
Using DHTs to Untangle the Web from DNS

Michael Walfish
�

MIT Laboratory for Computer Science, mwalfish@lcs.mit.edu

1 Introduction
The marriage between DNS and the Web, while initially fruit-
ful, is now seen by many as a mutually unhealthy union. DNS’s
original goal was practical and limited: allowing users to refer
to machines with convenient mnemonics. As such, it has per-
formed admirably. However, with the advent of the Web and the
resulting commercial value of DNS names, profit has replaced
practicality as the dominant force shaping DNS. Legal wran-
gling over domain ownership is commonplace, and the institu-
tional framework governing the naming system (i.e., ICANN) is
in disarray. Commercial realities have transformed DNS into a
branding mechanism, a task for which it is ill-suited.

A linked, distributed system such as the Web requires a Ref-
erence Resolution Service (RRS) to map from references, such
as Web URLs, to actual locations, such as the IP address(es)
where the referenced object is stored. In the current Web, refer-
ences are URLs with a hostname/pathname structure and DNS
serves as the RRS. The host-based nature of URLs—which ties
references to specific locations and hard-codes the path compo-
nent of the reference—makes content replication and movement
hard.1 Thus, the Web would be better served with a new RRS,
one that does not embed location into the reference itself. The
experiences with DNS suggest three basic design principles for
any such RRS, which we now articulate.

Location-independent references: References should not
contain information about the location of the content and should
easily generalize to the case of widely replicated content. Along
with many others, we argue that a reference, like any abstraction
used for indirection, should remain constant as the referenced
object moves. With current Web URLs, however, hyperlinks
break when the referenced content migrates since the hostname
and/or the directory path to the object changes, and no mecha-
nism exists for updating referring hyperlinks.

Contention-free references: There is contention over do-
main names because they are used as the basis for URLs. So-
cial problems include “name squatting”, “typo squatting”, and
lawsuits over trademark infringement [6]. Moreover, there
are many examples of misleading DNS-based URLs, such as
http://www.martinlutherking.org, a Web site that,
contrary to expectation, is decidedly hostile to Martin Luther
King, Jr. All of these tussles result from DNS names having
become branding elements. Rather than attempt to solve the

�

This is joint work with Hari Balakrishnan (MIT Laboratory for
Computer Science, Cambridge, MA) and Scott Shenker (International
Computer Science Institute (ICSI), Berkeley CA). This research is part
of the IRIS project and supported by the National Science Foundation
under Cooperative Agreement No. ANI-0225660

1One can certainly play DNS tricks to achieve replication; our point
is that the DNS architecture hinders rather than helps replication.

problem of human contention over names (which is fundamen-
tally insoluble, as years of trademark law attest), we are pushing
the problem to another layer, one in which multiple, coexistent,
competing solutions to the problem of names can exist. By mak-
ing references human-unfriendly, we shield the core object loca-
tion service from tussles, allowing it to focus on the technical
goals of efficiency and reliability.

Minimal design: The use of links, or pointers, to refer to
objects or content on other machines is not unique to the Web.
Links are used in a variety of distributed systems for identifying
objects and invoking remote code, for organizing data in sen-
sornets, for locating devices, and for other purposes where one
wants to refer to objects by name, not location. All of these sys-
tems require an RRS. Since reference resolution is a hard prob-
lem that requires delicate design and significant infrastructure, a
sensible approach is providing a single RRS that can be shared
among these various linked systems. However, to ensure the
RRS can be shared, it should provide a minimal interface that
does not impose any application semantics.

The purpose of this paper is to describe our design and im-
plementation of a DHT-based RRS, called Semantic Free Ref-
erencing (SFR), that satisfies these three requirements, thereby
providing a better RRS for the Web than DNS does currently.
We will show that SFR permits functionality impossible in to-
day’s Web and that what at first appear to be insurmountable
challenges for SFR—performance, fate sharing, security, and
convenient naming—actually have reasonable solutions.

Of course, a natural question is: if SFR is used as an RRS for
the Web and if references are human-unfriendly, how will hu-
mans retrieve content? The answer is, first, that today humans
mostly use what we call user-level names, which translate user
goals (e.g., “find the website of Cornell University”) into an ob-
ject on the Web. Examples of user-level names include queries to
search engines, AOL keywords, hyperlinks in documents, saved
bookmarks, and links sent through e-mail. Each of these meth-
ods works well under SFR: search queries, for example, return
candidate SFR references instead of DNS-based URLs.

