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Abstract

This paper describes the implementation and evaluation of a

system to implement complex congestion control functions

by placing them in a separate agent outside the datapath. Each

datapath—such as the Linux kernel TCP, UDP-based QUIC, or

kernel-bypass transports like mTCP-on-DPDK—summarizes

information about packet round-trip times, receptions, losses,

and ECN via a well-defined interface to algorithms running

in the off-datapath Congestion Control Plane (CCP). The algo-

rithms use this information to control the datapath’s congestion

window or pacing rate. Algorithms written in CCP can run on

multiple datapaths. CCP improves both the pace of develop-

ment and ease of maintenance of congestion control algorithms

by providing better, modular abstractions, and supports

aggregation capabilities of the Congestion Manager, all with

one-time changes to datapaths. CCP also enables new capabil-

ities, such as Copa in Linux TCP, several algorithms running

on QUIC and mTCP/DPDK, and the use of signal processing

algorithms to detect whether cross-traffic is ACK-clocked.

Experiments with our user-level Linux CCP implementation

show that CCP algorithms behave similarly to kernel

algorithms, and incur modest CPU overhead of a few percent.
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• Networks → Transport protocols; Network protocol

design;
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1 Introduction

At its core, a congestion control protocol determines when

each segment of data must be sent. Because a natural place

to make this decision is within the transport layer, congestion

control today is tightly woven into kernel TCP software and

runs independently for each TCP connection.

This design has three shortcomings. First, many mod-

ern proposals use techniques such as Bayesian forecasts

(Sprout [41]), offline or online learning (Remy [40], PCC [11],

PCC-Vivace [12], Indigo [43]), or signal processing with

Fourier transforms (Nimbus [19]) that are difficult, if not

impossible, to implement in a kernel lacking useful libraries

for the required calculations. For example, computing the

cube root function in Linux’s Cubic implementation requires

using a table lookup and a Newton-Raphson iteration instead

of a simple function call. Moreover, to meet tight performance

constraints, in-kernel congestion control methods have largely

been restricted to simple window or rate arithmetic.

Second, the kernel TCP stack is but one example of a

datapath, the term we use for any module that provides data

transmission and reception interfaces between higher-layer

applications and lower-layer network hardware. Recently,

new datapaths have emerged, including user-space protocols

atop UDP (e.g., QUIC [25], WebRTC [24], Mosh [39]),

kernel-bypass methods (e.g., mTCP/DPDK [13, 23, 33]),

RDMA [45], multi-path TCP (MPTCP) [42], and specialized

Network Interface Cards (“SmartNICs” [28]). This trend

suggests that future applications will use datapaths different

from traditional kernel-supported TCP connections.

New datapaths offer limited choices for congestion control

because implementing these algorithms correctly takes

considerable time and effort. We believe this significantly

hinders experimentation and innovation both in the datapaths

and the congestion control algorithms running over them. For

instance, the set of available algorithms in mTCP [23], a TCP

implementation on DPDK, is limited to a variant of Reno.

QUIC, despite Google’s imposing engineering resources,

does not have implementations of several algorithms that

have existed in the Linux kernel for many years. We expect

this situation to worsen with the emergence of new hardware

accelerators and programmable network interface cards

(NICs) because high-speed hardware designers tend to forego

programming convenience for performance.
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Third, tying congestion control tightly to the datapath makes

it hard to provide new capabilities, such as aggregating conges-

tion information across flows that share common bottlenecks,

as proposed in the Congestion Manager project [4].

If, instead, the datapath encapsulated the information

available to it about congestion signals like packet round-trip

times (RTT), receptions, losses, ECN, etc., and periodically

provided this information to an off-datapath module, then

congestion control algorithms could run in the context of

that module. By exposing an analogous interface to control

transmission parameters such as the window size, pacing

rate, and transmission pattern, the datapath could transmit

data according to the policies specified by the off-datapath

congestion control algorithm. Of course, the datapath must

be modified to expose such an interface, but this effort needs

to be undertaken only once for each datapath.

We use the term Congestion Control Plane (CCP) to refer

to this off-datapath module. Running congestion control in

the CCP offers the following benefits:

(1) Write-once, run-anywhere: One can write a conges-

tion control algorithm once and run it on any datapath

that supports the specified interface. We describe several

algorithms running on three datapaths: the Linux kernel,

mTCP/DPDK, and QUIC, and show algorithms running

for the first time on certain datapaths (e.g., Cubic on

mTCP/DPDK and Copa on QUIC).

(2) Higher pace of development: With good abstractions,

a congestion control designer can focus on the algorith-

mic essentials without worrying about the details and

data structures of the datapath. The resulting code is

easier to read and maintain. In our implementation, con-

gestion control algorithms in CCP are written in Rust or

Python and run in user space.

(3) New capabilities: CCP makes it easier to provide

new capabilities, such as aggregate control of multi-

ple flows [4], and algorithms that require sophisticated

computation (e.g., signal processing, machine learning,

etc.) running in user-space programming environments.

This paper’s contributions include:

• An event-driven language to specify congestion control

algorithms. Algorithm developers specify congestion

control behavior using combinations of events and condi-

tions, such as the receipt of an ACK or a loss event, along

with corresponding handlers to perform simple compu-

tations directly in the datapath (e.g., increment the win-

dow) or defer complex logic to a user-space component.

We show how to implement several recently proposed

algorithms and also congestion-manager aggregation.

• A specification of datapath responsibilities. These

include congestion signals that a datapath should

maintain (Table 2), as well as a simple framework to

execute directives from a CCP program. This design

enables “write-once, run-anywhere” protocols.

• An evaluation of the fidelity of CCP relative to in-kernel

implementations under a variety of link conditions. Our

CCP implementation matches the performance of Linux

kernel implementations at only a small overhead (5%

higher CPU utilization in the worst case).

