are used to mask these losses.

Latency Figure A-12b shows how packet round-trip-times were affected by different

packet sizes, over a large number of experiments. For each packet size, the error bars

plot the median, the 75th percentile and the 25th percentile round-trip-times from

all the experiments. The curve shown on the figure is a function that approximates

how the median round-trip-times vary with packet size. As packet sizes are decreased

below 256 bytes, the round-trip-times also decrease. Round-trip-times are the same,

on average, for packet sizes ranging from 256 to 1024 bytes. As packet sizes are

increased beyond 1024 bytes, round-trip-times also increase.
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Figure A-12: Observed effects of changing UDP packet sizes on the performance of the
CDMA2000 interface: (a) other than for small packets, packet size does not significantly
impact achievable throughput; but (b) as packet size is increased beyond a certain
point, the round-trip-time increases with packet size.

A.3.7 Loss Characteristics

The packet losses observed on the CDMA2000 link were much lower than would be

expected on a raw wireless link, because of the effective use of forward error correction

and link-layer acknowledgments. When AIMD-style flow control was used to avoid

dropping packets at the sender, around 1% of the packets were lost1.

Using constant-rate packet generation processes to send packets from the CDMA2000

interface to an MIT host, as before, we ran a number of experiments with different

rates to determine the nature of the packet losses. We were primarily interested in

determining how bursty the losses on the CDMA2000 interface were. We define a packet

loss burst of length k as a contiguous sequence of k lost packets.

Figure A-13 shows how packet losses were distributed relative to burst length. The

peak at burst-length 1 in figure A-13a is probably an artifact of our usage of constant-

rate senders. The histogram shows that losses on the link were bursty in nature: 25%

of the lost packets were lost in bursts ranging from 3 to 7 packets in length; 12%

were lost in bursts of length 2; 18% were lost in bursts ranging from 8 to 20 packets

in length; and larger bursts accounted for almost 10% of lost packets. Large burst

1These losses were probably unavoidable, a consequence of the fact that the AIMD flow control
would continue to increase its sending rate, until it detected a loss.
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Figure A-13: Observed distribution of packet losses from a number of different exper-
iments with CBR senders using a CDMA2000 interface. For each packet loss, (a) the
histogram tracks how many consecutive packets surrounding that lost packet were
also lost; and (b) shows the cumulative density of this loss distribution.

losses (around 40 packets) were often observed at the start of an experiment (as can

be seen in figure A-14a) and may be related to a startup transient on the CDMA2000

channel, a time when network resources are being acquired..

Figure A-14 focuses on a single experiment where the sending rate was slightly

larger than the available bandwidth. The burst-loss length histogram illustrates the

burstiness of the losses during this particular experiment. Dark regions of the timeline

indicate periods during which packet losses piled up. Frequent single-packet losses,

because of the consistently high bit-rate, can also be seen in the timeline.

A.3.8 Disconnections

During our experiments we did not experience disconnections in our pppd sessions over

the Verizon CDMA2000 interface. This is in contrast to the behaviour observed with

GPRS (§A.4.7) where disconnections were common. During the motion experiments

we did once experience a short blackout: we could not transmit or receive data until

the vehicle had moved on2. During the blackout the pppd session didn’t terminate,

and network service resumed as soon as we had passed that location.

2At the intersection of Dartmouth street and Commonwealth Avenue, on the Copley square side
of Comm. Ave. The vehicle was stopped in the blackout location for less than 45 seconds.

122



(a)
-

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  5  10  15  20  25  30  35  40  45  50

Nu
m

be
r o

f P
ac

ke
ts

Burst Length (packets)

CDMA2000 Packet Loss Burst Length Distribution

Figure A-14: Packet loss observations from a single experiment using the CDMA2000

interface with 1400 byte packets and transmitting at a constant rate of around
120kbits/sec: (a) shows the loss timeline, each thin vertical line representing a single
packet loss; (b) shows the packet burst-loss length distribution.

However, we encountered many periods of network abnormality in which available

bandwidth plummeted and packet round-trip-times became excessively elevated. Fig-

ure A-10b shows one such period. At the start of the experiment shown in this figure,

round-trip-times were high, but fell rapidly to their normal levels. Then, about 3

minutes into the experiment, round-trip-times became elevated again, rising above 2

seconds. Finally, about six minutes into the experiment, the round-trip-times rose to

another plateau, averaging above 4 seconds. This experiment consisted of a constant-

rate sender saturating the channel with as much data as it could send. We did not

observe latency elevations in other experiments that used flow control. Stopping our

senders and restarting them after a while also seemed to solve the problem.

It is possible that the round-trip-time elevation is caused by the fact that the

sender does not back off when there is a degradation in channel quality. The channel

uses link-layer retransmissions, the round-trip-time and elevation may be because of

the delay caused by retransmissions for this or earlier packets. In any case, these

abnormal periods imply that even though we are not likely to experience call drops,

we may experience periods during which bandwidth becomes constrained and every

video packet we send times out before it reaches the other end of the connection.
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A.4 GPRS Link Characterization

A.4.1 GSM/GPRS Background

This section provides an overview of the GSM/GPRS standard. More detailed descrip-

tions of the standard can be found elsewhere (e.g., [25]).

The Global System for Mobile communications (GSM) is a decade old digital cellular

technology based on a hybrid Frequency Division Multiple Access (FDMA) / Time

Division Multiple Access (TDMA) narrow-band technology. GSM is perhaps the most

widespread cellular technology in the world: it is estimated that at the end of Jan

2004 there were over 1 billion GSM subscribers across more than 200 countries.

Using two frequency bands located near 900 MHz, GSM first divides its 25 MHz

bandwidth into 124 carrier frequencies spaced 200 kHz apart. These carrier frequen-

cies are then divided in time, using a TDMA scheme. The fundamental unit of time in

the TDMA scheme is a burst period, lasting approximately 0.577 ms, eight of which

are grouped together into a TDMA frame, lasting approximately 4.615ms. Burst

periods form the basic unit for the definition of logical channels: one logical channel

is one burst period per TDMA frame. Channels are defined by the position of their

burst periods in the TDMA frame. Some channels are dedicated and allocated to a

mobile base station; others are common, used by mobile stations in idle mode; and

some carrier frequencies are reserved for use by base stations. The mobile and base

station use slow frequency hopping to try to lessen the impact of multi-path fading.

A traffic channel (TCH) is used to carry speech and data traffic in the GSM scheme.