Second, the other way users access Web content today is by
typing DNS-based URLs. In this case, DNS functions as a
canonicalization service, i.e., a mapping from well-known, in-
variant, human-readable names to Web objects. To permit equiv-
alent functionality under SFR, DNS need not be the canonical-
ization source. Moreover, it might be desirable to have several
such mapping services. So, rather than do what DNS-based Web
URLs do—conflating the reference, which actually performs ob-
ject routing, and the user-level name, which allows people to find
what they are looking for—SFR separates the two functions and
focuses on getting the object routing function right.2

2We address the question of bootstrapping in Section 4.4.

2 RRS Design Choices
There are three current proposals for a general-purpose RRS:
DNS URLs, IP-based URLs, and URNs. However, none of these
fulfills each of our three design goals. IP-based URLs would
obviously be location-dependent. Current DNS-based URLs
are neither human unfriendly, which is obvious, nor location-
independent. A DNS-based URL ties an object to a specific ad-
ministrative domain and hard-codes a path. If a piece of con-
tent moves and/or its path component changes, existing hyper-
links are invalidated, leading to messages like “Please update
the referrer of this page”; this model violates the principle that
someone should be able to maintain a pointer without knowing
specifics of the pointer’s target. The URN proposals, in con-
trast, are motivated by the goal of producing an RRS with per-
sistent references that are independent of network location and
current administrative domain, but in this model each linked sys-
tem would have its own reference resolution system [8, 9].

Finally, one could also use an approach similar to the SFS
framework [2]; hyperlinks would be links in SFS space to files
on other machines. In this model, the references would contain
hashes of public keys and so would not be human readable. But
this approach fails our goal of full location-independence: these
links in SFS space would still contain hard-coded paths, just
as DNS-based URLs do. Moving a file to another administra-
tive domain or changing the location of a file within a directory
structure would require tedious and error-prone maintenance of
symbolic links.

3 SFR Design and Implementation
Our definition of a semantic-free system for referencing is one in
which references are location-independent and human unread-
able; a semantic-free system would therefore satisfy at least two
of our design principles. Turning now to the third principle, a
shared, general purpose infrastructure that could be used in any
number of systems should not make any assumptions about the
structure of the namespace or about whether hierarchy is avail-
able. The three goals together, then, naturally lead to a flat,
opaque, human unreadable namespace for references.

DHT technology [5] is perfectly suited to this task: at their
core, DHTs map an unstructured key to a network location
responsible for the key. This, then, is the SFR system: an
application-independent, DHT-based object resolution infras-
tructure in which the object references, which we call tags, are
unstructured, semantic-free keys in a DHT; lookups on the tag
return object meta-data.

3.1 SFR Infrastructure
Our implementation of SFR associates a semantic-free 160 bit
string, an SFRTag, to a simple data structure, the o-record.
The o-record contains the object’s meta-data and serves as a
layer of indirection between the reference itself and the actual
meta-data, such as the location of the object. The SFRTags are
keys in a DHT, and the data that the DHT associates with the
keys is exactly the o-record. Note that it is only meta-data,
and not objects themselves, that the DHT stores. Our imple-
mentation currently uses chord/dhash [10] as the underlying
DHT, but the SFR architecture is modular and permits another
DHT to be substituted with little effort.

Figure 1: The o-record

The SFR infrastructure provides application-independent se-
mantics because, with the exception of the location field (a
list of IP address and port pairs in our implementation), the o-
record itself is application-independent. The o-record is
illustrated in Figure 1. The application using the SFR infrastruc-
ture chooses the content and number of elements in each object’s
location field. Also under the application’s control are the
structure, content, and length of the oinfo field.

The interface to the SFR infrastructure is an API that allows
an application to set o-record information as well as retrieve
o-records that are stored in the infrastructure. The infras-
tructure prevents collisions by rejecting insert requests and noti-
fying clients if the SFRTag they request is already present. To
prevent other clients from modifying their o-records, entities
can present a public key with their insert request. Our implemen-
tation of the SFR infrastructure stores this key and ensures that
the current request and all subsequent modifications to the o-
record have been signed with the corresponding private key.3

