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ABSTRACT

This thesis demonstrates the benefits of using a software based, adaptable wireless
network protocol stack for voice applications.  A design for a Controller Module which
facilitates adaptation in the physical layer of wireless devices is presented.  Using the
Controller Module, designers may define a set of high level rules that govern when and
what type of adaptation should take place in the physical layer.  The design includes a
protocol which enables Controller Modules to communicate physical layer configuration
information to each other.  To illustrate the use of the Controller, several Controller
policies and their benefits are demonstrated.
        The analysis shows that an adaptable physical layer can provide the best service to
the application.  In particular, voice applications are able to better react to changing
channel conditions and optimize physical layer performance using application specific
parameters.  As wireless devices become even more pervasive, there will be an increased
need for adaptable wireless systems which enable greater functionality and flexibility.
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Chapter 1

Introduction

1.1 Thesis

This thesis argues that an adaptable physical layer can provide better service for a

wireless application relative to traditional, fixed physical layer configurations.  Given

goals and constraints from the application, an adaptable physical layer uses a set of high

level rules to dynamically change its physical layer properties.  This thesis presents the

design, implementation, and analysis of a Controller Module that facilitates adaptation in

the physical layer of wireless devices.  The benefits of an adaptable physical layer are

demonstrated for a voice compression application.

The Controller Module is part of the SpectrumWare [1] architecture, a software

based approach to designing communication systems.  The SpectrumWare approach to

signal processing enables a system designer to build flexible and adaptable wireless

devices.  This level of flexibility is achieved by using software in place of specialized

hardware throughout the protocol stack.

Figure 1-1. Two hosts communicating with adaptable physical layers.  Given application
constraints and goals, the Controller Module at each host manages adaptations to the
Transmit and Receive Stack.

APPLICATION APPLICATION

CONTROLLER CONTROLLERTRANSMIT RECEIVE TRANSMIT RECEIVE
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1.2 Adaptable Physical Layers

Since many wireless devices are implemented in hardware, they are designed to

operate under worst case conditions.  The channel bandwidth and power are often fixed

in hardware.  Additionally, the physical layer parameters such as the modulation format

are generally set in hardware.

An adaptable physical layer can provide better service to a wireless application.

First of all, an adaptable physical layer enables a wireless application to better react to

changing channel conditions.  Such a physical layer can inform the application of various

parameters such as the bit error rate (BER) of the channel and the physical layer's power

consumption.  Secondly, an adaptable physical layer enables wireless applications to pro-

actively optimize physical layer performance using some application-defined set of

metrics.  For example, an adaptable physical layer may be used to switch from a carrier

frequency with a low signal to noise ratio (SNR) to a carrier frequency with a much

higher SNR given that the BER needs to be reduced.  Alternatively, the physical layer

could use a different channel coder that increases the amount of error correction and

thereby reduces the BER.

An adaptable physical layer also enhances the communication ability of a wireless

device.  Such a device can be communication protocol independent since any two

devices' modulation format may be changed via a software upgrade.  One could envision

two wireless devices' scanning their database of modulation formats in order to find the

best physical layer for the given channel.

1.3 Key Motivations

1.3.1 Higher Data Rates

With an adaptable physical layer, the data rate may be dynamically adjusted as the

signal to noise ratio varies for a particular channel.  An adaptable physical layer allows

the modulation format to be changed as the signal to noise changes.  For example, if the

signal to noise ratio is very high at the receiver, then the Controller Module at the

transmitting host could negotiate with the Controller Module at the receiving host to
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change the modulation format to allow for a higher data rate.  If the signal to noise ratio

is low at the receiver, then the system could dynamically reduce the number of points in

the signal constellation.  Given a low signal to noise ratio at the receiver, the transmitter

Controller module could also negotiate with the receiver to switch to a carrier frequency

with a higher signal to noise ratio.  After a successful switch to the less noisy channel, the

transmitter Controller module could use a larger signal constellation to obtain a high data

rate.

Each of the Controller Modules makes it's decision using input from the

application.  As an example, a voice compression application could use a larger data rate

obtained by the use of a larger signal constellation to transmit higher quality, less

compressed voice.  Given that the Controller Module reacts to a lower signal to noise

ratio at the receiver by decreasing the number of points in the signal constellation, the

application could adjust by compressing the voice signal to a larger extent.  Using this

architecture, the application can both react to its environment and pro-actively request

certain service from its physical layer.

1.3.2 Appropriate Source Coding and Channel Coding

An adaptable physical layer enables a communication system to dynamically

choose appropriate source coding and channel coding modules for a given channel.  The

source coder and channel coder may be chosen independently.

The application chooses the source coder since it understands the nature of the

data.  With an adaptable physical layer, the application is able to make an informed

choice as to which source coder to use.  In particular, the Controller Module can inform

the application of the latency of the channel, the data rate available, and the BER.  Given

these metrics, the application can determine the appropriate source coder module that

introduces an acceptable amount of latency and operates within the specified data rate.

The application may also issue a request to the Controller Module to change the

physical layer.  For example, the application may request that the Controller Module

optimize the physical layer to obtain a higher data rate.  The application may either use a

particular source coder given the current status of the physical layer or dynamically

adjust the physical layer to accommodate a particular source coder.
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While the application chooses the appropriate source coder, the Controller

Module determines the best channel coder for a physical layer.  The Controller Module is

able to obtain the signal to noise ratio from the physical layer and may then determine the

bit error rate.  Given the bit error rate, the Controller Module can decide on the amount of

error correction needed and pick an appropriate channel coder module to use.  The

Controller Module should consider the effect of the error correction overhead on the data

rate.  Additionally, the Controller Module must also consider the latency and

computational complexity of the channel coder module that it chooses.

The Controller Module makes its decisions based upon input from the application

and the Controller Rules, a component of the Controller Module which defines the rules

for adaptation.  For example, if the application requests a lower bit error rate from the

physical layer, the Controller Module may either use more error correction, change the

modulation format, change the channel altogether, or perform some combination of these

operations.  

With the appropriate source coder and channel coder, the application is able to

obtain superior system level performance.  In this manner, each module in the

communication pipeline can work in concert to satisfy the application’s objectives.

1.3.3 Efficient Use of Spectrum

An adaptable physical layer enables wireless devices to more efficiently use

spectrum.  An adaptable wireless network can transmit at a range of carrier frequencies.

This enables the system to use under-utilized carrier frequencies to obtain a higher data

rate.  Aside from changing the carrier frequency, adaptable wireless devices can also

increase their channel bandwidth given that portions of the spectrum are available.  This

can also provide the application with a higher data rate.

1.3.4 Power Management

With an adaptable physical layer, wireless devices can more efficiently manage

their power consumption.  For example, a Controller Module of the transmitter can

respond to a high signal to noise ratio at the receiver by decreasing its power.

Conversely, the Controller Module of the transmitter can increase the power at which it
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transmits given a low signal to noise ratio at the receiver.  As another example, the

Controller Module of the transmitter may increase its power so that the system may

obtain a lower bit error rate.  The application’s requests and the Controller Rules can

facilitate this adaptability.  Thus, while many wireless devices transmit at a fixed power,

an adaptable physical layer allows for the appropriate amount of power consumption that

satisfies the application’s instructions.

1.3.5 Protocol Independence

One main motivation for adaptable physical layer technologies is the ability to

implement new protocols on a device with just a simple software upgrade.  For example,

with new software an adaptable physical layer can implement a variety of medium access

schemes such as code division multiple access (CDMA), frequency division multiple

access (FDMA), and time division multiple access.  Additionally, the software that

determines the modulation format may be changed to allow for interoperability.  In this

manner, adaptable physical layers significantly enhance the functionality of wireless

devices.

1.4 Thesis Scope

The major goal of this thesis is to develop the infrastructure in the SpectrumWare

system that allows for an adaptable physical layer.  The principle component that

facilitates this adaptable physical layer is the Controller Module.  The Controller Module

has APIs to the application, the transmit stack, the receive stack.  The Controller uses

these APIs and a set of high level rules to govern when and what type of adaptation

should take place in the physical layer.  To illustrate the use of the Controller Module

several Controller policies and their benefits are demonstrated.
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Chapter 2

Controller Design

This chapter introduces the Controller design.  The Controller Module has

interfaces to the transmit stack, receive stack, and the application.  Each host has a

Controller Module that facilitates adaptation in its physical layer.

