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Abstract

This paper describes the design, implementation, and ex-
perimental evaluation of OverQoS, an overlay-based archi-
tecture for enhancing the best-effort service of today’s In-
ternet. Using a Controlled loss virtual link (CLVL) abstrac-
tion to bound the loss rate observed by a traffic aggregate,
OverQoS can provide a variety of services including: (a)
smoothing packet losses; (b) prioritizing packets within an
aggregate; (c) statistical loss and bandwidth guarantees.

We demonstrate the usefulness of OverQoS using two sam-
ple applications. First, RealServer can use OverQoS to im-
prove the signal quality of multimedia streams by protect-
ing more important packets at the expense of less impor-
tant ones. Second, Counterstrike, a popular multi-player
game, can use OverQoS to avoid frame drops and prevent
end-hosts from getting disconnected in the presence of loss
rates as high as 10%. Using a wide-area overlay testbed of
19 hosts, we show that: (a) OverQoS can simultaneously
provide statistical loss guarantees of 0.1% coupled with
statistcal bandwidth guarantees ranging from 100 Kbps to 2
Mbps across international links and broadband end-hosts;
(b) OverQoS incurs a low bandwidth overhead (typically
less than 5%) to achieve the target loss rate, and (c) the
increase in the end-to-end delay is bounded by the round-
trip-time along the overlay path.

1 Introduction

Over the past decade, there have been many efforts to pro-
vide QoS in the Internet. Most notably, the Intserv and
Diffserv service architectures have been proposed to of-
fer a large array of services ranging from per flow and
delay guarantees to per aggregate guarantees and priority
services. Despite these efforts, today’s Internet still contin-
ues to provide only a best-effort service. One of the main
reasons is the requirement of these proposals that all net-
work elements between a source and a destination imple-
ment QoS mechanisms. The inherent difficulty in changing
the IP infrastructure coupled with the natural lack of incen-
tives for ISPs to coordinate their deployment has rendered

lon Stoica*

Hari Balakrishnan®™ Randy H. Katz*

*TMassachusetts Institute of Technology
hari@nms.lcs.mit.edu

this requirement infeasible, and ultimately hurt the adop-
tion of IntServ and DiffServ.

In this paper, rather than trying to achieve traditional QoS
guarantees such as the ones offered by Intserv and Diff-
serv, we ask the following question: are there any mean-
ingful QoS enhancements that can be provided in the In-
ternet without requiring support from the IP routers? To
answer this question we turn our attention to overlay net-
works as an alternative for introducing new functionality
that is either too cumbersome to deploy in the underly-
ing IP infrastructure, or that requires information that is
hard to obtain at the IP level. Examples of successful over-
lay networks include application-layer multicast [12, 21],
Web content distribution networks, and resilient overlay
networks (RONs) [7].

To this end, we propose OverQoS, an overlay based QoS
architecture for enhancing Internet QoS. The key build-
ing block of OverQoS is the controlled-loss virtual link
(CLVL) abstraction. CLVL provides statistical loss guar-
antees to a traffic aggregate between two overlay nodes in
the face of varying network conditions. In addition, it en-
ables overlay nodes to control the bandwidth and loss allo-
cations among the individual flows within a CLVL. While
OverQoS cannot provide the spectrum of service guaran-
tees offered by IntServ [10], it can still provide useful QoS
enhancements to applications. Examples of such enhance-
ments are:

Smoothing losses: Bursty network losses can have a neg-
ative impact on many applications such as multi-player
games. OverQoS can reduce or even eliminate the loss
bursts by smoothing packet losses across time.

Packet prioritization: OverQoS can allow applications to
express the importance of the packets within a stream, and
protect important packets at the expense of less important
ones. For example, OverQoS can protect I-frames in an
MPEG stream over B-frames or P-frames.

Statistical Bandwidth and L ossGuar antees: Besides sta-
tistical loss guarantees, OverQoS can provide statistical
bandwidth guarantees to a small fraction of its traffic.



To understand the tradeoffs and the limitations of the
OverQoS architecture, we present its design and implemen-
tation, and perform an extensive evaluation. Across a wide-
area testbed of 19 diverse nodes (spanning US, Europe, and
Asia), we show that OverQoS can simultaneously provide
statistical loss guarantees on the order of 0.1% and and
bandwidth guarantees ranging from 100 Kbps to 2 Mbps.
In addition, by simultaneously running multiple competing
CLVLs along with long-lived TCPs on a lossy access net-
work, we show that OverQosS is fair to cross-traffic and can
co-exist with other competing OverQosS links.

We additionally demonstrate how multiplayer games and
streaming media can benefit from using OverQoS. In the
multi-player game example, an end-user can use OverQoS
to interactively play a game like Counterstrike in highly
lossy environments (experiencing a loss rate as high as
10%) without observing any skips or getting disconnected.
In the streaming media example, we demonstrate how Re-
alPlayer can use OverQoS to preferentially drop and re-
cover specific packets to enhance the quality of a stream
without consuming any additional bandwidth. OverQoS
achieves this by simply redistributing the losses among the
packets within the stream. The increase in the end-to-end
delay is bounded by the end-to-end RTT.

The rest of the paper is organized as follows. In Section 2
we describe the basic OverQoS architecture and describe
the construction of CLVLs in Section 3. In Section 4, we
provide the details of our OverQoS implementation. In Sec-
tion 5, we show two real-world applications that can benefit
by using OverQoS. In Section 6, we evaluate the perfor-
mance of OverQoS in the wide area Internet. We present
related work in Section 7 and conclusions in Section 8.

2 OverQoS Architecture

Figure 1 illustrates an OverQoS network with overlay
nodes spanning different routing domains and flows routed
within this network. We make no assumptions about the
placement of overlay nodes in the Internet. Rather, we as-
sume that a placement of overlay nodes is pre-specified.
In this paper, we will assume that the end-to-end path on
top of an overlay network is fixed and we will attempt to
enhance the QoS along this path in the presence of vary-
ing levels of network congestion. We can use existing ap-
proaches like RON [32] to determine the overlay path be-
tween a pair of end-hosts.

In the remainder of this paper, we will use the term vir-
tual link to refer to the IP path between two overlay nodes
and bundle to refer to a stream of application data packets
carried across the virtual link. A bundle typically includes
packets from multiple transport-layer flows across differ-
ent sources and destinations. The following constraints and
requirements make the design of any overlay-based QoS
challenging:

Virtual link
ath between OverQoS routers)

OverQosS routers

Figure 1: The OverQoS system architecture. OverQoS nodes in
different AS’s communicate with each other over virtua links us-
ing the underlying I P paths.

1. Node Placement and Cross Traffic: Overlay nodes will
usually span different routing domains and will not
be directly connected to the congested links. Hence,
one cannot avoid losses or delays along virtual links.
Additionally, the losses incurred due to cross traffic is
time-varying and can be hard to predict.

2. Fairness: Overlays should not offer QoS at the ex-
pense of hurting cross traffic. Therefore, the overlay
traffic at an aggregate level should be congestion sen-
sitive and not use more than its fair share. One stan-
dard metric for determining fair share is based on
TCP-friendliness [27].