2 Related Work

The Congestion Manager (CM [4]) proposed a kernel module

to separate congestion control from individual flows. CM

provides an API for flows to govern their transmissions and

a plan to aggregate congestion information across flows

believed to share a bottleneck. The CM API requires a flow to

inform the CM whenever it wanted to send data; at some point

in the future, the CM will issue a callback to the flow granting

it permission to send a specified amount of data. Unlike CCP,

the CM architecture does not support non-kernel datapaths

or allow custom congestion control algorithms. Further, the

performance of CM is sub-optimal if the CM and the datapath

are in different address spaces, since each permission grant

(typically on each new ACK) requires a context switch which

reduces throughput and increases latency. We show in §6.3 that

CCP can support the aggregate congestion control capabilities

of the CM architecture.

eBPF [14] allows developers to define programs that can

be safely executed in the Linux kernel. These programs can be

compiled just-in-time (JIT) and attached to kernel functions

for debugging. TCP BPF [6] is an extension to eBPF that

allows matching on flow metadata (i.e., 4-tuple) to customize

TCP connection settings, such as the TCP buffer size or SYN

RTO. In the kernel datapath, it may be possible for CCP to use

the JIT features of eBPF to gather measurements, but not (yet)

to set rates and congestion windows. Exploring the possibility

of TCP control entrypoints for eBPF, and an implementation

of a Linux kernel datapath for CCP based on such control, is

left for future work.

Linux includes a pluggable TCP API [10], which exposes

various statistics for every connection, including delay, rates

averaged over the past RTT, ECN information, timeouts, and

packet loss. icTCP [20] is a modified TCP stack in the Linux

kernel that allows user-space programs to modify specific

TCP-related variables, such as the congestion window, slow

start threshold, receive window size, and retransmission

timeout. QUIC [25] also offers pluggable congestion control.

We use these Linux and QUIC pluggable APIs to implement

datapath support for CCP. CCP’s API draws from them, but

emphasizes asynchronous control over datapaths.

HotCocoa [2] introduces a domain specific language to allow

developers to compile congestion control algorithms directly

into programmable NICs to increase efficiency in packet pro-

cessing. In contrast, CCP allows developers to write algorithms
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in user-space with the full benefit of libraries and conveniences

such as floating point operations (e.g., for Fourier transforms).

Structured Streams (SST [17]) proposed a datapath that

prevents head-of-line blocking among packets of applications

by managing the transport streams between a given pair of

hosts and applying a hereditary structure on the streams.

Unlike SST, CCP does not manage the contents of the

underlying transport stream: CCP enables deciding when a

packet is transmitted, not which packet. We view SST and

CCP as complementary architectures which can be combined

to provide composable benefits.

Finally, there is a wide range of previous literature on mov-

ing kernel functionality into user-space. Arrakis [30] is system

that facilitates kernel-bypass networking for applications via

SR-IOV. IX [5] is a dataplane operating system that separates

the management functionality of the kernel from packet pro-

cessing. Alpine [15] moves all of TCP and IP into user-space.

Whereas these systems use hardware virtualization to allow

applications to have finer grained control over their networking

resources, CCP exposes only congestion control information to

user-space. Moreover, CCP is also agnostic to the datapath; dat-

apaths for library operating systems could be CCP datapaths.

3 CCP Design Principles

To enable rich new congestion control algorithms on datapaths,

CCP must provide a low-barrier programming environment

and access to libraries (e.g., for optimization, machine

learning, etc.). Further, new algorithms should also achieve

high performance running at tens of Gbit/s per connection

with small packet delays in the datapath.

3.1 Isolating Algorithms from the Datapath

Should congestion control algorithms run in the same address

space as the datapath? There are conflicting factors to consider:

Safety. Supporting experimentation with algorithms and the

possibility of including user-space code means that programs

implementing congestion control algorithms should be

considered untrusted. If algorithms and the datapath are in the

same address space, bugs in algorithm or library code could

cause datapath crashes or create vulnerabilities leading to

privilege escalations in the kernel datapath.

Flexibility. Placing congestion control functionality outside

the datapath provides more flexibility. For example, we

anticipate future use cases of the CCP architecture where a con-

gestion control algorithm may run on a machine different from

the sender, enabling control policies across groups of hosts.

Performance. On the other hand, congestion control algo-

rithms can access the datapath’s congestion measurements

with low delays and high throughput if the two reside in the

same address space.

Implementation Reporting Interval Mean Throughput

Kernel - 43 Gbit/s

CCP Per ACK 29 Gbit/s

CCP Per 10 ms 41 Gbit/s
Table 1: Single-flow throughput for different reporting intervals between

the Linux kernel and CCP user-space, compared to kernel TCP through-

put. Per-ACK feedback (0 µs interval) reduces throughput by 32% while

using a 10 ms reporting interval achieves almost identical throughput to

the kernel. Results as the number of flows increases are in §7.2.

Our design restructures congestion control algorithms into

two components in separate address spaces: an off-datapath

CCP agent and a component that executes in the datapath itself.

The CCP agent provides a flexible execution environment

in user space for congestion control algorithms, by receiving

congestion signals from the datapath and invoking the

algorithm code on these signals. Algorithm developers have

full access to the user-space programming environment,

including tools and libraries. The datapath component is

responsible for processing feedback (e.g., TCP or QUIC

ACKs, packet delays, etc.) from the network and the receiver,

and providing congestion signals to the algorithms. Further,

the datapath component provides interfaces for algorithms to

set congestion windows and pacing rates.

An alternative design would be to run both the algorithm

and the datapath in the same address space, but with fault

isolation techniques [9, 16, 26, 31, 36, 38, 44]. However, this

approach comes with significantly increased CPU utilization

(e.g., 2× [9,26,31,36,38], resulting from tracing and run-time

checks), a restrictive development environment [44], or

changes to development tools such as the compiler [16, 38].

These performance and usability impediments, in our view,

significantly diminish the benefits of running congestion

control algorithms and the datapath in one address space.

3.2 Decoupling Congestion Control from the ACK Clock

Typical congestion control implementations in the Linux

kernel are coupled to the so-called “ACK-clock,” i.e.,

algorithm functionality is invoked upon receiving a packet

acknowledgment in the networking stack. In contrast,

with CCP, algorithms operate on summaries of network

observations obtained over multiple measurements gathered

in the datapath. Users program the datapath to gather these

summaries using a safe domain-specific language (§3.3).

This decoupling of algorithm logic from the ACK clock

provides two benefits.

