
Language-Directed Hardware Design for
Network Performance Monitoring

Srinivas Narayana1, Anirudh Sivaraman1, Vikram Nathan1, Prateesh Goyal1,
Venkat Arun2, Mohammad Alizadeh1, Vimalkumar Jeyakumar3, Changhoon Kim4

1 MIT CSAIL 2 IIT Guwahati 3 Cisco Tetration Analytics 4 Barefoot Networks

ABSTRACT
Network performance monitoring today is restricted by existing
switch support for measurement, forcing operators to rely heavily on
endpoints with poor visibility into the network core. Switch vendors
have added progressively more monitoring features to switches, but
the current trajectory of adding specific features is unsustainable
given the ever-changing demands of network operators. Instead,
we ask what switch hardware primitives are required to support an
expressive language of network performance questions. We believe
that the resulting switch hardware design could address a wide
variety of current and future performance monitoring needs.

We present a performance query language, Marple, modeled on fa-
miliar functional constructs like map, filter, groupby, and zip. Marple
is backed by a new programmable key-value store primitive on
switch hardware. The key-value store performs flexible aggregations
at line rate (e.g., a moving average of queueing latencies per flow),
and scales to millions of keys. We present a Marple compiler that
targets a P4-programmable software switch and a simulator for high-
speed programmable switches. Marple can express switch queries
that could previously run only on end hosts, while Marple queries
only occupy a modest fraction of a switch’s hardware resources.

CCS CONCEPTS
• Networks→ Network monitoring; Programmable networks;

KEYWORDS
Network measurement; network hardware; network programming

ACM Reference format:
Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal,
Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. 2017. Language-Directed Hardware Design for Network Performance
Monitoring. In Proceedings of SIGCOMM ’17, Los Angeles, CA, USA, August
21–25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098829

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098829

1 INTRODUCTION
Effective performance monitoring of large networks is crucial to
quickly localize problems like high queueing latency [12], TCP in-
cast [61], and load imbalance across network links [27]. A common
approach to network monitoring is to collect information from the
endpoint network stack [53, 58, 62] or to use end-to-end probes [40]
to diagnose performance problems. While endpoints provide appli-
cation context, they lack visibility to localize performance problems
at links deep in the network. For example, it is challenging to local-
ize queue buildup to a particular switch or pinpoint traffic causing
the queue buildup, forcing operators to infer the network-level root
causes indirectly [40].

Switch-based monitoring could allow operators to diagnose prob-
lems with more direct visibility into performance statistics. How-
ever, traditional switch mechanisms like sampling [7, 21], mirror-
ing [8, 42, 65], and counting [34, 49] are quite restrictive. Sampling
and mirroring miss events of interest as it is infeasible to collect
information on all packets, while counters only track traffic volume
statistics. None of these mechanisms provides relevant performance
data, like queueing delays.

Some upcoming technologies recognize the need for better perfor-
mance monitoring using switches. In-band network telemetry [12]
writes queueing delays experienced by a packet on the packet itself,
allowing endpoints to localize delay spikes. The Tetration switching
chip [9] provides a flow cache that measures flow-level performance
metrics. These metrics are useful, but they are exposed at a fixed
granularity (e.g., per 5-tuple), and the metrics themselves are fixed.
For example, the list of exposed metrics includes flow-level latency
and packet size variation, but not latency variation, i.e., jitter.

Operator requirements are ever-changing, and redesigning hard-
ware is expensive. We believe that the trajectory of adding fixed-
function switch monitoring piecemeal is unsustainable. Instead, we
advocate building performance monitoring primitives that can be
flexibly reused for a variety of needs. Programmable switches [3, 13,
25] now support flexible parsing [39], header processing [33, 56],
and scheduling [57]. Our goal is to add monitoring to this list.

This paper applies language-directed hardware design to the
problem of flexible performance monitoring, inspired by early efforts
on designing hardware to support high-level languages [36, 50, 59].
Specifically, we design a language that can express a broad variety
of performance monitoring use cases, and then design high-speed
switch hardware primitives in service of this language. By designing
hardware to support an expressive language, we believe the resulting
hardware design can support a wide variety of current and future
performance monitoring needs.

Fig. 1 provides an overview of our performance monitoring sys-
tem. To use the system, an operator writes a query in a domain-
specific language called Marple, either to implement a long-running

https://doi.org/10.1145/3098822.3098829
https://doi.org/10.1145/3098822.3098829


SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

Collection	servers	to	handle
(1)	Marple query	results
(2)	Evictions	to	backing	store

Marple
Queries

Marple
Compiler

Switch	
Programs

Programmable	switches	with	
programmable	key-value	store	 End	hostsEnd	hosts

Network	operator

Figure 1: Operators issue Marple queries, which are com-
piled into switch programs for programmable switches aug-
mented with our new programmable key-value store primitive.
Switches stream results from this query to collection servers
that also house the backing store for the key-value store.

monitor for a statistic (e.g., detecting TCP timeouts), or to trou-
bleshoot a specific problem (e.g., incast [61]) at hand. The query
is compiled into a switch program that runs on the network’s pro-
grammable switches, augmented with new switch hardware primi-
tives that we design in service of Marple. The switches stream results
out to collection servers, where the operator can retrieve query re-
sults. We now briefly describe the three components of our system:
the query language, the switch hardware, and the query compiler.

Performance query language. Marple uses familiar functional
constructs like map, filter, groupby and zip for performance mon-
itoring. Marple provides the abstraction of a stream that contains
performance information for every packet at every queue in the
network (§2). Programmers can focus their attention on traffic ex-
periencing interesting performance using filter (e.g., packets with
high queueing latencies), aggregate information across packets in
flexible ways using groupby (e.g., compute a moving average over
queueing latency per flow), compute new stateless quantities using
map (e.g., binning a packet’s timestamp into an epoch), and detect si-
multaneous performance conditions using zip (e.g., when the queue
depth is large and the number of connections in the queue is high).

Hardware design for performance queries. A naïve implemen-
tation of Marple might stream every packet’s metadata from the
network to a central location and run streaming queries against it.
Modern scale-out data-processing systems support 100K–1M oper-
ations per second per core [2, 4, 11, 43, 64], but processing every
single packet (assuming a relatively large packet size of 1 KB) from
a single 1 Tbit/s switch would need 100M operations per second —
2–3 orders of magnitude more than what existing systems support.

Instead, we leverage high-speed programmable switches [3, 13,
25, 33] as first-class citizens in network monitoring, because they
can programmatically manipulate multi-Tbit/s packet streams. Early
filtering and flexible aggregation on switches drastically reduce

the number of records per second streamed out to a standard data-
processing system running on the collection server.

While programmable switches support many of Marple’s stateless
language constructs that modify packet fields alone (e.g., map and
filter), they do not support aggregation of state across packets for
a large number of flows (i.e., groupby). To support flexible aggre-
gations over packets, we design a programmable key-value store
in hardware (§3), where the keys represent flow identifiers and the
values represent the state computed by the aggregation function.
This key-value store must update values at the line rate of 1 packet
per clock cycle (at 1 GHz [6, 33]) and support millions of keys (i.e.,
flows). Unfortunately, neither SRAM nor DRAM is simultaneously
fast and dense enough to meet both requirements.

We split the key-value store into a small but fast on-chip cache
in SRAM and a larger but slower off-chip backing store in DRAM.
Traditional caches incur variable write latencies due to cache misses;
however, line-rate packet forwarding requires deterministic latency
guarantees. Our design accomplishes this by never reading back a
value into the cache if it has already been evicted to the backing
store. Instead, it treats a cache miss as the arrival of a packet from a
new flow. When a flow is evicted, we merge the evicted flow’s value
in the cache with the flow’s old value in the backing store. Because
merges occur off the critical packet processing path, the backing
store can be implemented in software on a separate collection server.

While it is not always possible to merge an aggregation function
without losing accuracy, we characterize a class of affine aggregation
functions, which we call linear-in-state, for which accurate merging
is possible. Many useful aggregation functions are linear-in-state,
e.g., counters, predicated counters (e.g., count only TCP packets
that saw timeouts), exponentially weighted moving averages, and
functions computed over a finite window of packets. We design a
switch instruction to support linear-in-state functions, finding that it
easily meets timing at 1 GHz, while occupying modest silicon area.