Figure 3-1.  Two hosts communicating over an adaptable physical layer.

When the application is compiled, the main() program instantiates the Controller

Module and passes all of the physical layer module objects to the Controller Module as

arguments.  The fact that the rules for adaptation are in a Controller Module and not

embedded in the application itself is a novel feature of the design.  This separation

between the application and the application adaptation mechanism provides an effective

division of labor.  With this configuration, application designers do not need to

APPLICATION APPLICATION

CONTROLLER CONTROLLERTRANSMIT RECEIVE TRANSMIT RECEIVE
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understand physical layer adaptation and may instead focus on designing systems.

Application designers may make use of a particular Controller Module without

investigating the particular details of the adaptation rules.  On the other hand, individuals

interested in application adaptation may design a set of rules suited for a particular

application.  With this design of the Controller, application development and application

adaptation development may take place independently.

After the Controller Module is instantiated and all of the modules are passed to it

as arguments, the Controller Module registers itself with each of the modules.  After this

registration process has occurred, each of the modules that comprise the physical layer

can send indications back to the Controller Module.  The Controller Module can also

change various parameters in each of the modules.

.

Figure 3-2.  The Controller Module Architecture.

APPLICATION

         CONTROLLER
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Each of the modules must maintain an Attribute Table.  The Controller designer

needs to have access to the Attribute Table of a module.

2.1 Transmit Side Controller

The Transmit Side Controller can change parameters in the Transmit Stack.

Figure 3-3.  Transmit Side Controller.

The transmit side controller may modify the bandwidth, power, modulation

format, or the carrier frequency.

Bandwidth - The bandwidth is defined as the width of the analog signal at the

carrier frequency.  The bandwidth is expressed in hertz.

Power - The power parameter denotes the amount of power used by the antenna.

The power is expressed in watts.

Modulation Format – The modulation format may be any of the following: 2-

PAM, 4-PAM, 8-PAM, 4-QAM, 16-QAM, 8-VSB.  Additional formats could be

included.

                                         APPLICATION

Transmit Stack Receive StackModulation Format
Channel Bandwidth
Power
Carrier Frequency

TRANSMITTER
 CONTROLLER
      RULES
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Carrier Frequency – The carrier frequency is the frequency at which the analog

data is sent.  This parameter is expressed in hertz.

2.2 Receive Side Controller

The Receive Side Controller is able to modify the receiver such that it may

receive signals transmitted using a variety of physical layer configurations.

Figure 3-4. Receive Side Controller.

The Receive Side Controller can modify the modulation format, bandwidth,

power and carrier frequency that it receives.  The physical layer can also provide the

current SNR to the Receive Side Controller.

                                         APPLICATION

Transmit Stack Receive StackReceive
Controller
Rules

Modulation Format
Channel Bandwidth
Power
Carrier Frequency

SNR

RECEIVER
CONTROLLER

RULES
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2.3 Quality of Service Interface (QOS) to Application

The QOS interface allows an application to make requests to change the data rate,

power, bit error rate, and latency of either the transmitting channel or receiving channel.

Figure 3-5.  QOS Controller.

2.4 Adaptation Example

Consider an application that determines that the quality of its input data stream is

unacceptable.  The application could obtain the current bit error rate from its receive side

Controller Module.  The application might then send a resource request to the receive

side Controller to have the bit error rate reduced to a particular value.

After receiving this resource request, the receive side Controller Module would

then determine the physical layer parameters that need to be changed in order to achieve

  Bandwidth, Bit Error Rate, Latency, Power

                                       APPLICATION

Transmit Stack Receive Stack

CONTROLLER

          QOS RULES
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a lower bit error rate.  The receive side Controller Module cannot make changes to its

physical layer unilaterally.  The receive side Controller Module must enter into

negotiations with the transmit side Controller Module to make the appropriate changes to

its physical layer.  Once the receive side Controller and transmit side Controller have

reached a consensus, the two Controllers use their APIs to the physical layer modules to

make the changes.  Communication temporarily stops when the changes to the physical

layer are made.  The communication resumes when both Controllers have made the

appropriate changes to their physical layer.

In summary, the following steps take place:

1.  Application monitors QOS parameters using the Controller Module's indications API.
Controller Module monitors physical layer parameters using the physical layer/controller
indications API.
2.  Application decides to submit a resource request to the Controller Module.
3.  Controller Module uses the its set of high level rules, called the Controller Rules, to
determine the physical layer changes that need to be made.
4.  Controller Module enters into negotiations with its peer Controller Module.
5.  Once consensus is reached, communication temporarily stops while each Controller
Module makes the necessary changes to its physical layer.
6.  Communication resumes.
7.  Application continues to monitor QOS parameters using the Controller Module's
indications API.  Controller Module continues to monitor physical layer parameters using
physical layer/controller indications API.  The application may initiate step 2 again.

2.5 Controller Rules

The Controller Rules (CR) are a component of the Controller Module.  The CR

decides what changes to the physical layer need to be made in order to satisfy a particular

set of resource requests from the application.  The CR are the logic that govern physical

layer adaptation.

The CR use five data structures:

1.  An array of pointers to module objects:  The CR may use this data structure to access

particular modules and modify their internal parameters.

2.  An array of pointers to completed physical layer indications queries:  Physical layer

modules may store their answers to the CR physical layer indications queries in this data

structure.
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3.  An array of pointers to completed application indications queries.  The CR stores

completed application indication queries in this data structure.

4.  An array of pointers to application resource request structures:  The CR attempts to

satisfy each of the resource requests that the application has placed in the application

resource request data structure.

5.  An array of pointers to negotiation data structures:  The CR uses this data structure to

obtain negotiation information from peer Controller Modules.

Figure 4-1.  Data Structures that the Controller_Rules() method use.

2.6 Controller/Physical Layer API

The Controller uses the controller/physical layer API to change parameters in the

physical layer and receive indications from the physical layer modules.

Array of
Pointers
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Module
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Indication
Data

Structures

Application
Resource
Request

Data
Structures

Application
Indication
Request

Data
Structures

Negotiation
Data

Structures

Controller_Rules()
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        Figure 5-1.  Physical layer stack and Controller interactions.

2.6.1 Startup

The main() program instantiates the Controller Module with the list of modules

which comprise the physical layer.

// The modules are instantiated
DigitalModulator mod = new DigitalModulator(amplitude, number_of_symbols,
bandwidth, carrier_frequency);
ChannelCoder coder = new ChannelCoder(coding_rate);

// The module objects are passed to the Controller Object
Controller Controller_Module = new Controller(mod, coder);

The Controller Module maintains an array of pointers to these module objects.  This array

of pointers is termed the Module Array.  Using the Module Array, each object can be

identified through its index in the array.

2.6.2 Registration

After the Controller module has been instantiated, it registers with each of the

physical layer modules.

STACK CONTROLLERREGISTER

CHANGE
PARAMETERS

STATUS
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Module_Array[1]->register(Controller_Module);
Module_Array[2]->register(Controller_Module);

Since the Controller Module registers with each of the physical layer modules, the

module designer does not need to know the name of the Controller Module that may use

it.  The Controller Module does not make use of the objects in the main() file directly and

therefore provides a layer of abstraction between the Controller Module and the main

program.  This abstraction provides a separation between the physical layer's adaptation

rules and the physical layer itself.

2.6.3 Change Parameters

Each of the physical layer modules implements a procedure called "change".  This

procedure contains an Attribute Table, which is a mapping between an integer index and

each of the parameters in the module.  There is a separate Attribute Table for each

module.  To make the process of writing a Controller Module user friendly, a designer

may use #define statements to replace the attribute index with meaningful variable

names.

The change procedure is included in every module.  Its specification looks as

follows:

int change(int attribute_index, float value);
// returns 0 if successful, -1 if unsuccessful
// sets the attribute which corresponds to the attribute_index to the "value"

The change procedure includes a case statement that maps the attribute number inputted

to the various attributes in a module.
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// Internals of the change procedure:

case(attribute_number)
{

0: amplitude = value;
break;
1: number_of_symbols = value;
break;
...
default:
break;

}

The above mapping between physical layer attribute number and the attribute

comprises the Attribute Table.