First, users can develop congestion control algorithms free

from the strict time restrictions rooted in the inter-arrival time

of packet acknowledgments—a useful feature, especially at

high link rates. Hence, it is possible to build algorithms that per-

form complex computations and yet achieve high throughput.

Second, the ability to provide congestion feedback less

frequently than per-ACK can significantly reduce the overhead
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of datapath-CCP communication. Table 1 shows that for a

single saturating iperf connection over a loopback interface,

Linux kernel TCP on a server machine with four 2.8-Ghz cores

achieves 45 Gbit/s running Reno. In comparison, per-ACK

reporting from the kernel to the CCP agent achieves only 68%

of the kernel’s throughput. By increasing the time between

reports sent to the slow path to 10 ms (see the “per 10 ms”

row), our implementation of Reno in CCP achieves close to

the kernel’s throughput.

Given that CCP algorithms operate over measurements sup-

plied only infrequently, a key question is how best to summa-

rize congestion signals within the datapath so algorithms can

achieve high fidelity compared to a traditional in-datapath im-

plementation. Indeed, in §7.1 we show that reporting on an RTT

time-scale does not affect the fidelity of CCP algorithm imple-

mentations relative to traditional in-kernel implementations.

3.3 Supporting per-ACK Logic Within the Datapath

How must the datapath provide congestion feedback to algo-

rithms running in the CCP agent? Ideally, a datapath should

supply congestion signals to algorithms with suitable granu-

larity (e.g., averaged over an RTT, rather than per ACK), at

configurable time intervals (e.g., a few times every RTT) and

during critical events (e.g., packet losses). With CCP, users can

specify such datapath behavior using a domain-specific lan-

guage (§4). At a high level, CCP-compatible datapaths expose

a number of congestion signals, over which users can write fold

functions to summarize network observations for algorithms.

It is also possible to perform control actions such as reporting

summarized measurements to CCP or setting a flow’s pacing

rate. Datapath programs can trigger fold functions and control

actions when certain conditions hold, e.g., an ACK is received

or a timer elapses. Users can thus control how to partition the

logic of the algorithm between these two components accord-

ing to their performance and flexibility requirements (§4.4).

4 Writing Algorithms in CCP

Figure 1 shows the control loop of a congestion control

algorithm in CCP. Users implement two callback handlers

(onCreate() and onReport()) in the CCP agent and one or

more datapath programs. When a new flow is created, CCP’s

datapath component invokes the onCreate() handler. The

implementation of onCreate() must install an initial datapath

program for that flow. Datapath programs could compute

summaries over per-packet congestion signals (such as a

minimum packet delay or a moving average of packet delivery

rate) and report summaries or high priority conditions (such as

loss) to the CCP agent. On a report, the CCP agent invokes the

onReport() handler which contains the bulk of the logic of

the congestion control algorithm. The onReport() function

computes and installs the flow’s congestion window or sending
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Figure 1: Congestion control algorithms in CCP are distinct from the

application and datapath. Users specify an onCreate() handler which

CCP calls when a new flow begins. In this handler, algorithms install (1)

a datapath program. This datapath program aggregates incoming mea-

surements (2) using user-defined fold functions and occasionally sends

reports (3) to CCP, which calls the onReport() handler. The onReport()

handler can update (4) the datapath program, which uses its defined con-

trol patterns to enforce (5) a congestion window or pacing rate.

1 (def (Report (volatile acked 0) (volatile lost 0)))

2 (when true

3 (:= Report.acked (+ Report.acked Ack.bytes_acked))

4 (:= Report.lost (+ Report.lost Ack.lost_pkts_sample))

5 (fallthrough))

6 (when (> Report.lost 0) (report))

Figure 2: A simple datapath program to count bytes acked and report on

losses.

rate using the signals from the datapath report. It may also

replace the datapath program entirely with different logic.

4.1 Datapath Program Abstractions

CCP’s datapath programs are written in a simple domain

specific language. These programs exist in order to provide a

per ACK execution environment, where algorithms can define

and update variables per ACK and perform control actions,

in response to the values of these variables.

Figure 2 shows a program that counts the cumulative

number of packets acknowledged and lost and reports these

counters immediately upon a loss. The first statement of the

program allows users to define custom variables. The “Report”

block signifies that these variables should be included in the

report message sent to the CCP agent. The volatile marker

means that these variables should be reset to their initial values,

0, after every report to the CCP agent.
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Primitive congestion signals

Signal Definition

Ack.bytes_acked,

Ack.packets_acked

In-order acknowledged

Ack.bytes_misordered,

Ack.packets_misordered

Out-of-order acknowledged

Ack.ecn_bytes,

Ack.ecn_packets

ECN-marked

Ack.lost_pkts_sample Number of lost packets

Ack.now Datapath time (e.g., Linux jiffies)

Flow.was_timeout Did a timeout occur?

Flow.rtt_sample_us A recent sample RTT

Flow.rate_outgoing Outgoing sending rate

Flow.rate_incoming Receiver-side receiving rate

Flow.bytes_in_flight,

Flow.packets_in_flight

Sent but not yet acknowledged

Operators

Class Operations

Arithmetic +, -, *, /

Assignment :=

Comparison ==, <, >, or, and

Conditionals If (branching)

Variable Scopes

Scope Description

Ack Signals measured per packet

Flow Signals measured per connection

Timer Multi-resolution timer that can be ze-

roed by a call to reset

Table 2: Datapath language: congestion signals, operators, and scopes.

Following the def block, fold functions provide custom

summaries over primitive congestion signals. Datapath

programs have read access to these primitive congestion

signals (prefixed with “Ack.” or “Flow.” to specify their

measurement period), which are exposed by the datapath

on every incoming packet. Such signals include the round

trip delay sample, the number of bytes the datapath believes

have been dropped by the network, and the delivery rates of

packets. Table 2 enumerates the primitive congestion signals

we support. Users can write simple mathematical summaries

over these primitive signals, as shown in Lines 3-4 of Figure 2.