Traffic channels are defined using a 26-frame multi-frame (a group of 26 TDMA

frames) lasting 120 ms. Out of the 26 frames, 24 are used for traffic. TCH’s for the

uplink and downlink are separated in time by 3 burst periods.

The General Packet Radio Service (GPRS) uses an overlay on the basic GSM network

to provide TCP/IP packet data services. The presently deployed version of GPRS is

an evolution of the GSM Short Message Service (SMS) and is primarily meant to

allow wireless providers to roll out basic TCP/IP services until they can make the

more expensive technological shift to next generation GSM technologies like EDGE and
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W-CDMA. Not surprisingly, GPRS does not aim for 3G compliance.

GPRS works by aggregating the GSM TCH’s and using support nodes on the provider

network to provide TCP/IP functionality. Theoretically, it is possible for GPRS to

produce 115 kbps by using 8 GSM 14.4 kbps TCHs, but maximum speeds of 56 kbps

are far more likely, given provider setups.

In a GSM/GPRS network, data packets from the wireless terminal are encapsulated

and tunneled through the provider network using the GPRS Tunneling Protocol (GTP),

which can be either IP or TCP based. Subsequently, the entire GPRS network shows up

as a single IP hop. The Radio Link Control (RLC) protocol used for communications

between the mobile and the base station uses a sliding window mechanism for flow

control and uses link layer acknowledgments. Because of factors such as the use of

GTP there is an added overhead of over 48 bytes in the headers of packets sent using

GPRS.

A.4.2 Network Hops

Figure A-15 shows the result of running tcptraceroute3 [41] over the GPRS interface

to a host on the MIT network. As with the CDMA2000 link (§A.3.2) the path consists of

a large number of hops. As before, the effects of the first hop dominate in determining

the latency of the path: the median round-trip-time to the first hop is 85% of the

median round-trip-time to the final hop. Because of the use of GTP, this single IP

hop represents the entire GPRS network.

A.4.3 Upload Bandwidth

We configured the GPRS interface to try to send as many UDP packets with 1400 byte

payloads as possible to a host on the MIT network, and measured the arrival rate

of the packets at the receiver. Using a 5-second sliding window, we estimated the

average UDP throughput thus obtained, the goodput. The plots in figure A-16 show

the goodput through the course of two different experiments.

3tcptraceroute is a traceroute variant that uses TCP-SYN packets instead of ICMP packets.
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1 m21ac9bd8.tmodns.net (216.155.172.33) 573.936 ms 496.636 ms 615.785 ms

2 * * *

3 * * *

4 * * *

5 sl-gw7-atl-6-0-0.sprintlink.net (144.228.83.57) 1312.060 ms 651.646 ms 660.789

ms

6 * * *

7 sl-bb22-fw-10-0.sprintlink.net (144.232.18.21) 1252.992 ms * 1288.253 ms

8 sl-bb27-fw-12-0.sprintlink.net (144.232.11.33) 680.744 ms 669.767 ms 720.771 ms

9 sl-st20-dal-1-0.sprintlink.net (144.232.9.136) 678.758 ms 629.699 ms *

10 interconnect-eng.Dallas1.Level3.net (64.158.168.73) 1208.258 ms 652.697 ms

660.721 ms

11 * so-1-2-0.bbr2.Dallas1.Level3.net (209.244.15.165) 1116.065 ms 652.678 ms

12 as-2-0.mp2.Boston1.Level3.net (64.159.4.181) 676.797 ms 670.705 ms 701.778 ms

13 ge-11-1.hsa1.Boston1.Level3.net (64.159.4.162) 678.716 ms 672.703 ms 703.851 ms

14 p0-0.mit3.bbnplanet.net (4.24.88.50) 675.698 ms 692.683 ms 676.007 ms

15 W92-RTR-1-BACKBONE.MIT.EDU (18.168.0.25) 733.528 ms 677.686 ms 678.752 ms

16 * * *

17 WEB.MIT.EDU (18.7.22.69) [open] 1262.767 ms 674.758 ms 699.498 ms

Figure A-15: tcptraceroute from the GPRS interface to WEB.MIT.EDU.

Stationary When stationary (figure A-16a), the GPRS link provides 25kbits/sec of

upload bandwidth with a low variance. In another stationary experiments, we saw a

little more dynamic variation in the available bandwidth, but on the whole it remained

stable (excluding periods of abnormal network conditions discussed later in §A.4.7).

Moving Motion caused a great deal of variation in the available bandwidth. As

figure A-16b shows, the average available bandwidth fell to around 19kbits/sec and

the standard deviation of this bandwidth increased more than five fold. This motion

induced variation is a large percentage of the total bandwidth of the GPRS link, making

the GPRS channel far more sensitive to motion than the CDMA2000 channel.

A.4.4 Packet Round-Trip-Times

We conducted a number of GPRS latency related experiments whose results are doc-

umented below. We also summarize some previously published work. The minimum

average packet round-trip-times measured on stationary GPRS interfaces were around

550ms and much higher than those observed on the CDMA2000 link. Furthermore, the

average latency was seriously affected by vehicular motion (rising by 200ms)
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Figure A-16: Observed behaviour of raw UDP upload throughput on a GPRS interface,
when (a) stationary (µ = 24.95, σ = 0.68); and (b) moving (µ = 18.92, σ = 5.31).

TCP-SYN Pings: Stationary We used the the tcpping utility to measure the

round-trip-times for small TCP-SYN packets sent over a stationary GPRS interface4.

Figure A-18a shows how measured round-trip-times varied during an experiment.

Figure A-17a shows how these round-trip-times were distributed. Average TCP-SYN

round-trip-times on GPRS links are almost 250ms higher than those on the CDMA2000

link (§A.3.5). The GPRS round-trip-time distribution is not bi-modal and the way in

which round-trip-times vary on the GPRS link is not periodic like CDMA2000.

The secondary peaks in the round-trip-time distribution A-17b (at 545ms and

625ms) probably represent link level retransmissions, with the mode around 500ms

representing the case where no retransmissions were needed for a packet.

4tcpping sends a TCP-SYN packet, waits for the SYN-ACK reply, calculates the round-trip-time,
and then sends the next TCP-SYN packet.
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(b) µ = 758ms, σ = 464ms, P (rtt > 1000ms) = 0.12

Figure A-17: Observed distributions of single packet round-trip-times for TCP-SYN
packets on a GPRS link when the transmitter is (a) stationary; and (b) moving.