3. Stability: Multiple overlay networks independently
offering QoS with many virtual links overlapping on
congested physical links in the underlying network
should be able to co-exist.

To address these challenges we propose a solution that
builds on two design principles:

Bundle loss control: Overlay nodes should bound the loss
rate experienced by a bundle along a virtual link in the pres-
ence of time-varying cross traffic. We propose a controlled-
loss virtual link (CLVL) abstraction to achieve this loss
bound and characterize the service received by a bundle.

Resource management within a bundle: An overlay node
can control the loss and bandwidth allocations of each flow
and/or application within a bundle.

These design principles enable OverQoS to provide a range
of useful services to Internet applications. Example of such
services are: (1) packet prioritization, (2) smoothing losses
(i.e., eliminate the bursts of losses by spreading losses in
time), and (3) statistical bandwidth and loss guarantees,
though this service can be typically offered only to a small



b Maximum sending rate on avirtual link
CLVL available/ aggregate bandwidth

q CLVL target lossrate / statistical
bound on the CLVL loss-rate
r CLVL redundancy factor
Cmin | Minimum statistical bandwidth guarantee
i Probability of not meeting the

bandwidth guarantee cynin

Table 1: OverQoS Notation table

fraction of a bundle’s traffic. We next elaborate on our two
design principles.

2.1 BundleLossControl

The basic building block for enabling OverQosS to achieve
loss control over a bundle is the Controlled-loss Virtual
Link (CLVL) abstraction. The CLVL abstraction provides
a bound, ¢, on the loss rate seen by the bundle over a cer-
tain period of time regardless of how the underlying net-
work loss rate varies with time. Overlays can achieve this
bound by recovering from network losses using a combi-
nation of Forward Error Correction (FEC) and packet re-
transmissions in the form of ARQ. By setting ¢ to an arbi-
trarily low value (close to 0), a CLVL provides the notion
of a near-loss free pipe across a virtual link. Therefore, a
CLVL isolates the losses experienced by the bundle from
the loss-rate variations in the underlying IP network path.
The biggest challenge in constructing a CLVL is to achieve
the loss bound ¢ in the presence of time-varying cross traf-
fic and network conditions. Additionally, the amount of
bandwidth overhead should be minimized. In Section 3.2,
we present a hybrid FEC/ARQ solution which minimizes
the amount of redundancy required to provide a CLVL ab-
straction for a given value of g.

The total traffic between two overlay nodes consists of: (a)
the traffic of the bundle; (b) the redundancy traffic required
to achieve the target loss rate, g. The fairness and stability
constraints limits the maximum rate (inclusive of the re-
dundancy traffic) at which OverQoS can transmit across a
virtual link. Let b(t) denote this traffic bound at time ¢ (Sec-
tion 3.1 elaborates on how b is computed). Let r(¢) denote
the fraction of redundancy traffic required by OverQoS to
achieve q. Then, the available bandwidth for the flows in
the bundle is ¢(t) = b(t) x (1 — r(¢)). Thus, the service
provided by a CLVL to the bundle is: As long as the arrival
rate of the bundle at the entry node does not exceed c¢(t),
the packet loss rate across the virtual link will not exceed
q, with high probability.

2.2 Resource Management within a Bundle

The CLVL abstraction provides the bundle an available
bandwidth, ¢, which varies with time and guarantees the
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Figure 2: The cumulative distribution of ¢ across three separate
CLVLs is measured on Jan 20, 2003 by transmitting 1,500,000
packets over each virtual link(each with 250 bytes payload). The
intersection point between v = 0.01 and the CDF curves repre-
sent the values of ¢i, dong the three links.

entire bundle a target loss rate, ¢. If the traffic arrival rate
of the bundle is larger than ¢, the extra traffic is dropped
at the entry overlay node. The overlay node can employ
any QoS scheduling discipline to distribute ¢ and the losses
across the flows in the bundle. In particular, in a Diffserv-
like model, if every packet is associated with a priority, then
the overlay node can use these priorities to preferentially
drop packets and allocate bandwidth to different flows.

While in general the available bandwidth, ¢, of a CLVL
bundle varies with time, it might be possible to statistically
bound the minimum bandwidth of the bundle to offer band-
width guarantees to a fraction of OverQoS traffic. Given a
small probability value, u, one can capture the variations
of the available bandwidth on a CLVL using a distribu-
tion and determine a value ¢,,;, such that the probability,
P(c < ¢min) = u Where u represents the probability of
not meeting the bandwidth guarantee, ¢,,in. If the corre-
sponding ¢.;» IS a significant fraction of ¢, then OverQoS
can provide statistical bandwidth guarantees by allocating
bandwidth to flows within a CLVL as long as the total allo-
cated bandwidth is less than ¢,,;,. Table 1 tabulates all the
variables we use in expressing the properties of a CLVL.

In practice, we notice that the value of ¢,,;, across over-
lay links can be reasonably high implying that OverQoS
can indeed be used to provide meaningful statistical band-
width guarantees to applications. Figure 2 shows the distri-
bution of ¢ for three different overlay links traversing inter-
national links and broadband networks: Lulea (Sweden)-
Korea, Mazu (Boston)- Cable Modem (SF), Netherlands-
Intel (SF). The values of ¢y, across these links to provide
au = 0.01 guarantee are 160 Kbps, 420 Kbps, and 269
Kbps respectively. Statistical bandwidth guarantees can be
provided only to a subset of the OverQoS flows, potentially
at the expense of other flows. Flows requiring guarantees
should be given a higher priority over other flows at an



OverQoS node. The remaining bandwidth c¢—c¢,,,;5, is dis-
tributed among the other flows.

2.3 Overall picture

An OverQoS network (Figure 1) comprises of a collection
of overlay links where each link is associated with a CLVL
abstraction. Individual CLVLs along different OverQoS
links are stitched together to generate an end-to-end path
along which a flow may be routed and guaranteed a spe-
cific amount of QoS. In this paper, we demonstrate that an
overlay network can indeed be useful in enhancing Inter-
net but do not address the issue of how to route flows on
top of an OverQoS network. We rely on an overlay routing
service like RON [32] to specify an end-to-end path across
an OverQoS network. Given one such path, OverQoS de-
termines the level of QoS that can be provided along the
path.

Application-OverQoS Interface: A legacy application in-
tending to use OverQoS is required to perform two func-
tionalities. First, it needs to tunnel its packets through the
overlay network using an OverQoS proxy. The proxy node
functionality can reside either at the first OverQoS node
along the path or within the same host as the application.
Second, the proxy is responsible for signaling the appli-
cation specific requirements to OverQoS. For example, if
OverQoS offers the service of smoothing losses or packet
prioritization, the proxy is required to mark the priority of
packets within the flows. Our current implementation of
an OverQoS proxy is application specific in that it infers
the priorities of the packets of an application flow without
modifying the application. However, in the case of statisti-
cal loss or bandwidth guarantees, an application is required
to clearly signal its QoS requirements (loss,bandwidth) to
the OverQoS proxy. For this particular service, the proxy is
additionally responsible for undergoing an admission con-
trol test to determine whether OverQoS can indeed satisfy
the application’s QoS requirements. The signaling aspects
of the admission control as well as the issue of how to route
flows within OverQosS are out of the scope of this paper.