Query compiler. We implement a compiler that takes Marple
queries and compiles them into switch configurations for two tar-
gets (§4): (1) the P4 behavioral model [19], an open source pro-
grammable software switch that can be used for end-to-end evalu-
ations of Marple on Mininet [47], and (2) Banzai [56], a simulator
for high-speed programmable switch hardware that can be used to
experiment with different instruction sets. The Marple compiler de-
tects linear-in-state aggregations in input queries and successfully
targets the linear-in-state switch instruction that we add to Banzai.

Evaluation. We show that Marple can express a variety of use-
ful performance monitoring examples, like detecting and localiz-
ing TCP incast and measuring the prevalence of out-of-order TCP
packets. Marple queries require between 4 and 11 pipeline stages,
which is modest for a 32-stage switch pipeline [33]. We evalu-
ate our key-value store’s performance using trace-driven simula-
tions. For a 64 Mbit on-chip cache, which occupies about 10% of
the area of a 64×10-Gbit/s switching chip, we estimate that the
cache eviction rate from a single top-of-rack switch can be han-
dled by a single 8-core server running Redis [20]. We evaluate
Marple’s usability through two Mininet case studies that use Marple
to troubleshoot high tail latencies [26] and measure the distribu-
tion of flowlet sizes [27]. Marple is open source and available at
http://web.mit.edu/marple.

http://web.mit.edu/marple


Language-Directed Hardware Design SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Construct Description
pktstream Stream of packet performance metadata.
filter(R, pred) Output tuples in R satisfying predicate pred.
map(R, [exprs], Evaluate expressions, [exprs], over fields of R,
[fields]) emitting tuples with new fields, [fields].

groupby(R, Evaluate function fun over the input stream R

[fields], fun) partitioned by fields, producing tuples on emit().

zip(R, S) Merge fields in incoming R and S tuples.

Figure 2: Summary of Marple language constructs.

2 THE MARPLE QUERY LANGUAGE
This section describes the Marple query language. §3 then cov-
ers the switch implementation of the language constructs, while §4
describes the compiler. Marple provides the abstraction of a network-
wide stream of performance information. The tuples in the stream
contain performance metadata, such as queue lengths and times-
tamps when a packet entered and departed queues, for each packet at
each queue in the network. Network operators write queries on this
stream as if the entire stream is processed by a single hypothetical
server running the query. In reality, the compiler partitions the query
across the network and executes each part on individual switches.

Marple programs process the performance stream using famil-
iar functional constructs (filter, map, groupby, and zip), all of
which take streams as inputs and produce a stream as output. This
functional language model is expressive enough to support diverse
performance monitoring use cases, but still simple enough to im-
plement in high-speed hardware. Marple’s language constructs are
summarized in Fig. 2.

Packet performance stream. As part of the base input stream,
which we call pktstream, Marple provides one tuple for each packet
at each queue with the following fields.

(switch, qid, hdrs, uid, tin, tout, qsize)

switch and qid denote the switch and queue at which the packet
was observed. A packet may traverse multiple queues even within
a single switch, so we provide distinct fields. The regular packet
headers (Ethernet, IP, TCP, etc.) are available in the hdrs set of fields,
with a uid that uniquely determines a packet.1

The packet performance stream provides access to a variety of
performance metadata: tin and tout denote the enqueue and de-
queue timestamps of a packet, while qsize denotes the queue depth
when a packet is enqueued. It is beneficial to have two timestamps to
detect co-habitation of the queue by packets belonging to different
flows. Additionally, it is beneficial to have a queue size, since we
cannot always determine the queue size from the two timestamps: a
link may service multiple queues, and the speed at which a queue
drains may not be known.

Tuples in pktstream are processed in order of packet dequeue
time (tout), since this is the earliest time at which all tuple fields
in pktstream are known.2 If a packet is dropped, tout and qsize

are infinity. Tuples corresponding to dropped packets may be
processed in an arbitrary order.

1It is usually possible to use a combination of the 5-tuple and IP ID field as the uid.
2We assume clock synchronization to let us compare tin and tout values from different
switches. Without synchronization, the programmer can still write queries that do not
compare time-valued fields tin and tout across switches.

Restricting packet performance metadata of interest. Con-
sider the example of tracking packets that experience high queueing
latencies at a specific queue (Q) and switch (S). This is expressed by
the query:

result = filter(pktstream, qid == Q and switch == S

and tout - tin > 1ms)

The filter operator restricts the user’s attention to those pack-
ets with the relevant performance metadata. A filter has the form
filter(R, pred) where R is some stream containing performance
metadata (e.g., pktstream), and the filter predicate pred may in-
volve packet headers, performance metadata, or both. The result of
a filter is another stream that contains only tuples satisfying the
predicate.

Computing stateless functions over packets. Marple lets users
compute functions of the fields available in the incoming stream, to
express new quantities of interest. A simple example is rounding
packet timestamps to an ‘epoch’:

result = map(pktstream, [tin/epoch_size], [epoch]);

The map operator evaluates the expression tin/epoch_size, written
over the fields available in the tuple stream, and produces a new field
epoch. The general form of this construct is map(R, [expression],

[field]) where a list of expressions over fields in the input stream
R creates a list of new fields in the map output stream.

Aggregating statefully over multiple packets. Marple allows
aggregating statistics over multiple tuples at user-specified granular-
ities. For example, the following query counts packets belonging to
each transport-level flow (i.e., 5-tuple):

result = groupby(pktstream, [5tuple], count)

Here, the groupby partitions the incoming pktstream into sub-
streams based on the transport 5-tuple, and then applies the ag-
gregation function count to count the number of tuples in each
substream. Marple allows users to write flexible order-dependent ag-
gregation functions over the tuples of each substream. For example,
a user can track latency spikes for each connection by maintaining
an exponentially weighted moving average (EWMA) of queueing
latencies:

result = groupby(pktstream, [5tuple, switch], ewma);

def ewma([avg], [tin, tout]):

avg = ((1-alpha)*avg) + (alpha*(tout-tin));

Here the aggregation function ewma evolves an EWMA avg using
the current value of avg and incoming packet timestamps. Unlike the
previous count example, the EWMA aggregation function depends
on the order of packets being processed.

groupbys take the general form groupby(R, [aggFields],

fun), where the aggregation function fun operates over tuples shar-
ing attributes in a list aggFields of headers and performance meta-
data. This construct is inspired by folds in functional program-
ming [45]. Such order-dependent folds are challenging to express
in existing query languages. For instance, SQL only allows order-
independent commutative aggregations, whether built-in (e.g., count,
average, sum) or user-defined.

The aggregation function fun is written in an imperative form,
with two arguments: a list of state variables and a list of relevant



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

incoming tuple fields. Each statement in fun can be an assignment
to an expression (x = ...), a branching statement (if pred {...}

else {...}), or a special emit() statement that controls the output
stream of the groupby. Below, we show an example of an aggrega-
tion that detects a new connection:

result = groupby(pktstream, [5tuple], new_flow);

def new_flow([fcount], []):

if fcount == 0:

fcount = 1

emit()

The output of a groupby is a stream containing the aggregation fields
(e.g., 5-tuple) and the aggregated values (e.g., fcount). The output
stream contains only tuples for which the emit() statement is en-
countered during execution of the aggregation function. For example,
the output stream of new_flow consists of the first packet of every
new transport-level connection. If the function has no emit()s, the
user can still read the aggregated fields and their current aggregated
state values as a table.