The SFR infrastructure also prevents an attack when there is a
partition; the attack occurs if two malefactors on opposite sides
of the partition conspire to eavesdrop on a legitimate request and
then insert the corresponding SFRTag into the SFR infrastruc-
ture on the opposite side of the network partition, leading to the
possible expulsion of the legitimate content when the partition
heals. To prevent this attack, the infrastructure forces random
key choice by requiring that the SFRTag, when first created,
is a secure hash of the client’s public key and a client-chosen
nonce. Updating the public key does not invalidate the reference
since the SFR infrastructure only requires that the relationship
between the SFRTag and the public key is satisfied when the
tag is first inserted. After that, the SFR infrastructure ensures
that updates to the public key or to the content have been signed
with the existing public key. We note that this scheme also has
the benefit of preventing human readability.4

We observe that a deployed system would use infrastructure
nodes running the SFR and DHT software, not “peers” behind
cable modems. We do not claim to know this infrastructure’s
economic model—it could be centrally financed or “donated”,
like DNS.5 Our current design presumes that clients trust the
infrastructure; in Section 4.3 we consider a different trust model,
namely using a system like SkipNet as the underlying DHT [4].

Although SFR is designed to be useful for any application
requiring reference resolution, the remainder of this paper pri-
marily focuses on our implementation of one application: the

3We plan soon to implement a facility by which entities can update
the public key associated with an o-record by supplying a password.

4If the user does not supply a public key, then the infrastructure can
enforce that the SFRTag is the hash of something, yielding randomness
in tag choice but no protection against overwriting.

5How one organizes and finances a DHT infrastructure is an impor-
tant open question but not one we address here.

Web over SFR.

3.2 The Web over SFR
After first describing our design and implementation, we then
show how functionality that is difficult or impossible with DNS-
based URLs is easily available in a version of the Web that uses
the SFR infrastructure.

Because both the administrative domain (i.e., the DNS name)
and the path on the Web server are hard-wired into today’s
URLs, it is difficult for content providers to change the logical
path component of the URL or to move objects from one admin-
istrative domain to another without breaking the existing hyper-
links that use this URL. Today, if a Web object changes location
but stays within its domain, a Web server can, with difficulty, ac-
commodate this movement by continuing to accept URLs with
path components that do not correspond to the file system on the
Web server. However, this requires extra configuration effort on
the part of the content provider and is not the norm. Moreover,
it requires administrative control over the Web server, which is
not something that normal users have. If an object moves from
one administrative domain to another, HTTP redirects are nec-
essary to avoid broken links, but redirects are not only clumsy,
they require the cooperation of the originating Web server.

As a result, in the current Web, when an object moves, hy-
perlinks generally break, and a human browsing the Web reads
“please update your links” or “please notify the referrer of this
page”. The idea that pointers have to change when objects move
violates the principle that a reference should be independent of
the current location of the item being pointed to.

With the Web over SFR, in contrast, we take advantage of
the location-independent routing given by the SFR infrastructure
and create a fully general layer of indirection for Web objects.
We use an SFRTag as an abstract reference to a Web object. The
location field in the o-record associated to the SFRTag
indicates the current IP address of a Web server that can fulfill
HTTP requests for the object. And the oinfo field of the o-
record indicates the logical path on the Web server. In the
Web over SFR, URLs have the following form:

sfr://fbcd1234abc.../<optional path>

To resolve a URL like this one, a Web browser6 strips out the
first portion of the URL, treats it as the SFRTag and submits it to
the SFR infrastructure. The browser then receives the matching
o-record from the SFR infrastructure and submits a standard
HTTP request to the IP address and port in the o-record’s
location field. The path that goes in the HTTP request is the
contents of the oinfo field concatenated with the <optional
path> from the original URL.

This design preserves the semantics of HTTP. From Web
servers’ perspective, the SFR infrastructure is invisible; Web
servers continue to receive HTTP GET requests with paths. We
also note that this framework naturally allows dynamic content
because embedded links can contain semantic-ful paths. With-
out the <optional path>, Web browsers would be unable
to form and submit URLs that had never existed before (since
there would be no way to get an SFRTag to resolve to some-
thing that had never been inserted into the SFR infrastructure).

6A proxy server performs this function in our implementation.

3.3 Features

3.3.1 Robust Linking

In contrast to the current method of Web linking, the SFR ap-
proach provides a layer of indirection to abstract not only the
machine location (as occurs in DNS) but also the logical path
on the Web server. This permits a general mobility solution: if
a piece of content, currently referenced by an SFRTag, moves
to another Web server at a different path, the content provider
need only change the location and oinfo fields in the
o-record in order to permit the correct reference resolution
to occur for Web clients. Web pages linking to the object can
continue to maintain the same references.