TCP-SYN Pings: Moving As with available bandwidth (§A.4.3), motion seems

to significantly impact the performance of the GPRS link. Figure A-17b shows the

distribution of a moving GPRS interface’s round-trip-times. Figure A-18b shows how

measured packet round-trip-times varied during an experiment with a moving GPRS

interface. The average latency when moving was 200ms larger than the average la-

tency when stationary, and the standard deviation—at almost half a second—was over

four times as large when moving. When moving, 12% of the sent packets experienced

round-trip-times larger than a second.

Unlike CDMA2000, GSM/GPRS uses hard hand-offs and this could be a problem when

moving. Changing base-stations would require the GSM/GPRS terminal to terminate
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Figure A-18: Observed behaviour of single packet round-trip-times for TCP-SYN
packets on a GPRS link when the transmitter is (a) stationary; and (b) moving.

the connection with the old base-station and to then negotiate a connection with

the new base-station. The round-trip-time spikes in figure A-18b exceeding 1000ms

could either be caused by base-station hand-offs or because lost packets needed many

retransmissions, or both.

UDP Burst Latencies We did not look at UDP burst latencies because of the

NAT on our GPRS path. However, other researchers studying GPRS links [14] have

reported that when packets are sent in bursts, the round-trip-times in the burst are

decreasing: the first packet usually experiences the largest latency, with others having

progressively lower latencies. Furthermore, we know that the GPRS RLC uses sliding

window flow control, and that our packets may be tunneled through TCP further

downstream, so queue draining effects on the GPRS link should not be a surprise.
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Figure A-19: Observed effects of changing packet sizes on the GPRS interface: (a)
medium and small packet transmissions are highly inefficient on the link, but for
packets larger than 768 bytes, packet size has no impact on goodput (b) the median
round-trip-time for large packets is 1.5 times as large as the median round-trip-time
for smaller packets.

A.4.5 Packet Size

We conducted a number of experiments to investigate the impact of picking a spe-

cific packet size on the performance of the GPRS link. Figure A-19 summarizes the

observations from these experiments.

UDP Throughput Figure A-19a shows the achievable goodput obtained when

UDP packets were sent using a GPRS sender sending packets at a constant rate defined

by the following formula:

ratesender =
bitratemax

sizepacket

≈
22.8kbits/sec

sizepacket

Where sizepacket is the size of the packet payload; and bitratemax is based on the

maximum observed UDP goodput on the channel from our earlier experiments.

From our observations, it seems that, as was the case with the CDMA2000 link

(§A.3.6), the GPRS link is inefficient when dealing with small packets. In fact, for

GPRS the effect is much more marked: instead of the gradual increase in efficiency
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seen when packet sizes were increased on the CDMA2000 link, the efficiency of the

GPRS link suddenly doubles when we start using 768 byte packets. For larger packets,

goodput remains roughly constant.

Latency Figure A-19b shows how packet round-trip-times were distributed in ex-

periments using TCP-SYN packets. The round-trip-time distribution of small and

medium packets (768 bytes and smaller) is different from the round-trip-time distri-

bution for larger packets (1024 bytes or more). The average quartiles for the two

groups of packets are shown in the figure. The average median round-trip-time for

large packets is over 500ms larger than the average median round-trip-time for smaller

packets and the inter-quartile range for larger packets is 100ms less than this range

for smaller packets.

Optimal Packet Size An interesting implication follows from our observations:

768 byte packets would allow us to reach the maximum goodput (figure A-19a), and

also keep us in the lower round-trip-time group of packets (figure A-19b).

A.4.6 Loss Characteristics

As others have previously reported [14], packet loss rates observed on the GPRS link

were much lower than would be expected on a raw wireless link. This is because of

the effective use of link-layer forward error correction and link-layer acknowledgments.

When AIMD-style flow control was used by us to avoid dropping packets at the sender,

we observed that only around 1% of the packets were lost.

Using constant-rate packet generation processes to send packets from the GPRS

interface to an MIT host, we ran a number of experiments with different rates to

determine the nature of the packet losses. We were primarily interested in determining

whether the losses on the interface were bursty in nature. Figure A-20 shows how

packet losses were distributed relative to burst length on the GPRS link.

The bursty nature of the losses is illustrated by the fact that almost 75% of the

packet losses occur in bursts of length 2 or greater. The mode of the burst-loss length
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Figure A-20: Observed distribution of packet losses from many different experiments
with constant-rate senders using a GPRS interface. For each packet loss, (a) the
histogram tracks how many consecutive packets surrounding that lost packet were
also lost; and (b) shows the cumulative density of this distribution.

distribution occurs at 2 (accounting for 35% of losses).

Figure A-21 shows the loss timelines for a few different experiments. The changing

loss density seen in figure A-21b illustrates the fact that while the sender is sending

at a constant rate, the available bandwidth is varying significantly due to motion.

Figures A-21a and A-21c show the behaviour when the sender is sending at a bit-rate

close to the average available bandwidth. The large startup transient burst loss in

(a) is uncommon.

A.4.7 Disconnections

The GPRS interfaces seemed to have a relatively high rate of disconnection. In our

experiments we noticed disconnections in our pppd sessions to the Nokia GPRS phones

occurring on average every 15 minutes. In some locations, the disconnection seemed

due to sparse cell tower coverage, and we could not effectively reconnect until we

had moved. However, in the majority of the cases, we could reconnect quite quickly:

all that we needed to do was to renegotiate the pppd session. Furthermore, when

using multiple GPRS interfaces simultaneously, it was rare to see more than one of

them disconnect at the same time. It is possible that these short-lived disconnections
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-

(a) sender at approx. 30kbps, 1400byte packets

-

(b) moving sender at approx. 40kbps, 1400byte packets

-

(c) stationary sender at approx. 22kbps, 1400byte packets

Figure A-21: Packet loss timelines for constant-rate senders using a GPRS interface in
three different experiments.

are the result of fundamental weaknesses within GPRS, or the provider’s network

setup, or the result of Linux driver problems. We believe the dropped calls were

probably caused by signaling pathologies within the GSM network, problems such as

the ping-pong effect experienced at cell-boundaries, in which a mobile continuously

is handed-off between two base stations, until the call is finally dropped.

A.5 Multi-Channel Effects

This thesis is primarily concerned with the ability to simultaneously use multiple

WWAN channels in order to aggregate their bandwidth. We are interested in whether

the behaviour of multiple WWAN transmitters placed in close proximity exhibits

any kind of correlation. We would like to know if a fall in available bandwidth on

one channel would mirror a fall in another channel’s bandwidth; predict a rise in

the other’s available bandwidth; or provide no information about the other WWAN

channel whatsoever.