Chaining together multiple queries. Because all Marple con-
structs produce and consume streams, Marple allows users to write
queries that take in the results of previous queries as inputs. A stream
of tuples flows from one query to the next, and each query may add
or filter out information from the incoming tuple, or even drop the
tuple entirely. For example, the program below tracks the size dis-
tribution of flowlets, i.e., bursts of packets from the same 5-tuple
separated by more than a fixed time amount delta.

fl_track = groupby(pktstream, [5tuple], fl_detect);

def fl_detect([last_time, size], [tin]):

if (tin - last_time > delta):

emit()

size = 1

else:

size = size + 1

last_time = tin

The function fl_detect detects new flowlets using the last time a
packet from the same flow was seen. Because of the emit() state-
ment’s location, the flowlet size from fl_track is only streamed out
to other operators upon seeing the first packet of a new flowlet.

fl_bkts = map(fl_track, [size/16], [bucket]);

fl_hist = groupby(fl_bkts, [bucket], count);

The map fl_bkts bins the flowlet size emitted by fl_track into a
bucket index, which is used to count the number of flowlets in the
corresponding bucket in fl_hist.

Joining results across queries. Marple provides a zip operator
that “joins” the results of two queries to check whether two condi-
tions hold simultaneously. Consider the example of detecting the
fan-in of packets from many connections into a single queue, charac-
teristic of TCP incast [61]. This can be checked by combining two
distinct conditions: (1) the number of active flows in a queue over a
short interval of time is high, and (2) the queue occupancy is large.

A user can first compute the number of active flows over the
current epoch using two aggregations:

R1 = map(pktstream, [tin/epoch_size], [epoch]);

R2 = groupby(R1, [5tuple, epoch], new_flow);

R3 = groupby(R2, [epoch], count);

The number of active flows in this epoch can be combined with the
queue occupancy information in the original packet stream through
the zip operator:

R4 = zip(R3, pktstream);

result = filter(R4, qsize > 100 and count > 25);

The result of a zip operation over two input streams is a single
stream containing tuples that are a concatenation of all the fields in
the two streams, whenever both input streams contain valid tuples
processed from the same original packet tuple. A zip is a special
kind of stream join where the result can be computed without having
to synchronize the two streams, because tuples of both streams
originate from pktstream. The result of the zip can be processed
like any other stream: the filter in the result query checks the
two incast conditions above.

We did not find a need for more general joins akin to joins in
streaming query languages like CQL [30]. Streaming joins have
semantics that can be quite complex and may produce large results,
i.e., O(#pkts2). Hence, Marple restricts users to simple zip joins.

We show several examples of Marple queries in Fig. 7. For in-
stance, Marple can express measurements of simple counters, TCP
reordering of various forms, high-loss connections, flows with high
end-to-end network latencies, and TCP fan-in.

Restrictions on Marple queries. Some aggregations are chal-
lenging to implement over a network-wide stream. For example,
consider an EWMA over some packet field across all packets seen
anywhere in the entire network, while processing packets in the order
of their tout values. Even with clock synchronization, this aggrega-
tion is hard to implement because it requires us to either coordinate
between switches or stream all packets to a central location.

Marple’s compiler rejects queries with aggregations that need to
process multiple packets at multiple switches in order of their tout
values. Concretely, we only allow aggregations that relax one of
these three conditions, and thus either

(1) operate independently on each switch, in which case we natu-
rally partition queries by switch (e.g., a per-flow EWMA of
queueing latencies on a particular switch), or

(2) operate independently on each packet, in which case we have
the packet perform the coordination by carrying the aggre-
gated state to the next switch on its path (e.g., a rolling average
link utilization seen by the packet along its path), or

(3) are associative and commutative, in which case independent
switch-local results can be combined in any order to produce
a correct overall result for the network [15], e.g., a count of
how many times packets from a flow appeared throughout the
network. In this case, we rely on the programmer to annotate
the aggregation function with the assoc and comm keywords.

3 SCALABLE AGGREGATION AT LINE RATE
How should switches implement Marple’s language constructs? We
require instructions on switches that can aggregate packets into
per-flow state (groupby), transform packet fields (map), stream only
packets matching a predicate (filter), or merge packets that satisfy
two previous queries (zip).



Language-Directed Hardware Design SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Key Value

Key Value
key Mergeevicted

key

Key Value

Key Value

Backing store (DRAM)

Writeevicted
key

Cache (SRAM)

Cache (SRAM)

Backing store (DRAM)

Hit

Miss

Update

Initialize

key

Hit

Miss

Update

Initialize
/Update

Read

Traditional cache

Marple’s design

Figure 3: Marple’s key-value store vs. a traditional cache

Of the four language constructs, map, filter, and zip, are state-
less: they operate on packet fields alone and do not modify switch
state. Such stateless manipulations are already supported on emerg-
ing programmable switches that support programmable packet
header processing [3, 13, 25, 33]. On the other hand, the groupby

construct needs to maintain and update state on switches.
Stateful manipulation on a switch for a groupby is challenging

for two reasons. First, the time budget to update state before the
next packet arrives can be as low as a nanosecond on high-end
switches [56]. Second, the switch needs to maintain state propor-
tional to the number of aggregated records (e.g., per flow), which
may grow unbounded with time. We address both challenges using a
programmable key-value store in hardware, where the keys represent
aggregation fields and values represent the state being updated by
the aggregation function. Our key-value store has a ‘split’ design:
a small and fast on-chip key-value store on the switch processes
packets at line rate, while a large and slow off-chip backing store
allows us to scale to a large number of flows.

High-speed switch ASICs typically feature an ingress and egress
pipeline shared across multiple ports, running at a 1 GHz clock rate
to support up to a billion 64-byte packets per second of aggregate
capacity [33]. To handle state updates from packets arriving at 1
GHz, the on-chip key-value store must be in SRAM on the switch
ASIC. However, the SRAM available for monitoring on an ASIC
(§5.2) is restricted to tens of Mbits (about 10K–100K flows).

To scale to a larger number of flows, the on-chip key-value store
serves as a cache for the larger off-chip backing store. In traditional
cache designs, cache misses require accessing off-chip DRAM with
non-deterministic latencies [37] to read off the stored state. Because
the aggregation operation requires us to read the value in order to
update it, the entire state update operation incurs non-deterministic
latencies in the process. This results in stalls in the switch pipeline.
Unfortunately, pipeline stalls affect the ability to provide guarantees
on line-rate packet processing (10–100 Gbit/s) on all ports.

We design our key-value store to process packets at line rate even
on cache misses (Fig. 3). Instead of stalling the pipeline waiting
for a result from DRAM, we treat the incoming packet as the first
packet from a new flow and initialize the flow’s state to an initial
value. Subsequent packets from the same flow are aggregated within
the newly created flow entry in the key-value store, until the flow is

evicted. When it is evicted, we merge the flow’s value just before
eviction with its value in the backing-store using a merge function,
and write the merged result to the backing store. In our design,
the switch only writes to the backing store but never reads from it,
which helps avoid non-deterministic latencies. The backing store
may be stale relative to the on-chip cache if there have been no
recent evictions. We remedy this by forcing periodic evictions.

To merge a flow’s new aggregated value in the switch cache
with its old value in the backing store correctly, the cache needs
to maintain and send auxiliary state to the backing store. A naïve
usage of auxiliary state is to store relevant fields from every packet
of a flow, so that the backing store can simply run the aggregation
function over the entire packet stream when merging. However, in
a practical implementation, the auxiliary state should be bounded
in size and not grow with the number of packets in the flow. Over
the next four subsections, we describe two classes of queries that are
mergeable with a small amount of auxiliary state (§3.1 and §3.2),
discuss queries that are not mergeable (§3.4), and provide a general
condition for mergeability that unifies the two classes of mergeable
queries and separates them from non-mergeable queries (§3.5).

3.1 The associative condition
A simple class of mergeable aggregations is associative functions.
Suppose the aggregation function on state s is s = op(s, f ), where
op is an associative operation and f is a packet field. Then, if op has
an identity element I and a flow’s default value on insertion is s0 = I,
it is easy to show that this function can be merged using the function
op(sbacking,scache), where sbacking and scache are the value in the
backing store and the value just evicted from the cache, respectively.
The associative condition allows us to merge aggregation functions
like addition, max, min, set union, and set intersection.

