
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

Shenango: Achieving High CPU Efficiency for
Latency-sensitive Datacenter Workloads

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay,
and Hari Balakrishnan, MIT CSAIL

https://www.usenix.org/conference/nsdi19/presentation/ousterhout

Shenango: Achieving High CPU Efficiency for Latency-sensitive Datacenter Workloads
Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, Hari Balakrishnan

MIT CSAIL

Abstract

Datacenter applications demand microsecond-scale tail
latencies and high request rates from operating systems,
and most applications handle loads that have high
variance over multiple timescales. Achieving these goals
in a CPU-efficient way is an open problem. Because
of the high overheads of today’s kernels, the best avail-
able solution to achieve microsecond-scale latencies is
kernel-bypass networking, which dedicates CPU cores to
applications for spin-polling the network card. But this
approach wastes CPU: even at modest average loads, one
must dedicate enough cores for the peak expected load.

Shenango achieves comparable latencies but at far
greater CPU efficiency. It reallocates cores across appli-
cations at very fine granularity—every 5 µs—enabling
cycles unused by latency-sensitive applications to be
used productively by batch processing applications. It
achieves such fast reallocation rates with (1) an efficient
algorithm that detects when applications would benefit
from more cores, and (2) a privileged component called
the IOKernel that runs on a dedicated core, steering
packets from the NIC and orchestrating core realloca-
tions. When handling latency-sensitive applications,
such as memcached, we found that Shenango achieves
tail latency and throughput comparable to ZygOS, a
state-of-the-art, kernel-bypass network stack, but can
linearly trade latency-sensitive application throughput
for batch processing application throughput, vastly
increasing CPU efficiency.

1 Introduction
In many datacenter applications, responding to a sin-
gle user request requires responses from thousands
of software services. To deliver fast responses to
users, it is necessary to support high request rates
and microsecond-scale tail latencies (e.g., 99.9th

percentile) [10, 24, 28, 56, 67]. This is particularly
important for requests with service times of only a
couple of microseconds (e.g., memcached [43] or
RAMCloud [57]). Networking hardware has risen to the
occasion; high-speed networks today provide round-trip
times (RTTs) on the order of a few µs [54, 55]. However,
when applications run atop current operating systems
and network stacks, latencies are in the milliseconds.

At the same time, as Moore’s law slows and network
rates rise [26], CPU efficiency becomes paramount. In
large-scale datacenters, even small improvements in

CPU efficiency (the fraction of CPU cycles spent per-
forming useful work) can save millions of dollars [72].
As a result, datacenter operators commonly fill any
cores left unused by latency-sensitive tasks with batch-
processing applications so they can keep CPU utilization
high as load varies over time [16]. For example, Mi-
crosoft Bing colocates latency-sensitive and batch jobs
on over 90,000 servers [34], and the median machine in
a Google compute cluster runs eight applications [76].

Unfortunately, existing systems do a poor job of
achieving high CPU efficiency when they are also re-
quired to maintain microsecond-scale tail latency. Linux
can only support microsecond latency when CPU utiliza-
tion is kept low, leaving enough idle cores available to
quickly handle incoming requests [41, 43, 76]. Alterna-
tively, kernel-bypass network stacks such as ZygOS are
able to support microsecond latency at higher throughput
by circumventing the kernel scheduler [2, 18, 50, 57, 59,
61]. However, these systems still waste significant CPU
cycles; instead of interrupts, they rely on spin-polling the
network interface card (NIC) to detect packet arrivals, so
the CPU is always in use even when there are no packets
to process. Moreover, they lack mechanisms to quickly
reallocate cores across applications, so they must be
provisioned with enough cores to handle peak load.

This tension between low tail latency and high CPU
efficiency is exacerbated by the bursty arrival patterns
of today’s datacenter workloads. Offered load varies
not only over long timescales of minutes to hours, but
also over timescales as short as a few microseconds.
For example, micro bursts in Google’s Gmail servers
cause sudden 50% increases in CPU usage [12], and,
in Microsoft’s Bing service, 15 threads can become
runnable in just 5 µs [34]. This variability requires that
servers leave extra cores idle at all times so that they can
keep tail latency low during bursts [16, 34, 41].

Why do today’s systems force us to waste cores to
maintain microsecond-scale latency? A recent paper
from Google argues that poor tail latency and efficiency
are the result of system software that has been tuned
for millisecond-scale I/O (e.g., disks) [15]. Indeed,
today’s schedulers only make thread balancing and core
allocation decisions at coarse granularities (every four
milliseconds for Linux and 50–100 milliseconds for
Arachne [63] and IX [62]), preventing quick reactions to
load imbalances.

This paper presents Shenango, a system that focuses

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 361

on achieving three goals: (1) microsecond-scale end-
to-end tail latencies and high throughput for datacenter
applications; (2) CPU-efficient packing of applications
on multi-core machines; and (3) high application de-
veloper productivity, thanks to synchronous I/O and
standard programming abstractions such as lightweight
threads and blocking TCP network sockets.

To achieve its goals, Shenango solves the hard prob-
lem of reallocating cores across applications at very fine
time scales; it reallocates cores every 5 microseconds,
orders of magnitude faster than any system we are aware
of. Shenango proposes two key ideas. First, Shenango
introduces an efficient algorithm that accurately deter-
mines when applications would benefit from additional
cores based on runnable threads and incoming packets.
Second, Shenango dedicates a single busy-spinning
core per machine to a centralized software entity called
the IOKernel, which steers packets to applications
and allocates cores across them. Applications run in
user-level runtimes, which provide efficient, high-level
programming abstractions and communicate with the
IOKernel to facilitate core allocations.

Our implementation of Shenango uses existing
Linux facilities, and we have made it available at
https://github.com/shenango. We found that
Shenango achieves similar throughput and latency to
ZygOS [61], a state-of-the-art kernel-bypass network
stack, but with much higher CPU efficiency. For ex-
ample, Shenango can achieve over five million requests
per second of memcached throughput while maintaining
99.9th percentile latency below 100 µs (one million
more than ZygOS). However, unlike ZygOS, Shenango
can linearly trade memcached throughput for batch
application throughput when request rates are lower
than peak load. To our knowledge, Shenango is the first
system that can both multiplex cores and maintain low
tail latency during microsecond-scale bursts in load.
For example, Shenango’s core allocator reacts quickly
enough to keep 99.9th percentile latency below 125 µs
even during an extreme shift in load from one hundred
thousand to five million requests per second.

2 The Case Against Slow Core Allocators
In this section, we explain why millisecond-scale core
allocators are unable to maintain high CPU efficiency
when handling microsecond-scale requests. We define
CPU efficiency as the fraction of cycles spent doing
application-level work, as opposed to busy-spinning,
context switching, packet processing, or other systems
software overhead.

Modern datacenter applications experience re-
quest rate and service time variability over multiple

1
 c

o
re

2

3
4

5 6 7 8

0%

25%

50%

75%

100%

0.0 0.2 0.4 0.6

Throughput (million requests/s)

E
ff

ic
ie

n
c
y

Shenango, 5 μs interval

Simulated upper bound, 1 ms interval

Figure 1: With 5 µs intervals between core reallocations, a
Shenango runtime achieves higher CPU efficiency than an
optimal simulation of a 1 ms core allocator.

timescales [16]. To provide low latency in the face of
these fluctuations, most kernel bypass network stacks,
including ZygOS [61], statically provision cores for
peak load, wasting significant cycles on busy polling.
Recently, efforts such as IX [62] and Arachne [63]
introduced user-level core allocators that adjust core
allocations at 50–100 millisecond intervals. Similarly,
Linux rebalances tasks across cores primarily in re-
sponse to millisecond-scale timer ticks. Unfortunately,
all of these systems adjust cores too slowly to handle
microsecond-scale requests efficiently.

To show why, we built a simulator that determines
a conservative upper-bound on the CPU efficiency of
a core allocator that adjusts cores at one millisecond
intervals. The simulator models an M/M/n/FCFS
queuing system and determines through trial and error
the minimum number of cores needed to maintain a tail
latency limit for a given level of offered load. We assume
a Poisson arrival process (empirically shown to be rep-
resentative of Google’s datacenters [53]), exponentially
distributed service times with a mean of 10 µs, and a
latency limit of 100 µs at the 99.9th percentile. To elim-
inate any time dependence on past load, we also assume
that the arrival queue starts out empty at the beginning
of each one millisecond interval and that all pending
requests can be processed immediately at the end of each
millisecond interval. Together, these assumptions allow
us to calculate the best case CPU efficiency regardless of
the core allocation algorithm used.