Finally, algorithms can perform control actions in response

to conditions defined by the fold function variables, e.g.,

updating a rate or cwnd or reporting the user defined variables

to the CCP agent. As shown in Figure 2, the program defines a

series of when clauses, and performs the following block only

if the condition was evaluated to true.

CCP’s datapath program language provides an event driven

programming model. The condition (when true...) signifies

that the body should be evaluated on every packet. This is

where the program might calculate fold function summaries.

The when clauses have access to all the fold function variables,

as well as timing related counters. The report instruction

causes the datapath to transmit the acked and lost counters

to the CCP agent. By default, the program evaluates until one

when clause evaluates to true; the (fallthrough) instruction

at the end of the first when indicates that subsequent when

clauses should also be evaluated.

4.2 CCP Algorithm Logic

The onReport() handler provides a way to implement

congestion control actions in user-space in reaction to reports

from the datapath. For example, a simple additive-increase

multiplicative-decrease (AIMD) algorithm could be imple-

mented in Python1 using the acked and lost bytes reported

every round-trip time from the datapath:

def onReport(self, report):

if report["lost"] > 0:

self.cwnd = self.cwnd / 2

else:

acked = report["acked"]

self.cwnd = self.cwnd + acked*MSS/self.cwnd

self.update("cwnd", self.cwnd/MSS)

We have implemented complex functionality within

congestion control algorithms by leveraging slow-path logic,

for example, a congestion control algorithm that uses Fast

Fourier Transform (FFT) operations [19].

If the round-trip time of the network is a few milliseconds

or more, it is possible to locate congestion control algorithm

logic entirely within CCP with high fidelity relative to a

per-packet update algorithm, as we show in §7.1.

4.3 Example: BBR

As a more involved example, we show below how various

components of TCP BBR [8] are implemented using the CCP

API. A BBR sender estimates the rate of packets delivered to

the receiver, and sets its sending rate to the maximum delivered

rate (over a sliding time window), which is believed to be the

rate of the bottleneck link between the sender and the receiver.
This filter over the received rate is expressed simply in a

fold function:

(when true

(:= minrtt (min minrtt Ack.rtt_sample_us))

(:= curr_btl_est (max curr_btl_est Flow.rate_incoming))

(fallthrough))

To determine whether a connection can send more than

its current sending rate, BBR probes for additional available

bandwidth by temporarily increasing its sending rate by a

factor (1.25×) of its current sending rate. To drain a queue that

may have been created in the process, it also reduces its rate

by a reciprocal factor (0.75×) before starting to send at the

new estimated bottleneck link rate.
The following excerpt expresses this sending pattern (for

simplicity, we show only 2 transitions):

(when (== pulseState 0)

(:= Rate (* 1.25 curr_btl_est))

1Our CCP implementation is in Rust and exposes Python bindings (§5).

34



SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Akshay Narayan, Frank Cangialosi, Deepti Raghavan, et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32  34  36  38  40  42  44  46  48  50  52  54  56  58  60
 0

 5

 10

 15

 20

 25

 30

 35

T
h

ro
u

g
h

p
u

t 
(M

b
it
/s

)

P
e

r-
P

k
t 

Q
u

e
u

e
in

g
 D

e
la

y
 (

m
s
)

Time (seconds)

Figure 3: Our CCP implementation of BBR used for a bulk transfer over

a 48 Mbit/s link with a 20 ms RTT and 2 BDPs of buffering. The band-

width probe phase can be seen in the oscillation of the queueing delay,

and the RTT probe phase can be seen in the periodic dips in throughput.

(:= pulseState 1))

(when (&& (== pulseState 1)

(> Timer.micros Flow.rtt_sample_us))

(:= Rate (* 0.75 curr_btl_est))

(:= pulseState 2))

Here, the variable pulseState denotes the state of the

sender’s bandwidth probing: probing with high sending rate

(0) and draining queues with low sending rate (1). Each when

clause represents a pulse state transition and is conditioned

on the resettable timer Timer.micros. Upon the transition,

the handler sets the Rate and advances pulseState. After the

last phase of the pulse, the handler would reset the timer and

pulseState to restart the sending pattern (not shown).

Figure 3 shows the impact of BBR’s bandwidth probing2 on

the achieved goodput and queueing delays when a single flow

runs over a 48 Mbit/s bottleneck link with a 20 ms round trip

propagation delay. BBR’s windowed min/max operations and

the RTT probing phase (showing steep rate dips every 10 sec-

onds) are implemented in the slow path’s onReport() handler

by installing a new fold function. CCP’s split programming

model enables this flexible partitioning of functionality.

4.4 Case Study: Slow Start

Because algorithms no longer make decisions upon every

ACK, CCP changes the way in which developers should

think about congestion control, and correspondingly provides

multiple implementation choices. As a result, new issues arise

about where to place algorithm functionality. We discuss the

involved trade-offs with an illustrative example: slow start.

Slow start is a widely used congestion control module in

which a connection probes for bandwidth by multiplicatively

increasing its congestion window (cwnd) every RTT. Most

implementations increment cwnd per ACK, either by the

number of bytes acknowledged in the ACK, or by 1 MSS. One

way to implement slow start is to retain the logic entirely in

CCP, and measure the size of the required window update

from datapath reports. We show an example in Figure 4. This

2We only implement BBR’s PROBE_BW and PROBE_RTT. Our implemen-

tation is here: github.com/ccp-project/bbr.

fn create(...) {

datapath.install("

(def (Report (volatile acked 0) (volatile loss 0)))

(when true

(:= Report.acked (+ Report.acked Ack.bytes_acked)))

(when (> Micros Flow.rtt_sample_us) (report) (reset))");

}

fn onReport(...) {

if report.get_field("Report.loss") == 0 {

let acked = report.get_field("Report.acked");

self.cwnd += acked;

datapath.update_field(&[("Cwnd", self.cwnd)]);

} else { /* exit slow start */ }

}

Figure 4: A CCP implementation of slow start.
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implementation strategy is semantically closest in behavior

to native datapath implementations.