2.4 Discussion

End-to-end Recovery vs Overlay CLVL: An alternative to
applying the CLVL abstraction on an overlay network is
to apply loss control on an end-to-end per flow basis. There
are several arguments against end-to-end loss control: First,
using FEC to apply end-to-end loss control is far more ex-
pensive than applying it on an aggregate level. For exam-
ple, in order to provide a 0.1% loss guarantee to a 64 Kbps
stream (like game console traffic or IP telephony stream)
over a bursty channel with an average loss rate of say 2%,
the minimum amount of FEC required can be as high as
32 Kbps. However, if 10 such flows are aggregated at an

overlay node, the per-flow FEC requirement can drop to
lower than 5 Kbps. Second, with a better distribution of
overlay nodes, we expect the overlay links to have much
smaller RTTs than end-to-end RTTs. Hence, overlay-level
recovery using ARQ has better delay characteristics than
end-to-end recovery. Finally, aggregation of flows within
an overlay provides the ability to trade resources across dif-
ferent flows (or within packets of the same flow) which is
fundamentally necessary to provide better QoS properties.

Delay guarantees: Overlay networks have no control over
variations in queuing delays along virtual links and hence
cannot offer delay assurances. On the other hand, overlay
networks have been used to route around congestion [33,
7]. Such techniques can be embedded into an overlay to
improve the end-to-end delay characteristics of a path.

Over-provisioning: Recent measurement studies have
shown that Internet backbones are over-provisioned and
have low levels of congestion [19, 17]. This questions
the basic need for Internet QoS. We contend that over-
provisioning is not necessarily a permanent feature of the
Internet, but a reflection of the big disparity between the
poor connectivity at edges, and the backbone capacity. As
more homes and enterprises become connected over faster,
multi-megabit/s or higher, links with optical fibers, we ex-
pect that at least some parts of the Internet such as small
ISPs to become more congested. This trend is already ev-
ident in countries like Japan where ISPs offer 10 Mbps
broadband connections to homes [4]. In addition, many
ISPs already provide aggregate QoS within their networks
using MPLS technologies [26]. We believe that overlays
are the right platform for translating these aggregate intra-
domain QoS to meaningful end-to-end QoS guarantees.

3 Controlled-Loss Virtual Link (CLVL)

In this section, we describe the realization of the CLVL ab-
straction. In particular, we describe: (a) how to compute,
b, the maximum sending rate across an OverQoS link; (b)
how to achieve the target loss rate ¢ for the flows in the
bundle; (c) the architecture of the OverQoS node.

3.1 Estimatingb

OverQosS tunes the maximum output rate, b, depending on
network congestion in order to be both fair to cross traffic as
well as achieve stability in the presence of other competing
OverQoS traffic. One way of achieving this is to set b based
on an N-TCP pipe abstraction which provides a bandwidth
which is N times the throughput of a single TCP connec-
tion on the virtual link. We set IV to be equal to the number
of flows in the bundle.

We use MUITCP [29] to emulate the behavior of N TCP
connections. MulTCP uses a TCP-like congestion control



mechanism with « = N/2 and 3 = ;% as the incre-
ment and decrement parameters. While MulTCP may re-
act quickly to congestion, it may not provide smooth vari-
ations in the sending rate. To obtain smoother variations,
we may prefer to choose an alternate operating point with a
lesser value of « and 8 without altering the net steady state
throughput as determined by the TCP equation [27]. If we
set @ = v/N, the corresponding value of 3 can be calcu-
lated using the TCP equation as equal to 4/(3 x N'1-5 +2).
Across most of our evaluations, we use the standard pa-
rameters of MulTCP. Alternatively, we can also use an
equation-based approach to emulate the behavior of N

TFRC connections [16].

3.2 Achievingtarget lossrate g

We will describe a hybrid solution which uses a combina-
tion of FEC and ARQ to construct a CLVL. Recall that a
CLVL abstraction aims to bound the bundle loss rate to a
small value g. Since burstiness of cross-traffic is usually
unpredictable, we define ¢ as a statistical bound on the av-
erage loss rate observed over some larger period of time
(on the order of seconds).

FEC vs ARQ trade-off: The main distinction between FEC
and ARQ is in the trade-off between bandwidth overhead
and packet recovery time. While FEC can help in quickly
recovering from packet losses, the bandwidth overhead can
be high especially over virtual links experiencing bursty
losses [22]. On the other hand, an ARQ based solution will
have a high packet recovery time if the RT'T between two
overlay nodes is large. To strike a balance between these
two approaches, we present a hybrid approach that uses the
best features of both these mechanisms.

We will first briefly describe how one will construct a
CLVL using purely ARQ or FEC and combine these ap-
proaches to obtain a hybrid CLVL construction.

ARQ-based CLVL: A purely ARQ-based solution for build-
ing CLVLs is easy to construct. In a reliable transmission
(g = 0), a packet is repeatedly retransmitted until the
sender receives an acknowledgment from the receiver. Sim-
ilarly, to achieve a non-zero target loss rate, g, it is enough
to retransmit any lost packet L = log; g—1 times, where p
represents the average loss rate over the interval over which
we want to bound ¢. However, if L > 1, a pure-ARQ based
CLVL is unattractive since it uses multiple RTTs to achieve
the bound q.

FEC-based CLVL: In an FEC-based approach, we divide
time into windows of period, 7., where a window is a unit
of encoding/decoding. We consider an erasure code such
as Reed-Solomon, characterized by (n, k), where k& is the
number of packets arriving at the entry node during the
window, and (n — k) represents the number of redundant
packets added. Let » denote the redundancy factor, where

r = (n — k)/n. The FEC problem reduces then to de-
termining a minimum redundancy factor, r, such that the
target loss rate ¢ is achieved. Since the hybrid approach
(i.e., FEC+ARQ based CLVLs) presented below outper-
forms the FEC based CLVLs in most of the cases, we skip
the description of our algorithm for computing the ideal
value of r.

FEC+ARQ based CLVL: Due to delay constraints for loss
recovery, we restrict the number of retransmissions to at
most one. We divide packets into windows and add an FEC
redundancy factor of r; for each window in the first round.
In the second round, if a window is non-recoverable, the
entry node retransmits the lost packets with a redundancy
factor ra.

We need to estimate the parameters, r; and ry. Let f(p)
denote the PDF of the loss rate p, where each value of p is
measured over an encoding/decoding window. FEC offers
loss protection within a window if the fraction of pack-
ets lost in a window, p, is less than the amount of redun-
dancy added for that window. Given a redundancy factor,
r, the expected packet loss rate after recovering from FEC
is given by:

G(r) = / pf ()dp

Hence the expected packet loss rate after the two rounds in
the hybrid approach is equal to L(r1,r2) = G(r1) X G(r2).
Given a target loss-rate, ¢, we require:

L(ry,m2) < g

For a given window, r; is the FEC overhead in the first
round, G(r1) is the expected number of retransmitted pack-
ets and G(r1) X ro, the expected overhead in the second
round. The expected bandwidth overhead is given by

0(7‘1,7‘2) =r + G(’f‘l)(l + ’I“Q)

This yields the following optimization problem: Given a
target loss rate g, determine the redundancy factors r, and
o that minimizes the expected overhead, O(r1,72) subject
to the target loss constraint: L(ry,72) < gq.