This approach is flexible about how much of the reference
functions as an abstraction. An SFRTag can refer to a machine
(in this case, the <optional path> is the same as it is with
today’s URLs), to a Web object (in this case, the SFRTag ab-
stracts the entire URL and the <optional path> is empty),
or to a directory structure (in this case, the SFRTag abstracts
the entire URL up until the root of the directory structure, and
the <optional path> is everything underneath the directory
structure). For example, a researcher might have a large collec-
tion of publications in one directory and might wish to abstract
only the location of the collection. In this case, the SFRTag
would abstract the IP address of the Web server as well as the
path on the server up until the document collection. The individ-
ual publications would retain the same names. So the SFR Web
references would have the following form:

sfr://fbcd1234/pub1.ps
sfr://fbcd1234/pub2.ps

If the researcher’s affiliation then changes, he alters the
o-record corresponding to fbcd1234 so that it contains a
different Web server and a different path on the new server. A re-
ferring Web page that embeds sfr://fbcd1234/pub1.ps
can safely be ignorant of the move.

3.3.2 Democratic Replication

The Web over SFR also permits functionality that is inaccessi-
ble to ordinary Internet users with today’s DNS-based URLs.
As several content distribution networks have demonstrated, it
is possible to implement replication solutions by using today’s
DNS [1]. But this requires a massive worldwide network and a
custom DNS implementation; most Internet users cannot afford
to implement, or even be customers of, a system of this scale.
With our version of the Web on SFR, however, individuals can
receive replication services by agreeing to host each other’s con-
tent. We call this kind of replication democratic replication, and
it works very simply.

Individuals reference their content with SFRTags and place
into the corresponding o-recordmultiple locations and paths.
Each (location,path) pair represents a valid location of the Web
object. One of the pairs is the source of the content, and the
other pairs represent replicated versions on other Web servers.
In the simplest model, users pair up with friends and mirror each
other’s websites with rsync. Each friend communicates to the
other the IP address of a Web server and path on that Web server
where she is storing her friend’s content, and each friend then
updates her own o-recordwith this information. Now, clients
doing a lookup receive an o-record with multiple locations

and choose which Web server to contact via standard server se-
lection methods.

Implementing this functionality in today’s Web would be im-
possible for ordinary users (and very inconvenient for adminis-
trators). In the current Web, the only way to refer to content on
two different Web sites is to use an abstract domain name (and
either hack the DNS or statically configure the abstract domain
name to return the IP addresses of the two servers.) This hypo-
thetical URL has to work on two different Web servers with two
different directory structures, meaning the Web servers would
have to be configured to recognize both the abstract domain
name and the path component of the hypothetical URL. This
configuration would require administrative control over the Web
servers. A benefit of the SFR approach is that ordinary users
need control only, say, their home directory; they then commu-
nicate a path under their home directory to the individual for
whom they are replicating.

3.3.3 Extensibility

Because of the o-record’s simplicity and generality, the Web
over SFR (and, indeed, any application built on SFR) can easily
accommodate new features. For example, the oinfo field could
additionally store a certificate indicating that a site is safe for
children [7]. After a user clicked on an SFR hyperlink pointing
to the site, the Web browser would retrieve the o-record and
verify that the o-record contained a certificate indicating the
site was safe.

4 Challenges
Because of DNS’s hierarchical, delegated structure, there are a
number of features that it naturally provides that might at first
appear difficult for SFR. In this section, we show how SFR can
address these issues.

4.1 Performance
Although lookups in Chord, the substrate in our implementa-
tion, use

���������
	��
hops, we can in practice reduce the number

of overlay hops per lookup to one or two, making the latency
associated with an SFR lookup roughly equivalent to a DNS
lookup. We simply expand Chord’s location cache. Indeed, our
experiments and simulations show that a relatively small loca-
tion cache (with room for approximately 20% of the nodes in a
Chord ring) usually yields one or two lookups. The reason for
this is as follows: if the originating node,

�
, has not cached the

target ,
�

is likely to know about a node, � , near , and �
is likely to know about . In the domain of caching for DHTs,
“being close counts”. Caching 20% of the nodes in the ring
is reasonable because a deployed SFR infrastructure would be
bounded.7

This bound also permits us to use a substrate specifically opti-
mized for one hop lookups. Gupta et al. prove that by exchang-
ing state in the background, any DHT with a ring structure (such
as Chord) can guarantee one hop lookups almost all the time [3].
Sufficient conditions for this scheme are enough bandwidth be-
tween DHT nodes and a bound (well above what we expect for
SFR) on the DHT size. We plan to use an implementation of this
scheme in the future.