In the following example, the Controller designer replaces the physical layer

attribute number with a name.  The AMPLITUDE variable is represented by the number

0.  This indicates that the zeroth element of the Attribute Table for the DigitalModulator

Module refers to the amplitude.  Several other #define statements are also used.  The

Controller designer must have access to all of the module’s Attribute Tables in order to

develop a naming scheme.

#define AMPLITUDE 0
#define NUMBER_OF_SYMBOLS 1
#define OUTPUT_SYMBOL_BITS 1

On the fourth line, we can see a simple Controller Rule.  The statement indicates

that if the signal to noise ratio passes below 10 dB the amplitude of the modulator is set

to 50, the number of symbols should be fixed to 2, and the number or bits used in the

channel coder should be 1.



21

if(SNR < 10)
{

int a = mod->change(AMPLITUDE, 50);
int b = mod->change(NUMBER_OF_SYMBOLS, 2);
int c = coder->change(OUTPUT_SYMBOL_BITS, 1);

if(a && b && c)
{
printf("success\n");
}
else
{
printf("error\n");
}

}

2.6.4 Physical Layer/Controller Indications

To receive an indication from a physical layer module the Controller issues a

request to the particular module.  The request is a structure that identifies the module of

interest, the attribute being studied, a timeout counter expressed in milliseconds, a

variable in which the value of the attribute is stored, and low and high values which

comprise the acceptable window of values.  The module is identified by its index in the

Module Array described above.

typedef struct {
int Module_Array_index;
int physical_attribute_number;
int timeout;
float attribute_value;
float low;
float high;
} pl_indication_request;

The Controller Rules set the various parameters of this structure.  In this case, our

pl_indication_request structure is named request_it.

pl_indication_request request_it;
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The Indications procedure of the particular module is passed this structure as an

argument.  In this case, the 1st module in the Module_Array Indications method is being

called with a particular pl_indication_request structure, request_it.

Module_Array[0]->Indications(request_it)

When the attribute falls out of the tolerable range of values in the window or

when the timeout expires the structure is added to the pl_indications array of

pl_indication_request structures.  Next, the Controller_Rules() method is called.  The

Controller_Rules() method will investigate all of the data structures and can then make

appropriate changes to the physical layer.

2.7 Quality of Service Interface to the Application

The point of a Controller Module is to separate the management of the physical

layer from the application.  A flexible system could be designed which implemented all

of the protocol stack in one large level.  However, the key to the SpectrumWare

Controller design is that it preserves the layering abstractions that are central to

networking systems.  In this vein, the Controller Module maintains a simple interface to

the application.

The Controller Module takes parameters that are of interest to the application.

For example, the Controller Module provides the application with a data rate metric, a

power metric, a bit error rate metric, and a latency metric.  A designer can extend this

quality of service interface for other metrics by using the conventions described.

As previously mentioned, the application is able to receive indications on these

four parameters and make requests to change these four parameters.  The combination of

indications and requests provide the application with the tools to manage its requirements

for the physical layer.  The application’s requests provide the Controller Rules with the

direction that enables it to facilitate the adaptation of the physical layer.
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2.7.1 Controller/Application Indications

Using indications from the Controller Module, the application can receive status

updates on the QOS parameters.  The Controller provides the application with current

information regarding the latency, bit error rate, power, and data rate.  To receive an

indication regarding one of these parameters the application must first complete an

indication request.

Each of the four factors or attributes is assigned a number.  In this

implementation, the following mapping was used:

#define data_rate 1
#define latency 2
#define power 3
#define bit_error_rate 4

The application_indication_request structure describes the attribute of interest, a

timeout value, a variable in which the current value is stored, and low and high values

which comprise the acceptable window of values.  If either the timeout expires or the

value of the parameter falls outside the window then the application_indication_request

expires and the Controller Module calls the app_indications_handler function of the

application.

To make a request the application completes an application_indication_request which is

detailed below:

typedef struct {
int attribute_number;
int timeout;
float attribute_value;
float low;
float high;
} app_indication_request;
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Next, the application stores the application_indication_request in the app_indication

array.  For example, the following structure could be defined and stored in the

app_indication array:

app_indication_request check_latency;

The application can then call the Controller_Rules() method.

int status = Controller_Rules();

The Controller_Rules method will look at all of the data structures and attempt to satisfy

to indication request.  After the Controller_Rules completes the app_indication_request

structure, it can then submit this structure to the application’s app_indications_handler

function:

int app_indications_handler(app_indication_request req1) {}
// returns 1 if successful, -1 if unsuccessful

Here the app_indications_handler method is called with the app_indication_request
structure check_latency.
app_indications_handler(check_latency);

The app_indications_handler function must be implemented by every application.

The handler may use the structure completed by the Controller_Rules() to obtain the

current value of the attribute of interest.  It may then decide to submit a new indication

request or it may change some application feature.

To modify an application_indication_request, an application can simply modify the

relevant structure in the app_indication array and call the Controller_Rules() method.  An

app_indication_request may be canceled by an application by removing the structure

from the app_indication array and calling the Controller_Rules() method.
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2.7.2 Requests

The application can set goals for the data rate, latency, power and bit error rate.

For each of these metrics, the application sets a target value, a maximum value, a

minimum value, and a timeout.  When the timeout expires, the resource request is

terminated.

The application must first complete a resource request structure or

app_resource_request.  Subsequently, the application adds the app_resource_request

structure to the app_resource array of structures.  Next, it calls the Controller_Rules()

method which attempts to satisfy all of the resource requests contained in the

app_resource array.  The Controller rules may then optimize the physical layer according

to the application's resource request.

The resource request is captured in the following structure:

typedef struct {
int up_or_down;
int attribute_number;
int timeout;
float target_value;
float low;
float high;
int priority;
} app_resource_request;

The up_or_down parameter indicates whether the request is for the downstream

(transmit) or upstream (receive) path.  As described above, the data rate, latency, power,

and bit error rate are each indexed by an attribute number.  This structure also contains a

timeout value, which indicates the number of milliseconds the resource request should be

active, a target value for the parameter of interest, low and high values for the parameter

which comprise a window of acceptable values, and a priority indicator.

Various priority levels schemes may be defined.  The designer of the Controller

Rules can determine how many priority levels are required.  A possible implementation

defines three different priorities:
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Priority 0:
The application does not care about the request.

Priority 1:
A request by the application.

Priority 2:
A requirement for the application.

Priority 3:
A strong requirement for the application.

When optimizing the physical layer, the Controller Rules first optimize priority 3

strong requirements, then priority 2 requirements, then priority 1 requests.  Priority 0

requirements are not included in the optimization process.

The application may monitor a resource request using the indications

infrastructure described above.

If no physical layer optimizations are in progress or being negotiated with a peer

Controller module, an application may modify or cancel its resource request.  If an

application attempts to modify a request during these times, the Controller_Rules()

function call may fail.

To modify a request, the application simply stores a new app_resource_request in

the app_resource array and calls the Controller_Rules() method.  To cancel a request the

application can remove the particular structure from the app_resource array and call the

Controller_Rules() method.

2.8 Link Layer Communication

The Controller Rules may decide to make modifications to the physical layer

given high level directions from the application.  However, such modifications may not

be made unilaterally.  These modifications involve communicating and negotiating with a

peer Controller Module.

The control messages that flow between these two Controller Modules can change

the medium of communication and consequently it is extremely important that there be a

reliable channel between the two Controller Modules.

In this design, the link layer communication between the two wireless hosts uses

the Point to Point protocol (PPP) with high level data link coding (HDLC).  PPP was
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chosen because of the powerful semantics included in the specification.  In particular,

PPP includes a protocol that enables effective negotiation of link layer parameters.  The

semantics included in the PPP specification allow for new negotiation parameters to be

defined.  PPP was also chosen because of the fact that it considers two wireless hosts to

be peers.

When two hosts communicate over PPP, they first establish their link layer

connectivity.  They use special Link Layer Control Packets to negotiate the link layer

configuration.  Subsequently, the peers use Network Layer Control Packets to negotiate

the  network layer protocol.  At this point, standard packets may flow through the

connection.

FRAME FORMAT

Figure 6-1.  Link layer frame format.

Protocol:

The protocol field can be either a Link Control Protocol which establishes

connectivity for the link layer, a Network Control Protocol which establishes the network

protocol to be used, or standard IP packets and datagrams.  The bit representations of

these protocols are specified in RFC 1661.

Information:

This field protocol specific headers and the payload.