For many loss distributions that occur in practice, the opti-
mal solution for this problem is when 4 = 0. This solution
implies that it is better not to use FEC in the first round,
and use FEC only to protect retransmitted packets. When
ry = 0and ro = 0, an FEC+ARQ CLVL reduces to a pure
ARQ based CLVL. This happens when ¢ < p?wg where
Pavg = G(0) is the average loss-rate along the virtual link.
An FEC+ARQ CLVL can be made adaptive to sudden vari-
ations in the loss characteristics by always applying a min-
imal amount of FEC (r > 0), to the retransmitted packets
in a window.
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Figure 3: Components of entry and exit OverQoS nodes

We made a simplistic assumption in the above calculation.
We used the same distribution f(p) to model the fraction
of losses during both the first and second round. Since
the number of packets in a retransmitted window may be
much smaller than the original window, the same distribu-
tion f(p) may not apply. To overcome this problem, we
estimate a table of loss distributions (rather than one f(p))
across different time-scales and apply the appropriate dis-
tribution based on the number of retransmitted packets.

3.3 NodeArchitecture

Figure 3 captures the interactions between the various com-
ponents in the entry and exit overlay nodes. The entry node
consists of two modules: one that implements the CLVL
abstraction, and another that performs per-aggregate or per-
flow traffic management. The first module communicates
with the exit OverQoS node to estimate the link loss rate
and delay. It uses this information to adapt the data traffic
to conform to the CLVL abstraction. The second module al-
locates the capacity of the CLVL among competing traffic
aggregates or flows. The exit OverQoS node is responsible
for measuring the loss and delay characteristics and recon-
structing lost packets if necessary. If the CLVL abstraction
uses ARQ for loss recovery, the exit node propagates indi-
vidual packet loss information to the entry node.

The entry node exerts control on the traffic in the bundle
at two levels of granularity: on the bundle as a whole, and
on a per-flow basis within the bundle. At both these lev-
els, the entry node can control either the sending rate or
the loss rate. The CLVL management module at the entry
node first determines the sending rate of the bundle, b, us-
ing MulTCP [29] to emulate the aggregate behavior of N
virtual TCPs. Next, it determines the level of redundancy
r required to achieve a certain target loss-rate ¢ based on
the loss-characteristics determined by the window. The re-
sulting available bandwidth ¢ is estimated to be b(1 — r).
The traffic management module at the entry node then dis-
tributes the available bandwidth ¢ among the individual
flows. If the net input traffic is larger than ¢, the entry node
drops the extra traffic and exercises control in distributing
the losses amongst the flows.

4 OverQoS Implementation

We implemented the OverQoS node architecture in about
5000 lines of C code. The communication between overlay

nodes uses the UDP socket interface. For loss recovery, we
use the FEC software library built by Rizzo et al. [30]. Our
implementation works on both Linux and FreeBSD plat-
forms.

Figure 4 illustrates the structure of a single OverQoS node
along a given path. An OverQoS node listens on a UDP
socket for the arrival bundle and tunnels the traffic to the
exit node as a UDP stream. The CLVL Encoder and De-
coder modules implement the CLVL abstraction on top of
the overlay link by adding the necessary level of redun-
dancy to recover from packet losses. The decoder also pro-
vides loss feedback to the encoder for computing the op-
timal redundancy factor. The Traffic Management module
implements per-flow or per-packet resource management.
Different QoS schedulers and buffer management schemes
like priority scheduling and smoothing losses is performed
by this module. The rate estimator computes the CLVL pa-
rameters b,c and r while the link estimator provides feed-
back to the transmitting OverQoS node about the virtual
link characteristics comprising: (a) loss feedback for com-
puting the loss distribution; (b) RT'T', the round trip time.

CLVLs along an overlay path can be stitched together
(or cascaded) to provide end-to-end services. Cascaded
CLVLs can introduce artificial losses at an overlay node
if the available bandwidth on the incoming links is larger
than the available bandwidth in the outgoing links. In or-
der to avoid any artificial packet losses at an intermediary
node in an overlay path, an OverQoS node uses b,,q; t0
signal the maximum sending rate to its predecessor. This is
illustrated in Figure 4.

4.1 Other Implementation | ssues

We will now briefly discuss some of the salient implemen-
tation issues:

Application-dependent proxy: An important aspect of in-
terfacing with legacy applications is to use an applica-
tion proxy that can signal an application’s requirements to
the OverQoS network. In the case of MPEG streaming,
the application proxy interprets the packets in the stream
and marks the priority of recovery for each packet. For
smoothing losses, all packets in a stream are associated
with the same priority. For obtaining bandwidth guaran-
tees, the proxy needs to use a signaling mechanism like
RSVP [10] to reserve the resources along an overlay path.

Choosing parameters: The parameters NV, RTT and pg,,4
need to be estimated for determining the sending rate b.
While N can be estimated as the instantaneous number of
flows, we set N as the average number of flows observed
over a larger period of time (certain flows have a very short
lifetime). This is to reduce the variations in the sending
rate induced by V. Only flows that generate a minimum
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Figure 4: Structure of a single OverQoS node along a path.

number of packets, are used in calculating N. We lever-
age the techniques used in equation based congestion con-
trol [16] for estimating the RT'T and pq., between two
OverQoS nodes. We choose a reasonably low value of the
target loss-rate, ¢ = 0.1%, for most of our experiments.
For FEC+ARQ based CLVLs, we choose the packet recov-
ery time, T, tobe 2 x RTT.

Startup phase: During periods of no usage (i.e. when
N=0), we do not send additional traffic to estimate the vir-
tual link parameters. After such a phase, OverQoS nodes
need to determine an initial value of b along a virtual link.
Like TCP, we use a slow-start phase to estimate the initial
value of b. During the slow-start phase, OverQoS does not
use loss recovery.

FEC implementation: Our implementation can perform
FEC encoding and decoding (for a redundancy factor as
high as 50%) at over 300 Mbps on a Pentium Ill 866
MHz running Linux 2.4.18 kernel. Since we operate on
small window sizes, (n < 1000), Reed Solomon coding
is not a bottleneck. For example, on a virtual link with an
RTT = 100 ms, the window size is bounded by 1000 for
sending rates less than 40 Mbps. Other coding techniques
like Tornado codes [23] while faster, may not provide the
same level of error correction for small window sizes.

5 Two Sample Applications

In this section, we will describe two real applications that
can leverage the QoS enhancements offered by OverQosS.
The first application shows how RealServer, a streaming
media application can improve the signal quality of multi-
media streams by using OverQosS to preferentially recover
important packets at the expense of less important ones
without using any additional network bandwidth. The sec-
ond application is Counterstrike, a popular online multi-
player game with a user base of over 1 million players [1].
For this application, we show how OverQoS can smooth
out losses and enable players to play the game under high-
loss environments.