We conducted multiple experiments, both stationary and mobile, to compare the

behaviour observed across multiple WWAN transmitters. We used five WWAN inter-
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faces: one CDMA2000 1xRTT interface (Verizon), and 4 identical GSM/GPRS interfaces

connected to the same service provider (T-mobile). The interfaces were placed in close

spatial proximity, in no particular order. This section describes a few representative

experiments.

A.5.1 Aggregate Bandwidth

As before, we tried to upload data at a rate close to the channels estimated capacity.

We used a bit-rate of 22.4kbits/sec for the GPRS interfaces, a bit-rate of 128kbits/sec

for the CDMA2000 interface, and a packet size of 1024 bytes for both. We measured

the data arrival rate at the receiver in MIT. Table A-24, figure A-22 and figure A-23

show how the observed aggregate bandwidth behaved in two such experiments.

Stationary When stationary (figure A-22) the aggregated available bandwidth was

relatively stable with a mean of around 179kbits/sec. Nonetheless figure A-22 shows

two network abnormalities: the dip in the CDMA link’s bandwidth; and the discon-

nection of the GPRS-1 interface a little over four minutes into the experiment.

After the loss of the higher bandwidth GPRS-1 channel, the available bandwidths

on the other GPRS channels do not rise. In our single-channel GPRS experiments, we

measured a sustainable GPRS upload throughput of around 24kbits/sec. The discon-

nection of GPRS-1 frees up bandwidth for the other phones, which are all operating

well below 22kbits/sec. With four GPRS channels, only one of them is able to achieve

22kbits/sec, presumably because all available bandwidth is being used. We found that

with T-mobile even three Nokia 3650 phones captured all available upload bandwidth.

A fourth phone steals bandwidth away from some of the other phones. The through-

puts probably stayed low after the disconnection because the experiment ended before

the phones had had a chance to renegotiate with the base-station.

Moving Motion causes large variations in the available bandwidth (figure A-23),

causing the standard deviation of the aggregate bandwidth to treble. In spite of

the loss of GPRS-4 eight minutes into the experiment, the aggregate average remains
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Figure A-22: Observed dynamic behaviour of available raw UDP upload bandwidth
when multiple stationary interfaces are being used simultaneously: (a) aggregate
upload bandwidth (b) individual channel bandwidths.

around 150kbits/sec throughout the experiment. The other GPRS channels are able to

increase their bandwidths to compensate for the loss of GPRS-4. The fact that they are

able to do this when moving and not when stationary, may be related to the issue of

base-station hand-offs due to the motion. When a hand-off occurs, the GPRS interfaces

can negotiate for more bandwidth from the new base-station. Furthermore, the fact

that the throughput of the aggregate remains steady even when a single channel fails

shows one way in which the aggregate channel has the potential to be more robust

than individual channels.
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Figure A-23: Observed dynamic behaviour of available raw UDP upload bandwidth
when multiple interfaces are being simultaneously used on a moving vehicle: (a)
aggregate upload bandwidth (b) individual channel bandwidths.

µstationary σstationary µmoving σmoving

CDMA 129.56 4.75 111.36 27.82
GPRS-1 23.64 1.33 16.68 5.50
GPRS-2 13.04 0.56 18.92 5.31
GPRS-3 12.71 0.83 18.31 5.54
GPRS-4 13.14 2.20 15.08 4.52

Aggregate 178.84 11.68 152.94 31.31

Figure A-24: Observed raw UDP bandwidths, for both moving and stationary multi-
interface experiments. Averages are only for as long as the channel was active; they
do not count periods of disconnection as zero.
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A.5.2 Bandwidth Correlation

We want to know whether changes in bandwidth in observed on one WWAN channel

are correlated with changes observed on another channel. We revisit the experiments

in figures A-22 and A-23. By processing the data from one experiment, we can produce

six discrete random variables, one for each row in table A-24. The throughput signals

from the figures are all sampled at the same frequency, interpolating where necessary5,

and the sampled values give us the discrete random variables.

The correlation coefficients for these random variables can be calculated6 and

are shown in figure A-25. The coefficients in the two tables were calculated using

around 500 samples from each experiment. Along with the coefficient matrix, we

also calculated the matrix of corresponding p-values. p-values can be used for testing

if the coefficients are statistically significant7. All coefficients that had an absolute

value above 0.08 had p-values that indicated that correlation was significant for the

related pair of variables.

The results in figure A-25 imply that, although some correlation exists, the CDMA

and GPRS channels are weakly correlated at best, and the GPRS channels are never

strongly correlated. In the stationary case (figure A-25a), the only significant cor-

relation exists among the GPRS channel pairs. CDMA-1 has no significant correlation

with any other channel. This makes sense since the CDMA-1 radio is very different

from the others. The GPRS channels are correlated, but this correlation is weak, at

best. In the mobile case (figure A-25a), the strongest correlations are again among

GPRS channels. GPRS-2 does correlate somewhat negatively with CDMA, but this is a

very weak correlation. In both cases (figure A-25) the largest correlation coefficient

involves the channel that failed during that experiment (GPRS-4 in the mobile case,

and GPRS-1 in the stationary experiment).

5We used the spline function in matlab to interpolate, and sampled at one second intervals.
6We used the corrcoef function in matlab to calculate the coefficients.
7p-values from corrcoef can be used for testing the hypothesis of no correlation. Each p-value

is the probability getting a correlation as large as the observed value by random chance, when the
true correlation is zero. If pi,j is small, say less than 0.05, then the correlation for (i, j) is significant.
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CDMA GPRS-1 GPRS-2 GPRS-3 GPRS-4 Aggregate

CDMA 1.0000 −0.0552 −0.0475 −0.0401 −0.0015 0.4015
GPRS-1 1.0000 0.1406 0.5619 0.3568 0.7724
GPRS-2 1.0000 0.0036 0.2218 0.2181
GPRS-3 1.0000 0.1690 0.4420
GPRS-4 1.0000 0.2413

Aggregate 1.0000

(a) stationary experiment (figure A-22)

CDMA GPRS-1 GPRS-2 GPRS-3 GPRS-4 Aggregate

CDMA 1.0000 0.0135 −0.2228 0.0850 −0.1330 0.8727
GPRS-1 1.0000 −0.0065 −0.0392 0.0298 0.1768
GPRS-2 1.0000 −0.1720 0.5166 0.0416
GPRS-3 1.0000 −0.5400 0.1091
GPRS-4 1.0000 0.0951

Aggregate 1.0000

(b) moving experiment (figure A-23)

Figure A-25: Channel bandwidth correlation coefficient matrices. Redundant values
are omitted for clarity; the matrices are symmetric.
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Appendix B

HOSE: the Horde Objective

Specification Environment

This appendix describes the abstract interface Horde provides to allow applications to

describe their network quality-of-service (QoS) objectives. Horde applications express

QoS policy goals for streams in the form of succinct objectives. Objectives repre-

sent the modular decomposition of an application’s utility function (§6.1), allowing

the scheduler to determine which transmission schedules provide higher utility than

others. Chapter 6 discussed the high-level semantic issues, this appendix covers the

other language details.