For some workloads this approach may prove problematic,

depending on the parameters of the algorithm. If the reporting

period defined is large, then infrequent slow start updates can

cause connections to lose throughput. Figure 5 demonstrates

that, on a 48 Mbps, 100 ms RTT link, different implementa-

tions of slow start exhibit differing window updates relative

to the Linux kernel baseline. A version with a 1-RTT reporting

period lags behind the native datapath implementation. It

is also possible to implement slow start within the datapath

either by using congestion window increase (Figure 6), or by

using rate based control:

(when (> Timer.Micros Flow.rtt_sample_us)

(:= Rate (* Rate 2))

(:= Timer.Micros 0))

Take-away. As outlined in §3, the programming model

of datapath programs is deliberately limited. First, we

envision that in the future, CCP will support low-level

hardware datapaths—the simpler the fold function execution

environment is, the easier these hardware implementations

will be. Second, algorithms able to make complex decisions

on longer time-scales will naturally do so to preserve cycles

for the application and datapath; as a result, complex logic

inside the fold function may not be desirable.
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fn create(...) {

datapath.install("

(def (volatile Report.loss 0))

(when true (:= Cwnd (+ Cwnd Ack.bytes_acked)))

(when (> Ack.lost_pkts_sample 0) (report))");

}

fn onReport(...) { /* exit slow start */ }

Figure 6: A within-fold implementation of slow start. Note that CCP al-

gorithm code is not invoked at all until the connection experiences its first

loss.

More broadly, developers may choose among various points

in the algorithm design space. On one extreme, algorithms

may be implemented almost entirely in CCP, using the fold

function as a simple measurement query language. On the

other extreme, CCP algorithms may merely specify transitions

between in-datapath fold functions implementing the primary

control logic of the algorithm. Ultimately, users are able to

choose the algorithm implementation best suited to their

congestion control logic and application needs.

5 CCP Implementation

We implement a user-space CCP agent in Rust, called Portus3,

which implements functionality common across independent

congestion control algorithm implementations, including a

compiler for the datapath language and a serialization library

for IPC communication. CCP congestion control algorithms

are hence implemented in Rust; we additionally expose

bindings in Python. The remainder of this section will discuss

datapath support for CCP.

5.1 Datapath Requirements

A CCP-compatible datapath must accurately enforce the

congestion control algorithm specified by the user-space CCP

module. Once a datapath implements support for CCP, it

automatically enables all CCP algorithms. An implementation

of the CCP datapath must perform the following functions:

• The datapath should communicate with a user-space

CCP agent using an IPC mechanism. The datapath

multiplexes reports from multiple connections onto

the single persistent IPC connection to the slow path.

It must also perform the proper serialization for all

messages received and sent.

• The datapath should execute the user-provided

domain-specific program on the arrival of every ac-

knowledgment or a timeout in a safe manner. Datapath

programs (§4) may include simple computations to

summarize per-packet congestion signals (Table 2) and

enforce congestion windows and rates.

3github.com/ccp-project/portus

5.2 Safe Execution of Datapath Programs

Datapaths are responsible for safely executing the program

sent from the user-space CCP module. While CCP will

compile the instructions and check for mundane errors

(e.g., use of undefined variables) before installation, it is the

datapath’s responsibility to ensure safe interpretation of the

instructions. For example, datapaths should prevent divide

by zero errors when calculating user defined variables and

guarantee that programs cannot overwrite the congestion

primitives. However, algorithms are allowed to set arbitrary

congestion windows or rates, in the same way that any

application can congest the network using UDP sockets.

Thankfully, this task is straightforward as datapath programs

are limited in functionality: programs may not enter loops,

perform floating point operations, define functions or data

structures, allocate memory, or use pointers. Rather, programs

are strictly a way to express arithmetic computations over a

limited set of primitives, define when and how to set congestion

windows and pacing rates, and report measurements.

5.3 libccp: CCP’s Datapath Component

We have implemented a library, libccp4, that provides a ref-

erence implementation of CCP’s datapath component, in order

to simplify CCP datapath development. libccp is lightweight

execution loop for datapath programs and message serializa-

tion. While we considered using eBPF [14] or TCP BPF [6] as

the execution loop, including our own makes libccp portable

to datapaths outside the Linux kernel; the execution loop runs

the same code in all three datapaths we implemented.

To use libccp, the datapath must provide callbacks to

functions that: (1) set the window and rate, (2) provide a notion

of time, and (3) send an IPC message to CCP. Upon reading

a message from CCP, the datapath calls ccp_recv_msg(),

which automatically de-multiplexes the message for the

correct flow. After updating congestion signals, the datapath

can call ccp_invoke() to run the datapath program, which

may update variable calculations, set windows or rates, and

send report summaries to CCP. It is the responsibility of the

datapath to ensure that it correctly computes and provides the

congestion signals in Table 2.

The more signals a datapath can measure, the more algo-

rithms that datapath can support. For example, CCP can only

support DCTCP [1] or ABC [18] on datapaths that provide

ECN support; CCP will not run algorithms on datapaths

lacking support for that algorithm’s requisite primitives.

5.4 Datapath Implementation

We use libccp to implement CCP support in three software

datapaths: the Linux kernel5; mTCP, a DPDK-based datapath;

4github.com/ccp-project/libccp
5Our kernel module is built on Linux 4.14: github.com/ccp-project/ccp-kernel

36

github.com/ccp-project/libccp


SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Akshay Narayan, Frank Cangialosi, Deepti Raghavan, et al.

Signal Definition

Ack.bytes_acked,

Ack.packets_acked

Delta(tcp_sock.bytes_acked)

Ack.bytes_misordered,

Ack.packets_misordered

Delta(tcp_sock.sacked_out)

Ack.ecn_bytes,

Ack.ecn_packets

in_ack_event: CA_ACK_ECE

Ack.lost_pkts_sample rate_sample.losses

Ack.now getnstimeofday()

Flow.was_timeout set_state: TCP_CA_Loss

Flow.rtt_sample_us rate_sample.rtt_us

Flow.rate_outgoing rate_sample.delivered /

Delta(tcp_sock.first_tx_mstamp)

Flow.rate_incoming rate_sample.delivered /

Delta(tcp_sock.tcp_mstamp)

Flow.bytes_in_flight,

Flow.packets_in_flight

tcp_packets_in_flight(tcp_sock)

Table 3: Definition of CCP primitives in terms of the tcp_sock and

rate_sample structures, for the Linux kernel datapath.

and Google’s QUIC. For both the Linux kernel and QUIC

datapaths, we leveraged their respective pluggable congestion

control interfaces, which provide callbacks upon packet

acknowledgements and timeouts, where the libccp program

interpreter can be invoked. The kernel module implements the

communication channel to CCP using either Netlink sockets

or a custom character device, while mTCP and QUIC use Unix

domain sockets. We additionally modified the QUIC source

code to support multiplexing CCP flows on one persistent IPC

connection and to expose the function callbacks required by

the libccp API.