7An over-estimate of the number of SFR nodes is the number of DNS
servers, which is on the order of ����� .

4.2 Fate Sharing
By delegating the namespace, DNS naturally permits a feature
that is highly desirable in an RRS: fate sharing. For example,
if the computers inside cornell.edu become disconnected
from the rest of the Internet, those machines can continue to
resolve names ending in cornell.edu, since the authoritative
name server for cornell.edu is on their side of the partition.

At first blush, it seems difficult for SFR to provide this feature
because references, and their associated meta-data, are stored
on random nodes in the SFR infrastructure. However, the solu-
tion is not complicated. In the current implementation of SFR,
content providers inserting o-records do so by contacting a
nearby member of the infrastructure running sfr server soft-
ware; the purpose of this module is to abstract the underlying
DHT. To achieve fate sharing and scoping, organizations would
set up proxy sfr servers. This proxy would appear as an
sfr server to hosts within the organization and as a standard
SFR client to the global SFR infrastructure.

Clients wishing to insert o-records would submit a stan-
dard SFR insert request to the proxy. The proxy would store the
associated o-record and would then insert the o-record
into the global DHT on behalf of the client. This approach
clearly results in fate sharing: if a disconnect occurs, the proxy
continues to serve o-record data for content that originated
inside the organization.

The proxy could also be enhanced by making it mirror the
global DHT, i.e., by making it into a cache. This need not re-
quire a large investment in infrastructure or machines, since the
mirror could be a DHT consisting of one node. Finally, a nat-
ural solution for scoping arises in this framework: when clients
within the organization wish to limit their meta-data to mem-
bers of their organization, the proxy (or mirror) simply stores
the o-record locally, without forwarding it on to the global
DHT. Implementing a proxy that provides fate sharing, caching
and scoping is the subject of future work.

4.3 Security and Management
We discussed in Section 3 how SFR ensures the integrity of
o-records. SFR also has to worry about misbehaving nodes;
this is not a problem in DNS because content providers are re-
sponsible for their own meta-data. For now, in SFR, our imple-
mentation assumes that it is running on trusted nodes that be-
have (though, of course, it assumes nothing about the intent of
the clients of the infrastructure).

We emphasize that SFR’s current assumption of a well-
behaved underlying DHT could be relaxed by changing the sub-
strate from Chord to a DHT like SkipNet [4] that is aware of ad-
ministrative boundaries between organizations.8 In this model,
the content provider would have substantial control over where
his o-record is stored, eliminating potential security issues.

A DHT like SkipNet also quite obviously yields an alter-
nate solution for fate-sharing, since objects’ meta-data would be
stored close to the objects being referenced. As an aside, we note
that either a centrally managed infrastructure or a SkipNet-like
DHT incorporating administrative domain addresses problems
from loading attacks and hotspots. For now, the implementa-
tion of SFR ensures the integrity of o-records and protects

8Although SkipNet proposes DNS names to identify administrative
regions, this choice is arbitrary and could instead use different strings.

against misbehaving clients, but it does not address the problem
of misbehaving DHT nodes.

4.4 Canonicalization
Right now, the benefit that DNS gives is associating to Web con-
tent a set of occasionally memorable and usually transcribable
handles. From our informal observations, this mnemonic bene-
fit is not crucial to human users, but it is sometimes extremely
convenient to be able to type in a Web browser www.cnn.com
if one is looking for CNN’s home page. In this case, DNS func-
tions as a canonicalization service—it provides a name that is
persistent, well-known, and sometimes memorable.

Although SFR does not explicitly incorporate a canonicaliza-
tion service, it does permit any number of such services to co-
exist. If SFR becomes popular, there is every reason to believe
that Web service providers with the appropriate expertise would
compete to provide such a service. Instead of offering detailed
conjecture about the design of canonicalization services, we note
1) that there are two obvious models already in existence: AOL
keywords, and the paper yellow pages and 2) that SFR is modu-
lar enough to permit a wide spectrum of services.