The set of objectives describes the application policy regarding network quality-of-

service. Each objective says something, relatively simple, about the sort of network

QoS an application would like for some stream(s). The set of objectives describes

how much an application values the assignment of a given type of txSlot to some

ADU. An application injects one or more objectives into the library. Objectives can

be injected and removed dynamically, allowing for the specification of time-varying

utility functions. When an application does not specify an objective for some QoS

aspect along some stream, it is implicitly assumed that the application does not care

about that aspect of QoS on that stream.

The remainder of this appendix describes in detail the syntax and semantics of

the hose language, used by applications to express their objectives.
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B.1 Augmented BNF Notation Overview

The rules for hose syntax are defined in this appendix using a variant of Backus Naur

Form (BNF) notation. We provide a brief overview of the notation.

<rule> ::= definition

The ::= here means ‘is defined as’. The definition specifies the BNF expansion

for the rule. The definition can include other rules; definitions that recursively

use the rule being defined are also possible.

The angle brackets distinguish syntax rule names (also called non-terminal sym-

bols) in the BNF from terminal symbols. The later are written exactly as they

are to be represented in the final syntax. When special BNF tokens (::=, |,

<, >) are intended to be used as terminal symbols, they are quoted as literals.

By recursively expanding each non-terminal symbol in a rule definition, one can

determine all the possible terminal symbol sequences that are valid instances of

that rule in the final syntax this BNF rule is describing.

‘literal’

Quotation marks surround literal (case-sensitive) text, e.g., ‘<literal>’ im-

plies that this BNF fragment is to be viewed as defining the character string

<literal> in the final syntax, even if a BNF rule named literal is defined.

rule1 | rule2

Elements separated by a bar (|) are alternatives, e.g., yes | no implies that

either yes or no are valid in the final syntax.

*element

The character ‘*’ preceding a BNF element indicates repetition. The full form

is N*Melement indicating at least N and at most M occurrences of element in

the expansion of the BNF. The default values are 0 for N and infinity for M.

Therefore, *(element) allows any number of instances of element, including

zero; 1*element requires at least one; and 1*2element allows one or two.
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+element

Short-hand for 1*element.

[element]

Square brackets enclose optional elements. The definitions [element] and

(0*1element) are equivalent.

(rule1 rule2)

Elements enclosed in parentheses are grouped together as a single element.

<fubar> ::= elem (foo | bar) elem

Therefore, the above rule allows ‘elem foo elem’ and ‘elem bar elem’ to be

valid in the final syntax, but not the expression ‘elem foo bar elem’.

@TYPE(element)

If the given rule can take on multiple run-time-types, the @TYPE preceding it

specifies that we only mean those instances of the rule which are of the specified

type. Some of the types we use here are: @BOOLEAN, @NUMERIC and @STRING.

<letter>

Convenient rule. Matches characters A-Z and a-z.

<digit>

Convenient rule. Matches characters 0-9.

<whitespace>

Convenient rule matching horizontal (space and tab characters) and vertical

(linefeed and carriage return characters) whitespace.

The following sample BNF rule uses many of the constructs defined above.

<variable_name> ::= +(<letter> | ‘_’ | <digit>)

According to this definition a variable name must consist of one or more characters:

either letters, underscores or numerical digits. No whitespace can be part of the name.
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B.2 The HOSE Language

The purpose of the hose language is to provide a flexible mechanism using which

application objectives can be expressed and evaluated. Using literals, ADU’s, stream’s,

header fields, and ADU latency and loss probability distributions as the basic units,

the language allows the specification of complex constraints.

hose is similar to functional languages like LISP. The order in which objectives

are evaluated is undefined. No mechanism exists for declaring arbitrary variables; al-

though, a mechanism for binding variables to existing ADU’s and streams is provided.

The language does not provide any mutators, nor are there any other side-effects.

The language is type-safe. Every expression in hose has a well-defined type and

there are specific rules governing how expressions of the same or different types can

be composed and what the type of the composition will be. hose recognizes the fol-

lowing types: ADU, stream, boolean, numeric, string and probability distributions

over boolean and numeric values. For simplicity, the numeric type in this language

definition only supports integers. Consequently, probabilities are represented as per-

centage values ranging from 0 to 100.

The syntax of hose is not sensitive to either horizontal or vertical whitespace,

except when that whitespace is used to delimit tokens (e.g. variable names and

reserved words), or when it occurs inside string literals. The way we use whitespace

in the BNF definitions requires some clarification. Except when a BNF fragment

contains the OR (|) operator or hose delimiters (e.g., {, (, etc), the reader should

implicitly assume that whitespace from the BNF maps to whitespace in the final

syntax; whitespace surrounding a BNF OR operator does not imply whitespace in the

final syntax is allowed, unless the <whitespace> rule is explicitly used.

hose is case-sensitive. ADU variable names, field names, reserved words, and the

contents of string literals are all identified in a case-sensitive manner.
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B.2.1 Defining Objectives

The hose language defines a single top-level construct: an objective.

<objective> ::= objective {

context { <context> }

goal { <goal> }

utility { <utility> }

}

All valid fragments of hose code must start with an objective definition. An

objective consists of three sections: a context (variable bindings); a goal (a boolean

predicate); and a utility section (how application utility is affected when the goal

predicate is true). For a schedule in which the goal predicate is true, the hose

interpreter uses the utility section of the objective to determine how that goal’s

fulfillment has affected the utility derived from the associated transmission schedule.

B.2.2 Objective: Context

The context section of an objective provides the variable bindings that can be used

inside the goal and utility sections.