Figure 1 shows the relationship between offered load
and CPU efficiency (cycles used divided by cycles allo-
cated) for our simulation. It also shows the efficiency of a
Shenango runtime running the same workload locally by
spawning a thread to perform synthetic work for the du-
ration of each request. For the simulated results, we label
each line segment with the number of cores assigned by
the simulator; the sawtooth pattern occurs because it is
only possible to assign an integer number of cores. Even
with zero network or systems software overhead, mostly
idle cores must be reserved to absorb bursts in load, re-
sulting in a loss in CPU efficiency. This loss is especially

362 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/shenango

severe between one and four cores, and as load varies over
time, applications are likely to spend a significant amount
of time in this low-efficiency region. The ideal system
would spin up a core for exactly the duration of each re-
quest and achieve perfect efficiency, as application-level
work would correspond one-to-one with CPU cycles.
Shenango comes close to this ideal, yielding significant
efficiency improvements over the theoretical upper
bound for a slow allocator, despite incurring real-world
overheads for context switching, synchronization, etc.

On the other hand, a slow core allocator is likely
to perform worse than its theoretical upper bound in
practice. First, CPU efficiency would be even lower
if there were more service time variability or tighter
tail-latency requirements. Second, if the average request
rate were to change during the adjustment interval,
latency would spike until more cores could be added; in
Arachne, load changes result in latency spikes lasting
a few hundred milliseconds (§7.2) and in IX they last
1-2 seconds [62]. Finally, accurately predicting the
relationship between number of cores and performance
over millisecond intervals is extremely difficult; both IX
and Arachne rely on load estimation parameters that may
need to be hand tuned for different applications [62, 63].
If the estimate is too conservative, latency will suffer,
and, if it is too liberal, unnecessary cores will be wasted.
We now discuss how Shenango’s fast core allocation rate
allows it to overcome these problems.

3 Challenges and Approach
Shenango’s goal is to optimize CPU efficiency by
granting each application as few cores as possible while
avoiding a condition we call compute congestion, in
which failing to grant an additional core to an application
would cause work to be delayed by more than a few
microseconds. This objective frees up underused cores
for use by other applications, while still keeping tail
latency in check.

Modern services often experience very high request
rates (millions of packets per second on a single server),
and core allocation overheads make it infeasible to scale
to per-request core reallocations. Instead, Shenango
closely approximates this ideal, detecting load changes
every five microseconds and adjusting core allocations
over 60,000 times per second. Such a short adjustment
interval requires new approaches to estimating load. We
now discuss these challenges in more detail.

Core allocations impose overhead. The speed at
which cores can be reallocated is ultimately limited
by reallocation overheads: determining that a core
should be reallocated, instructing an application to

yield a core, etc. Existing systems impose too much
overhead for microsecond-scale core reallocations to be
practical: Arachne requires 29 microseconds of latency
to reallocate a core [63], and IX requires hundreds of
microseconds because it must update NIC rules for
steering packets to cores [62].
Estimating required cores is difficult. Previous sys-
tems have used application-level metrics such as latency,
throughput, or core utilization to estimate core require-
ments over long time scales [22, 34, 48, 63]. However,
these metrics cannot be applied over microsecond-scale
intervals. Instead, Shenango aims to estimate instanta-
neous load, but this is non-trivial. While requests arriving
over the network provide one source of load, applications
themselves can independently spawn threads.

3.1 Shenango’s Approach

Shenango addresses these challenges with two key
ideas. First, Shenango considers both thread and packet
queuing delays as signals of compute congestion, and it
introduces an efficient congestion detection algorithm
that leverages these signals to decide if an application
would benefit from more cores. This algorithm requires
fine-grained, high-frequency visibility into each appli-
cation’s thread and packet queues. Thus, Shenango’s
second key idea is to dedicate a single, busy-spinning
core to a centralized software entity called the IOKernel
(§4). The IOKernel process runs with root privileges,
serving as an intermediary between applications and NIC
hardware queues. By busy-spinning, the IOKernel can
examine thread and packet queues at microsecond-scale
to orchestrate core allocations. Moreover, it can provide
low-latency access to networking and enable steering of
packets to cores in software, allowing packet steering
rules to be quickly reconfigured when cores are reallo-
cated. The result is that core reallocations complete in
only 5.9 µs and require less than two microseconds of
IOKernel compute time to orchestrate. These overheads
support a core allocation rate that is fast enough to
both adapt to shifts in load and quickly correct any
mispredictions in our congestion detection algorithm.

Application logic runs in per-application runtimes
(§5), which communicate with the IOKernel via shared
memory (Figure 2). Each runtime is untrusted and
is responsible for providing useful programming
abstractions, including threads, mutexes, condition
variables, and network sockets. Applications link with
the Shenango runtime as a library, allowing kernel-like
functions to run within their address spaces.

At start-up, the runtime creates multiple kernel
threads (i.e., pthreads), each with a local runqueue, up
to the maximum number of cores the runtime may use.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 363

IOKernel	

Kernel	

NIC	queues	

runtime	
library	

App	1	

packet	
queues	

idle	core	active	
core	 App	2	

app	
thread	

work	stealing	App	3	

a	 c	b	

Figure 2: Shenango architecture. (a) User applications run as separate processes and link with our kernel-bypass runtime. (b) The
IOKernel runs on a dedicated core, forwarding packets and allocating cores to runtimes. (c) The runtime schedules lightweight
application threads on each core and uses work stealing to balance load.

Application logic runs in lightweight user-level threads
that are placed into these queues; work is balanced
across cores via work stealing. We refer to each per-core
kernel thread created by the runtime as a kthread and to
the user-level threads as uthreads. Shenango is designed
to coexist inside an unmodified Linux environment; the
IOKernel can be configured to manage a subset of cores
while the Linux scheduler manages others.

4 IOKernel
The IOKernel runs on a dedicated core and performs two
main functions:

1. At any given time, it decides how many cores to
allocate to each application (§4.1.1) and which
cores to allocate to each application (§4.1.2).

2. It handles all network I/O, bypassing the kernel. On
the receive path, it directly polls the NIC receive
queue and places each incoming packet onto a
shared memory queue for one of the application’s
cores. On the transmission path, it polls each run-
time’s packet egress queues and forwards packets
to the NIC (§4.2).

4.1 Core Allocation

The IOKernel must make core allocation decisions
quickly because any time it spends on core allocations
cannot be spent forwarding packets, thereby decreasing
throughput. For simplicity, the IOKernel decouples
its two decisions; in most cases, it first decides if an
application should be granted an additional core, and
then decides which core to grant.

4.1.1 Number of cores per application

Each application’s runtime is provisioned with a number
of guaranteed cores and a number of burstable cores.
A runtime is always entitled to use its guaranteed cores
without risk of preemption (oversubscription is not
allowed), but it may use fewer (even zero) cores if it

does not have enough work to occupy them. When extra
cores are available, the IOKernel may allocate them as
burstable cores, allowing busy runtimes to temporarily
exceed their guaranteed core limit.

When deciding how many cores to grant a runtime,
the IOKernel’s objective is to minimize the number of
cores allocated to each runtime, while still avoiding
compute congestion (§3). To determine when a runtime
has more cores than necessary, the IOKernel relies on
runtime kthreads to voluntarily yield cores when they
are unneeded. When a kthread cannot find any work to
do, meaning its local runqueue is empty and it did not
find stealable work from other active kthreads, it cedes
its core and notifies the IOKernel (we refer to this as
parking). The IOKernel may also preempt burstable
cores at any time, forcing them to park immediately.

The IOKernel leverages its unique vantage point to
detect incipient compute congestion by monitoring the
queue occupancies of active kthreads. When a packet
arrives for a runtime that has no allocated cores, the IOK-
ernel immediately grants it a core. To monitor active run-
times for congestion, the IOKernel invokes the conges-
tion detection algorithm at 5 µs intervals (Algorithm 1).

The congestion detection algorithm determines
whether a runtime is overloaded or not based on two
sources of load: queued threads and queued ingress pack-
ets. If any item is found to be present in a queue for two
consecutive runs of the detection algorithm, it indicates
that a packet or thread queued for at least 5 µs. Because
queued packets or threads represent work that could
be handled in parallel on another core, the runtime is
deemed to be “congested,” and the IOKernel grants it one
additional core. We found that the duration of queuing is
a more robust signal than the length of a queue, because
using queue length requires carefully tuning a threshold
parameter for different durations of requests [63, 74].