3.2 The linear-in-state condition
Consider the EWMA aggregation function, which maintains a mov-
ing average of queueing latencies across all packets within a flow.
The aggregation function updates the EWMA s as follows:

s = (1−α ) · s+α · (tout − tin)

We initialize s to s0. Suppose a flow F is evicted from the on-chip
cache for the first time and written to the backing store with an
EWMA of sbacking.3 The first packet from F after F’s eviction is
processed like a packet from a new flow in the on-chip cache, starting
with the state s0. Assume that N packets from F then hit the on-chip
cache, resulting in the EWMA going from s0 to scache. Then, the
correct EWMA scorrect (i.e., for all packets seen up to this point)
satisfies:

scorrect − (1−α )Nsbacking = scache− (1−α )Ns0

scorrect = scache + (1−α )N (sbacking− s0)

So, the correct EWMA can be obtained by: (1) having the on-chip
cache store (1−α )N as auxiliary state for each flow after each up-
date, and (2) adding (1−α )N (sbacking− s0) to scache when merging
scache with sbacking.

We can generalize this example. Let p be a vector with the headers
and performance metadata from the last k packets of a flow, where k

3When a flow is first evicted, it does not need to be merged.



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

is an integer determined at query compile time (§4.3). We can merge
any aggregation function with state updates of the form S = A(p) ·
S+B(p), where S is the state, and A(p) and B(p) are functions of
the last k packets. We call this condition the linear-in-state condition
and say that A(p) and B(p) are functions of bounded packet history.

The requirement of bounded packet history is important. Consider
the TCP non-monotonic query from Fig. 7, which counts the num-
ber of packets with sequence numbers smaller than the maximum
sequence number seen so far. The aggregation can be expressed as

count = count + (maxseq > tcpseq) ? 1 : 0

While the update superficially resembles A(p) ·S+B(p), the coeffi-
cient B(p) is a function of maxseq, the maximum sequence number
so far, which could be arbitrarily far back in the stream. Intuitively,
since B(p) is not a function of bounded packet history, the auxiliary
state required to merge count is large. §3.5 formalizes this intuition.

In contrast, the slightly modified TCP out-of-sequence query from
Fig. 7 is linear-in-state because it can be written as

count = count + (lastseq > tcpseq) ? 1 : 0

where lastseq, the previous packet’s sequence number, depends
only on the last 2 packets: the current and the previous packet. Here,
A(p) and B(p) are functions of bounded packet history, with k = 2.

Merging queries that are linear-in-state requires the switch to store
the first k and most recent k packets for the key since it (re)appeared
in the key-value store; details are available in the accompanying tech
report [15]. An aggregation function is linear-in-state if, for every
variable in the function, the state update satisfies the linear-in-state
condition. A query is linear-in-state if all its aggregation functions
are linear-in-state.

3.3 Scalable aggregation functions
A groupby with no emit() and a linear-in-state (or associative)
aggregation function can be implemented scalably without losing ac-
curacy. Examples of such aggregations (from Fig. 7) include tracking
successive packets within a TCP connection that are out-of-sequence
and counting the number of TCP timeouts per connection.

If a groupby uses an emit() to pass tuples to another query, it
cannot be implemented scalably even if its aggregation function is
linear-in-state or associative. An emit() outputs the current state of
the aggregation function, which assumes the current state is always
available in the switch’s on-chip cache. This is only possible if flows
are never evicted, effectively shrinking the key-value store to its
on-chip cache alone.

3.4 Handling non-scalable aggregations
While the linear-in-state and associative conditions capture several
aggregation functions and enable a scalable implementation, there
are two practical classes of queries that we cannot scale: (1) queries
with aggregation functions that are neither associative nor linear-in-
state and (2) queries where the groupby has an emit() statement.

An example of the first class is the TCP non-monotonic query
discussed earlier. An example of the second class is the flowlet size
histogram query from Fig. 7, where the first groupby emits flowlet
sizes, which are grouped into buckets by the second groupby.

There are workarounds for non-scalable queries. One is to rewrite
queries to remove emit()s. For instance, we can rewrite the loss

rate query (Fig. 7) to independently record the per-flow counts for
dropped packets and total number of packets in separate key-value
stores, and have an operator consult both key-value stores every
time they need the loss rate. Each key-value store can be scaled, but
the implementation comes at a transient loss of accuracy relative
to precisely tracking the loss rate after every packet using a zip.

Second, an operator may be content with flow values that are accurate
for each time period between two evictions, but not across evictions
(Fig. 10b). Third, an operator may want to run a query to collect data
until the on-chip cache fills up and then stop data collection. Finally,
if the number of keys is small enough to fit in the cache (e.g., if the
key is an application type), the system can provide accurate results
without evicting any keys.

3.5 A unified condition for mergeability
We present a general condition that separates mergeable functions
from non-mergeable ones. Informally, mergeable aggregation func-
tions are those that maintain auxiliary state linear in the size of the
function’s state itself. This characterization also has the benefit of
unifying the associative and linear-in-state conditions. We now for-
malize our results in the form of several theorems without proofs;
an accompanying technical report [15] contains the proofs.

Let n denote the size of state (in bits) tracked in a Marple query: it
must be bounded and should not increase with the number of packets.
When merging state scache in the on-chip cache with state sbacking
in the backing store, the switch may maintain and send auxiliary
state aux for the backing store to perform the merge correctly. In the
EWMA example, the value (1−α )N is auxiliary state. Then, a merge
function m for an aggregation function f is a function satisfying:

m(scache,aux,sbacking) = f (s0,{p1, . . . , pN})

for any N and sequence of packets p1, . . . , pN . The application of f
to a list is shorthand for folding f over each packet in order.

First, we show that every aggregation function has a merge func-
tion, provided it is allowed to use a large amount of auxiliary data.

THEOREM 3.1. Every aggregation function has a corresponding
merge function that uses O(n2n) auxiliary bits.

Unfortunately, memory is limited and Marple should not use much
more state than indicated by the user’s aggregation function. We say
an aggregation function is mergeable if the auxiliary state has size
O(n) for any sequence of packets. This characterization is consistent
with what we have described so far: the linear-in-state and associative
conditions are indeed mergeable by this definition, while queries
that we cannot merge (e.g., TCP non-monotonic in Fig. 7) violate it.

THEOREM 3.2. If an aggregation function is either linear-in-
state or associative, it has a merge function that uses O(n) bits of
auxiliary state.

THEOREM 3.3. The TCP non-monotonic query from Fig. 7 re-
quires Θ(n2n) auxiliary bits in the worst case.

This raises the question: can we determine whether an aggregation
function is mergeable with O(n) auxiliary bits? We provide an al-
gorithm (described in the tech report) that computes the minimum
auxiliary state size needed to merge a given aggregation function.
Our current algorithm uses brute force and is doubly exponential in n.



Language-Directed Hardware Design SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

However, a polynomial time algorithm is unlikely. We demonstrate
a hardness result by considering a decision version of a simpler
version of this problem where the merge function m is given as
input: given an aggregation function f and merge function m, does
m successfully merge f for all possible packet inputs?

THEOREM 3.4. Determining whether a merge function success-
fully merges an aggregation function is co-NP-hard.

The practical implication of this result is that there is unlikely to be
a general and efficient procedure to check if an arbitrary aggregation
function can be merged using a small amount of auxiliary state.
Thus, identifying specific classes of functions (e.g., linear-in-state
and associative) and checking if an aggregation function belongs to
these classes is the best we can hope to do.

3.6 Hardware feasibility
We optimize our stateful hardware design for linear-in-state queries
and break it down into five components. Each component is well-
known; our main contribution is putting them together to implement
stateful queries. We now discuss each component in detail.

The on-chip cache is a hash table where each row in the hash
table stores keys and values for a certain number of flows. If a packet
from a new flow hashes into a row that is full, the least recently used
flow within that row is evicted. Each row has 8 flows and each flow
stores both its key and value.4 Our choice of 8 flows is based on
8-way L1 caches, which are very common in processors [14]. This
cache eviction policy is close to an ideal but impractical policy that
evicts the least recently used (LRU) flow across the whole table (§5).

Within a switch pipeline stage, the on-chip cache has a logical
interface similar to an on-chip hash table used for counters: each
packet matches entries in the table using a key extracted from the
packet header, and the corresponding action (i.e., increment) is exe-
cuted by the switch. An on-chip hash table may be used as a path
to incrementally deploying a switch cache for specific aggregations
(e.g., increments), on the way to supporting more general actions
and cache eviction logic in the future.