<context> ::= *(<adu_binding> | <stream_binding>)

Each binding in the context section binds a variable of type ADU to an actual

ADU, or a variable of type stream to an actual stream. Each binding expression is

a filter defined over all the ADU’s in the system; whichever ADU’s pass through the

filter are possible values for the given variable. The variable can be bound, and the

objective evaluated, for each of these possible values. When there are multiple

variables, there can be many possible sets of bindings.

<stream_binding> ::= stream:<variable> { stream_id == +<digit> }

<adu_binding> ::= adu:<variable> { <adu_filter> }
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<adu_filter> ::= <adu_predicate>

| ([‘!’] ‘(‘ <adu_filter> ‘)’)

| (<adu_filter> (‘&&’ | ‘||’) <adu_filter>)

<variable> ::= +(<letter> | ‘_’ | <digit>)

As specified above, each stream variable is bound to the stream with the given

numeric identifier, and ADU variable binding filters are defined as a series of simple

boolean predicates composed using boolean AND and OR operations. Predicates are

comparisons of an ADU header field with a simple expression that evaluates to the

same type as that field (see the definition below). An ADU filter is just a specialized

boolean expression, so the usual precedence rules apply (§B.2.5).

<field> ::= +(<letter> | ‘_’ | <digit>)

<adu_predicate> ::= true

| (@NUMERIC(<field>) <numeric_compare_op> <context_numeric_expression>)

| (@BOOLEAN(<field>) <boolean_compare_op> <context_boolean_expression>)

| (@STRING(<field>) <string_compare_op> <string_literal>)

<numeric_compare_op> ::= ‘==’ | ‘!=’ | ‘<=’ | ‘>=’ | ‘<’ | ‘>’

<boolean_compare_op> ::= ‘==’ | ‘!=’

<string_compare_op> ::= ‘==’ | ‘!=’

<context_boolean_expression> ::= <boolean_literal>

| @BOOLEAN(@ADU(<variable>)::<field>)

| [‘!’] ‘(’ <context_boolean_expression> ‘)’

<context_numeric_expression> ::= <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘+’ <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘-’ <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘*’ <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘/’ <numeric_literal>
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objective {

context {

adu:one { stream_id == 0 }

adu:two { (stream_id == 0) && (stream_seq == one::stream_seq+1) }

}

goal { expected(two::latency) >= expected(one::latency) }

utility { one { 1 } two { 1 } }

}

Figure B-1: An objective to limit reordering. The ADU variables are bound to consec-
utive ADU’s from stream 0.

Applications can define arbitrary header fields in the ADU’s they inject. Fields like

stream_id and stream_seq are predefined fields. The field names lost? and latency

are reserved (see §B.2.7) for probability distributions and cannot be referenced in the

context section.

ADU variables can be referenced immediately after they are bound. Therefore,

if there are multiple bindings defined in the context, the fields of the ADU variable

bound first can be used in the predicate expressions for the second variable onwards.

Figure B-1 shows the context for an objective used to limit reordering which uses

this immediate binding feature.

B.2.3 Objective: Goal

The goal section must contain a boolean valued expression (see §B.2.5 for detailed

syntax). The constant false is not a valid goal. This expression can use any of the

ADU and stream variables declared in the context.

<goal> ::= <boolean_expression>

B.2.4 Objective: Utility

The utility section specifies how application utility is affected when the objective

has been met—when the goal is true. The utility section contains a numeric

valued expression for each ADU or stream variable whose utility is affected. The

utility section has the syntax:
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<utility> ::= +(<variable> { <numeric_expression> })

Whenever the goal is met, the specified utility will be added to the overall utility

derived from the schedule for each given ADU and stream. Negative utilities bias the

scheduler against schedules with the property specified in the related goal; positive

utilities promote such schedules. The base utility of transmitting an ADU is zero.

Therefore, a scheduler implementation can decide not to transmit an ADU when-

ever the set of objectives specifies that all possible transmission slots give negative

utilities for that ADU.

B.2.5 Numbers, Booleans and Strings

Expressions that represent definite values within a fragment of hose code can either

have a numeric, boolean or string type. Indefinite numeric and boolean values, rep-

resented as probability distributions, are also part of the language. ADU and stream

variables are containers for fields. Fields can be of either definite or indefinite types.

Literals The simplest definite value expressions are literals:

<boolean_literal> ::= true | false

<numeric_literal> ::= [(‘+’ | ‘-’)]+<digit>

<string_literal> ::= ‘‘‘’(*<character>)‘’’’

boolean literals use the hose reserved words true and false. All numeric literals

are integers. string literals can contain any characters other than quotation marks

(”) which are used to delimit string literals; there are no character escape sequences.

Arithmetic Operations numeric expressions can be composed using arithmetic

operators, with the usual semantics, forming more complex numeric expressions:

<arithmetic_operation> ::= <arithmetic_add> | <arithmetic_subtract>

| <arithmetic_multiply>

| <arithmetic_divide> | <unary_minus>
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<arithmetic_add> ::= <numeric_expression> ‘+’ <numeric_expression>

<arithmetic_subtract>

::= <numeric_expression> ‘-’ <numeric_expression>

<arithmetic_multiply>

::= <numeric_expression> ‘*’ <numeric_expression>

<arithmetic_divide>

::= <numeric_expression> ‘/’ <numeric_expression>

<unary_minus> ::= ‘-’<numeric_expression>

Logical Operations boolean expressions can be composed using logical operators,

with the usual semantics, forming more complex boolean expressions:

<logical_operation>

::= (<boolean_and> | <boolean_or> | <boolean_not>)

<boolean_and>

::= <boolean_expression> ‘&&’ <boolean_expression>

<boolean_or>

::= <boolean_expression> ‘||’ <boolean_expression>

<boolean_not> ::= ‘!’<boolean_expression>

Comparisons Any two expressions of the same type (numeric, boolean or string)

can be compared. Each such comparison forms a boolean valued expression. boolean

and string expressions can only be compared for equality and inequality; numeric

values can be compared in the usual ways.