5.1 Streaming Media Applications

Streaming media applications are typically more sensitive
to network losses than delay since delay variations can be
masked by using a buffer at the client. OverQosS is an ideal
platform for providing different forms of enhancements for
such applications. Two such forms of enhancements are:

1. The quality of streaming audio can be enhanced by
converting bursty losses into smooth losses.

2. By preferentially recovering packets in an MPEG
stream, one can improve the quality of the video
stream.

Given that delay variations is not a primary issue for
these applications, OverQoS primarily uses an ARQ-based
CLVL for these applications. For both streaming audio and
video, OverQoS does not consume any additional band-
width. It achieves this by performing the following oper-
ation: Whenever an important packet is lost in the network,
OverQoS retransmits this packet and drops a later lesser
important packet to compensate for the retransmission. In
the process, the application observes the same end-to-end
loss-rate as it would in the normal Internet and will experi-
ence an occasional increase in the end-to-end delay which
is bounded by the RT'T along the overlay path.

5.1.1 QoS Enhancementsfor Sreaming Media

Streaming Audio: Bursty errors in a streaming audio ap-
plication can either cause interruptions to an audio stream
or cause gaps in an audio stream for periods of time easily
perceptible by the human ear. We consider the case where
a RealServer streams a .wav/.mp3 audio file to an end-host
using RTP. The audio stream can use OverQoS to smooth
out bursty losses i.e., spread a bursty loss over time.

MPEG Streaming: An MPEG video stream consists of a
Group of Pictures (GOP) each comprising of I-frames, P-
frames and B-frames [6]. Among these, I-frames are the
most important since they represent the start of a video se-
quence in a GOP while P-frames and B-frames are inter-
coded frames. Each frame is typically larger than a packet
and a frame is sent across multiple consecutive packets. All



packets corresponding to an I-frame occur in succession. A
single bursty network loss can eliminate an I-frame com-
pletely which can cause an MPEG player like Mplayer [5]
to disconnect since a GOP cannot be reconstructed. The
B-frame and P-frame of a GOP are useless without the cor-
responding I-frame.

Using OverQoS, one can associate packets belonging to I-
frames with higher priority and recover packets within an I-
frame at the expense of B or P-frame packets. Additionally,
bursty dropping of B and P frame packets affects the qual-
ity of one GOP in an MPEG stream, smoothly dropping
B and P packets can affect the quality of multiple GOPs.
The type of frame of a packet is embedded in the MPEG
Video-Specific header within the payload of a packet.

5.1.2 Evaluation

Network Setup: We use the Helix server version 9.0.2 [2]
as our streaming media server and use Mplayer [5] as the
streaming media client. All streaming media requests are
issued using the Real Time Streaming Protocol (RTSP) to
stream packets using UDP. We built a client proxy and
a server proxy to interpret the streaming media packets
and associate them with different priorities. Using these
proxies, we tunnel a media stream from RealServer to
an Mplayer client along an overlay path along which we
replay sample bursty loss traces collected along differ-
ent overlay links. For the purpose of illustration, we con-
sider two such loss traces: (a) Mazu (Boston)-Korea with
an average loss rate of 2%; (b) Intel (San Francisco) -
Lulea (Sweden) with an average loss trace of 3%. Each
trace is 20 minutes long. To emulate the behavior without
OverQoS, we consider the OverQoS nodes to act as packet
forwarders. If the length of a media stream is shorter than
the length of the trace, we repeat the analysis for different
portions of the trace.

Streaming Audio: To demonstrate the effect of smooth
dropping on streaming audio, we concatenated several
speech samples provided by International Telecommunica-
tion Union (ITU-T) to produce two test samples of length
84 sec and 82 sec respectively. Perceptual Evaluation of
Speech Quality(PESQ) [3] is one metric to evaluate the
quality of voice. We measured the PESQ score for the
received stream in comparison to the original stream. A
PESQ score of 5 is considered to be ideal implying that
the received audio stream has not degraded in quality.®

Table 2 compares the PESQ scores of streaming audio with
and without OverQoS for two benchmark speech samples.
We observe that smoothing the losses does help in increas-
ing the quality of the audio stream. Using OverQoS we are

1The PESQ measure is applicable only for pure speech sam-
ples and not for arbitrary audio streams. Hence our analysis is
limited to only these standardized samples.

Sample 1 Sample 2
Mazu-Korea | Without OverQoS | 4.25 £0.3 | 4.27+ 0.5
Mazu-Korea | With OverQoS 4.46+04 | 4.45+0.3
Intel-Lulea | Without OverQoS | 4.04 £0.2 | 4.13 +0.3
Intel-Lulea | With OverQoS 419+03 | 431+£0.3

Table 2: PESQ scores for speech samples with and with-
out OverQoS for both the Mazu-Korea and Intel-Lulea loss
traces. This table also shows the standard deviation of these
scores across different loss traces.

5% PSNR | Median PSNR
Mazu-Korea | Without OverQoS | 15.27 22.33
Mazu-Korea | Using OverQoS 174 24.95
Intel-Lulea | Without OverQoS | 14.68 21.59
Intel-Lulea | Using OverQoS 16.21 24.7

Table 3: This table shows the 5% and median values from
the PSNR distribution of the received stream. 5% value in-
dicates the minimum PSNR value observed by 95% of the
images in the stream.

able to increase the PESQ score of the output stream by
roughly 0.15 — 0.2. To demonstrate that 0.15 — 0.2 is in-
deed a reasonable improvement in the audio quality, we ex-
perimented with several artificial bursty loss patterns while
maintaining the same average loss-rate of the traces (i.e.,
2% and 3%) and measured the PESQ scores for each of
them. For an average loss rate of 2%, we found the PESQ
scores to vary between 4.2 and 4.3 across a variety of bursty
loss patterns. For these cases, we again found that smooth
dropping performs better than bursty drops. Hence, we find
that smoothing losses using OverQoS uniformly outper-
forms different types of bursty network losses.

MPEG streaming: Peak Signal-to-Noise ratio (PSNR) is
a standard metric used to measure the quality of the video
images in a stream. Given an MPEG stream received at the
client, we use the “-yuv4dmpeg” utility in Mplayer to con-
vert the stream into a stream of images. For every image,
we compute the PSNR value of the received image in com-
parison to the video image in the original MPEG stream.
We quantify the quality of the received MPEG stream us-
ing a distribution of PSNR values for the individual images.
We consider a sample MPEG-1 stream which is 37 seconds
for this analysis.

Table 3 compares the 5% and median values of the PSNR
values of the received MPEG stream with and without
OverQoS across both the loss samples. We make the fol-
lowing observations. First, in the case when an entire I-
frame was lost due to a burst, Mplayer stopped playing the
video stream since an entire GOP cannot be reconstructed.
This occurred in both the loss traces when a burst coin-
cided with the packets of an I-frame. However, OverQoS
was able to recover from the burst so that the stream could



progress. Second, OverQoS is able to improve both the 5%
and the median PSNR values of the stream by preferen-
tially dropping B and P packets in a burst when compared
to the quality of the stream without OverQoS. We illus-
trate the 5% PSNR value mainly to show that OverQoS not
only improves the quality of the stream in the average case
but also the minimum quality of a stream. To summarize,
OverQoS can improve the quality of a media stream with-
out consuming any additional network resources.