Implementing the queues as ring buffers enables a

364 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1 Congestion Detection Algorithm

1: for each application app do
2: for each active kthread k of app do
3: runq← k’s runqueue
4: prev runq← k’s runq last iteration
5: inq← k’s ingress packet queue
6: prev inq← k’s inq last iteration
7: if runq contains threads in prev runq or
8: inq contains packets in prev inq then
9: try to allocate a core to app

10: break . go to next app in outer loop

simple and efficient detection mechanism. Detecting
that an item is present in a queue for two consecutive
intervals is simply a matter of comparing the current
head pointer with the tail pointer from the previous
iteration. Runtimes expose this state to the IOKernel in
a single cache line of shared memory per kthread.

Intuitively, core allocation is capable of oscillatory
behavior, potentially adding and parking a core every
iteration. This is by design because slower adjustments
would either sacrifice tail latency or prevent us from mul-
tiplexing cores over short timescales. Indeed, modern
CPUs are capable of efficient enough context switching;
Process Context Identifiers (PCIDs) allow page tables
to be swapped without flushing the TLB. Linux takes
about 600 nanoseconds to switch between processes,
so it is fast enough to handle the core reallocation
rates produced by the IOKernel. In §7.3 we evaluate
the impact of different core allocation intervals on tail
latency and CPU efficiency.

4.1.2 Which cores for each application

When deciding which core to grant to an application, the
IOKernel considers three factors:

1. Hyper-threading efficiency. Intel’s HyperThreads
enable two hardware threads to run on the same
physical core. These threads share processor re-
sources such as the L1 and L2 caches and execu-
tion units, but are exposed as two separate logical
cores [51]. If hyper-threads from the same appli-
cation run on the same physical core, they benefit
from cache locality; if hyper-threads from different
applications share the same physical core, they can
contend for cache space and degrade each others’
performance. Thus, the IOKernel favors granting
hyper-threads on the same physical core to the same
application.

2. Cache locality. If an application’s state is already
present in the L1/L2 cache of a core it is newly

Algorithm 2 Core Selection Algorithm

1: function CANBEALLOCATED(core)
2: if core is idle then return True
3: app← the app currently using core
4: if n idle cores is 0 and app is bursting then
5: return True
6: return False
7:
8: function SELECTCORE(app)
9: for each active core c of app do

10: chyper← the hyper-thread pair core of c
11: if CANBEALLOCATED(chyper) then
12: return chyper

13: crecent← core most recently yielded by app
14: if CANBEALLOCATED(crecent) then
15: return crecent

16: if n idle cores >0 then return any idle core
17: app bursting← random bursting app
18: return any core in use by app bursting

granted, it can avoid many time-consuming cache
misses. Because hyperthreads share the same cache
resources, granting an application a hyper-thread
pair of an already-running core will yield good
cache locality. In addition, an application may expe-
rience cache locality benefits by running on a core
that it ran on recently.1 Thus, the IOKernel tracks
current and past core allocations for runtimes.

3. Latency. Preempting a core and waiting for it to be-
come available takes time, and wastes cycles that
could be spent doing useful work. Thus, the IOKer-
nel always grants an idle core instead of preempting
a busy core, if an idle core exists.

The IOKernel’s core selection algorithm (Algorithm 2)
considers the three factors described above. A core is
only eligible for allocation (function CANBEALLO-
CATED) if it is idle (line 2), or if there are no idle cores
and the application using core is bursting (using more
than its guaranteed number of cores) (line 4). Amongst
the eligible cores, the selection algorithm SELECTCORE
first tries to allocate the hyper-thread pair of a core the
application is currently using (lines 9–12). Next, it tries
to allocate the core that this application most recently
used, but is no longer using (lines 13–15). Finally, the
algorithm chooses any idle core if one exists, or a random
core from a bursting application.

1This benefit is ephemeral; a core with a clock frequency of 2.2 GHz
can completely overwrite a 3 MB L2 cache in as little as 60 µs.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 365

Once the IOKernel has chosen a core to grant to an
application, it must also select one of its parked kthreads
to wake up and run on that core. For cache locality, it
first attempts to pick one that recently ran on that core.
If such a kthread is not available, the IOKernel selects
the kthread that has been parked the longest, leaving
other kthreads parked in case a core they ran on recently
becomes available.

The runtime for SELECTCORE(APP) is linear in the
number of active cores for APP (it checks whether each
active core has an available hyper-thread). The conges-
tion detection algorithm may invoke SELECTCORE up
to once per active application in one pass, and the sum
of active cores across active applications never exceeds
the number of cores in the system. Thus the total cost
of invoking the detection algorithm is linear in the total
number of cores.

4.2 Dataplane

The IOKernel busy loops, continuously polling the in-
coming NIC packet queue and the outgoing application
packet queues.

Packet steering. Because the IOKernel tracks which
cores belong to each runtime, it can deliver incoming
packets directly to a core running the appropriate run-
time. In Shenango, each runtime is configured with its
own IP and MAC address. When a new packet arrives,
the IOKernel identifies its runtime by looking up the
MAC address in a hash table. The IOKernel then chooses
a core within that runtime using an RSS hash [4], and
enqueues the packet to that core’s ingress packet queue.
Shenango may occasionally reorder packets (e.g., when
the number of cores allocated to a runtime changes), but
we found that packets in the same flow typically arrive
in the same runtime ingress packet queue over short time
intervals (§7.3). Our system could be extended to further
optimize packet steering through techniques like Intel’s
Flow Director [8] or FlexNIC [42].

Polling transmission queues. Polling many egress
queues in order to find packets to transmit can incur
high CPU overhead, particularly in systems with many
queues [68]. Because the IOKernel tracks which
kthreads are active, it is able to only poll the outgoing
runtime packet queues that correspond to active kthreads.
This allows the CPU overhead of polling egress queues
to scale with the number of cores in the system.

5 Runtime
Shenango’s runtime is optimized for programmability,
providing high-level abstractions like blocking TCP net-
work sockets and lightweight threads. Our design scales

to thousands of uthreads, each capable of performing
arbitrary computation interspersed with synchronous I/O
operations. By contrast, many previous kernel-bypass
network stacks trade functionality for performance,
forcing developers to use restrictive, event-driven
programming models with APIs that differ significantly
from Berkeley Sockets [2, 18, 40, 61].

Similar to a library OS [37, 60], our runtime is linked
within each application’s address space. After the
runtime is initialized, applications should only interact
with the Linux Kernel to allocate memory; other system
calls remain available, but we discourage applications
from performing any blocking kernel operations, as
this could reduce CPU utilization. Instead, the runtime
provides kernel-bypass alternatives to these system
calls (in contrast to scheduler activations [11], which
activates new threads to recover lost concurrency). As
an additional benefit, memory and CPU usage, including
for packet processing, can be perfectly accounted to each
application because the kernel no longer performs these
requests on their behalf.

Scheduling. The runtime performs scheduling within
an application across the cores that are dynamically
allocated to it by the IOKernel. During initialization,
the runtime registers its kthreads (enough to handle
the maximum provisioned number of cores) with the
IOKernel and establishes a shared memory region for
network packet queues. Each time the IOKernel assigns
a core, it wakes one of the runtime’s kthreads and binds
it to that specific core.

Our runtime is structured around per-kthread run-
queues and work stealing, similar to Go [6] and in
contrast with Arachne’s work sharing model [63].
Despite embracing this more traditional design, we
found that it was possible to make our uthread handling
extremely efficient. For example, because only the local
kthread can append to its runqueue, uthread wakeups
can be performed without locking. Inspired by ZygOS,
we perform fine-grained work stealing of uthreads to
reduce tail latency, which is particularly beneficial for
workloads that have service time variability [61].

Our runtime also employs run-to-completion, allow-
ing uthreads to run uninterrupted until they voluntarily
yield, in most cases. This policy further reduces tail
latency with light-tailed request patterns.2 When a
uthread yields, any necessary register state is saved on
the stack, allowing execution to resume later. When
the yield is cooperative, we can save less register state

2Preemption within an application, as in Shinjuku [38], could
reduce tail latency for request patterns with high dispersion or a heavy
tail; we leave this to future work.

366 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

because function call boundaries allow clobbering of
some general purpose registers as well as all vector and
floating point state [49]. However, any uthread may be
preempted if the IOKernel reclaims a core; in this case
all register state must be saved.