The off-chip backing store is a scale-out key-value store such
as Redis [20] running on dedicated collection servers within the
network. As §5 shows, the number of measurement servers required
to support typical eviction rates from the switch’s on-chip cache is
small, even for a 64×100-Gbit/s switch.

Maintaining packet history. Before a packet reaches the
pipeline stage with the on-chip cache, we use the preceding stages
to precompute A(p) and B(p) (the functions of bounded packet his-
tory) in the state-update operation S = A(p) ·S+B(p). Our current
design only handles the case where S, A(p), and B(p) are scalars.
Say A(p) and B(p) depend on packet fields from the last k packets.
Then, these preceding pipeline stages act like a shift register and
store fields from the last k packets. Each stage contains a read/write
register, which is read by a packet arriving at that stage, carried by
the packet as a header, and written into the next stage’s register. Once
values from the last k packets have been read into packet fields, A(p)
and B(p) can be computed with stateless instructions provided by
programmable switch architectures [33, 56].
4The LRU policy is actually implemented across 3-bit pointers that point to the keys
and values in a separate memory. So we shuffle only the 3-bit pointers for the LRU, not
the entire key and value.

def oos_count([count, lastseq], [tcpseq, payload_len]):

if lastseq != tcpseq:

count = count + 1

emit()

lastseq = tcpseq + payload_len

tcps = filter(pktstream, proto == TCP

and (switch == S1 or switch == S2));

tslots = map(pktstream, [tin/epoch_size], [epoch]);

joined = zip(tcps, tslots);

oos = groupby(joined,

[5tuple, switch, epoch],

oos_count);

Figure 4: Running example for Marple compiler (§4).

Carrying out the linear-in-state operation. Once A(p) and
B(p) are known, we use a multiply-accumulate (MAC) instruc-
tion [17] to compute A(p) ·S+B(p). This instruction is very cheap
to implement: our circuit synthesis experiments show that a MAC
instruction meets timing at 1 GHz and occupies about 2000 µm2 in a
recent 32 nm transistor library. A switching chip with an area of a few
hundred mm2 can easily support a few hundred MAC instructions.

Queries that are not linear-in-state. We use the set of stateful
instructions developed in Domino [56] for queries that are not linear-
in-state. Our evaluations show that these instructions are sufficient
for our example queries that are not linear-in-state.

4 QUERY COMPILER
We compile Marple queries to two targets: the P4 behavioral
model [19], configured by emitting P4 code [18], and the Banzai
machine model, configured by emitting Domino code [56]. In both
cases, the emitted code configures a switch pipeline, where each
stage is a match-action table [33] or our key-value store.5

A preliminary pass of the compiler over the input query converts
the query to an abstract syntax tree (AST) of functional operators
(Fig. 5a). The compiler then:

(1) produces switch-local ASTs from a global AST (§4.1);
(2) produces P4 and Domino pipeline configurations from switch-

local ASTs (§4.2); and
(3) specifically recognizes linear-in-state aggregation functions,

and sets up auxiliary state required to merge such functions
for a scalable implementation (§4.3). To scalably implement
associative aggregation functions (§3.1), we use the program-
mer annotation assoc to determine if an aggregation is asso-
ciative. If it is associative, the merge function is the aggrega-
tion function itself.

We use the query shown in Fig. 4 as a running example to illustrate
the details in the compiler. The query counts the number of out-
of-sequence TCP packets over each time epoch, measured at two
switches S1 and S2 in the network.

5In this paper, we do not consider the problem of reconfiguring the switch pipeline on
the fly as queries change.



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

filter

group

map

zip

Pkt
stream

Pkt
stream

S1,	S2

S1,	S2

all

S1,	S2

all all

False

True

False

False

False False

(a) (b) (c)

Figure 5: Abstract Syntax Tree (AST) manipulations for the
running example (§4). (a) Operator AST. (b) Stream location
(set of switches). (c) Stream switch-partitioned (boolean).

4.1 Network-wide to switch-local queries
The compiler partitions a network-wide query written over all pack-
ets at all queues in the network (§2) into switch-local queries to
generate switch-specific configurations. We achieve this in two steps.
First, we determine the stream location, i.e., the set of switches that
contribute tuples to a stream, for the final output stream of query. For
instance, the output stream of a query that filters by switch id s has a
stream location equal to the singleton set s. Second, we determine
how to partition queries with aggregation functions written over the
entire network into switch-local queries.

Determining stream location for the final output stream.
The stream location of pktstream is the set of all switches in the
network. The stream location of the output of a filter is the set of
switches implied by the filter’s predicate. Concretely, we evaluate
the set of switches contributing tuples to the output of a filter oper-
ation through basic syntactic checks of the form switch == X on the
filter predicate. We combine switch sets for boolean combinators
(or and and) inside filter predicates using set operations (union and
intersection respectively). The stream location of the output of a zip

operator is the intersection of the stream locations of the two inputs.
Stream locations are unchanged by the map and groupby operators.

The stream locations for the running example are shown in Fig. 5b.
The stream location of pktstream is the set of all network switches,
but is restricted to just S1 and S2 by the filter in the query (left
branch). This location is then propagated to the root of the AST
through the zip operator in the query.

Partitioning network-wide aggregations. As described in §2,
we only permit aggregations that satisfy one of three conditions: they
operate independently on each switch, operate independently on each
packet, or are associative and commutative. We describe below how
we check the first condition, failing which we simply check the last
two conditions syntactically: either the groupby aggregates by uid

(condition 2) or contains programmer annotations assoc and comm

(condition 3).
To check if an aggregation operates independently on each switch,

we label each AST node with an additional boolean attribute, switch-
partitioned, corresponding to whether the output stream has been
partitioned by the switch at which it appears. Intuitively, if a stream
is switch-partitioned, we allow packet-order-dependent aggregations
over multiple packets of that stream; otherwise, we do not.

Determining and propagating switch-partitioned through an AST
is straightforward. The base pktstream is not switch-partitioned.
The filter and zip operators produce a switch-partitioned stream
if their output only appears at a single switch. The groupby produces
a switch-partitioned stream if it aggregates by switch. In all other
cases, the operators retain the operands’ switch-partitioned attribute.

The switch-partitioned attributes for our running example are
shown in Fig. 5c. The filter produces output streams at two
switches, hence is not switch-partitioned. The groupby aggregates
by switch and hence is switch-partitioned. After the partitioning
checks have succeeded, we are left with a set of independent switch-
local ASTs corresponding to each switch location that the AST root
operator appears in, i.e., S1, S2.

4.2 Query AST to pipeline configuration
This compiler pass first generates a sequence of operators from the
switch-local query AST of §4.1. This sequence of operators will then
be used in the same order to generate a switch pipeline configuration.
There are two aspects that require care when constructing a pipeline
structure: (1) the pipeline should respect read-write dependencies
between different operators, and (2) repeated subqueries should not
create additional pipeline stages. We generate a sequence through
a post-order traversal of the query AST, which guarantees that the
operands of a node are added into the pipeline before the operator in
the node. Further, we deduplicate subquery results from the pipeline
to avoid repeating stages in the final output. For the running example,
the algorithm produces the sequence of operators: tcps (filter)→
tslots (map)→ joined (zip)→ oos (groupby).

Next, the compiler emits P4 code for a switch pipeline from the
operator sequence. The filter and zip configuration just involves
checking a predicate and setting a “valid” bit on the packet meta-
data. The map configuration assigns a packet metadata field to the
computed expression. The groupby configuration uses a register that
is indexed by the aggregation fields, and is updated through the
action specified in the aggregation function. We transform Marple
aggregation functions into straight-line code consisting of C-style
conditional operators through a standard procedure known as if-
conversion [29]. This allows us to fit the aggregation function into
the body of a single P4 action.