5.2 Counterstrike application

Counterstrike is a team-based multi-player game where on-
line players are grouped into competing teams where each
team is assigned a specific goal. The environment of the
game is pre-loaded and clients exchange game state over
the network using small UDP packets. Bursty losses can
have an adverse effect on the progress of this game. First,
during the initiation phase, the client generates important
control packets which if lost can render the client unable
to connect to the server. Second, a burst of packet losses
during the middle of a game can either cause skips or cause
a player to get disconnected. A skip can arise because the
game state messages received immediately after a conges-
tion provides a context jump in the game. Third, in a multi-
player game, problems observed by one player will affect
other players in the game. For example, disconnection of a
single player can sometimes halt the progress of a game.

OverQoS can alleviate the problem of bursty losses by per-
forming the following operations:

1. Recover from bursty network losses by using an
FEC+ARQ based CLVL abstraction between overlay
links along the path.

2. Smoothly drop data packets equivalent to the size of
the burst at the overlay node.

3. Identify control packets based on packet size and not
drop these packets.

By both recovering lost packets as well as smoothly drop-
ping an equivalent amount of data packets at an overlay
node, OverQoS achieves three objectives: (a) OverQoS
provides the Counterstrike client with critical updates to
continue the progress of the game. For example, many UDP
packets generated by Counterstrike merely contain the co-
ordinates of different players. If OverQoS can deliver even
a fraction of these packets, the client will still be able to
reconstruct the movement and position of other players. (b)
OverQoS uses minimal amount of additional bandwidth to
support this application. The additional bandwidth which
is not compensated by OverQosS is the FEC portion of the
redundant traffic. Our wide-area experiments over realistic
overlay links show that this additional bandwidth is negli-
gible (refer to Section 6). (c) The application observes the
same loss-rate as it would in the normal Internet yet not ex-
perience any skips in a game. In the event of a bursty loss,

Figure 5: Snapshot from a Counterstrike game at a 10%
loss rate.
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Figure 6: Sequence number plot illustrating smoothing of
packet losses using OverQoS.

the application experiences an additional delay equal to the
loss recovery time of a CLVL. With a reasonable distribu-
tion of overlay nodes, we expect this recovery time to be
much smaller than end-to-end recovery.

Counterstrike Proxy: By reverse engineering the traffic
characteristics of Counterstrike, we built a client and server
proxy to interpret the Counterstrike packets. We chose a
proxy-based implementation for two reasons: First, Coun-
terstrike client and server codes are proprietary and we do
not modify the code. Second, it is a simple way of captur-
ing different application specific traffic and tunneling them
through OverQoS.

Example Scenario: We consider a cable modem loss trace
with an high loss-rate of 10% and compare the effect of
losses on the Counterstrike game under two scenarios: (a)
with OverQoaS; (b) without OverQosS. Figure 5 illustrates a
snapshot of a Counterstrike game where OverQoS converts
bursty losses into smooth losses and the client does not ob-
serve any skips. Figure 6 better illustrates the smoothing of
losses using OverQoS. In the case without OverQoS, we
observed many short periods of time where the network
losses was as high as 70 — 80% followed by periods with
no congestion. The OverQoS node compensates the addi-



tional bandwidth consumed for loss recovery by smoothly
dropping packets during non-lossy periods.

We make two additional observations. First, smoothing
losses works well only when the bursty loss-periods are
relatively short by compensating. When burst periods last
for longer periods of time, OverQoS will not be able to
smoothly drop packets in the absence of any non-lossy pe-
riods. Second, in this scenario, the CLVL abstraction is un-
able to achieve the target loss-rate due to congestion peri-
ods with very high loss-rates. However, the loss reduction
provided by OverQoS during bursty periods is sufficient for
the Counterstrike game to progress.

6 Evaluation

In this section, we answer several questions relating to the
practical viability of OverQosS in the wide area Internet us-
ing implementation results and measurements on a wide-
area network comprising of 19 diverse nodes. Additionally
we use ns-2 based simulations [25] to answer specific ques-
tions that a wide area evaluation may not be able to address.
The specific questions we address are:

1. Can OverQoS provide statistical bandwidth guaran-
tees and loss assurances to flows? In particular:
(a) Loss Guarantees: When can a CLVL abstraction
provide loss guarantees along a virtual link?
(b) Bandwidth Guarantees: What bandwidth guar-
antees are realizable on a virtual link?
(c) OverQoS Cost: What is the bandwidth overhead
and delay cost of using OverQoS?
2. Fairness/Stability: Is OverQoS fair to cross traffic and
stable in the presence of multiple competing OverQoS
networks?

6.1 Evaluation Methodology

Our evaluation methodology is two-fold: (1) we use wide
area experiments to evaluate how OverQoS performs in
practice, and (2) we use simulations to get a better under-
standing of the OverQoS performance over a wider range
of network conditions.

Wide-Area Evaluation Testbed: Using resources avail-
able in two large wide-area test-beds namely RON [32]
and PlanetLab [28], we construct a network of 19 nodes
in diverse locations: 6 university nodes in Europe, 1 site
in Korea, 1 in Canada, 3 company nodes, 8 behind access
networks (Cable, DSL). Our main goal in choosing these
nodes is to test OverQoS across wide-area links which we
believe are lossy. For this reason, we avoided nodes at
US universities connected to Internet2 which are known to
have very few losses [7].

Simulation Environment: We built all the functionalities
of our OverQoS architecture on top of the ns-2 simulator

Background Average | FEC+ARQ Achieved
Traffi ¢ Loss(%) | Loss (%)

100 TCPs(SACK) 184 0.06 %

9 Mbps Self Similar | 1.91 0.08%

400 Web sessions 0.68 0.03 %

Figure 7: Simulations: Achieved loss rate by a CLVL across
three types of background traffic. We set ¢ = 0.1% and the
bottleneck link is 10 Mbps using RED queue.

version 2.1b8. Unless otherwise specified, most of our sim-
ulations use a simple topology consisting of a single con-
gested link of 10 Mbps where we vary the background traf-
fic to realize different types of traffic loss patterns. We use
three commonly used bursty traffic models as background
traffic: (a) long lived TCP connections; (b) Self similar traf-
fic [36]; (c) Web traffic [15]. In addition, we use publicly
available loss traces to test the performance of a CLVL.

6.2 Statistical Loss Guarantees

In this section, we answer the question: Under what net-
work conditions, can OverQoS achieve a CLVL abstraction
across an overlay link? For all the scenarios described in
the section, we choose a target loss-rate to be a small value
0.1%, i.e.,, ¢ = 0.001. To compute the available bandwidth,
b, we use N-TCP with a value of N = 10.