To find the next uthread to run after a yield, the
scheduler first checks the local runqueue; if it is empty
and there are no incoming packets or expired timers to
process, it engages in work stealing. It first checks the
core’s hyper-thread sibling to exploit cache locality.
If that fails, the scheduler tries to steal from a random
kthread. Finally, the scheduler iterates through all
active kthreads. It repeats these steps for a couple of
microseconds, and if all attempts fail, the scheduler
parks the kthread, yielding its core back to the IOKernel.

Networking. Our runtime is responsible for providing
all networking functionality to the application, including
UDP and TCP protocol handling. After a uthread yields
or whenever the local runqueue is empty, each kthread
checks its ingress packet queue for new packets to handle.
Unlike previous systems, kthreads can also steal packets
from remote ingress packet queues. This contrasts with
ZygOS, which can steal application-level work above
the TCP socket layer but must maintain flow consistent
hashing of packets. Thus this stealing, along with the
packet steering adjustments made by the IOKernel, can
cause packet reordering over short timescales.

A variety of efficient techniques have been proposed
to resequence packets [29, 30, 33]. Where ordering is
required, our runtime provides a similar low overhead
mechanism to reassemble the packet sequence in the
transport layer. This resequencing involves acquiring a
per-socket lock, but because packets from the same flow
typically arrive at the same core over short time scales,
cache locality is preserved and the overhead of acquiring
the lock is small.

On the other hand, we found that there were signifi-
cant advantages to relaxing ordering requirements and
violating flow consistent hashing. ZygOS must send and
receive packets from a given flow on the same core, so
it relies on expensive IPIs to ensure timely processing
of pending ingress packets and to ensure egress handling
happens on the same core. By contrast, Shenango’s
approach enables more fine-grained load balancing of
network flow processing, yielding better performance
with imbalanced workloads (§7.3).

An earlier version of the runtime attempted to support
zero-copy networking. However, we found this approach
had serious drawbacks. First, it required API changes,
breaking compatibility with Berkeley Sockets. Second,
we were surprised to find it had a negative impact on

performance. Upon further investigation, we discovered
that our IOKernel’s throughput was sensitive to the
amount of resident buffering because DDIO (an Intel
technology that pushes packet payloads directly into the
LLC) places limits on the maximum number of cache
lines that can be occupied by packet data. When that
limit is exceeded, packet data is pushed to RAM, greatly
increasing access latency. By copying payloads, we
can encourage DDIO to reuse the same buffers, thus
staying within its cache occupancy threshold. This bears
similarity to the “leaky DMA” issue [70].

Because an application could potentially corrupt its
runtime network stack, we assume security validation
(e.g., bandwidth capping and network virtualization) will
be efficiently handled out-of-band, in exactly the same
manner as for virtual machine guest kernels [23, 27].

6 Implementation
Shenango’s implementation consists of the IOKernel
(§6.1), which runs as a separate, privileged process, and
the runtime (§6.2), which users link with their appli-
cations. Shenango is implemented in C and includes
bindings for C++ and Rust. The IOKernel is imple-
mented in 2,244 LOC and the runtime is implemented
in 6,155 LOC. Both components depend on a 4,762
LOC collection of custom library routines. The imple-
mentation currently supports 64-bit x86, and adapting
it to other platforms would not require many changes.
The IOKernel uses Intel Data Plane Development Kit
(DPDK) [2], version 18.11, for fast access to NIC queues
from user space. Our entire system runs in an unmodified
Linux environment.

6.1 IOKernel Implementation

Shenango relies on several Linux kernel mechanisms to
pin threads to cores and for communication between the
IOKernel and runtimes. The IOKernel passes data via
System-V shared memory segments that are mapped into
each runtime. The runtime sets up a series of descriptor
ring queues (inspired by Barrelfish’s implementation
of lightweight RPC [17]), including ingress packet
queues, egress packet queues, and separate egress
command queues (to prevent head-of-line blocking).
It also designates a portion of the mapped-memory for
outgoing network buffers. We currently place all ingress
packet buffers in a single, read-only region shared with
all runtimes. In the future, we plan to maintain separate
buffers, using NIC HW filtering to segregate packets.

To assign a runtime kthread to a specific core, the
IOKernel uses sched setaffinity. The IOKernel
maintains a shared eventfd file descriptor with each
kthread. When a kthread cannot find more uthreads to

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 367

run, it notifies the IOKernel via a command queue mes-
sage that it is parking and then parks itself by performing
a blocking read on its eventfd. To unpark a kthread,
the IOKernel simply writes a value into the eventfd.
To preempt runtime kthreads when it needs to reassign
a core, the IOKernel directs a SIGUSR1 signal to the
intended kthread using the tgkill system call. This
prompts the kthread to park itself. A malicious kthread
could refuse to park after a signal. While we have yet
to implement mitigation strategies, the IOKernel could
wait a few microseconds and then migrate an offending
kthread to a shared core that is multiplexed by the Linux
scheduler, so that other runtimes are not impacted.

6.2 Runtime Implementation

Our runtime includes support for lightweight threads,
mutexes, condition variables, read-copy-update (RCU),
high resolution timers, and synchronous TCP and UDP
sockets. Like the IOKernel, the runtime makes use of
a limited set of existing Linux primitives; it allocates
memory with mmap, creates kthreads through calls to
pthread create(), and interacts with the IOKernel
through shared memory, eventfd file descriptors, and
signals. We implemented TCP from scratch according to
the RFC [36]. Our TCP stack is interoperable with those
of Linux and ZygOS and includes flow control and fast
retransmit but omits congestion control.

To improve memory allocation performance, the
runtime makes use of per-kthread caches [21], particu-
larly when allocating thread stacks and network packet
buffers. The runtime provides an RCU subsystem to sup-
port efficient access to read-mostly data structures [52].
The runtime detects a quiescent period after each kthread
has rescheduled, allowing it to free any stale RCU
objects. Internally, RCU is used for the ARP table and
for the TCP and UDP socket tables.

Shenango provides bindings for both C++ and Rust
with idiomatic interfaces (e.g., like std::thread)
and support for lambdas and closures respectively. Most
of the bindings are implemented as a thin wrapper around
the underlying C library. However, our uthread support
takes advantage of a unique optimization. We extended
Shenango’s spawn function to reserve space at the base
of each uthread’s stack for the trampoline data (captures,
space for a return value, etc.), avoiding extra allocations.
Preemption. Upon receipt of a SIGUSR1 sent by the
IOKernel, the Linux kernel saves the CPU state into
a trapframe on the thread stack and invokes the signal
handler installed by the runtime. The signal handler
immediately transfers to the scheduler context and parks,
placing the preempted uthread back into the runqueue.
The running uthread could eventually be stolen by

another kthread or resume on the same kthread if it is
re-granted a core.

During certain critical sections of runtime execution,
preemption signals are deferred by incrementing a
thread-local counter. These sections include the entire
scheduler context, RCU and spinlock critical sections,
and code regions that access per-kthread state. Support-
ing preemption of active uthreads poses some challenges.
Pointers to thread-local storage (TLS) may become stale
if a thread context starts executing on a different kthread.
Unfortunately, gcc does not provide a way to disable
caching these addresses. To our knowledge, Microsoft’s
C++ compiler is the only compiler to support this. As
a workaround, we use our own TLS mechanisms for
per-kthread data structures that are accessed outside
of the scheduler context, and we currently require that
applications disable preemption during accesses to
thread-local variables (including glibc’s malloc and
free). We are considering extending the runtime to
support TLS for each uthread, alleviating this burden
on developers. However, the TLS data section would
have to be kept small to prevent higher initialization
overheads when spawning uthreads.

7 Evaluation
In evaluating Shenango, we aim to answer the following
questions:

1. How do latency and CPU efficiency compare
for Shenango and other systems across different
workloads and service-time distributions? (§7.1)

2. How well can Shenango respond to sudden bursts
in load? (§7.2)

3. What is the contribution of the individual mecha-
nisms in Shenango to its observed performance?
(§7.3)

Experimental setup. We used one dual-socket server
with 12-core Intel Xeon E5-2650v4 CPUs running
at 2.20 GHz, 64 GB of RAM, and a 10 Gbits/s Intel
82599ES NIC. We enabled hyper-threads and evaluated
only the first socket, steering NIC interrupts, memory
allocations, and threads. To reduce jitter, we disabled
TurboBoost, C-states, and CPU frequency scaling. We
generated load from six additional quad-core machines
connected to the server through a Mellanox SX1024
switch and Mellanox ConnectX-3 Pro NICs. We used
Ubuntu 18.04 with kernel version 4.15.0. We disabled
kernel mitigations for Meltdown for consistency with
prior results; future CPUs will support these mitigations
in hardware [9].