To target the Banzai switch pipeline simulator [56], the Marple
compiler emits Domino code by concatenating C-like code frag-
ments from all pipeline stages into a single Domino program. The
Domino compiler then takes this program and compiles it to a
pipeline of Banzai atoms. Atoms are ALUs representing a pro-
grammable switch’s instruction set. Atoms implement either state-
less (e.g., incrementing a packet field) or stateful (e.g., atomically
incrementing a switch counter) computations.

4.3 Handling linear-in-state aggregations
We now consider the problem of detecting if an aggregation function
is linear-in-state (i.e., updates to all state variables within the ag-
gregation function can be written as S = A(p) ·S+B(p)). A general
solution to this problem is challenging because the aggregation func-
tion can take varied forms. For instance, the assignment S = S2−1

S−1 is
linear-in-state but needs algebraic simplifications to be detected.



Language-Directed Hardware Design SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Step 1: 
Compute history 
for each state 
variable

Step 2: Are all state 
variable updates 
linear-in-state?
(Finite history variables 
are trivially linear in state)

Query is scalable
Step 3: Compute 
auxiliary state 
required for merge

Query is not scalable

YES

 NO

Aggregation 
function 
code
(in Marple)

Figure 6: Steps for compiling linear-in-state updates.

We take a pragmatic approach and sacrifice completeness, but
still cover useful functions. Specifically, we only detect linear-in-
state state updates through simple syntactic pattern matching in
the compiler (i.e., without algebraic transformations). Despite these
simplifications, the Marple compiler correctly identifies all the linear-
in-state aggregations in Fig. 7 and targets the multiply-accumulate
instruction that we added to the Banzai pipeline.

To describe how linear-in-state detection works, we introduce
some terminology. Recall that an aggregation function takes two
arguments (§2): a list of state variables (e.g., a counter) and a list
of tuple fields (e.g., the TCP sequence number). We use the term
variable in this subsection to refer to either a state variable or a tuple
field. These are the only variables that can appear within the body of
the aggregation function.6

We carry out a three-step procedure for linear-in-state detection,
summarized in Fig. 6. First, for each variable in an aggregation
function we assign a history. This history tells us how many previous
packets we need to look at to determine a variable’s value accurately
(history = 1 means the current packet). For instance, for the value of
a byte counter, we need to look back to the beginning of the packet
stream (history = ∞), while for a variable that tracks the last TCP
sequence number we need to only look back to the previous packet
(history = 2). Consistent with the definition of history, constants are
assigned a history value of 0, and variables in the tuple field list
are assigned a history of 1. For state variables, we use Alg. 1 to
determine each variable’s history.

Second, once each variable has a history, we look at the history of
each state variable s. If the history of s is a finite number k, then s only
depends on the last k packets and the state update for that variable
is trivially linear-in-state, by setting A to 0 and B to the aggregation
function itself.7 If s has an infinite history, we use syntactic pattern
matching to check if the update to s is linear-in-state.

Third, if all state variables have linear-in-state state updates, the
aggregation function is linear-in-state, and we generate the auxiliary
state that permits merging of the aggregation function (§3). If not,
we use the set of stateful instructions developed in Domino [56] to
implement the aggregation function. We now describe each of the
three steps in detail.

Determining history of variables. To understand Alg. 1, observe
that if all assignments to a state variable only use variables that have
a finite history, then the state variable itself has a finite history. For
instance, in Fig. 4, right after it is assigned, lastseq has a history of
1 because it only depends on the current packet’s fields tcpseq and
payload_len. To handle branching in the code, i.e., if (predicate)

{...} statements, we generalize this observation. A state variable
has finite history if (1) it has finite history in all its assignments

6Marple supports local variables within the function body, but the more general algo-
rithm is not materially different from the simpler version we present in this paper.
7More precisely, the parts of the aggregation function that update s.

in all branches of the program, and (2) each branching condition
predicate itself only depends on variables with a finite history.

Concretely, COMPUTEHISTORY (line 2) assigns each variable a
history corresponding to an upper bound on the number of past pack-
ets that the state variable depends on. We track the history separately
for each branching context, i.e., the sequence of branches enclosing
any statement.8 The algorithm starts with a default large pessimistic
history (i.e., an approximation to ∞) for each state variable (line
1), and performs a fixed-point computation (lines 3–20), repeatedly
iterating over the statements in the aggregation function (line 7–16).

For each assignment to a state variable in the aggregation function,
the algorithm updates the history of that state variable in the current
branching context (lines 7–9). For each branch in the aggregation
function, the algorithm maintains a new branching context and a
history for the branching context itself (lines 10–14). At the end of
each iteration, the algorithm increments each variable’s history to
denote that the variable is one packet older (line 18). The algorithm
returns a conservative history k for each state variable, including
possibly max_bound (line 1, Alg. 1) to reflect an infinite history.

Algorithm 1 Determining history of all state variables
1: hist = {state = {true: max_bound}} ▷ Init. hist. for all state vars.
2: function COMPUTEHISTORY(fun)
3: while hist is still changing do ▷ Run to fixed point.
4: hist← {}
5: ctx← true ▷ Set up outermost context.
6: ctxHist← 0 ▷ History value of ctx.
7: for stmt in fun do
8: if stmt == state = expr then
9: hist[state][ctx]← GETHIST(ctx, expr, ctxHist)

10: else if stmt == if predicate then
11: save context info (restore on branch exit)
12: newCtx← ctx and predicate
13: ctxHist← GETHIST(ctx, newCtx, ctxHist)
14: ctx← newCtx
15: end if
16: end for
17: for ctx, var in hist do ▷ Make history one pkt older.
18: hist[var][ctx]← min(hist[var][ctx] + 1, max_bound)
19: end for
20: end while
21: end function
22: function GETHIST(ctx, ast, ctxHist)
23: for xi ∈ LEAFNODES(ast) do
24: hi = hist[xi][ctx]
25: end for
26: return max(h1, ... , hn, ctxHist)
27: end function

Now we show precisely how the histories are updated as each
statement of the aggregation function is processed using the helper
function GETHIST. Consider a statement assigning a variable to
an expression, x = expr, within a branching context ctx. Then the
history of x is the maximum of the history of the predicates in ctx

and the history of the expression expr. This is because if either is
a function of the last k packets, then x is a function of at least the
8Currently, Marple forbids multiple if ... else statements at the same nesting level;
hence, the enclosing branches uniquely identify a code path through the function. This
restriction is not fundamental; the more general form can be transformed into this form.



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

last k packets. To determine the history of expr, suppose the AST
of expr contains the variables x1, x2, ..., xn as its leaves. Then,
the history of expr is the maximum of the histories of the xi. For
example, the history for lastseq after its assignment in oos_count

is the maximum of 1 (tcpseq and payload_len are functions of the
current packet), and 0 (for the enclosing outermost context true).

Determining if a state variable’s update is linear-in-state.
For each state variable S with an infinite history, we check whether
the state updates are linear-in-state as follows: (1) each update to S
is syntactically affine, i.e., S← A ·S+B with either A or B possibly
zero; and (2) A, B and every branch predicate depend on variables
with a finite history. This approach is sound, but incomplete: it
misses updates such as S = S2−1

S−1 .

Determining auxiliary state. For each state variable with a linear-
in-state update, we initialize four pieces of auxiliary state for a newly
inserted key:9 (1) a running product SA = 1; (2) a packet counter
c = 0; (3) an entry log, consisting of relevant fields from the first k
packets following insertion; and (4) an exit log, consisting of relevant
fields from the last k packets seen so far. After the counter c crosses
the packet history bound k, we update SA to A · SA each time S is
updated.10 When the key is evicted, we send SA along with the entry
and exit logs to the backing store for merging (details are in our
technical report [15]).

5 EVALUATION
We evaluate Marple in three ways. In §5.1, we quantify the hard-
ware resources required for Marple queries. In §5.2, we measure
the memory-eviction tradeoff for the key-value store. In §5.3 and
§5.4, we show two case studies that use Marple compiled to the P4
behavioral model running on Mininet: debugging microbursts [44]
and computing flowlet size distributions.

5.1 Hardware compute resources
Fig. 7 shows several Marple queries. Alongside each query, we show
(1) whether all its aggregations are linear-in-state, (2) whether it
can be scaled by merging correctly with a backing store, and (3)
the switch resources required, measured through the pipeline depth
(number of stages), width (maximum number of parallel compu-
tations per stage), and number of Banzai atoms (total number of
computations) required.

