cutting the electric bill for internet-scale systems

Asfandyar Qureshi (MIT)
Rick Weber (Akamai)
Hari Balakrishnan (MIT)
John Guttag (MIT)
Bruce Maggs (Duke/Akamai)

context: massive systems

Google:

estimated map

tens of locationsin the US

>0.5M servers

others

- thousands of servers / multiple locations
- Amazon, Yahoo!, Microsoft, Akamai
- ▶ Bank of America (≈50 locations), Reuters

electricity expenses

millions spent annually on electricity

- Google ~ 500k custom servers ~ \$40 million/year
- Akamai ~ 40k off-the-rack servers ~ \$10 million/year

electricity costs are growing

- systems are rapidly increasing in size
- outpacing energy efficiency gains

relative cost of electricity is rising

- → 3-year server total cost of ownership by 2012:
 - > electricity ≈ 2 × hardware
- bandwidth prices are falling

what is being done

reduce number of kWh

- energy efficient hardware
- virtualization and consolidation
- power off servers when possible
- cooling (air economizers instead of chillers, etc.)
- dc power distribution, etc.

reduce cost per kWh

build data-centers where average price is low

our proposal

exploit electricity market dynamics

- geographically uncorrelated price volatility
- monitor real-time market prices and adapt request routing

skew load across clusters based on prices

leverage service replication and spare capacity

adapting to real-time prices is a new idea...

complementary to energy efficiency work

system model (status quo)

request routing framework

request routing framework

does electricity usage depend on server load?

how much can we reduce a location's electricity consumption by routing clients away from it?

does electricity usage depend on server load? latency concerns

how far away from a client is the cheap energy?

does electricity usage depend on server load? latency concerns

bandwidth costs could rise

• cheaper electricity ~ more expensive bandwidth?

does electricity usage depend on server load? latency concerns bandwidth costs could rise

is there enough spare capacity?

how much can we save by exploiting price volatility?

- > today: large companies more than \$1M/year
- > with better technology: more than \$10M/year
- > better than placing all servers in cheapest market

generality of results

Akamai-specific inputs

- client workload
- geographic server distribution (25 cities / non-uniform)
- capacity & bandwidth constraints

results should apply to other systems

- realistic client workload
 - > 2000 content providers
 - > hundreds of billions of requests per day
- realistic server distribution
 - > better than speculating...

request routing evaluation

request routing scheme

performance-aware price optimizer

- map client -> set of locations that meets latency goals
- rank locations based on electricity prices
- remove locations nearing capacity from set
- pick top-ranked location

assumptions

- complete replication
- hourly route updates preserve stability
- uniform bandwidth prices (we will relax this later...)

Akamai workload

measured traffic on Akamai's CDN

- ▶ large subset of Akamai's servers (~20K) in 25 cities
- collected over 24 days (Dec 2008 Jan 2009)
- 5-min samples
 - > number of hits and bytes transferred
 - > track how Akamai routed clients to clusters
 - > group clients by origin state
- also derived a synthetic workload

electricity prices

extensive survey of US electricity markets

- regional wholesale markets (both futures and spot)
- nature and causes of price volatility (see paper...)

data collection

- 39 months worth of historical hourly prices
 - > January 2006 through March 2009
- 6 different regional wholesale markets
- 30 locations

request routing evaluation

location energy model

linear model (roughly)

- server utilization -> watts
- scaling: number of servers
- based on a Google study
- power measurements at Akamai

important parameters

(b) PUE = powerenter data center power used by IT equip.

critical: how proportional is power to load?

- server power management? are idle servers turned off?
- the 'energy elasticity' of the system

importance of elasticity

importance of elasticity

increasing energy proportionality

bandwidth costs

are we increasing bandwidth costs?

problematic: bandwidth prices are proprietary

uniform bandwidth price model

fixed cost per bit regardless of time and place

95/5 bandwidth pricing model

- prices set per network port
- network traffic is divided into 5-minute windows
- → 95th percentile of traffic is used for billing

approach: 95th percentiles from Akamai data

- constrain routing so that 95th percentiles are unchanged
- Akamai's routing factors in bandwidth prices...

bandwidth constraints

latency constraints

practical implications

who can use this approach?

- servers in multiple locations
- some energy proportionality

complications

- electric billing based on peak power
- we need prices w/ time-varying uncorrelated volatility
 - > e.g., wholesale market prices in the US

current energy sector trends are favorable

conclusion

significant value in price volatility

- large systems today: save more \$1M/year
- increased energy elasticity: more than \$10M/year

required mechanism already mostly in place

- minimal incremental changes required
- integrate real-time market information

extensions

- other cost functions (carbon, NO_x)
- other inputs (weather)
- active market participation (demand response, etc.)