Systems evaluated. We compare Shenango to Arachne,
ZygOS, and Linux. Arachne is a state-of-the-art,

368 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

System Kernel-
bypass Net.

Lightweight
Threading

Balancing
Interval

Linux 7 7 4 ms
Arachne [63] 7 3 50 ms
ZygOS [61] 3 7 N/A
Shenango 3 3 5 µs

Table 1: Features of the systems we evaluated.

user-level threading system [63]. It achieves better tail
latency and CPU efficiency than Linux by introducing a
user-level core allocator that adjusts the cores assigned to
each application over millisecond timescales. However,
Arachne provides no network stack integration and ap-
plications typically rely on Linux kernel system calls for
network I/O. ZygOS is a state-of-the-art, kernel-bypass
network stack [61] that builds upon IX [18] to achieve
better tail latency, adding fine-grained load balancing of
application-level work between cores. However, it does
not support threads, instead requiring developers to adopt
a restrictive, event-driven API, and it can only run on a
fixed set of statically provisioned cores. Finally, Linux
is the most widely deployed of these systems in practice,
but its performance, as previously studied, is limited by
kernel overheads [18, 35]. Table 1 summarizes the salient
differences between Shenango and these three systems.

For Arachne, we used the latest available source
code [1] as of mid January 2019. We found that the
default load factor of 1.5, a tuning parameter for the core
allocator, yielded the best results in our experiments.
For ZygOS, we similarly used the latest available source
code [7]. We found that ZygOS was unstable with recent
kernels, so we instead used Ubuntu 16.04 with kernel
version 4.11.0.

Finally, for Linux, we used prior work [43, 45] and
invested substantial effort in finding the best possible
configuration. In many cases, the performance of Linux
was unstable, making it challenging to measure. For
example, we noticed signs of performance hysteresis,
where measurement runs converged to different values
despite identical configuration [77]. Increasing the
number of active flows resolved this issue by allowing
for more uniform RSS hashing. We ran batch tasks using
SCHED IDLE (a Linux scheduling policy intended for
very low priority background jobs), though we found
this did not improve performance much over using the
lowest normal scheduler priority (niceness 19).
Applications. We evaluate memcached (v1.5.6), a popu-
lar key-value store that is well supported by all four sys-
tems.3 We also wrote several new Shenango applications
in Rust to measure different load patterns, taking advan-

3We don’t run LRU cache maintenance/eviction and slab rebalanc-
ing for Arachne because Arachne’s memcached implementation does
not support them.

tage of language features like closures and move seman-
tics. For example, we implemented a spin-server that em-
ulates a compute-bound application by using the CPU for
a specified duration before responding to each request. In
addition, we implemented loadgen, a realistic load gen-
erator that can generate precisely-timed request patterns
for our spin-server as well as for memcached. Combined,
these two applications required 1,366 LOC. For com-
paring to other systems, we used variants of the ZygOS
and Linux spin-servers in the ZygOS repository [7] and
implemented our own spin-server for Arachne.

To support batch processing applications, we im-
plemented a pthread shim layer for Shenango that
enables it to run the entire PARSEC suite [19] without
modifications. In our experiments, we use PARSEC’s
swaptions benchmark for batch processing. It computes
prices of a portfolio using Monte Carlo simulations;
each thread computes the price of a swaption with no
synchronization or data dependencies between threads.
Finally, we ported the gdnsd (v2.4.0) [3] DNS server, to
demonstrate Shenango’s UDP support. The source code
for all of these applications is available on GitHub [5].

We used open-loop Poisson processes to model packet
arrivals [69, 77]. Our experiments measure throughput
and the 99.9th percentile tail response latency. All exper-
iments use our Rust loadgen application to generate load
over TCP, unless stated otherwise.

7.1 CPU Efficiency and Latency

In this section we evaluate the CPU efficiency and
latency of memcached, the spin-server, and gdnsd. We
use 6 client servers to generate load, enough to minimize
client-side queuing delays. Each client uses 200 persis-
tent connections (1200 total). We ramp up load gradually
and measure each offered load over several seconds, so
that bursts come only from the Poisson arrival process.

To ensure a fair comparison with ZygOS, which
cannot support more than 16 hyperthreads with our NIC,
we confine all systems to use 16 hyperthreads (8 cores) in
total. Shenango must dedicate one core (2 hyperthreads)
to running the IOKernel, so two fewer hyperthreads
are available for applications; Arachne must dedicate
one hyperthread to the core arbiter. For all but ZygOS,
we also run swaptions, filling any unused cycles with
lower-priority batch processing work. For ZygOS, we
reserve all 16 hyperthreads for the latency-sensitive
application, as required to achieve peak throughput.
Memcached. We use the USR workload from [13]:
requests follow a Poisson arrival process and consist
of 99.8% GET requests and 0.2% SET requests. For
Shenango, we limit memcached to using at most 12
hyperthreads, because this yields the best performance

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 369

0

100

200

300

400

0 2 4 6

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

Linux Arachne Shenango ZygOS

0

20

40

60

0 2 4 6

M
e

d
ia

n
 L

a
te

n
c
y
 (
μ

s
)

0

25

50

75

100

0 2 4 6

Memcached Offered Load (million requests/s)

B
a

tc
h

 O
p

s
/s

Figure 3: Shenango maintains consistently low median and
99.9% latency, comparable to those of ZygOS, while allowing
unused cycles to be used by a batch processing application.

for memcached. Figure 3 shows how 99.9th percentile
latency for memcached, median latency for memcached,
and throughput for the batch application (y-axes) change
as we increase the load offered to memcached (x-axis).
We only show data points for which achieved load is
within 0.1% of offered load.

Shenango can handle over five million requests per
second while maintaining a median response time of
37 µs and 99.9th percentile response time of 93 µs.
Despite busy polling on all 16 hyperthreads, ZygOS
maintains similar response times only up to four million
requests per second. ZygOS does scale to support higher
throughput than Shenango, though at a high latency
penalty. Shenango achieves lower throughput because
at the very low service times of memcached (< 2 µs),
the IOKernel becomes a bottleneck. We discuss options
for scaling out the IOKernel further in Section 8. For all
other systems, memcached is bottlenecked by CPU.

Similar to previous studies [18, 61], when there
is no batch work running, we achieve about 800,000
requests per second with memcached in Linux before
99th percentile latency spikes (not shown). However,
we found that Linux’s latency degrades significantly
due to the presence of batch work, especially at the
99.9th percentile. For example, at 0.4 million requests
per second, the 99.9th percentile latency without batch
work is only 83 µs compared to over 2 ms with batch
work. Arachne improves upon Linux, maintaining
99.9th percentile latency below 200 µs with batch work.
However, even without batch work, both systems suffer

significantly from their use of the Linux network stack;
kernel bypass enables both Shenango and ZygOS to
achieve much lower median latency and much higher
peak throughput for memcached.

Shenango outperforms the other systems in terms of
throughput for the batch application at all but the lowest
loads. At very low load, Linux achieves the most batch
throughput because it does not reserve any hyperthreads
for the IOKernel or the core arbiter. As the load offered
to memcached increases, Shenango’s batch throughput
decreases linearly and then plateaus once the batch task
is restricted to only the two remaining hyperthreads.
Memcached throughput still increases beyond this point,
however, because Shenango becomes more efficient near
peak load, spending fewer cycles on core reallocations
and work stealing.

In aggregate, our memcached results illustrate that
Shenango has key advantages over previous systems.
Shenango can achieve tail latencies similar to ZygOS
while at the same time sparing significantly more cycles
for batch work than all three systems, despite reserving
two hyperthreads for the IOKernel.

Spin-server. To evaluate Shenango’s ability to handle
service-time variability in the presence of a batch
processing application, we ran our spin-server with
three service-time distributions, each with a mean of
10 µs: constant, where all requests take equal time;
exponential; and bimodal, where 90% of requests take
5 µs and 10% take 55 µs.

Figure 4 shows the resulting 99.9th percentile latency
and batch throughput as we vary the load on the spin-
server. All systems fall short of the theoretical maximum
throughput achievable by an M/G/16/FCFS simulation,
due to overheads such as packet processing. Compared
to ZygOS, Shenango achieves slightly higher throughput
for the spin server, even though two out of Shenango’s
16 hyperthreads are dedicated to running the IOKernel.
Shenango’s tail latency is similar to that of ZygOS, but
because ZygOS must provision all cores for the spin
server in order to achieve peak throughput, it does not
achieve any batch throughput.