Unlike QUIC and the Linux kernel, mTCP only implements

Reno and does not explicitly expose a congestion control

interface for new algorithms. In order to achieve behavior

consistent with other datapaths, we also implemented SACK

and packet pacing; these features were previously lacking.

The definition of congestion signal primitives, IPC, and

window and rate enforcement mechanisms is the only

datapath-specific work needed to support CCP. As an example,

Table 3 details the mapping of kernel variables to CCP

primitives. Most of these definitions are straightforward; the

CCP API merely requires datapaths to expose variables they

are already measuring. All other necessary functionality, most

notably interpreting and running the datapath programs, is

shared amongst software datapaths via libccp (§5.3).

6 New Capabilities

We present four new capabilities enabled by CCP: new con-

gestion control algorithms that use sophisticated user-space

programming libraries, rapid development and testing of algo-

rithms, congestion control for flow aggregates, and the ability

to write an algorithm once and run it on multiple datapaths.
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Figure 7: 5 20-second iperf flows with 10 second staggered starts. While

Reno (right) must individually probe for bandwidth for each new con-

nection, an aggregating congestion controller is able to immediately set

the connection’s congestion window to the fair share value.

6.1 Sophisticated Congestion Control Algorithms

CCP makes it possible to use sophisticated user-space libraries,

such as libraries for signal processing, machine learning, etc.

to implement congestion control algorithms.

One example is Nimbus [19], a new congestion control

algorithm that detects whether the cross traffic at a bottleneck

link is elastic (buffer-filling) or not, and uses different control

rules depending on the outcome. The Nimbus algorithm

involves sending traffic in an asymmetric sinusoidal pulse

pattern and using the sending and receiving rates measured

over an RTT to produce a time-series of cross-traffic rates. The

method then computes the FFT of this time-series and infers

elasticity if the FFT at particular frequencies is large.

The implementation of Nimbus uses CCP to configure

the datapath to report the sending and receiving rates

periodically (e.g., every 10 ms), maintains a time-series of the

measurements in user-space, and performs FFT calculations

using a FFT library in Rust [34].

Although it is possible to implement such algorithms

directly in the datapath, it would be significantly more difficult.

For instance, one would need to implement the FFT operations

with fixed-point arithmetic. Moreover, implementing the

algorithm outside the datapath using CCP allows for a tighter

development-testing loop than writing kernel code.

We anticipate that in the future, CCP will enable the use

of other similarly powerful but computationally-intensive

methods such as neural networks.

6.2 Velocity of Development

Copa [3] is a recently proposed model-based congestion

control algorithm that seeks to maintain a target rate that is

inversely proportional to the queuing delay, estimated as the dif-

ference of the current RTT and the minimum RTT. It is robust to

non-congestive loss, buffer-bloat, and unequal propagation de-

lays. It includes mechanisms to provide TCP competitiveness,

accurate minimum RTT estimation, and imperfect pacing.
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Figure 8: Comparison of the same CCP implementation of Cubic and Copa run on three different datapaths. Copa is run on a fixed 12 Mbps link with a

20 ms RTT; Cubic is run on a fixed 24 Mbps link with a 20 ms RTT.

The authors of Copa used CCP to implement Copa recently,

and in the process discovered a small bug that produced an

erroneous minimum RTT estimate due to ACK compression.

They solved this problem with a small modification to the Copa

datapath program, and in a few hours were able to improve

the performance of their earlier user-space implementation.

The improvement is summarized here:
Algorithm Throughput Mean queue delay

Copa (UDP) 1.3 Mbit/s 9 ms

Copa (CCP-Kernel) 8.2 Mbit/s 11 ms

After the ACK compression bug was fixed in the CCP

version, Copa achieves higher throughput on a Mahimahi link

with 25 ms RTT and 12 Mbit/s rate while maintaining low

mean queueing delay. Because of ACK compression, the UDP

version over-estimates the minimum RTT by 5×.

6.3 Flow Aggregation

Congestion control on the Internet is performed by individual

TCP connections. Each connection independently probes

for bandwidth, detects congestion on its path, and reacts to

it. Congestion Manager [4] proposed the idea of performing

congestion control for aggregates of flows at end-hosts.

Flow aggregation allows different flows to share congestion

information and achieve the correct rate more quickly.

We describe how to use CCP to implement a host-level ag-

gregate controller that maintains a single aggregate window or

rate for a group of flows and allocates that to individual flows—

all with no changes to the non-CCP parts of the datapath.

Interface. In addition to the create() and onReport() event

handlers, we introduce two new APIs for aggregate congestion

controllers: create_subflow() and aggregateBy(). CCP

uses aggregateBy() to classify new connections into

aggregates. Then, it calls either the existing create() handler

in the case of a new aggregate, or the create_subflow()

handler in the case of an already active one.

These handlers are natural extensions of the existing

per-flow API; we implemented API support for aggregation

in 80 lines of code in our Rust CCP implementation (§7).

Algorithms can aggregate flows using the connection 5-tuple,

passed as an argument to aggregateBy().

As a proof of concept, we implement an algorithm which

simply aggregates all flows on each of the hosts’s interfaces

into one aggregate and assigns the window in equal portions to

each sub-flow. Figure 7 shows the aggregator instantaneously

apportioning equal windows to each flow in its domain.

6.4 Write-Once, Run-Anywhere

Implementing a new congestion control algorithm is difficult

because of the subtle correctness and performance issues

that require expertise to understand and resolve. New

algorithms are often implemented in a single datapath and

new datapaths have very few algorithms implemented. CCP

enables algorithm designers to focus on building and testing

a single solid implementation of their algorithm that users can

then run on any (supported) datapath.
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Figure 9: Cubic in CCP matches Cubic in Linux TCP.