Simulations: We first test whether the FEC+ARQ CLVL
construction can achieve the target loss-rate across a va-
riety of bursty loss models. Our key conclusion from the
simulations is that in all cases, we meet the target loss rate
g = 0.1%, despite bursty losses and the average loss-rate
varying between 0.5% and 3.3%. Furthermore, this con-
clusion is true not just for the means, but for the tails of the
distribution as well. Figure 7 shows the achieved loss rate
for the FEC+ARQ based CLVL for three different back-
ground traffic scenarios. In addition, our recovery algo-
rithm achieves the target loss irrespective of whether the
IP routers along the virtual link use FIFO or RED queues.
These results demonstrate that our CLVL algorithm is ro-
bust over a range of dynamic traffic conditions and works
even when the underlying loss rate is 30 times larger that
the target loss rate, q.

Wide Area Evaluation: Given our specific choice of overlay
nodes, we found 83 virtual links in our overlay testbed to
be lossy. A link is characterized as lossy if the loss-rate
along the link is at least 0.5%. Across each link, we ran a
CLVL abstraction for time-ranges varying from 20 minutes
to 1 hour. In order to measure the system under stress, the
sending rate as determined by N-TCP averaged between
120 Kbps (across Cable modems and DSL lines) to 2 Mbps
from other nodes. ?

2Given this high sending rate, we did not run our experiments
for continued periods of time. Additionally, bandwidth is an ex-



Cavg Mean i’:—v: Variation
100 — 200 Kbps 041 0.32 - 0.49
200 — 400 Kbps | 0.48 0.29 — 0.75
400 — 800 Kbps 041 0.19 -0.81
800 — 1600 Kbps | 0.41 0.16 —0.86
> 1600 Kbps 0.49 0.04 — 1.0
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The FEC+ARQ based CLVL achieved the target loss-rate
over 80 of the 83 virtual links. Our FEC+ARQ algorithm
failed to achieve the target loss rate of 0.1% only across 3
of the overlay links. Upon closer investigation, we found
the causes to be : short outages and bi-modal loss distri-
butions. A short outage refers to a period of time when all
packets transmitted along a virtual link are lost. Within our
testbed, we noticed non-recoverable losses along two links:
PDI-NBG and Unibo-Media. These non-recoverable losses
lasted for short periods of time (< 5 s). Short outages can
occur due to a variety of problems such as routing changes
or link resets. A loss distribution is said to be bi-modal
if the losses experienced in every window is zero or very
high. Links with very bursty losses have a bi-modal distri-
bution. An FEC+ARQ based CLVL cannot recover a large
portion of a window of packets from a bimodal loss distri-
bution if a long burst affects both the FEC window, and the
ARQ transmissions. During our experiments, Mazu-Chal
experienced a bimodal loss distribution.

6.3 Statistical Bandwidth Guarantees

In this section, we answer the question: What bandwidth
guarantees are realizable on a virtual link?

Recall that the statistical bandwidth guarantee achiev-
able along a virtual link is given by ¢4, Such that
P(c<cmin) = u, Where ¢ represents the instantaneous
bandwidth along the virtual link, and « represents the prob-
ability with which the guarantee is not met. The Rate Es-
timator module updates ¢ once every window of packets
(O(RTT) sec) based on the feedback information received
from the next OverQoS hop.

Across the 171 pairs of nodes between the 19 end-hosts in
our testbed, we monitored 83 unique virtual links over a
period of 7 working days. Figures 8(a) and (b) show the
distribution of ¢;,,;,, for u = 0.01 and « = 0.005. We make
two observations. First, the value of ¢,,;, is greater than
100 Kbps for more than 80% of the links. 20% of the links
are predominantly connected to broadband hosts. Second,
in many cases, ¢ir, is at least 25% of the average through-
put along the virtual link. In specific cases, ¢,y is as large
as 90% of the average throughput. The median value of

pensive resource for RON and PlanetL ab which we did not want
to misuse.
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Figure 10: Overhead Characteristics in the wide-area
testbed: Compares overhead of FEC+ARQ with FEC and

Average loss rate across the links, pgyg.

Cmin/Cavg 15 0.4 and 0.35 for v = 0.01 and v = 0.005
respectively. Figure 9 shows the variation of ¢, /Cqug aS
a function of cqyg. AS cqug iNCreases, we notice that the
maximum value of ¢pin/cavg increases while the mini-
mum value decreases. The minimum decreases because we
notice self-induced losses across some of the links thereby
causing MulTCP to drastically reduce its sending rate and
thereby reducing ¢, i -

Stability of ¢,,i: If the underlying distribution of ¢ is sta-
ble, the estimated value of ¢,,;, will roughly be a constant.
However under dynamic conditions, we need to continu-
ously re-estimate ¢,,;, and flows need to renegotiate their
bandwidth reservations. For a given value of u, we estimate
Cmin UsiNg O(1/u) samples of ¢. As an example, given
RTT = 100 msec and v = 0.01, we can calculate ¢, in
based on the last 20/« samples (representing a history of
200 seconds). In this scenario, flows renegotiate their band-
width requirements every few minutes.

Figure 8(c) shows the variation as a function of time across
four separate virtual links from Europe to North America.
We make two observations: First, the value of ¢,,;,, is very
stable compared to variations in the available bandwidth, c.
Across these links, ¢,,i, does not deviate more than 10%
around its mean value. Second, an on-line algorithm for
estimating ¢, based on past history is a reasonable ap-
proach. While we set P(c < c¢min) to be 1%, the actual
value of c is less than the estimated c¢,;,;,, in N0 more than
1.3% of the cases across all four virtual links.

6.4 OverQoS Cost
6.4.1 Overhead Characteristics

Figure 10 shows the cumulative distribution of the over-
head for an FEC+ARQ based CLVL across the 83 over-
lay links over which we performed our measurements. For
each link, we ran an N—TCP pipe for N = 10 and mea-
sured the overhead required to achieve a target loss rate of



1
3 e ok N LT PP,
_ 09} P R 1000 |77 e
S osf T - | osk <
3 orF g 1 5 = 7
B 06 f g Zool oy
Sosp g . S0 . H 100
= L) : i g £
E 04T F L o E
2 03p f 1 5.. © Lulea-Nortel
S 02k : 99% guarantee - R Unibo-Intel
o 99.5% guarantee o2} Y — 99.5% guarantee UK-Mazu -
0L ‘ MuI‘TCPthro‘ughput P ] l-* = = 99% Guarantee ‘ Gre‘ece—N‘C
0 - oaf - 10
0 500 1000 1500 2000 2500 5 10 15 20 25 30 35
Bandwidth(Kbps) oo i Caverage T Time (minutes)
(@) (b) (©

Figure 8: (a) Cumulative distribution of the bandwidth guarantee ¢,,;, across 100 separate measurements over 83 unique
overlay links measured across 7 different days from Jan14th - Jan28th. For each run along a single overlay link, we
generated between 100,000 - 300,000 packets. All measurements are taken on weak-days (many of them during working
hours). (b) Distribution of the fraction ¢, /cqvg across all the links. (c) Variation of ¢,,;,, across 4 different virtual links
between Europe and North America. ¢, IS measured as an on-line estimate over a maximum previous history of 5 minutes

(time to collect 20/u samples for u = P(c < ¢min) = 0.01).
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Figure 11: Cascaded CLVL scenario using FEC+ARQ
CLVLs: End-to-end ordering within OverQoS network has
much better delay characteristics than hop-by-hop order-

ing.

g = 0.1%. We notice that the overhead of FEC+ARQ is
very close to the average loss-rate along the overlay links.
The difference between the two is the amount of FEC used
in the second round to protect the retransmitted packets.
In comparison, a pure FEC based CLVL construction far
higher bandwidth. This is primarily due to the network loss
characteristics: the burstier the background traffic (i.e., the
longer the tail of the loss-rate distribution), the higher the
amount of FEC required to recover from these losses [22].