At the 99.9th percentile, Linux’s tail latency varies
drastically, at times reaching several milliseconds, even
at low load. Arachne achieves higher throughput than
Linux for both applications, demonstrating the benefit
of granting applications exclusive use of their cores.
Surprisingly, we observe that Arachne’s tail latency is
slightly higher at the lowest loads than at moderate load.
We suspect that this is due to misestimation of core
requirements. Granting too few cores for up to 50 ms at
a time can result in high latencies for many requests, par-

370 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

constant exponential bimodal

0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6

0

100

200

300

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

Linux Arachne Shenango ZygOS Theoretical M/G/16/FCFS

0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6 0.0 0.4 0.8 1.2 1.6

0

50

100

Spin Server Offered Load (million requests/s)

B
a

tc
h

 O
p

s
/s

Figure 4: Shenango maintains low 99.9% latency across a variety of service time distributions (mean of 10 µs) and linearly trades off
batch processing throughput for latency-sensitive throughput. Linux and Arachne suffer from poor latency and low throughput, while
ZygOS must dedicate all cores to the latency-sensitive spin server in order to achieve peak throughput, resulting in no batch throughput.

ticularly at low loads when there are few cores allocated
to absorb the extra load. We also found that decreasing
Arachne’s core allocation interval to 1 ms or 100 µs
yielded similar or worse performance for both the spin
server and batch application, suggesting that Arachne’s
load estimation mechanisms are not well-tuned for small
core allocation intervals. In contrast, in this experiment
Shenango reallocates cores up to 60,000 times per
second, enabling it to adjust quickly to bursts in load and
maintain much lower tail latency, while granting unused
cycles to the batch application.

DNS. We evaluate UDP performance by running gdnsd
and swaptions simultaneously for Linux and Shenango;
we did not port gdnsd to ZygOS or Arachne. Linux gdnsd
can drive up to 900,000 requests per second with 41 µs
median latency and sub-millisecond 99.9th percentile
latency before starting to drop packets. Shenango gdnsd
is capable of scaling to 5.7 million requests per second
(a 6.33× improvement) with 36 µs median latency and
73 µs 99.9th percentile latency. We omit a graph due to
space constraints.

7.2 Resilience to Bursts in Load

In this experiment, we generate TCP requests with 1 µs
of fake work, and measure the impact of sudden load
increases on tail latency. We offer a baseline load of
100,000 requests per second for one second, followed
by an instantaneous increase to an elevated rate. After an
additional second at the new rate, the load drops back to
the baseline rate. Any unused cores are allocated to batch
processing, keeping overall CPU utilization at 100%.

Figure 5 shows the 99.9th percentile tail latency and
throughput for Arachne and Shenango (computed over
10 ms windows). We exclude Linux because, under these
conditions, it has milliseconds of tail latency even at the

0

250

500

750

1000

0 5 10 15

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

Arachne Shenango

0
1
2
3
4
5

0 5 10 15

Time (s)

T
h

ro
u

g
h

p
u

t
(m

ill
io

n
 r

e
q

u
e

s
ts

/s
)

Figure 5: Under sudden changes in load, low tail latency is
only possible with a short core allocation interval.

lowest offered load, and we exclude ZygOS because it
cannot adjust core allocations. By contrast, Arachne can
eventually meet the loads offered in the experiment, up
to 1 million requests per second. However, because of its
slow core allocation speed, it can take over 500 millisec-
onds to add enough cores to adapt after a load transition,
causing it to accumulate a backlog of pending requests.
As a result, Arachne experiences milliseconds of tail
latency, even after relatively modest shifts in load. By
contrast, Shenango reacts so quickly that it incurs almost
no additional tail latency, even when handling an extreme
load shift from 100,000 to 5 million requests per second.

7.3 Microbenchmarks

We now evaluate the individual components of Shenango
with microbenchmarks.

Thread library. Shenango depends on efficient thread
scheduling to support high-level programming abstrac-
tions at low cost. Here we compare Shenango’s latency
for common threading operations to Linux pthreads and
to Go and Arachne’s optimized user space threading
implementations (Table 2). These benchmarks are

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 371

pthreads Go Arachne Shenango

Uncontended Mutex 30 24 55 37
Yield Ping Pong 593 109 79 52
Condvar Ping Pong 1,900 281 203 100
Spawn-Join 12,996 462 595 148

Table 2: Nanoseconds to perform common threading opera-
tions (fastest highlighted in green). Shenango performs best
for all but mutexes.

Shenango

DPDK

0 5 10 15

Round trip time (μs)

DPDK

IOKernel + runtime

+ wakeup

+ preemption

Figure 6: Traversing the network stack, waking a kthread, and
preempting a kthread each add only a few µs of overhead to a
packet’s RTT in Shenango.

written in C++ and configure each system to use a single
core. Shenango outperforms all three systems in all
but one benchmark because of its preallocated stacks,
atomic-free wakeups, and care to avoid saving registers
that can safely be clobbered. In Go, mutexes are slightly
faster because its compiler can inline them.

Network stack and core allocation overheads. We
evaluate the baseline latency of our network stack and the
overhead of waking and preempting cores with a simple
C/C++ UDP echo benchmark. The client is a minimal
DPDK client. On the server side, we compare a minimal
DPDK server to three variants of Shenango which are
configured so that: (1) the runtime core busy-spins, (2)
the runtime core does not busy-spin and must be reallo-
cated on every packet arrival, and (3) a batch application
fills all cores and must be preempted on every packet
arrival. Figure 6 shows that the runtime and the IOKernel
add little latency over using raw packets in DPDK. Wak-
ing sleeping kthreads and preempting running kthreads,
however, do incur some overhead, due to the use of Linux
system calls (§6.1). While we were pleasantly surprised
to find that the overhead of these Linux mechanisms is
acceptable, we believe they can be reduced in the future.

Packet load balancing. Shenango allows packet han-
dling to be performed on any core; here we evaluate this
approach. To challenge our system’s load balancing, we
replicate the central graph of Figure 4 but vary the num-
ber of client connections used. With only 24 connections,
RSS distributes flows unevenly across cores. Figure 7
shows that by allowing cores to steal packet processing
work, including TCP protocol handling, Shenango is able
to maintain good performance even with an unbalanced
workload. In contrast, ZygOS’s latency degrades signifi-
cantly because it only allows work stealing at the applica-
tion layer and performs all packet processing on the core

0

100

200

300

0.0 0.4 0.8 1.2

Spin Server Offered Load (million requests/s)

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
)

ZygOS, 24 ZygOS, 1200 Shenango, 24 Shenango, 1200

Figure 7: By work stealing packet handling, Shenango can
load balance more effectively than ZygOS and maintain almost
as good performance with 24 client connections as with 1200.

0

100

200

300

400

500

0.0 0.4 0.8 1.2

Spin Server Offered Load (million requests/s)

9
9

.9
%

 L
a

te
n

c
y
 (
μ

s
) Interval (μs) 100 50 25 5

Figure 8: Shenango’s tail latency degrades with larger core
allocation intervals.

on which a packet arrives. At the same time, the costs of
Shenango’s fine-grained work stealing remain quite low.
With 1200 connections, less than 0.07% of packets arrive
at Shenango’s ingress network stack out of order. With 24
connections, this percentage increases at moderate loads
but remains below 3%. The result is that the application
spends less than 0.5% of its cycles resequencing packets.
Core allocation interval. A major strength of Shenango
is its ability to make µs-scale adjustments to the al-
location of cores to runtimes. To illustrate the impact
of core allocation speed on Shenango’s performance,
we replicate the central graph of Figure 4 but vary the
interval between core allocations. Figure 8 demonstrates
that a short interval between adjustments is required
to maintain low tail latency. Such frequent realloca-
tions do impact CPU efficiency; the batch application
performs up to 6% fewer operations per second (of the
max possible) with a 5 µs interval than with a 25, 50,
or 100 µs interval. However, we do not think these
efficiency savings are worth the tail latency increase of at
least 150 µs. We did not use a smaller interval because,
at faster rates, latency is only marginally improved but
more cycles are wasted parking threads.

8 Discussion
We found, in practice, that the IOKernel can support
packet rates of up to 6.5 million incoming and outgoing
packets per second. This is sufficient to saturate a 10
Gbits/s NIC with 114 byte TCP packets or a 40 Gbits/s
NIC with typical Ethernet MTU-sized packets. We
note our evaluation of Shenango does not consider
multisocket, NUMA machines. One option may be to
run multiple instances of the IOKernel, one per socket.