Padding:

Additional padding may be included in a link layer frame.

Protocol Information Padding
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2.8.1 Link Layer Connectivity

In typical Point-To-Point connections, the link layer control protocol (LCP) is

used to negotiate the data frame sizes, detect errors in the configuration, activate header

compression, and terminate the link.  LCP may also be used to establish authentication

between two peers.  This implementation extends LCP so that it allows for the

negotiation of physical layer parameters for wireless devices.  In particular, the carrier

frequency, power, bandwidth, and modulation format may be negotiated.

Eleven types of LCP packets are defined in RFC 1661.  A peer can send a LCP

packet to another host to propose a link layer option.  The receiver can accept or reject

the options proposed.  The receiver also has the ability to reject certain options and

suggest alternative values.  The receiver may also refuse to negotiate with the initiator of

a LCP packet.

2.8.2 LCP Commands

The Link Control Protocol Packet format is depicted below:

Figure 6-2.  LCP packet format

Code:

The Code indicates the type of LCP packet.  Several types of LCP packets are listed

below.

Identifier:

Allows the system to manage requests and replies.

Length:

Denotes the length of the LCP packet.

Code Identifier Length Data
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Data:

The LCP data is sent in the Data section of the packet.  The format of the data depends on

the type of LCP packet sent.

2.8.3 LCP Packet Types

Configure Request

Using a Configure Request LCP packet, the initiator can suggest various link

layer parameters to the receiver.  In our setup, an LCP packet which includes the carrier

frequency, power, bandwidth, and modulation format can be sent to the receiver.  A

Configure Ack from the receiver must be received before the Restart Timer at the

transmitter expires or else a subsequent Configure Request LCP packet is sent to the

receiver.

Configure Ack

A Configure Ack is sent by the receiver of a Configure Request to indicate that all

of the options sent by the initiator in its Configure Request are acceptable.  The

Configure Ack includes the original parameters sent by the Configure Request.

Configure NAK

A Configure NAK is sent when the Configure Request sent by the initiator is

understandable but not entirely acceptable.  The Configure NAK returns the unacceptable

options in the Configure Request and also includes a list of potential values for these

parameters which would be acceptable.  The Configure-NAK may also include additional

options that need to be negotiated.

Configure Reject

A receiver of a Configure Request sends a Configure Reject LCP packet either

when it was not able to understand the original Configure Request or when some fields

suggested by the Configure Request are considered by the receiver to be non-negotiable.

In the latter case, the Configure Reject includes those non-negotiable configuration

options in its LCP packet response.
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Terminate-Request

Terminate request packets may be sent by the initiator to request the termination

of a link.  These packets may be sent in succession.

Terminate Ack

After a terminate ack is received the connection is considered to be closed.

Protocol-Reject

When a peer receives a PPP packet with an unknown protocol field, a Protocol-

Reject LCP packet is sent to indicate to the initiator that the protocol is not supported.

Echo-Request and Echo-Reply

An Echo-Request LCP packet can help in testing the quality of the link.  The peer

sends back an Echo-Reply.  This operation can help determine packet loss and round trip

times.

Discard-Request

This command lets the sender put a packet out on the link.  The receiver is

supposed to silently discard the PPP packet.

2.8.4 Link Control Protocol Uses

Negotiate Physical Layer Adaptation for Wireless Devices

Given the architecture described herein, link layer control packets can be used to

negotiate the carrier frequency, power, bandwidth, and modulation format for wireless

devices.  The LCP packets also includes the signal to noise ratio of the receiver of the

communication system.

Authentication

In a configure-request a sender can specify that it is requesting authentication

from the peer.  The two hosts can negotiate on an authentication protocol.  Authentication
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of Configure Request packets is extremely important.  Without authentication, attackers

could send harmful Configure Request packets that initiate Controller negotiation of

parameters.  Such attackers could disrupt the communication between two peers.

Quality Monitoring

This configuration option can allow the peers to negotiate a protocol for link

quality monitoring.  In this manner, the peers can obtain link quality metrics from one

another.

2.9 Negotiating Physical Layer Adaptation

2.9.1 Startup

In order for two hosts to initiate communication, they must begin to communicate

over a control channel.  Such a control channel defines a set of default carrier frequencies

and the default modulation format, power, and bandwidth to be used.  Subsequently, the

Controller Modules could negotiate new physical layer parameters that would differ from

the control channel.

2.9.2 Failure Cases

If the link between the peers degrades to the extent that very little data can flow,

then one or both of the peers may attempt to terminate the link.  PPP terminates a

connection if no response is received after several retransmissions of a control packet

such as a LCP or NCP packet.  The Controller Module may send such control packets

periodically to determine the quality of the link.

After the communication is terminated by both peers, each may attempt to initiate

communication again by using the default control channel and default physical layer

parameters.  
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2.9.3 LCP Packet Types

Each of the LCP packet types are denoted according to their LCP index number.  The

following table provides the mapping between the index numbers and the LCP packet

types.

0 Configure Request
1 Configure Ack
2 Configure Nak
3 Configure Reject
4 Terminate Request
5 Terminate Ack
6 Protocol Reject
7 Echo Request
8 Echo Reply
9 Discard Request

2.9.4 Composition of an LCP Packet for Physical Layer Configuration Changes

The physical layer parameters are embedded in the body of the LCP packet.  This

thesis presents one possible allocation of bits in the payload:

FIGURE LCP PACKET

Figure 7-1. LCP packet format for wireless, physical layer negotiations.

Flow:

Eight bits are allocated to denote whether the packet refers to the upstream or
downstream flow.

00000000 upstream flow
11111111 downstream flow

Code Id. Len. Data Flow Mod Pwr C. Freq. Ch. Band. SNR
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Mod:

Eight bits are allocated to denote the modulation format.

00000000 - BPSK
00000001 - 4-PAM
00000010 - 8-PAM
00000011 - 4-QAM
00000100 - 16-QAM
00000101 - 8-VSB
00000110 - 64-QAM

Power

Twenty four bits represent the amplitude.  In this manner, any value in millivolts from

zero to 33,554.431 volts may be specified.

Carrier Frequency

Forty bits represent the carrier frequency.  Any value from zero to approximately

1.099e12 hertz may be expressed.

Channel Bandwidth

Thirty two bits represent the channel bandwidth.  Any value in hertz from zero to

approximately 4.2949 Gigahertz may be expressed.

SNR:

Sixteen bits represent the signal to noise ratio.  Any value in dB from zero to 65.535 dB

may be represented.
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2.9.5 Negotiating

The negotiation structure specification is:

typedef struct {
int[][] array_of_attributes;
// this two dimensional array includes the attributes and an array
// which can include the proposed value in the case of the initiator
// or which may include a set of acceptable values in the case of the
// receiving peer
} negotiation_structure;

When the initiating peer's Controller_Rules desires to make a change to the

physical layer, it completes the negotiation structure with the parameters to be negotiated

and proposed values.  The Controller_Rules method then calls the Frame_Sender()

method with a LCP index number and the negotiation_structure.  The Frame_Sender()

method converts the negotiation structure into an LCP frame that is sent to the receiver.

When a LCP frame is received, the receiving peer's Frame_Receiver() method is

called with the data frame as an argument.  The frame is decoded, converted into a

negotiation_structure, and a pointer to the structure is stored in the negotiation_array.

The receiving peer’s Controller_Rules method is then called.  The receiving peer’s

Controller_Rules method processes the contents of the negotiation_array.  At this point,

the receiving peer’s Controller_Rules may determine whether the proposed changes are

acceptable.  If the receiving peer’s Controller_Rules decides to propose alternate values,

it may modify the negotiation_structure using the pointer provided to it by the

Frame_Receiver().

Next, the receiving peer’s Controller_Rules calls the Frame_Sender() method

with an LCP index number and the negotiation structure.  The Frame_Sender() uses these

inputs to generate a frame ready for transmission.

Negotiation may iterate until either a successful conclusion is reached or until the

MAX_FAILURE counter expires.
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2.9.6 Link Quality Information

The peer Controller Modules may exchange information about the quality of the

link.  For example, one Controller Module can send an echo-request packet to another

Controller Module with its current signal to noise ratio.  The Controller Module which is

the receiver of this echo-request packet may use this information to gauge how much

power to use in transmitting data to the sender of the echo-request packet.  The receiver

of an echo-request packet must submit an echo-reply with its signal to noise ratio.  The

"Magic Number" field contains a random number that prevents pathological conditions

such as loops.