To exhibit this capability, we ran the same implementation

of both Cubic (not previously implemented in mTCP) and

Copa (§6.2, not previously implemented in any widely-used

datapath) on the three datapaths and plot the congestion

window evolution over time in Figure 8.

As expected, the congestion window naturally evolves

differently on each datapath, but the characteristic shapes

of both algorithms are clearly visible. Copa uses triangular

oscillations around an equilibrium of 1 BDP worth of packets

(22 in this case), periodically draining the queue in an attempt

to estimate the minimum RTT.

7 Evaluation

We evaluated the following aspects of CCP:

Fidelity (§7.1). Do algorithms implemented in CCP behave

similarly to algorithms implemented within the datapath? Us-

ing the Linux kernel datapath as a case study, we explore both

achieved throughput and delay for persistently backlogged

connections as well as achieved flow completion time for

dynamic workloads.

Overhead of datapath communication (§7.2). How

expensive is communication between CCP and the datapath?

High bandwidth, low RTT (§7.3). We use ns-2 simulations

to demonstrate that CCP’s method of taking congestion

control actions periodically can perform well even in ultra-low

RTT environments.

Unless otherwise specified, we evaluated our implemen-

tation of CCP using Linux 4.14.0 on a machine with four 2.8

Ghz cores and 64 GB memory.

7.1 Fidelity

The Linux kernel is the most mature datapath we consider.

Therefore, we present an in-depth exploration of congestion

control outcomes comparing CCP and native-kernel imple-

mentations of two widely used congestion control algorithms:

NewReno [22] and Cubic [21]. As an illustrative example,

Figure 9 shows one such comparison of congestion window

update decisions over time on an emulated 96 Mbit/s fixed-rate

Mahimahi [27] link with a 20 ms RTT. We expect and indeed

observe minor deviations as the connection progresses and

small timing differences between the two implementations

cause the window to differ, but overall, not only does CCP’s

implementation of Cubic exhibit a window update consistent

with a cubic increase function, but its updates closely match

the kernel implementation.

For the remainder of this subsection, we compare the

performance of CCP and kernel implementations of NewReno

and Cubic on three metrics (throughput and delay in §7.1.1,

and FCT in §7.1.2) and three scenarios, all using Mahimahi.

7.1.1 Throughput and Delay. We study the following

scenarios:

Fixed-rate link (“fixed”). A 20 ms RTT link with a fixed 96

Mbit/s rate and 1 BDP of buffering.

Cellular link (“cell”). A 20 ms RTT variable-rate link with

a 100-packet buffer based on a Verizon LTE bandwidth

trace [27].

Stochastic drops (“drop”). A 20 ms RTT link with a fixed 96

Mbit/s rate, but with 0.01% stochastic loss and an unlimited

buffer. To ensure that both tested algorithms encountered

exactly the same conditions, we modified Mahimahi to use

a fixed random seed when deciding whether to drop a packet.

These three scenarios represent a variety of environments

congestion control algorithms encounter in practice, from

predictable to mobile to bufferbloated paths. We calculate,

per-RTT over twenty 1-minute experiments, the achieved

throughput (10a) and delay (10b), and show the ensuing

distributions in Figure 10.

Overall, both distributions are close, suggesting that CCP’s

implementations make the same congestion control decisions

as the kernel.

7.1.2 Flow Completion Time. To measure flow comple-

tion times (FCT), we use a flow size distribution compiled

from CAIDA Internet traces [7] in a similar setting to the

“fixed” scenario above; we use a 100 ms RTT and a 192 Mbit/s

link. To generate traffic, we use a traffic generator to sample

flow sizes from the distribution and send flows of that size

according to a Poisson arrival process to a single client behind

the emulated Mahimahi link. We generate flows with 50%

average link load, and generate 100,000 flows to the client

from 50 sending servers using persistent connections to the

client. We used Reno as the congestion control algorithm in

both cases. To ensure that the kernel-native congestion control

ran under the same conditions as the CCP implementation, we

disabled the slow-start-after-idle option.

Of the 100, 000 flows we sampled from the CAIDA

workload, 97,606 were 10 KB or less, comprising 487 MB,

while the 95 flows greater than 1 MB in size accounted for 907

MB out of the workload’s total of 1.7 GB.
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Figure 10: Comparison of achieved throughput over 20 ms periods. The

achieved throughput distributions are nearly identical across the three

scenarios and two congestion control algorithms evaluated.

Across all flow sizes, CCP achieves FCTs 0.02% lower than

the kernel in the median, 3% higher in the 75th percentile, and

30% higher in the 95th percentile.

Small flows. Flows less than 10 KB in size, shown in

Figure 11a, are essentially unaffected by congestion control.

These flows, the vast majority of flows in the system, complete

before either CCP algorithms or kernel-native algorithms

make any significant decisions about them.

Medium flows. Flows between 10 KB and 1 MB in size, in

Figure 11b achieve 7% lower FCT in the median with CCP

because CCP slightly penalizes long flows due to its slightly

longer update period, freeing up bandwidth for medium size

flows to complete.

Large flows. CCP penalizes some flows larger than 1 MB

in size compared to the native-kernel implementation: 22%

worse in the median (Figure 11c).

7.2 Performance

7.2.1 Measurement Staleness. Because our CCP

implementation, Portus, runs in a different address space

than datapath code, there is some delay between the datapath

gathering a report and algorithm code acting upon the report.

In the worst case, a severely delayed measurement could cause

an algorithm to make an erroneous window update.

Fortunately, as Figure 12 shows, this overhead is small. We

calculate an IPC RTT by sending a time-stamped message

to a kernel module (or user-space process in the case of
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Figure 11: CDF comparisons of flow completion times. Note the differing

x-axes.
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Figure 12: Minimum time required to send information to the datapath

and receive a response using different IPC mechanisms.

a Unix-domain socket). The receiver then immediately

echoes the message, and we measure the elapsed time at the

originating process.