372 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Each IOKernel instance could exchange messages
with the others, perhaps enabling coarse-grained load
balancing between sockets. Such a design would enable
our IOKernel to scale out further. We observed that
the majority of IOKernel overhead was in forwarding
packets rather than in orchestrating core allocations.
Therefore, we also plan to explore hardware offloads,
such as new NIC designs that can efficiently expose
information about queuing buildups to the IOKernel.

9 Related Work

Two-level scheduling: In two-level scheduling (first
proposed in [71]), a first-level spatial scheduler allocates
cores to applications and a second-level scheduler
handles threads on top of the allocated cores. Scheduler
activations [11] provide a kernel mechanism to enable
two-level scheduling; this work inspired recent systems
such as Tessellation [22, 47], Akaros [65], and Cal-
listo [32]. All of these systems decouple core allocation
from thread scheduling. Shenango introduces a new
approach to two-level scheduling by combining the first
scheduler level directly with the NIC.

User-level threading: Several systems have multiplexed
user space threads across one or more cores. Examples
include Capriccio [73], Lithe [58], Intel’s TBB [64],
µThreads [14], Arachne [63], and the Go runtime [6].
Shenango’s runtime borrows many techniques from
these prior works, including work stealing [20]. How-
ever, to our knowledge, no prior system is designed
to tolerate core allocations and revocations at the
granularity of µs.

Dynamic resource allocation: When deciding how
to allocate threads or cores across applications, previ-
ous systems have employed resource controllers that
monitor performance metrics, utilization, or internal
queue lengths (e.g., Tessellation [22], PerfIso [34],
Arachne [63], SEDA [74], and IX [62]). However,
because these metrics are gathered over several millisec-
onds or even seconds, they are too coarse-grained to
manage tail latency. Furthermore, using core utilization
to estimate core requirements is only possible in systems
in which cores remain allocated to applications even
while they are idle or busy-spinning [34, 63]; this
approach wastes CPU cycles.

Several scheduling optimizations have been proposed
to reduce tail latency. For example, Heracles [48] adjusts
CPU isolation mechanisms (e.g., cache partitioning),
Elfen Scheduling [75] strategically disables hyper-
threading lanes, and Tail Control [44] improves upon
work stealing. We are interested in exploring ways of
integrating these techniques with Shenango in the future.

Kernel-bypass networking: Many systems bypass
the kernel to achieve low-latency networking by using
RDMA, SR-IOV, or libraries such as DPDK [2] or
netmap [66]. Examples include MICA [46], IX [18],
Arrakis [59], mTCP [35], Sandstorm [50], FaRM [25],
HERD [39], RAMCloud [57], SoftNIC [31], Zy-
gOS [61], Shinjuku [38], and eRPC [40]. IX and eRPC
process packets in batches and may provide higher
throughput than Shenango for workloads with short,
uniform service times and many connections to balance
load across cores. ZygOS is most similar to Shenango;
it builds on IX by adding work stealing to improve load
balancing within an application. However, none of
these systems can dynamically reallocate cores across
applications at a fine granularity. Instead, they statically
partition cores across applications, or else use an external
control plane to reconfigure core assignments over large
timescales.

10 Conclusion
This paper presented Shenango, a system that can simul-
taneously maintain CPU efficiency, low tail latency, and
high network throughput on machines handling multiple
latency-sensitive and batch processing applications.
Shenango achieves these benefits through its IOKernel,
a dedicated core that integrates with networking to
drive fine-grained core allocation adjustments between
applications. The IOKernel makes use of a conges-
tion detection algorithm that can react to application
overload in µs timescales by tracking queuing backlog
information for both packets and application threads.
This design allows Shenango to significantly improve
upon previous kernel bypass network stacks by recov-
ering cycles wasted on busy spinning because of the
provisioning gap between minimum and peak load.
Finally, our per-application runtime makes these benefits
more accessible to developers by providing high-level
programming abstractions (e.g., lightweight threads and
synchronous network sockets) at low overhead.

11 Acknowledgments
We thank our shepherd KyoungSoo Park, the anony-
mous reviewers, John Ousterhout, Tom Anderson, Frans
Kaashoek, Nickolai Zeldovich, and other members of
PDOS for their useful feedback. We thank Henry Qin
for helping us evaluate Arachne. Amy Ousterhout was
supported by an NSF Fellowship and a Hertz Foundation
Fellowship. This work was funded in part by a Google
Faculty Award and by NSF Grants CNS-1407470,
CNS-1526791, and CNS-1563826.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 373

References
[1] Arachne: Towards Core-Aware Scheduling.

https://github.com/PlatformLab/

Arachne.

[2] DPDK Boosts Packet Processing, Performance,
and Throughput. http://www.intel.com/go/

dpdk.

[3] gdnsd – an authoritative-only dns server.
http://gdnsd.org/.

[4] Introduction to Receive Side Scaling.
https://docs.microsoft.com/en-us/

windows-hardware/drivers/network/

introduction-to-receive-side-scaling.

[5] Shenango. https://github.com/shenango.

[6] The Go Programming Language. https:

//golang.org/.

[7] ZygOS: Achieving Low Tail Latency
for Microsecond-scale Networked Tasks.
https://github.com/ix-project/zygos.

[8] Intel 82599 10 GbE Controller Datasheet. https:
//www.intel.com/content/dam/www/

public/us/en/documents/datasheets/

82599-10-gbe-controller-datasheet.

pdf, 2016.

[9] Intel Analysis of Speculative Execution Side
Channels. Technical report, January 2018.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[11] T. E. Anderson, B. N. Bershad, E. D. Lazowska,
and H. M. Levy. Scheduler Activations: Effective
Kernel Support for the User-Level Management of
Parallelism. TOCS, 1992.

[12] D. Ardelean, A. Diwan, and C. Erdman. Perfor-
mance Analysis of Cloud Applications. In NSDI,
2018.

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-Scale
Key-Value Store. In SIGMETRICS, 2012.

[14] S. Barghi. uThreads: Concurrent User Threads
in C++(and C). https://github.com/

samanbarghi/uThreads.

[15] L. Barroso, M. Marty, D. Patterson, and P. Ran-
ganathan. Attack of the Killer Microseconds.
Communications of the ACM, 2017.

[16] L. A. Barroso, J. Clidaras, and U. Hölzle. The
Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, 2013.

[17] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A new OS architec-
ture for scalable multicore systems. In SOSP, 2009.

[18] A. Belay, G. Prekas, M. Primorac, A. Klimovic,
S. Grossman, C. Kozyrakis, and E. Bugnion. The
IX Operating System: Combining Low Latency,
High Throughput, and Efficiency in a Protected
Dataplane. TOCS, 2017.

[19] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[20] R. D. Blumofe and C. E. Leiserson. Scheduling
Multithreaded Computations by Work Stealing.
JACM, 1999.

[21] J. Bonwick and J. Adams. Magazines and Vmem:
Extending the Slab Allocator to Many CPUs and
Arbitrary Resources. In USENIX ATC, 2001.

[22] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird,
M. Moretó, D. Chou, B. Gluzman, E. Roman, D. B.
Bartolini, N. Mor, et al. Tessellation: Refactoring
the OS around Explicit Resource Containers with
Continuous Adaptation. In DAC, 2013.

[23] M. Dalton, D. Schultz, J. Adriaens, A. Arefin,
A. Gupta, B. Fahs, D. Rubinstein, E. C. Zer-
meno, E. Rubow, J. A. Docauer, J. Alpert, J. Ai,
J. Olson, K. DeCabooter, M. de Kruijf, N. Hua,
N. Lewis, N. Kasinadhuni, R. Crepaldi, S. Krish-
nan, S. Venkata, Y. Richter, U. Naik, and A. Vahdat.
Andromeda: Performance, Isolation, and Velocity
at Scale in Cloud Network Virtualization. In NSDI,
2018.

[24] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 2013.

[25] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. In NSDI,
2014.

374 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/PlatformLab/Arachne
https://github.com/PlatformLab/Arachne
http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk
http://gdnsd.org/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://github.com/shenango
https://golang.org/
https://golang.org/
https://github.com/ix-project/zygos
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
https://github.com/samanbarghi/uThreads
https://github.com/samanbarghi/uThreads

[26] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankar-
alingam, and D. Burger. Dark Silicon and the End
of Multicore Scaling. In ISCA, 2011.