This signal to noise ratio is represented in the first 16 bits of the data portion of

the LCP packet.  The echo-request and echo-reply commands can also be used to

estimate the round trip time between the sender and the receiver.

Figure 7-2.  Echo-Request and Echo-Reply LCP packet formats.

Code Identifier Length SNRMagic Number
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Chapter 3

Voice Compression Application

A voice compression application was used to demonstrate the Controller Module's

functionality.  Voice compression is a suitable application since there are varying levels

of performance, latency, and quality that can be achieved with different compression

algorithms.   With this application, we demonstrate that there are significant gains in

voice quality that can be obtained by changing the degree of source coding in conjunction

with the modulation format.

Figure 8-1.  Top level diagram of voice application.

The voice application specifies its goals to the Controller Module through the

quality of service interface described above.  For example, the application may use the

quality of service API to specify that it is trying to obtain the highest bandwidth possible.

Alternatively, the application may specify that it desires a physical layer that introduces

as little latency as possible.

The application receives feedback from the physical layer through its quality of

service interface.  For example, it may be informed that its current bandwidth has been

halved.  It may then compress the data to a larger extent in order to cope with the reduced

Adaptable Physical
Layer

    Voice Decompression

Adaptable Physical
Layer

    Voice Compression
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bandwidth.  Under more favorable conditions, the application may compress less to

deliver higher quality data.  More compression often requires more computation and may

result in a lower quality output.

To study the voice application, the following simulation pipeline was constructed:

Figure 8-2. Simulation pipeline.

An audio source module (not shown) receives input from the microphone and is

connected to a voice compression module.  This compressed voice data is then unpacked

from full data bytes into symbols that can be transmitted by the modulator.  The output

data from the modulator goes into a channel module that introduces additive white

gaussian noise into the data stream.  At the receiving system, the data stream is filtered

and demodulated.  Next, the symbol bytes are packed into full data bytes.  This data is

then decompressed and sent to an audio sink module (not shown) that sends its output to

a speaker.  All of the aforementioned steps are performed in software.

CHANNEL SNR:

The channel introduces additive white gaussian noise into the system.  The signal

to noise ratio is used to assess the quality of our channel.

Using the SNR as the figure of merit is reasonable since the SNR is directly

related to the bit error rate.  The symbols are chosen such that neighboring regions in the

constellation only have a one bit difference.  Thus, as the SNR decreases, the bit error

rate increases.

COMP.

CONTROLLER

UNPACK MOD. CHANNEL DEMOD. PACK DECOMP.

CONTROLLER

FILTER
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Overall Signal to Error Ratio:

The signal to error ratio of the output of the sink module relative to the output of

the source module is termed the "overall SER".  Errors are introduced by both the voice

compression modules and the channel.  The compression modules introduce errors when

they quantize the signal into discrete levels.  The errors that the compression modules

introduce are carefully designed to achieve high voice quality.  On the other hand, the

channel introduces random, additive white Gaussian noise.  The contribution of both the

errors due to noise through the channel and the errors due to the compression algorithm's

quantization levels is represented in the overall SER ratio.

The overall signal to error ratio provides a possible metric for measuring voice

quality.  Since no standard metric for measuring voice quality exists, the overall SER

metric should only be considered as one possible way for determining voice quality.

Since the symbol errors over the channel do not depend on whether the symbol

forms the most significant bits of the byte being transmitted or the least significant bits of

the byte being transmitted, some symbol errors will contribute more to the overall SER.

Coding techniques such as unequal error protection have been shown to mitigate this

decrease in overall SER.

The overall SER is an appropriate metric since the magnitude between the

transmitted byte and received byte is measured.  This metric makes sense for PCM code

words.  In PCM, the most significant bits are also the most important bits.  The first bit

represents the polarity, the next three bits represent the particular chord the value falls

under, and the final four bits represent the sixteen steps within a chord.  (Refer to

Appendix A)  Using a metric such as the bit error rate would not take into account the

importance of the more significant bits.  Therefore it would not be appropriate as a metric

for measuring voice quality.

In this analysis, three different types of voice compression modules were studied:

PCM u-law, 64 kbps

ADPCM, 32 kbps

ADPCM, 16 kbps
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We use 8-PAM modulation for the ulaw coder, 4-PAM modulation for the

ADPCM 32kbps coder, and BPSK modulation for the 16kbps coder.  Thus our test cases

are:

Case 1: PCM 64kbps, 8-PAM

Case 2: ADPCM 32kbps, 4-PAM

Case 3: ADPCM 16kbps, BPSK

If we compare Case 1 and Case 2, the number of symbols transferred per second has been

halved in Case 2.  To offset this lower physical data rate, the amount of compression has

been doubled.  Thus, each of the test cases in our analysis maintains a consistent

application data rate.

The graph on the following page plots the signal to noise ratio of the channel versus the

overall SER ratio for each of the test cases.
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Figure 8-3. Analysis Graph.

As the channel SNR decreases, we can see that the 8-PAM, 64kbps curve begins

to decline after the channel snr is less than 12.  The decline occurs when noise causes a

symbol in the signal constellation to be shifted to an incorrect symbol region.  After the

points in the signal constellation begin to fall out of their correct region due to noise, the

error rate rapidly increases.

At a channel SNR of 10, the overall SER for the 8-PAM, 64kbps curve is almost

the same as the 4-PAM, ADPCM32 curve.  After this juncture, the 8-PAM, 64kbps curve

declines rapidly.  At a channel SNR of 8.5 the overall SER for the 8-PAM, 64kbps curve

is around 18.  To prevent the significant loss in overall SER or voice quality, the adaptive

system switches to the 4-PAM, ADPCM32 curve at a channel snr of 10.  If the system

had not switched to the 4-PAM, ADPCM32 curve at a channel signal to noise ratio of 4.7

dB, it would have experienced  a 32 dB (-150.4%) smaller overall SER.  Without the

adaptation, intelligible speech could not be transferred over the channel.

By switching to the 4-PAM, ADPCM32 curve, the overall SER could remain at

26.5 dB until a channel snr of 4.5 dB is reached.  At this point, the overall SER declines

for the 4-PAM, ADPCM32 curve as lower channel signal to noise ratios are seen.
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At a channel SNR of about 2.65 the adaptive system switches to the BPSK,

ADPCM16 curve.  This allows the system to obtain an overall SER of 15 until a channel

snr of 0.76 is encountered.    At lower signal to noise ratios than 0.76, the BPSK,

ADPCM16 curve also declines.  It still provides the system with the highest overall SER

relative to the other curves at these low channel signal to noise ratios.

As can be seen in the analysis, the adaptive wireless system can provide good

service to an application by picking the modulation format and other physical layer

parameters depending on the channel conditions.  Other compression modules and

modulation formats may provide better overall signal to error ratios at various points in

the graph.  Additional analysis could study how to deliver the highest voice quality by

changing the compression algorithm, channel coder, and modulation format in concert

under various channel conditions.  This analysis shows that the ability to switch all of

these physical layer characteristics allows an adaptive wireless device to deliver superior

performance relative to traditional fixed schemes.
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Chapter 4

Related Work

4.1 SpectrumWare Project, M.I.T. Laboratory for Computer Science

The Controller Module is a part of the SpectrumWare platform [1] [18] that

enables the construction of software radios or wireless devices that perform all of their

signal processing in application software.  The architecture pushes the software boundary

as close to the antenna as possible.

Figure 2-1.  The hardware in the SpectrumWare system includes a receiver that
converts a radio frequency band to intermediate frequency, analog to digital converters
which digitize these samples, and a General Purpose IO card (GuPPI), which feeds these
digitized samples through the computer's PCI bus into host memory.  Extensions to the
Linux operating system minimize costly kernel to user space transitions and ensure fast
data transfer.  [1]

Using SpectrumWare, functions typically implemented with specialized hardware

such as digital modulation and channel coding are instead built in C++ application

software.  This approach provides several key advantages.  First of all, since the

properties of the physical layer itself are flexible, applications will be able to optimize

their entire protocol stack depending on the channel conditions.  For example, the
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physical layer could dynamically change its modulation format or even change its carrier

frequency and channel bandwidth.