6.4.2 Delay Characteristics

This section answers the question: What is the delay cost
of using OverQoS? A potential criticism of our algorithm
is that it increases the delay observed by packets.® There
are two reasons for this increase in delay. First, if one or

3Notethat thisisalegitimate concern only for OverQoS pack-
ets and not for other flows sharing links on a path.

more packets in a window are lost, the recovery process
will cause additional delays. Second, if OverQoS is re-
quired to support in-sequence delivery of packets, the loss
of one packet can increase the delay of other packets. Our
implementation showed that the additional delay incurred
at a node due to processing overhead is negligible.

In OverQoS, we can support three different models for
packet delivery: (a) No packet ordering; (b) End-to-end
(E2E) ordering between first and last OverQoS node in
a path; (c) Hop-by-hop ordering. We consider a simple
scenario where an overlay path traverses multiple overlay
nodes with each link having an RTT of 100 msec and ex-
periencing frequent losses (pq.y = 4%). Figure 11 shows
the distribution of the additional delay incurred due to loss
recovery for each of the three packet delivery models. We
consider a path consisting of up to three overlay links. We
make three observations. First, end-to-end packet recovery
has much better delay characteristics than hop-by-hop de-
lay characteristics. Second, the additional delay incurred by
adding new OverQoS nodes along a path is limited. Third,
the additional delay is also dependent on the loss rate. The
loss-rate dictates how frequently the loss recovery process
is being invoked.

6.5 Fairnessand Stability

The N-TCP pipe abstraction is built using MulTCP which
inherently is TCP-friendly in the aggregate with both cross
traffic and other OverQoS traffic. Figure 12 illustrates this
fact using a real-world experiment on a link between a uni-
versity node and NBG, a node behind an access network.
Three OverQoS bundles (with N=2, N=4,N=8) compete
on this shared bottleneck under two different scenarios:
(a) no cross-traffic, and (a) cross-traffic consisting of five
long lived TCPs (wget downloading content in parallel).
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Figure 12: Three independent OverQosS links compete for
bandwidth on a shared bottleneck where all CLVLs are es-
tablished between a university node and NBG, a node be-
hind an access network in Oregon. To make the graph read-
able, the value of b is averaged over every minute.

We make two observations. First, the three OverQoS bun-
dles co-exist with each other and with the background traf-
fic. Second, the ratio of throughputs of the three OverQoS
bundles is preserved across both scenarios.

7 Related Work

We classify related work into: (a) QoS architectures; (b)
overlay-based techniques; (c) loss recovery mechanisms.

QoS ar chitectures: OverQoS differs from previously pro-
posed QoS architectures because it does not require QoS
mechanisms in all routers in the network. IntServ [10]
requires each IP router to implement per-flow admission
control on the control path, and per-flow classification,
buffer management and scheduling on the data path. Simi-
larly, DiffServ [8, 24] requires edge routers to perform per-
flow or per-aggregate classification, buffer management
and scheduling, and core routers to perform per-class op-
erations.

OverQoS can leverage the service provided by the underly-
ing network to enhance its services. For instance, within a
DiffServ domain, OverQoS may use Expedited Forwarding
(or premium service [24]) and provide per-flow bandwidth
(and perhaps delay) guarantees. In addition, OverQoS can
use techniques like the one proposed in the SCORE archi-
tecture [35] to improve its scalability, by having only the
first OverQoS node on a flow’s path maintain state.

To address the scalability problems of providing end-to-
end services, several recent papers have advocated the idea
of using endpoint measurement-based admission control
(EMBAC) [11, 20, 14]. With EMBAC, an end-host mea-
sures the network characteristics of a path and accepts a
flow only if the flow’s requirements can be satisfied by the

path. However, unlike OverQosS, all EMBAC solutions as-
sume that all routers implement some mechanism to isolate
the admission-controlled traffic from the best-effort traffic.

Overlay-based Techniques: Several papers have proposed
the use of overlay-based approaches for deploying multi-
cast [12, 21] and improving routing functionality (e.g., re-
silience, as in RON [7]). These systems are motivated in
large part by the difficulty of modifying the IP layer both
in terms of deployment and in terms of system robustness.

Within the context of QoS, edge-to-edge congestion con-
trol [18], a proposal to support a limited range of band-
width services using an overlay framework, also requires
modifications at all edge routers in a domain to achieve
its functionality. Service Overlay Network [13], is a re-
cent proposal that purchases bandwidth with certain QoS
guarantees from network domains using SLAs and stitches
them to provide end-to-end QoS guarantees. Such an archi-
tecture would still rely on the underlying domains to meet
their specified QoS requirements. For streaming audio and
video, multimedia proxies offer the services of smoothing
losses [34] and selective discard/recovery of packets [37].
While OverQoS can leverage many of these techniques,
two issues differentiate these works from OverQoS: (a)
OverQoS can apply the same QoS enhancements within
the network as opposed to end-to-end; (b) streaming media
flows in OverQoS can be shaped as part of a larger aggre-
gate as opposed to being treated as separate flows.

Loss Recovery: FEC and ARQ based approaches have
been investigated in the context of packet audio, video and
Internet telephony [9]. Since the FEC constraints are dif-
ferent in these applications (recovering a fraction of pack-
ets may be sufficient), we may not be able to apply these
results directly to our setting. However, classical coding
mechanisms used in wireless networks can potentially be
applied to our problem [22, 31, 38].

8 Conclusions

In this paper, we show that it is possible to use overlay net-
works to enhance Internet QoS without any support from
the underlying IP network. Using two real-world applica-
tions and experiments over a wide-area testbed we demon-
strate three such QoS enhancements: (a) smoothing losses;
(b) prioritization of packets within an aggregate; (c) sta-
tistical loss and bandwidth guarantees. OverQosS is able to
achieve all these enhancements with little (i.e.,5%) or no
extra bandwidth overhead.

While our results suggest that OverQoS can be a viable ar-
chitecture to enhance the Internet QoS, more remains to be
done. Our current solution assumes that the flows’ paths
at the OverQoS level are predetermined. A natural exten-
sion would be to combine admission control and path se-
lection, e.g., to have the entry OverQoS node compute the



“best” path that satisfies a flow’s requirements at the admis-
sion time. One possibility would be to use RON [32] to find
paths with better performance characteristics and to recover
from network failures. Another interesting problem would
be to determine the “optimal” placement of the OverQoS
nodes in the network. We intend to address these issues as
part of future work.
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