[27] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat,
V. Bhanu, A. M. Caulfield, E. S. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey,
J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye,
G. Popuri, S. Raindel, T. Sapre, M. Shaw, G. Silva,
M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and
A. G. Greenberg. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In NSDI, 2018.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Car-
reira, S. Han, R. Agarwal, S. Ratnasamy, and
S. Shenker. Network Requirements for Resource
Disaggregation. In OSDI, 2016.

[29] Y. Geng, V. Jeyakumar, A. Kabbani, and M. Al-
izadeh. JUGGLER: A Practical Reordering
Resilient Network Stack for Datacenters. In
EuroSys, 2016.

[30] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and
A. Firoozshahian. DRILL: Micro Load Balanc-
ing for Low-latency Data Center Networks. In
SIGCOMM, 2017.

[31] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and
S. Ratnasamy. SoftNIC: A Software NIC to Aug-
ment Hardware. Technical Report UCB/EECS-
2015-155, Univ. California, Berkeley, 2015.

[32] T. Harris, M. Maas, and V. J. Marathe. Callisto:
Co-Scheduling Parallel Runtime Systems. In
EuroSys, 2014.

[33] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter,
and A. Akella. Presto: Edge-based Load Balancing
for Fast Datacenter Networks. In SIGCOMM, 2015.

[34] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety,
M. Syamala, V. R. Narasayya, H. Herodotou,
P. Tomita, A. Chen, J. Zhang, and J. Wang. PerfIso:
Performance Isolation for Commercial Latency-
Sensitive Services. In USENIX ATC, 2018.

[35] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm,
D. Han, and K. Park. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems. In
NSDI, 2014.

[36] P. Jon. Transmission Control Protocol: DARPA
Internet Program Protocol Specification. Technical
report, RFC-793, DARPA, 1981.

[37] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Appli-
cation Performance and Flexibility on Exokernel
Systems. In SOSP, 1997.

[38] K. Kaffes, T. Chong, J. T. Humphries, A. Belay,
D. Mazières, and C. Kozyrakis. Shinjuku: Preemp-
tive Scheduling for µsecond-scale Tail Latency. In
NSDI, 2019.

[39] A. Kalia, M. Kaminsky, and D. Andersen. Using
RDMA Efficiently for Key-Value Services. In
SIGCOMM, 2014.

[40] A. Kalia, M. Kaminsky, and D. Andersen. Datacen-
ter RPCs can be General and Fast. In NSDI, 2019.

[41] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker,
and A. Vahdat. Chronos: Predictable Low Latency
for Data Center Applications. In SOCC, 2012.

[42] A. Kaufmann, S. Peter, N. K. Sharma, T. E. An-
derson, and A. Krishnamurthy. High Performance
Packet Processing with FlexNIC. In ASPLOS,
2016.

[43] J. Leverich and C. Kozyrakis. Reconciling
High Server Utilization and Sub-millisecond
Quality-of-Service. In EuroSys, 2014.

[44] J. Li, K. Agrawal, S. Elnikety, Y. He, I. A. Lee,
C. Lu, and K. S. McKinley. Work Stealing for
Interactive Services to Meet Target Latency. In
PPoPP, 2016.

[45] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble.
Tales of the Tail: Hardware, OS, and Application-
level Sources of Tail Latency. In SoCC, 2014.

[46] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-Memory
Key-Value Storage. In NSDI, 2014.

[47] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic,
and J. Kubiatowicz. Tessellation: Space-Time Par-
titioning in a Manycore Client OS. In HotPar, 2009.

[48] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource
Efficiency at Scale. In ISCA, 2015.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 375

[49] H. Lu, M. Matz, J. Hubicka, A. Jaeger, and
M. Mitchell. System V Application Binary Inter-
face. AMD64 Architecture Processor Supplement,
2018.

[50] I. Marinos, R. N. Watson, and M. Handley. Net-
work Stack Specialization for Performance. In
SIGCOMM, 2014.

[51] D. T. Marr, F. Binns, D. L. Hill, G. Hinton,
D. A. Koufaty, J. A. Miller, and M. Upton.
Hyper-Threading Technology Architecture and
Microarchitecture. Intel Technology Journal, 2002.

[52] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole.
RCU Usage in the Linux Kernel: One Decade
Later. Technical report, 2013.

[53] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber,
and T. F. Wenisch. Power Management of Online
Data-Intensive Services. In ISCA, 2011.

[54] Mellanox Technologies. HP and Mellanox
Benchmarking Report for Ultra Low Latency
10 and 40Gb/s Ethernet Interconnect. http:
//www.mellanox.com/related-docs/
whitepapers/HP_Mellanox_FSI%
20Benchmarking%20Report%20for%
2010%20%26%2040GbE.pdf, 2012.

[55] Mellanox Technologies. RoCE vs. iWARP Com-
petitive Analysis. http://www.mellanox.com/
related-docs/whitepapers/WP_RoCE_vs_

iWARP.pdf, 2017.

[56] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkatara-
mani. Scaling Memcache at Facebook. In NSDI,
2013.

[57] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and
S. Yang. The RAMCloud Storage System. TOCS,
2015.

[58] H. Pan, B. Hindman, and K. Asanović. Composing
Parallel Software Efficiently with Lithe. PLDI,
2010.

[59] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control
Plane. OSDI, 2014.

[60] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-
sky, and G. C. Hunt. Rethinking the Library OS
from the Top Down. In ASPLOS, 2011.

[61] G. Prekas, M. Kogias, and E. Bugnion. ZygOS:
Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In SOSP, 2017.

[62] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis,
and E. Bugnion. Energy Proportionality and
Workload Consolidation for Latency-critical
Applications. In SoCC, 2015.

[63] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.
Arachne: Core-Aware Thread Management. In
OSDI, 2018.

[64] J. Reinders. Intel Threading Building Blocks: Out-
fitting C++ for Multi-Core Processor Parallelism.
2007.

[65] B. Rhoden, K. Klues, D. Zhu, and E. Brewer.
Improving Per-Node Efficiency in the Datacenter
with New OS Abstractions. In SoCC, 2011.

[66] L. Rizzo. netmap: a novel framework for fast
packet I/O. In USENIX ATC, 2012.

[67] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosen-
blum, and J. K. Ousterhout. It’s Time for Low
Latency. In HotOS, 2011.

[68] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam,
C. Contavalli, and A. Vahdat. Carousel: Scalable
Traffic Shaping at End Hosts. In SIGCOMM, 2017.

[69] B. Schroeder, A. Wierman, and M. Harchol-Balter.
Open Versus Closed: A Cautionary Tale. In NSDI,
2006.

[70] A. Tootoonchian, A. Panda, C. Lan, M. Walls,
K. J. Argyraki, S. Ratnasamy, and S. Shenker.
ResQ: Enabling SLOs in Network Function
Virtualization. In NSDI, 2018.

[71] A. Tucker and A. Gupta. Process Control and
Scheduling Issues for Multiprogrammed Shared-
Memory Multiprocessors. In SOSP, 1989.

[72] A. Verma, L. Pedrosa, M. Korupolu, D. Oppen-
heimer, E. Tune, and J. Wilkes. Large-scale cluster
management at Google with Borg. In EuroSys,
2015.

[73] R. Von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer. Capriccio: Scalable Threads for
Internet Services. In SOSP, 2003.

376 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf

[74] M. Welsh, D. Culler, and E. Brewer. SEDA:
An Architecture for Well-Conditioned, Scalable
Internet Services. In SOSP, 2001.

[75] X. Yang, S. M. Blackburn, and K. S. McKinley.
Elfen Scheduling: Fine-Grain Principled Borrow-
ing from Latency-Critical Workloads Using Simul-
taneous Multithreading. In USENIX ATC, 2016.

[76] X. Zhang, E. Tune, R. Hagmann, R. Jnagal,
V. Gokhale, and J. Wilkes. CPI2: CPU perfor-
mance isolation for shared compute clusters. In
EuroSys, 2013.

[77] Y. Zhang, D. Meisner, J. Mars, and L. Tang.
Treadmill: Attributing the Source of Tail Latency
through Precise Load Testing and Statistical
Inference. In ISCA, 2016.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 377

	Introduction
	The Case Against Slow Core Allocators
	Challenges and Approach
	Shenango's Approach

	IOKernel
	Core Allocation
	Number of cores per application
	Which cores for each application

	Dataplane

	Runtime
	Implementation
	IOKernel Implementation
	Runtime Implementation

	Evaluation
	CPU Efficiency and Latency
	Resilience to Bursts in Load
	Microbenchmarks

	Discussion
	Related Work
	Conclusion
	Acknowledgments