The SpectrumWare system pushed the software boundary as close to the analog to

digital converter as possible.  In this manner, a SpectrumWare device is to a large extent

transmission format independent.  A device only needs a software upgrade to morph into

a different wireless device.

SpectrumWare's unique data pull architecture enables efficient, real-time signal

processing for a variety of applications.  In the SpectrumWare system, the Sink module,

the last module in a signal processing pipeline, requests a block of data from its nearest

upstream module.  This process continues for each module in the application up until the

Source module.  SpectrumWare allocates a certain amount of buffer space between each

of these modules so that computation can begin.

The signal processing is not performed sample by sample since such a system

would incur a high overhead because of function call processing time and would not

make good use of caching effects.  Rather, the signal processing is performed on blocks

of data.  One goal is that many of the blocks of data can be placed in the cache, and

computed all at once for greater performance.  After the data has been "marked" ready by

each of the modules, the computation of these samples begins.  In this manner, the sink

determines the rate at which the entire application runs.  Thus, data is computed at the

rate that it is required and no faster.  For example, an audio sink would be able to specify

that it requires the computation of 8000 samples per second.

4.2 Odyssey Project, Carnegie Mellon University

The Odyssey project has studied application-aware adaptation, which allows

mobile applications to adapt to their changing resources.  The application's API to the

Odyssey system allows it to make resource requests and receive indications of parameters

of interest.  The Odyssey system could be used to manage resources such as the

bandwidth or the power of a mobile client.  The Odyssey system manages resources at
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the operating system level.  Thus, it is not able to dynamically make physical layer

modifications.

4.3 Point to Point Protocol (PPP)  RFC 1661, RFC 1662, RFC 1663

These RFCs describe the details of link layer control packets including bit level

descriptions of LCP packets.  The details of link layer negotiations are also discussed.

4.4 Voice and Data Internetworking

This text by G. Held describes details of the pulse code modulation and adaptive

pulse code modulation compression techniques.  Detailed information on voice

compression can be found in this resource.

4.5 A Dynamic Bandwidth Allocation Algorithm for MPEG Video Sources in
Wireless Networks

This paper by Y. Iraqi and R. Boutaba describes an algorithm that enables mobile devices
to provide good quality MPEG video despite varying bandwidth levels.  The algorithm
adjusts the level of reserved resources between the mobile device and base station so that
the required quality of service is obtained.

4.6 Fundamental Challenges in Mobile Computing

This article by M. Satyanarayanan discusses the motivations for application
adaptation.  The article discusses several of the particular constraints involved in mobile
computing and suggests that adaptation is superior to static, fixed architectures.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis demonstrates the benefits of an adaptable physical layer for wireless

devices.  Some of the key strengths of this architecture include the capability to obtain

higher data rates through modulation format changes, optimally pick the source coder and

channel coder, manage power more efficiently, use more of the available spectrum, and

achieve interoperability over a wide range of protocols.  The infrastructure developed in

this thesis enables designers to describe adaptation for wireless devices at a high level.

This thesis also details a protocol that allows Controller Modules, which facilitate the

adaptation in the physical layer, to negotiate wireless physical layer parameters.  The

analysis illustrates the power of an adaptable physical layer for voice compression

applications.

5.2 Future Work

Future work on adaptable physical layers could focus on the Controller Rules

needed for a variety of applications or on new communication protocols between

Controller Modules.

As an example, future work could more deeply study motivations for adaptable

physical layers.  Such work could detail the adaptation rules needed for dynamically

choosing source coders and channel coders for a particular wireless application.

Future work could also extend the Point to Point Protocol extensions described

herein to Point to Multipoint paradigms.  In a Point to Multipoint topology, physical layer

negotiations may be more challenging.  Such work could also describe the fairness

algorithms needed so that the various Controller Modules can cooperate to achieve less

congestion in the network and greater utilization of the available spectrum.
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Appendix A
Background on Voice Compression

A.1  Speech

Air that passes through our vocal cords and along our vocal tract creates human

speech.  The vocal cords are the two pairs of folds of mucous membrane that extend into

the cavity of the larynx.  The vocal tract is considered to be the entire pipe from the vocal

cords to the mouth.  Air from the lungs can open the vocal cords and this opening and

closing of the vocal cords produces sounds such as human speech.  The frequency and

pitch of the sound can be controlled by the opening of one's mouth and the tension in

one's vocal cords.

Speech can be classified into three categories: voiced sounds, unvoiced sounds,

and plosive sounds.

A.1.1  Voiced Sounds

Voiced sounds are created when the vocal cords open and close due to air flow

from our lungs.   The frequency of the opening and closing of our vocal cords determines

the pitch of the speech.  Voiced sounds generally show a great deal of periodicity.  The

frequency of vibration of our vocal cords depends on the tension of the cords and the

length of our cords.

A.1.2  Unvoiced Sounds

Unvoiced sounds occur when the vocal folds are already open.  In this phase, air

from our lungs passes unhindered to our vocal tract.  Unvoiced sounds have a higher

power level across a broader frequency range and do not exhibit much periodicity.

A.1.3  Plosive Sounds

When the vocal tract is completely closed, high air pressure typically builds up

behind our vocal tract.  When the vocal tract opens, significant low frequency energy

results.  This type of sound is termed plosive.
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Some speech does strictly fall into any of these three categories but rather is a

combination of one of these three types of sounds.

A.2  Requirements for Voice Applications

Voice applications have stringent timing requirements.  Data that arrives

significantly after 250 milliseconds generally sounds unacceptable.  When compressing

data, we must consider the additional voice coding delay that we introduce into our

system.  Since voice applications are extremely sensitive to delay, we must tradeoff

compressing data further and further with the amount of time such compression takes.

A.3 Voice Compression Algorithms

There are three main voice compression techniques: waveform coding, voice

coding or vocoding, and hybrid coding.

A.3.1 Waveform Coding

Waveform Coding takes advantage of the regular nature of voice signals.  In

waveform coding, the voice signal is sampled at the necessary intervals.  The coding

essentially preserves the amplitude of the sample and enables reconstruction of the

original signal at the receiver.

A.3.1.1  PCM

The most common type of waveform coding is Pulse Code Modulation.  Pulse

Code Modulation (PCM) is utilized in standard telephone networks.  The communication

carriers use PCM compression to provide toll-quality voice which has a certain clarity,

latency, and quality.

There are three steps performed in Pulse Code Modulation.  The first step is

sampling the analog waveform.  A voice channel is often filtered such that it produces a

passband of frequency from 300 Hz to 3300 Hz.  Since no filter has an ideal cutoff, the

passband may extend to 4000 Hz.  According to the Nyquist rate, an analog waveform

must be sampled at twice its frequency
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in order to obtain reasonable reconstruction of the waveform.  Thus, the analog waveform

is sampled 8000 times a second which amounts to once every 125 microseconds.

Next, the analog samples must be quantized and thereby converted to discrete

digital values.  If 5 bits are used for quantization then a total of 2^5 or 32 quantization

levels can be used to characterize the analog voice sample.  Sampling at 8000 samples

per second with 5 bits per sample amounts to a bandwidth of 40,000 bits per second.

Voice over an analog telephone line ranges to approximately 60 dB in power.

Often times 12 bits are used in linear quantization producing a total of 2^12 quantization

levels.  12 bits per sample results in a bandwidth of 96 kilobits per second.  Linear

quantization ensures that the distance between two quantization levels is constant.

However, non-linear quantization can be effective since there is often a higher probability

of lower power signals than of higher power signals in human speech.

PCM systems have also been enhanced by compressor-expandor techniques

termed companding.  The compressor end of the compander reduces the power range of

higher power signals and increases the power range of lower power signals.  Increasing

the power of lower intensity signals enables the voice signal to be less affected by noise

and crosstalk in a system.  Decreasing the power of higher power signals, prevents these

signals from creating more crosstalk in the system.  With this reduced power range, only

8 bits are needed for uniform quantization.

The expandor function performs the inverse of the compressor operation.  The

expandor operation increases the power of the higher power signals and decreases the

power of the lower power signals.  The compression and expansion functions follow

either the A-law standard or the u-law standard.  Both of these standards use non-linear

quantization.  In u-law companding, the analog waveform is dividing into 255 distinct

levels.  The levels can be categorized into chords and steps.  In each cord there are 16

steps spaced linearly.  Chords are spaced logarithmically.  This non-linear quantization

has more granularity for lower power signals which occur with more frequency.