We test three IPC mechanisms: Unix-domain sockets [32],

a convenient and popular IPC mechanism used for commu-

nication between user-space processes; Netlink sockets [35],

a Linux-specific IPC socket used for communication between

the kernel and user-space; and a custom kernel module, which

implements a message queue that can be accessed (in both

user-space and kernel-space) via a character device.

In all cases, the 95th percentile latency is less than 30 µs.

40



SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary Akshay Narayan, Frank Cangialosi, Deepti Raghavan, et al.

cubic reno

1 2 4 8 16 32 64 1 2 4 8 16 32 64

0

25

50

75

100

Flows

T
h
ro

u
g
h
p
u
t 
(G

b
p
s
)

CCP (10ms)

CCP (Ack)

Kernel

(a) Achieved localhost throughput as the number of flows increases

cubic reno

1 2 4 8 16 32 64 1 2 4 8 16 32 64

0.0

2.5

5.0

7.5

Flows

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

ccp

kernel

(b) CPU Utilization when saturating a 10 Gbit/s link.

Figure 13: CCP can handle many concurrent flows without significant CPU overhead. Error bars show standard deviation.
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Figure 14: Mean tail completion across 50 simulations. While at 10 Gbit/s

even rare reporting (every 50 RTTs) has limited overhead (at most 20%),

at 40 Gbit/s, a 1 ms reporting period is necessary to avoid performance

degradation.

7.2.2 Scalability. CCP naturally has nonzero overhead

since more context switches must occur to make congestion

control decisions in user-space. We test two scenarios as the

number of flows in the system increases exponentially from 1

to 64. In both scenarios, we test CCP’s implementation of Reno

and Cubic against the Linux kernel’s. We measure average

throughput and CPU utilization in 1 second intervals over

the course of 10 30-second experiments using iperf [37]. We

evaluate CCP with two fold functions: one which implements

a reporting interval of 10 ms, and another which reports on

every packet.

We omit mTCP and QUIC from these scalability micro-

benchmarks and focus on the kernel datapath. The QUIC toy

server is mainly used for integration testing and does not per-

form well as the number of flows increase; we confirmed this

behavior with Google’s QUIC team. Similarly, after discussion

with the mTCP authors, we were unable to run mTCP at suffi-

cient speeds to saturate a localhost or 10 Gbit/sec connection.

Localhost microbenchmark. We measure achieved through-

put on a loopback interface as the number of flows increases.

As the CPU becomes fully utilized, the achieved throughput

will plateau. Indeed, in Figure 13a, CCP matches the kernel’s

throughput up to the maximum number of flows tested, 64.

CPU Utilization. To demonstrate the overhead of CCP in a

realistic scenario, we scale the number of flows over a single

10 Gbit/s link between two physical servers and measure the

resulting CPU utilization. Figure 13b shows that as the number

of flows increases, the CPU utilization in the CCP case rises

steadily. The difference between CCP and the kernel is most

pronounced in the region between 16 and 64 flows, where

CCP uses 2.0× as much CPU than the kernel on average; the

CPU utilization nevertheless remains under 8% in all cases.

In both the CPU utilization and the throughput micro-

benchmarks, the differences in CPU utilization stem from

the necessarily greater number of context switches as more

flows send measurements to CCP. Furthermore, the congestion

control algorithm used does not affect performance.

7.3 Low-RTT and High Bandwidth Paths

To demonstrate it is feasible to separate congestion control

from the datapath even in low-RTT and high bandwidth situa-

tions, we simulate a datacenter incast scenario using ns-2 [29].

We model CCP by imposing both forms of delays due to CCP:

(i) the period with which actions can be taken (the reporting

period) and, (ii) the staleness after which sent messages arrive

in CCP. We used our microbenchmarks in §7.2.1 to set the

staleness to 20 µs, and vary the reporting interval since it is

controlled by algorithm implementations. We used a 20 µs

RTT with a 50-to-1 incast traffic pattern across 50 flows with

link speeds of 10 and 40 Gbit/s. To increase the statistical

significance of our results, we introduce a small random jitter

to flow start times (<10µs with 10 Gbit/s bandwidth and <2.5

µs with 40 Gbit/s bandwidth) and run each point 50 times with

a different simulator random seed value and report the mean.

Figure 14 compares the results with the baseline set to

in-datapath window update. We find that at 10 Gbit/s, CCP

performance stays within 15% of the baseline across different

flow sizes and reporting intervals ranging from 10 µs to 500

µs. Recall that 500 µs is 50× the RTT; even this infrequent

reporting period yields only minor degradation.
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Meanwhile, at 40 Gbit/s the slowdown over the baseline

increases with the reporting interval in the case of 100 packet

flows, but not with 10 or 1000 packet flows. Similar to the

results in §7.1.2, the short flows and long flows are both

unaffected by the reporting period because the short flows

complete too quickly and the long flows spend much of their

time with large congestion windows regardless of the window

update. Indeed, at 100 µs (10 RTTs), the tail completion time

is within 10% of the baseline; as the reporting increases, the tail

completion time increases to over 2× the baseline. This never-

theless suggests that when reporting intervals are kept to small

multiples of the RTT, tail completion time does not suffer.

8 Conclusion

We described the design, implementation, and evaluation

of CCP, a system that restructures congestion control at

the sender. CCP defines better abstractions for congestion

control, specifying the responsibilities of the datapath and

showing a way to use fold functions and control patterns to

exercise control over datapath behavior. We showed how CCP

(i) enables the same algorithm code to run on a variety of

datapaths, (ii) increases the “velocity” of development and

improves maintainability, and (iii) facilitates new capabilities

such as the congestion manager-style aggregation and

sophisticated signal processing algorithms.

Our implementation achieves high fidelity compared to

native datapath implementations at low CPU overhead. The

use of fold functions and summarization reduces overhead,

but not at the expense of correctness or accuracy.

Future work includes: (i) CCP support for customizing

congestion control for specific applications such as video

streaming and videoconferencing, (ii) CCP on hardware dat-

apaths (e.g., SmartNICs), and (iii) CCP running on a different

machine from the datapath to support cluster-based congestion

management (e.g., for a server farm communicating with

distributed clients).
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