<comparison> ::= <numeric_comparison> | <boolean_comparison>

| <string_comparison>

<numeric_comparison> ::=

<numeric_expression> <numeric_compare_op> <numeric_expression>

<numeric_compare_op> ::= ‘==’ | ‘!=’ | ‘<=’ | ‘>=’ | ‘<’ | ‘>’

<boolean_comparison> ::=

<boolean_expression> <boolean_compare_op> <boolean_expression>
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<boolean_compare_op> ::= ‘==’ | ‘!=’

<string_comparison> ::=

<string_expression> <string_compare_op> <string_expression>

<string_compare_op> ::= ‘==’ | ‘!=’

Conditionals The language provides some special forms for simple conditionals:

<max> ::= max ‘(’ <numeric_expression> ‘,’ <numeric_expression> ‘)’

<min> ::= min ‘(’ <numeric_expression> ‘,’ <numeric_expression> ‘)’

<abs> ::= abs ‘(’ <numeric_expression> ‘)’

Summary Summarizing the various forms of definite value expressions:

<boolean_expression> ::= <boolean_literal>

| @BOOLEAN(<field_value>)

| <logical_operation>

| <comparison>

| ( ‘(’ <boolean_expression> ‘)’ )

<numeric_expression> ::= <numeric_literal>

| @NUMERIC(<field_value>)

| <arithmetic_operation>

| <expectation> | <probability>

| <max> | <min> | <abs>

| ( ‘(’ <numeric_expression> ‘)’ )

<string_expression> ::= <string_literal>

| @STRING(<field_value>)

Operator Precedence An operator with higher precedence is applied first to de-

termine the semantics for an expression. As in other languages like C, parentheses

can be used to overcome these precedence rules, to apply a lower precedence oper-

ator before a higher precedence one. In hose the operators defined above have the

following semantic precedence:
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arithmetic UNARY MINUS - highest precedence

boolean NOT !

boolean AND && second highest

boolean OR ||

arithmetic MULTIPLY *

arithmetic DIVIDE /

arithmetic ADD + third highest

arithmetic SUBTRACT -

ALL comparisons lowest precedence

==, !=, <=, >=, <, >

B.2.6 ADU and Stream Variables

ADU and stream variables are bound to actual ADU’s and streams in the objective’s

context section. In hose these variables represent collections of simpler variables.

ADU and stream variables have fields which can be accessed using the variable name

and the scope operator (::). Some ADU fields are predefined and managed by Horde,

and applications can define other arbitrary fields in the ADU headers. stream vari-

ables have a limited number of predefined numeric fields. References to these fields

result in expressions that have the same typed value as the field:

The following ADU fields are predefined and managed by Horde:

stream_id stream_seq length queue_delay (NUMERIC)

lost? latency (PDF’s)

stream_id and stream_seq define an ADU’s parent stream and position in that

stream. length is the size of the ADU payload in bytes. latency represents the

elapsed time between when that ADU was inserted into Horde by the application and

when the ack event for that ADU was delivered to the application. queue_delay is

the local queuing delay for that ADU. lost? is true in the event that the ADU was

dropped. latency and lost? are random variables (see §B.2.7).
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stream variables have numeric fields for the stream loss rate, mean latency and

the latency’s standard deviation. The following stream fields are predefined:

stream_id latency_ave latency_sdev loss_rate (NUMERIC)

stream variables are included to allow the expression of certain types of con-

straints. stream variables are needed, for example, in objectives based on the ADU

latency average1 or jitter.

@STRING(<field_value>) ::= @STRING(@ADU(<variable>)::<field>)

@NUMERIC(<field_value>) ::= @NUMERIC(@ADU(<variable>)::<field>)

| @NUMERIC(@STREAM(<variable>)::<field>)

@BOOLEAN(<field_value>) ::= @BOOLEAN(@ADU(<variable>)::<field>)

@PDF_BOOLEAN(<field_value>) ::= @ADU(<variable>)::lost?

@PDF_NUMERIC(<field_value>) ::= @ADU(<variable>)::latency

B.2.7 Probability Distributions

Horde does not always have complete information during objective evaluation. For

instance, Horde does not know the round-trip latency for a transmitted ADU until an

ack has been received, nor does it know about a loss until a nack or a timeout. Horde

can, however, derive expectations for latency and loss using its channel models. We

incorporate this notion of incomplete information into the hose language as typed

random variables. Expressions based on probability distributions can be referenced

inside the goal and utility sections.

We do not provide a generalized random-variable (or PDF) type and generic PDF

manipulation operators. The underlying network models used by Horde are not ma-

ture enough to generate probabilities for arbitrarily conditioned network events. Cor-

related ADU loss, single ADU loss, and ADU ack arrival time are well-defined network

events, which Horde’s network models can handle.

The ADU loss and latency random variables are accessible as special ADU fields:

1The average latency is different from the expected latency of a transmission
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<adu_loss_expr> ::= @ADU(<variable>)::lost?

<adu_latency_expr> ::= @ADU(<variable>)::latency

The lost? field represents the likelihood of the event that the ADU was lost in the

network. latency is the time in milliseconds that elapses between the injection of an

ADU into Horde and the reception of an ack for that ADU. latency is the queue_time

plus the round-trip-time.

A special form provides the correlated loss distribution over a pair of ADU’s:

<correlated_loss_expr> ::=

correlated_loss ‘(’ @ADU(<variable>), @ADU(<variable>) ‘)’

The correlated_loss distribution represents the likelihood of the event that the

losses for the specified ADU’s were correlated. Correlated loss is the event:

P (correlated loss) = P (A lost ∧ B lost | A or B lost)

There are two types of random variables in hose:

<boolean_pdf_expression> ::= <adu_loss_expr> | <correlated_loss_expr>

<numeric_pdf_expression> ::= <adu_latency_expr>

<pdf_expression> ::= <boolean_pdf_expression>

| <numeric_pdf_expression>

Both loss expressions yield values which are probability distributions over {true,

false}. The latency of an ADU is a probability distribution over the set of natural

numbers. If an objective for an ADU is evaluated after an ack has been received

then—although the hose type of a loss or latency expression is still a PDF—the

PDF will represent a definite value (only one value in that PDF will have a positive

probability; that probability will be 1).

In order to manipulate an expression of a PDF type, it must first be transformed

into a numeric expression2. boolean PDF’s can be transformed into numeric expres-

sions by taking the probability of true in that PDF. Since hose’s numeric types are

2Because of this requirement, the possibility of entirely avoiding the notion of probability dis-
tributions within the language arises. a::lost? could be redefined as having the semantics of
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integers, probabilities are represented as percentages—integers between 0 and 100—

instead of as fractions in the range [0, 1]. numeric PDF’s can be transformed into

numeric expressions by taking the expected value over that PDF.

<probabilty> ::= prob ‘(’ <boolean_pdf_expression> ‘)’

<expectation> ::= expected ‘(’ <numeric_pdf_expression> ‘)’

B.3 Sample Objectives

Example objectives are given in figures 6-1, 6-2, 6-3, 7-4, 7-8, 7-12, 7-19 and B-1.