PCM code words are composed of a polarity bit, 3 bits which represent the chord,

and 4 bits which represent the particular step with in a chord.  PCM coding takes very

little processing power relative to more complex hybrid coding techniques.
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A.3.1.2  ADPCM

Adaptive Differential Pulse Code Modulation takes advantage of the fact that

speech is regular and often repetitive.  ADPCM coders make predictions of speech

samples given the history of previous samples.  The error between the predicted speech

sample and the actual speech sample generally are less randomly distributed and hence

have a lower variance.  Thus, fewer quantization levels are required to encode the error.

The predictor and quantizer adapt depending on the particular speech samples at

hand.  The decompressor takes the quantized error value and adds it to its own prediction

value to obtain a reconstructed version of the original.  ADPCM does not perform

extremely well given that the signals vary widely over a small range.  Thus sharp cliffs

such as clipping are not encoded well by ADPCM.  The quantizer adapts such that the

ranges between samples are more spread out if samples differ over short ranges.

Various flavors of ADPCM use 2 bits, 3 bits, 4 bits, or 5 bits for the quantization

of the errors.  Thus, ADPCM can generate near-toll quality voice at bandwidths of

16kbps, 24kbps, 32kbps, and 40kbps.

A.3.2  Vocoding

Vocoding involves modeling speech signals and synthesizing speech.  The key

characteristics of speech such as its energy, tone, pitch, are coded.  The actual encoded

waveform is not represented exactly.   This enables vocoders to achieve very low bit

rates.

A.3.3  Hybrid Coding

Hybrid coding is a combination of Waveform Coding and Vocoding.  In hybrid

coding, a small subset of the waveform is investigated and key parameters are obtained

from this data.  The hybrid coder then performs its synthesis as done in vocoding.  Hybrid

coding differs from vocoding in that it then compares the synthesized waveform with the

original waveform.  It then uses the difference between the original and synthesized

signal to further tune its synthesis parameters.  This process iterates until the error falls
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below a threshold.  Therefore hybrid coding is more computationally intensive than

vocoding.
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Appendix B
SpectrumWare Example: Packing/Unpacking

B.1  Purpose

Since a modulator and a demodulator work with symbols, the  Packing and

Unpacking modules are used to group bits into symbols and vice versa.  These modules

demonstrate the level of flexibility that has been designed in to the SpectrumWare

system.

B.2 Unpacking

The Unpacking Module translates bits from the data stream into symbols that may

be modulated.  For example, a 4-Pulse Amplitude Modulated Transmitter has a

constellation consisting of four different symbols or symbol regions.  Each of these

symbol regions is assigned a binary code.

Figure B-1.  4-PAM Constellation

The symbol regions may be chosen such that errors due to noise generally only

cause a single bit error.

01 1100 10
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The Unpacking Module unpacks the data from the bit stream into symbols which

can be properly modulated.  In the case of 4-PAM modulation, a data byte is sent in to the

Unpacking Module is translated into 4 distinct data bytes each having 2 data bits from the

original and 6 padded zeros.

Figure B-2.  One input data byte unpacked into four symbol bytes.

Each of the output bytes represents a symbol since the two lower bits have

information that can be expressed in a signal constellation.

After these symbols are expressed in a signal constellation, they are modulated

and transferred to the receiver.

B.3 Packing

The demodulator at the receiver translates the analog waveform it sees into points

which make up a signal constellation.  Using its symbol decision regions, it then

translates these points in the signal constellation into bytes which contain the correct

symbol.  The Packing Module translates symbols outputted by the demodulator into bits.
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In the case, of a 4-PAM modulated signal such bytes will only have 2 data bits

expressed in them.  Consequently, the symbol bytes need to be packed to obtain full data

bytes.

FIGURE B-3.  Four symbol bytes being packed into a single data byte.

Since the SpectrumWare system allows the Controller Object to switch

modulation formats, it must also possess the ability to switch the amount of unpacking

and packing that takes place at the line coding module in accordance with the number of

symbols used in the modulation format.  The number of data bits in a symbol is log base

2 of the number of symbol regions used in the modulator or demodulator.

B.4 Ratios

In our case above, we have a ratio of 1:4.  Whereby, one data byte corresponds to

4 symbol bytes.  Such a ratio requires a simple Packing Module since no remainders need

to be preserved.  If a ratio of 1:8/3 is considered the problem of packing the data becomes

more complex.  With an 8 PAM modulation format, we would need to pack three data
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bits into a single symbol output byte.  This would lead to a ratio of 1:8/3.  This suggests

that one input byte produces two and 2/3 output bytes.

One approach to dealing with the remainder expressed above, would be to

accumulate enough input bytes such that any fractions are eliminated.  In this case, a

system could accumulate 3 data bytes and output 8 symbol bytes achieving a ratio of

1:8/3.  However, processing the input data in such blocks assumes a serial method of

computation.  SpectrumWare allows for multiple parallel threads to run on various parts

of the data.  The system cannot maintain the significant amount of state which informs it

of the correct 3 bytes or portions of bytes that may be used to produce 8 symbol bytes.

At any given point in the output stream, the system must be able to determine the correct

input bytes needed for computation.

A better solution which fits into the SpectrumWare architecture assigns the

forecast procedure the task of finding the appropriate point in the input stream where data

should be computed and the work procedure the bookkeeping of verifying which portions

of the input data are valid remainder bits.

B.5  VrUNPACK

This section describes the internals of the VrUNPACK module.

B.5.1 Forecast Procedure

The forecast procedure provides a mapping between the output sample stream and

the input sample stream.  A forecast procedure is given a point in the output named an

output.index and is charged with finding the appropriate place in the input stream.  It is

also required to correlate the

size of the number of output samples requested with the size or number of input samples

required.  This mapping between the output sample stream and the input sample stream

illustrates the data-pull architecture of SpectrumWare.

In this example, we calculate how many full bytes in the input stream have been

successfully used and set the input.index to the first byte which has either been

completely or partially unused.  Initially, the offset and input_offset variables are zero.

The output.index tells us how many symbols have been outputted.  Our first task is to
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determine how many full input bytes the previous outputs have used.  This can be

accomplished by multiplying the output.index by the number of data bits in an output and

dividing by 8.  We round down during these computations and thus we arrive at the first

input byte that has either completely unused data or partially unused data.

When a change to the packing rate is made, we store the number of input bytes

that have been used as our input_offset and we set our offset to the output.index at the

time of the change.  Subsequently, the current output.index minus the old output.index

multiplied by the number of data bits in the symbol will tell the program how many full

bytes have been written.  This number is added to the input offset to arrive at the

appropriate place in the input stream.

Thus, the only state that needs to be maintained when a switch of unpacking rates

occurs is the output.index at the time of the switch denoted by the “offset” variable and

the input.index at the time of the switch denoted by the “input offset”.

template<class iType,class oType> int
VrUnPACK<iType,oType>::forecast(VrSampleRange output, VrSampleRange inputs[])
{
// body

if(change_request == 1)
   {

min_output_bits = new_min_output_bits;
offset = output.index;
change_request = 0;
input_offset = beginning_next_input + input_offset;

}

inputs[0].index= ((output.index - offset) * min_output_bits)/8 + input_offset;
inputs[0].size= (output.size * min_output_bits)/8 + 2;

beginning_next_input = inputs[0].index + (output.size * min_output_bits)/8;

return 0;
}

B.5.2  Work Procedure

The work procedure is presented with the appropriate place in the input stream

and the corresponding point in the output stream.  The work procedure is charged with
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collecting data from the input, computing with this data, and setting the results equal to

the appropriate point in the output data stream.

For most applications, the entire byte of the input data is valid.  In our example,

only part of an input byte may be unused data.  To determine the portion of the byte that

has valid, unused data the work procedure determines the number of bits that have been

used since the last packing ratio change to generate output bytes.  This number is the

quantity of the output.index minus the offset times the number of bits used in each output

byte.  The remainder can be determined by taking this number modulus 8.  This

remainder represents the number of used bits in the byte at hand.  The number of unused

bits is simple 8 minus the number of used bits.

The implementation above maintains two counters: a valid bits and a ready bits.