Fig. 7 shows that many useful queries contain only linear-in-state
aggregations, and most of them scale to a large number of keys (§3.2).
Notably, the flowlet size histogram and lossy connection queries are
not scalable despite being linear-in-state, since they contain emit()

statements. In §3.4, we showed how to rewrite some of these queries
(e.g., lossy connections) to scale, at the cost of losing some accuracy.

We compute the pipeline’s depth and width by compiling each
query to the Banzai switch pipeline simulator. Banzai is supplied
with stateless atoms, which perform binary operations (arithmetic,
logic, and relational) on pairs of packet fields, and one stateful atom.
For the linear-in-state operations, we use the multiply-accumulate
atom as the stateful atom, while for the other operations, we use
Banzai’s own NestedIf atom [56]. The Domino compiler determines

9This can happen either when a key first appears or reappears following an eviction.
10This stateful update itself can be implemented through a multiply-accumulate atom.

whether the input program can be mapped to a pipeline with the
specified atoms. As expected, all the linear-in-state queries map to a
pipeline with the multiply-accumulate atom.

The computational resources required for Marple queries are
modest. All queries in Fig. 7 require a pipeline shorter than 11 stages.
This is feasible, e.g., the RMT architecture offers 32 stages [33].
Further, functionality other than measurement can run in parallel
because the number of atoms required per stage is at most 6, while
programmable switches provide ~100 parallel instructions per stage
(e.g., RMT provides 224 [33]).

5.2 Memory and bandwidth overheads
In this section, we answer the following questions:

(1) What is a good size for the on-chip key value store?
(2) What are the eviction rates to the backing store?
(3) How accurate are queries that are not mergeable?

Experimental setup. We simulate a Marple query over three un-
sampled packet traces: two traces from 10 Gbit/s core Internet
routers, one from Chicago (~150M packets) from 2016 [24] and
one from San Jose (~189M packets) from 2014 [23]; and a 2.5 hour
university data-center trace (~100M packets) from 2010 [32]. We
refer to these traces as Core16, Core14, and DC respectively.

We evaluate the impact of memory size on cache evictions for
a Marple query that aggregates by 5-tuple. As discussed in §3.6,
our hardware design uses an 8-way LRU cache. We also evaluate
two other geometries: a hash table, which evicts the incumbent key
upon a collision, and a fully associative LRU. Comparing our 8-way
LRU with other hardware designs demonstrates the tradeoff between
hardware complexity and eviction rate.

Eviction ratios. Each evicted key-value pair is streamed to a back-
ing store. This requires the backing store to be able to process pack-
ets as quickly as they are evicted, which depends on the incoming
packet rate and the eviction ratio, i.e., the ratio of evicted packets to
incoming packets. The eviction ratio depends on the geometry of the
on-chip cache, the packet trace, and the cache size (i.e., the number
of key-value pairs it stores). Hence, we measure eviction ratios over
(1) the three geometries for the Core16 trace (Fig. 8b), (2) the three
traces using the 8-way LRU geometry (Fig. 8a), and (3) for caches
sizes between 216 (65K) and 221 (2M) key-value pairs.

Fig. 8b shows that a full LRU has the lowest eviction ratios, since
the entire LRU must be filled before an eviction occurs. However,
the 8-way associative cache is a good compromise: it avoids the
hardware complexity of a full LRU while coming within 2% of its
eviction ratio. Fig. 8a shows that the DC trace has the lowest eviction
ratios. This is because it has much fewer unique keys than the other
two traces and these keys are less likely to be evicted.

The reciprocal of the eviction ratio (as a fraction) is the reduction
in server data collection load relative to a per-packet collector that
processes per-packet information from switches. For example, for
the Core14 trace with a 219 key-value pair cache, the server load
reduction is 25× (corresponding to an eviction ratio of 4%).

Eviction rates. Eviction ratios are agnostic to specifics of the
switch, such as link speed, link utilization, and on-chip cache size
in bits. To translate eviction ratios (evictions per packet) to eviction



Language-Directed Hardware Design SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Example Query code Description Linear Scales? Pipe Pipe # of
in state? depth width atoms

Packet counts def count([cnt], []): cnt = cnt + 1; emit() Count packets per source IP. Yes Yes 5 2 7
result = groupby(pktstream, [srcip], count);

EWMA over latencies def ewma([avg], [tin, tout]): Maintain a moving EWMA over Yes Yes 6 4 11
avg = (1-alpha)*avg + (alpha)*(tout-tin) packet latencies per flow.

ewma_q = groupby(pktstream, [5tuple], ewma);

TCP out-of-sequence def oos([lastseq, cnt], [tcpseq, payload_len]): Count the number of packets per Yes Yes 7 4 14
if lastseq != tcpseq: cnt = cnt + 1 connection arriving with a sequence
lastseq = tcpseq + payload_len number that is non-consecutive with

oos_q = groupby(pktstream, [5tuple], oos); the last packet.
TCP non-monotonic def nonmt([maxseq, cnt], [tcpseq]): Count the number of packets per No No 5 2 6

if maxseq > tcpseq: cnt = cnt + 1 connection with sequence numbers
else: maxseq = tcpseq lower than the maximum so far.

nm_q = groupby(pktstream, [5tuple], nonmt);

Flowlet size def fl_detect([last_time, size], [tin]): Compute a histogram over the Yes No 11 6 31
histogram if tin - last_time > delta: lengths of flowlets. This statistic is

emit(); size = 1 useful to evaluate network load
else: size = size + 1 balancing schemes, e.g., [27].
last_time = tin

R1 = groupby(pktstream, [5tuple], fl_detect);

fl_hist = groupby(R1, [size], count);

High E2E latency def sum_lat([e2e_lat], [tin, tout]): Capture packets experiencing high Yes Yes 5 3 8
e2e_lat = e2e_lat + tout - tin end-to-end queueing latency, by

e2e = groupby(pktstream, [uid], sum_lat); adding time spent in the queue at
high_e2e = filter(e2e, e2e_lat > 10); each hop.

Count concurrently def new_flow([cnt], []): Count the number of active No No 4 3 10
active connections if cnt == 0: emit(); cnt = 1 connections in a queue over a

R1 = map(pktstream, [tin/128], [epoch]); period of time (“epoch”).
R2 = groupby(R1, [5tuple, epoch], new_flow);

num_conns = groupby(R2, [epoch], count);

TCP incast R3 = zip(num_conns, pktstream); Detect when many connections use No No 7 4 14
ic_q = filter(R3, qin > 100 and cnt < 25); a long queue. Uses the query above.

Lossy connections total = groupby(pktstream, [5tuple], count); Compute packet loss rate per Yes No 8 4 19
R1 = filter(pktstream, tout == infinity); connection, reporting connections
lost = groupby(R1, [5tuple], count); with packet drop rate higher than
Z = zip(total, lost); a threshold p.

lc_q = filter(Z, lost.cnt > p*total.cnt);

TCP timeouts def timeout([cnt], [last_time, tin]): Count the number of timeouts for Yes Yes 8 3 15
timediff = tin - last_time each TCP connection, by checking
if timediff > 280ms and timediff < 320ms: for packet inter-arrival times

cnt = cnt + 1 around 300 ms (retransmission
last_time = tin timer).

to_q = groupby(pktstream, [5tuple], timeout);

Figure 7: Examples of performance queries. We report that a query scales to a large number of keys either if (1) there are no stateful
updates involved, or (2) all its stateful updates are linear-in-state and there are no emit()s. We use Domino [56] to report the hardware
resources, i.e., atom count and pipeline depth and width. Linear-in-state queries use the multiply-accumulate atom (§3); others use a
NestedIf atom [56] that supports updates predicated on the state value itself.