B.4 Complete HOSE Grammar

; hose reserved tokens:

: objective context goal utility adu stream true false correlated_loss

; prob expected max min abs lost? latency stream_id stream_seq length

; queue_delay loss_rate latency_ave latency_sdev

; variable types: @ADU, @STREAM

<variable> ::= +(<letter> | ‘_’ | <digit>)

; fields have value types: @NUMERIC, @BOOLEAN, @STRING and the PDF’s

<field> ::= +(<letter> | ‘_’ | <digit>)

; top-level language constructs

<objective> ::= objective {

context { <context> }

goal { <goal> }

utility { <utility> }

}

prob(a::lost?) and a::latency could be redefined as expected(a::latency). Our inclusion of
the probability type is partly carried over from an earlier iteration of the hose language, in which
distributions could be manipulated much more freely. That said, our inclusion of the probability type
in the current language specification reflects our desire to keep explicit which values are indefinite.
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; objective components

<context> ::= *(<adu_binding> | <stream_binding>)

<goal> ::= <boolean_expression>

<utility> ::= +(<variable> { <numeric_expression> })

; context components

<stream_binding> ::= stream:<variable> { stream_id == +<digit> }

<adu_binding> ::= adu:<variable> { <adu_filter> }

<adu_filter> ::= <adu_predicate>

| ([‘!’] ‘(‘ <adu_filter> ‘)’)

| (<adu_filter> (‘&&’ | ‘||’) <adu_filter>)

<adu_predicate> ::= true

| (@NUMERIC(<field>) <numeric_compare_op> <context_numeric_expression>)

| (@BOOLEAN(<field>) <boolean_compare_op> <context_boolean_expression>)

| (@STRING(<field>) <string_compare_op> <string_literal>)

; expressions for the context section

<context_numeric_expression> ::= <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘+’ <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘-’ <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘*’ <numeric_literal>

| @NUMERIC(@ADU(<variable>)::<field>) ‘/’ <numeric_literal>

<context_boolean_expression> ::= <boolean_literal>

| @BOOLEAN(@ADU(<variable>)::<field>)

| [‘!’] ‘(’ <context_boolean_expression> ‘)’

; probability distribution expressions

<boolean_pdf_expression> ::= <adu_loss_expr> | <correlated_loss_expr>

<numeric_pdf_expression> ::= <adu_latency_expr>

<pdf_expression> ::= <boolean_pdf_expression> | <numeric_pdf_expression>

<adu_loss_expr> ::= @ADU(<variable>)::lost?

<adu_latency_expr> ::= @ADU(<variable>)::latency

<correlated_loss_expr> ::= correlated_loss ‘(’ @ADU(<variable>), @ADU(<variable>) ‘)’
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; pdf->value conversions

<probabilty> ::= prob ‘(’ <boolean_pdf_expression> ‘)’

<expectation> ::= expected ‘(’ <numeric_pdf_expression> ‘)’

; the typed value from an adu or stream field

@STRING(<field_value>) ::= @STRING(@ADU(<variable>)::<field>)

@NUMERIC(<field_value>) ::= @NUMERIC(@ADU(<variable>)::<field>)

| @NUMERIC(@STREAM(<variable>)::<field>)

@BOOLEAN(<field_value>) ::= @BOOLEAN(@ADU(<variable>)::<field>)

@PDF_BOOLEAN(<field_value>) ::= @ADU(<variable>)::lost?

@PDF_NUMERIC(<field_value>) ::= @ADU(<variable>)::latency

; string value expressions

<string_expression> ::= <string_literal> | @STRING(<field_value>)

; characters surrounded by quotes.

<string_literal> ::= ‘‘‘’(*<character>)‘’’’

; numeric value expressions

<numeric_literal> ::= [(‘+’ | ‘-’)]+<digit>

<numeric_expression> ::= <numeric_literal>

| @NUMERIC(<field_value>)

| <arithmetic_operation>

| <expectation> | <probability>

| <max> | <min> | <abs>

| ( ‘(’ <numeric_expression> ‘)’ )

; arithmetic operator precedance:

; {unary-} > {*, /} > {+, -} > {==, !=, <=, >=, <, >}

<arithmetic_operation> ::= <arithmetic_add> | <arithmetic_subtract> |

<arithmetic_multiply> | <arithmetic_divide> |

<unary_minus>

<arithmetic_add> ::= <numeric_expression> ‘+’ <numeric_expression>

<arithmetic_subtract> ::= <numeric_expression> ‘-’ <numeric_expression>

<arithmetic_multiply> ::= <numeric_expression> ‘*’ <numeric_expression>

<arithmetic_divide> ::= <numeric_expression> ‘/’ <numeric_expression>
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<unary_minus> ::= ‘-’<numeric_expression>

; conditionals

<max> ::= max ‘(’ <numeric_expression> ‘,’ <numeric_expression> ‘)’

<min> ::= min ‘(’ <numeric_expression> ‘,’ <numeric_expression> ‘)’

<abs> ::= abs ‘(’ <numeric_expression> ‘)’

; boolean value expressions

<boolean_literal> ::= true | false

<boolean_expression> ::= <boolean_literal>

| @BOOLEAN(<field_value>)

| <logical_operation>

| <comparison>

| ( ‘(’ <boolean_expression> ‘)’ )

; logical operator precedence: {!} > {&&, ||} > {==, !=}

<logical_operation> ::= <boolean_and> | <boolean_or> | <boolean_not>

<boolean_and> ::= <boolean_expression> ‘&&’ <boolean_expression>

<boolean_or> ::= <boolean_expression> ‘||’ <boolean_expression>

<boolean_not> ::= ‘!’<boolean_expression>

; comparisons

<comparison> ::= <boolean_comparison>

| <numeric_comparison>

| <string_comparison>

<boolean_comparison>

::= <boolean_expression> <boolean_compare_op> <boolean_expression>

<boolean_compare_op> ::= ‘==’ | ‘!=’

<string_comparison>

::= <string_expression> <string_compare_op> <string_expression>

<string_compare_op> ::= ‘==’ | ‘!=’

<numeric_comparison>

::= <numeric_expression> <numeric_compare_op> <numeric_expression>

<numeric_compare_op> ::= ‘==’ | ‘!=’ | ‘<=’ | ‘>=’ | ‘<’ | ‘>’

;---- end ----
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