When an input byte is accepted, the number of valid bits is set to 8.  Each of the 8 bits is

shifted one by one on to an output byte.  Each time a bit is shifted onto an output byte the

number of valid bits is reduced by one and the number of ready bits is increased by one.

When the number of ready bits equals the number of data bits that should be included in

an output symbol byte, the output byte is mapped to the output stream and the ready bits

counter is set back to zero.  When the number of valid bits is zero, another input is taken

leading to 8 more valid bits.  This process continues until the size of the output buffer is

reduced to zero.

Given a byte with used bits, the system initializes the number of ready bits to the

negative of the number of used bits.  In this manner, bits may be shifted on to an output

byte but the output byte will not be mapped to the output stream until the number of

ready bits equals the exact number of bits needed to represent a symbol byte.

template<class iType,class oType>
int VrUnpack<iType,oType>::work(VrSampleRange output, void *ao[],

VrSampleRange inputs[], void *ai[])
{
  iType **i = (iType **)ai;
  oType **o = (oType **)ao;
  int size = output.size;
  int remainder = ((output.index - offset) * min_output_bits) % 8;
  num_outputted_bits = remainder;
  ready_bits = -remainder;
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  u_char out = 0x00;
  u_char new_bit;
  u_char current_data;

  while(size > 0) {
    current_data = *i[0]++;
    valid_bits = 8;
    while(valid_bits > 0)

{
  new_bit = (char) (current_data >> (valid_bits - 1)) & 0x01;
  out = (out<<1) + new_bit;
  valid_bits--;
  ready_bits = ready_bits + 1;
  if(ready_bits == min_output_bits)
    {
      // Zero the top bits of the output
      out = out << (8 - min_output_bits);
      out = out >> (8 - min_output_bits);
      *o[0]++ = out;
      out = 0x00;
      num_outputted_bits = num_outputted_bits + min_output_bits;
      ready_bits = 0;
      size--;
      if(size <= 0)

                  {
break;

                    }
       }

          }
        beginning_next_input = beginning_next_input + (num_outputted_bits
/ 8);
                  return output.size;
}

B.6 Example

As an example, assume an initial bit packing ratio of 1:8/2 for the unpacking

procedure.  Two bits from each data byte form an output symbol byte.  Consequently,

four output symbol bytes fully use up the data in one input byte.  Thus, when the forecast

procedure is given the output index of 3 (the index starts at zero) it will map this to byte

zero of the input stream.  In our example, the bit packing ratio remains at 1:8/2 until byte

7 in the output stream.
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After byte 7 in the output stream, the bit packing ratio is changed to 1:8/3.

According to the forecast algorithm above, the input index of 2 is stored in the

input_offset variable and the output index of 8 is stored in the offset variable.  This ratio

means that three data bits are needed to form one symbol byte.  If the forecast procedure

were given an output index of 8, it would map this to an input index of 2.  Only three bits

of the 3rd input data byte will then be used.

        Now consider an output index of 10.  This maps to an input index of 2 also since

there are 2 unused input data bits in the third input byte.  The work procedure may now

determine which of these bits are unused.  It accomplishes this by understanding how

many bits have been written at the current rate.  In our case, (10 - 8) or 2 output symbol

bytes have been written at the current rate.  This amounts to 2 * 3 or 6 data bits.  Thus, 6

data bits in the third data byte have been used.  This leads us to conclude that the last two

bits of the point in the data stream with an input index of 2 are valid data.  The work

procedure is then able to continue adding valid data bytes on to its buffer for use in

developing symbol bytes.
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Figure B-4. Example scenario of unpacking ratio switch.
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B.7  VrPACK

The packing routine is used by the receiver to translate symbols into bits.  This

module allows any ratio of packing.  This means that some portion of a symbol may be

used in one data byte and the remaining portion may be used in a separate data byte.

B.7.1  Forecast Procedure

The forecast routine maps the input sample stream which are the symbol bytes to

the output sample stream which are the full data bytes.

template<class iType,class oType> int
VrPACK<iType,oType>::forecast(VrSampleRange output,
                                           VrSampleRange inputs[]) {

    if(receive_coder_change_ok == 1)
    {
      receive_coder_change_ok = 0;
      min_input_bits = changed_bits;
      offset = output.index;
      change_request = 0;
      input_offset = beginning_next_input;
    }

  inputs[0].index= ((output.index - offset) * 8)/min_input_bits + input_offset;
  inputs[0].size= (output.size*8)/min_input_bits + 2;

  beginning_next_input = inputs[0].index + (output.size*8)/min_input_bits;
  return 0;

}

The forecast function is provided with the output index and output size and is

charged with mapping these parameters to the input index and input size.  With the offset

and input_offset parameters initially equal to zero, the algorithm multiplies the output

index which represents the number of full data bytes by 8.  This produces the total

number of output data bits.  This total number of output data bits is divided by the

number of bits represented in each symbol byte.  This operation yields the number of

symbols it takes to produce an output index number of output data bytes.  Any

remainders will be zeroed by the integer division calculation.  Thus, we will arrive at the

first symbol byte with either a fully unused set of bits or a partially unused set of bits.
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If a change is made to the packing rate, then the input index at which this change

occurs is stored in the input_offset and the output index at which this change occurred is

stored in the offset variable.  In this manner, further advances in the input index at the

new packing rate can be accurately found relative to its starting point while the prior

advances in the input index are captured by the input_offset parameter.

B.7.2  Work Procedure

The work procedure is provided with an input sample stream and an output

sample stream.  The input sample stream is composed of symbol bytes.  The output

sample stream is composed of full data bytes.

The work procedure must first determine how many bits of the first input symbol

byte are unused.  It does a similar calculation as that performed above.  It multiplies the

output index by eight to determine the total number of data bits completed.  It then

computes the total number of data bits modulus the number of bits in each symbol byte.

This result is the remainder or the number of bits of the last symbol byte that have been

used.  The work procedure may use the remainder to isolate the new, unused bits in any

particular symbol.

In this implementation, we continue to place unused bits from the symbol bytes

onto a buffer until we have accumulated over 8 unused bits.  The number of bits placed

on the buffer is denoted with the valid_bits variable.  After we have accumulated over 8

valid bits, we shift one of these valid bits on to our output byte iteratively.  Each time we

add another bit from the buffer to our output byte the ready_bits variable is incremented.

When the ready_bits variable equals eight bits we map our output byte to the output

sample stream and set the ready_bits parameter to zero.  This process continues until the

size of our output buffer equals zero.

To exclude used bits from the output, we can set the ready bits equal to negative

one times the remainder.  In this way, the ready_bits parameter will only be triggered

when these bits have been shifted out and eight, fresh bits have been added to the output

byte.

template<class iType,class oType> int
VrSymbols2Bits<iType,oType>::work(VrSampleRange output, void *ao[],
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VrSampleRange inputs[], void *ai[])
{

  iType **i = (iType **)ai;
  oType **o = (oType **)ao;

  int size = output.size;
  int remainder = ((output.index - offset) * 8) % min_input_bits;
  num_outputted_bits = remainder;
    ready_bits = -1 * remainder;
  valid_bits = 0;
  u_char out;
  out = 0x00;
  u_char new_bit;
  u_char current_data;
  u_char temp;

  while(size > 0) {
    while(valid_bits < 8)
      {

current_data = *i[0]++;
buffer = buffer << min_input_bits;
temp = current_data << (8 - min_input_bits);
temp = temp >> (8 - min_input_bits);
buffer = buffer + temp;
valid_bits = valid_bits + min_input_bits;

        }
      while(valid_bits > 0)
        {

new_bit = (char) (buffer >> (valid_bits - 1)) & 0x0001;
out = (out<<1) + new_bit;
valid_bits--;
ready_bits++;
if(ready_bits == 8)
  {
    *o[0]++ = out;
    ready_bits = 0;
    out = 0x00;
    size--;
    num_outputted_bits = num_outputted_bits + 8;

    if(size <= 0)
      {

break;
      }
  }
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         }
  }
  beginning_next_input = beginning_next_input + (num_outputted_bits / min_input_bits);
  return output.size;
}

B.8  Summary of Packing/Unpacking Modules

     Given such a setup, one is able to seamlessly switch the bit packing ratio.

Multiple changes of the bit packing/unpacking ratio may occur and the only state needed

is the input offset which represents the point in the input stream at which the switch

occurred and the output.index value which represents the point in the output stream at

which the switch occurred.
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