Of course, the problem of bootstrapping exists, namely how
users get pointers to directory services. There are a number of
possibilities here, ranging from browsers shipping with pointers,
to links sent in e-mail from friends, to applications running on
the local host that populate a local database of useful sites.

4.5 Confidence
DNS provides another convenience for the Web that might ap-
pear difficult under SFR: human-level confidence in the authen-
ticity of content. For example, humans browsing the Web who
see a URL beginning with www.nytimes.com are confident
that the content they are viewing is owned by the newspaper they
think of as The New York Times. This level of confidence is ac-
tually quite weak; it entirely depends on whether the “correct”
company owns a given domain name. In many cases, such as in
the earlier example of www.martinlutherking.org, this
“correctness” is not only hard to achieve, it is also ill-defined.
For example, there are many different businesses in the same
industry with the same name.

Under SFR, there are a number of ways to achieve this kind
of human-level confidence in content. Rather than give lengthy
detail on possible solutions, we outline just one: hyperlinks on
Web pages optionally embed a taginfo object alongside the
SFRTag. This object contains cryptographic statements of the
form “Entity E says that this tag is CNN”, where E is a Web
service provider that users trust. Users’ browsers would inform
them about who is certifying the link. We plan to build strawman
prototypes for the Confidence and Canonicalization services.

4.6 Transition Strategy
The goal of SFR is not to provide equivalent functionality to
DNS, which users ought to continue to use for its original pur-
pose of hostname translation. The goal is rather to provide a
more attractive alternative for the subclass of applications, like
Web referencing, that require an RRS.

If SFR becomes popular and widely deployed, client ma-
chines will need to discover a reachable SFR server. Clients to-
day find out about available DNS servers via DHCP or via hard-
coding; we envision an identical process for informing clients of

SFR servers. Providing client access to an SFR server would be
one of the services offered by an ISP or large institution.

5 Conclusion
In this paper, we have knowingly adopted an extreme view,
namely that all references should be devoid of human-readable
semantics. It is entirely possible that the referencing system
of the future will be either somewhere in between DNS and
SFR or a combination of DNS and SFR. Indeed, from a us-
ability perspective, each system offers something the other does
not. DNS offers convenience publicizing and composing con-
tent while SFR makes it easy to implement mobility, democratic
replication and traditional replication and to avoid broken links.

Ultimately, our goal is to achieve the full potential of the Web
as a medium in which anyone can publish, in which objects can
freely migrate, and for which the infrastructure is simple, cheap,
robust, and accessible. Attaining these characteristics, we be-
lieve, would be easy and natural under SFR.

6 Project Status
Our implementation of the SFR infrastructure is complete. It
contains: an SFR client library (which must be pointed to an
available sfr server), the sfr server described above,
and a modified version of dhash/chord. The Web over SFR
uses the client SFR library and permits robust linking, demo-
cratic replication and the security benefits we have outlined.
Users access the Web over SFR by pointing Web browsers to
a custom proxy Web server that uses SFR to handle HTTP re-
quests like http://fa12213ba123/. We have also studied
caching performance in simulation. Our future work is build-
ing a proxy sfr server to address fate sharing, incorporating
solutions for caching (including the one hop DHT techniques
[3]), building prototypes for canonicalization and confidence
services, and using the o-record to implement extensions to
current Web functionality.

References
[1] Akamai Technologies, Inc. http://www.akamai.com.
[2] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure

distributed read-only file system. ACM Transactions on Computer
Systems, 20(1):1–24, Feb. 2002.

[3] A. Gupta, B. Liskov, and R. Rodrigues. One hop lookups for
peer-to-peer overlays. In Proc. of 9th Workshop on Hot Topics in
Operating Systems (HotOS IX), Lihue, Hawaii, May 2003.

[4] N. J. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with practical
locality properties. In Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITS ’03), Seattle, WA, March 2003.

[5] Infrastructure for resilient Internet systems.
http://www.project-iris.net/, 2002.

[6] M. Mueller. Ruling the Root: Internet Governance and the
Taming of Cyberspace. MIT Press, Cambridge, MA, May 2002.

[7] S. Savage. Personal communication, Feb 2003.
[8] K. Sollins. Architectural principles of uniform resource name

resolution, Jan 1998. RFC 2276.
[9] K. Sollins and L. Masinter. Functional requirements for uniform

resource names, Dec 1994. RFC 1737.
[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proc. ACM SIGCOMM, San Diego,
CA, Aug. 2001.