 0
 2
 4
 6
 8

 10
 12

16 17 18 19 20 21

%
 E

vi
ct

ed

log_2(Cache Slots)

Core16
Core14

DC

(a) By trace

 0
 2
 4
 6
 8

 10
 12

16 17 18 19 20 21

%
 E

vi
ct

ed

log_2(Cache Slots)

Hash Table
8-way associative

Full LRU

(b) By cache geometry (Core16)
Figure 8: Eviction ratios to the backing store.

rates (evictions per second), we first compute the average packet
size (700 Bytes) and link utilization (30%) from the Core16 trace.

Next, we estimate the on-chip cache size for a 64×10-Gbit/s
switch and a 64×100-Gbit/s switch. On a 64×10-Gbit/s switch,
SRAM densities are ≈ 3–4 Mbit/mm2 [1], and the smallest switch-
ing chips occupy 200 mm2 [39]. Therefore, a 64 Mbit cache in

SRAM costs around 10% additional area, which we believe is rea-
sonable. For recent 64×100-Gbit/s switches [5], SRAM densities are
≈ 7Mbit/mm2 [22], and the switches occupy ≈ 500 mm2,11 making a
256 Mbit cache (7.3% area overhead) a reasonable target.

For a given query, we divide these cache sizes by the size of the
aggregation’s key-value pair to get the number of key-value pairs.
We then look up this number in Fig. 8 to get the eviction ratio for
that query, which we translate to an eviction rate using the network
utilization and packet size mentioned earlier.

Eviction rates for some sample queries are shown in Fig. 9. For
a 64×10-Gbit/s switch with a 64 Mbit cache, we observe eviction
rates of ≈ 1M packets per second. For a 64×100-Gbit/s switch with
a 256 Mbit cache and the same average packet size and utilization,

11S. Chole. Cisco Systems. Private communication. June 2017.



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

Query State size Eviction rate at Eviction rate at
(bits) 64×10-Gbit/s 64×100-Gbit/s

(packets/s) (packets/s)
Packet count 32 1.0M (34×) 4.29M (81×)
Lossy connections 64 1.08M (32×) 5.18M (66×)
TCP out-of-sequence 128 1.21M (28×) 6.72M (52×)
Flowlet size 160 1.26M (27×) 7.17M (48×)
histogram (Stage 1)

Figure 9: Eviction rates and reduction in collection server load
for queries from Fig. 7. Each key-value pair occupies the listed
state size plus 104 bits for a 5-tuple key. The 10-Gbit/s and 100-
Gbit/s switches have a 64 Mbit and 256 Mbit cache, respectively.

the eviction rates can reach 7.17M packets per second. Relative to a
per-packet collector, Marple reduces the server load by 25–80×.

The eviction rates for both the 10 Gbit/s and 100 Gbit/s switches
are under 10M packets per second, well within the capabilities of
multi-core scale-out key-value stores [2, 11, 43], which typically
handle 100K–1M operations per second per core. For instance, for
a single 64×10-Gbit/s switch running an aggregation with a 64-bit
state size, a single 8-core server is sufficient to handle the eviction
rate of 1.08M packets per second. For a single 64×100-Gbit/s switch
running the same aggregation, the eviction rate goes up to 5.18M
packets per second, requiring four such servers.

Generalizing to other scenarios. Fig. 8 also generalizes to mul-
tiple aggregations and aggregations of different state sizes. First,
coarsening the aggregation key by picking a subset of the 5-tuple
reduces the eviction ratio, since there are fewer keys in the working
set. We believe that the 5-tuple may well be the most fine-grained
and still practically useful aggregation level; hence, our results show
the worst-case eviction ratios for a single groupby. Second, varia-
tions in the size of the groupby value simply result in a different
number of key-value pairs for a given memory size. Third, running
multiple groupby queries with the same number of key-value pairs,
and aggregating by the same key, results in synchronized evictions
across all queries. Hence, the eviction rate can be read off Fig. 8 at
the correspondingly reduced memory size.

Accuracy of non-mergeable queries. Queries that are neither
linear-in-state nor associative cannot be merged in the backing store.
If a key from such a query is evicted multiple times, Marple cannot
guarantee its correctness and marks it as invalid. However, these
keys’ values are still valid if they are either never evicted or are
evicted once and never reappear. We quantify a query’s accuracy
as the fraction of keys with valid values over the query’s lifetime.
Fig. 10a shows query accuracy using the three traces, with the DC
trace being near-perfect since it has fewer unique keys, and hence,
evictions. If the query is run over a shorter time interval, its accuracy
is typically higher, since the cache may not be full and a smaller
fraction of keys are evicted. Fig. 10b shows this tradeoff for a range
of cache sizes and geometries using the Core16 trace. Shortening
the query from 5 minutes to 1 minute boosts accuracy by 10%.

5.3 Case study #1: Debugging microbursts
To demonstrate Marple in practice, we present a case study of diag-
nosing microbursts, i.e., spikes in latency caused by bursty transmis-
sions of packets into a queue. Our setup in Mininet [47] consists of

 50

 60

 70

 80

 90

 100

16 17 18 19 20 21

Ac
cu

ra
cy

 (%
)

log_2(Cache Slots)

Core16
Core14

DC

(a) By trace

 50

 60

 70

 80

 90

 100

16 17 18 19 20 21

Ac
cu

ra
cy

 (%
)

log_2(Cache Slots)

1 min
3 min
5 min

(b) By query duration (Core16)
Figure 10: Query accuracy for non-mergeable aggregations.

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80  90

La
te

nc
y 

(s
)

Time (s)
(a) TCP request latency

 0
 10
 20
 30
 40
 50
 60
 70

 0  10  20  30  40  50  60  70  80  90

Q
ue

ue
 (#

 p
ac

ke
ts

)

Time (s)
(b) Queue depth at egress port 2

Figure 11: Microburst case study measurements.

src→ dst protocol # Bursts Time (µs) # Packets
h3:34573→ h4:4888 UDP 19 8969085 6090
h4:4888→ h3:34573 UDP 18 10558176 5820
h1:1777→ h2:58439 TCP 1 72196926 61584
h2:58439→ h1:1777 TCP 1 72248749 33074

Figure 12: Per-flow burst statistics from Marple.

four hosts (h1, h2, h3, h4) and two switches (S1, S2) in a dumb-
bell topology. Switch S1 is connected to h1 and h3, and S2 to h2 and
h4. The switches are connected via a single link and programmed in
P4 [19] with queries compiled by Marple.

Host h2 repeatedly downloads a 1MB objects over TCP from h1.
Meanwhile, h3 sends h4 bursts of UDP traffic, which h4 acks. Sup-
pose a network operator notices the irregular latency spikes for the
downloads (Fig. 11a). She suspects a queue buildup in the switches
and measures the queue depths seen by the traffic by writing: result
= filter(pktstream, srcip == h1 and dstip == h2).

The results are streamed out on each packet to a collection server.
After plotting the queue latencies, she notices spikes in queue size
at egress port 3 on the switch (Fig. 11b) matching the periodicity
of the latency spikes. To isolate the responsible flow(s), she divides
the traffic into “bursts,” which she defines as a series of packets
separated by a gap of at least 800ms, as determined from the gap
between latency spikes. She issues the following Marple query:

def burst_stats([last_time, nburst, time], [pkts, tin]):

if tin - last_time > 800000:

nbursts++;

emit();

else:

time = time + tin - last_time;

pkts = pkts + 1;

last_time = tin;

result = groupby(R1, 5tuple, burst_stats)

She runs the query for 72 seconds and sees the result in Fig. 12.
She concludes, correctly, that UDP traffic between h3 and h4 is
responsible for the latency spikes. There are 18 UDP bursts, with an
average packet size and duration that matches our emulation setup.



Language-Directed Hardware Design SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1000 10000

C
D

F

Flowlet size (packets)

delta = 10ms
delta = 20ms
delta = 50ms

delta = 100ms
delta = 500ms

Figure 13: CDF of flowlet sizes for different flowlet thresholds.

Marple’s flexibility makes this diagnosis simple. By contrast,
localizing the root cause of microbursts with existing monitoring
approaches is challenging. Packet sampling and line-rate packet
captures would miss microbursts because of heavy undersampling,
packet counters from switches would have disguised the bursty
nature of the offending UDP traffic, and probing from endpoints
would not be able to localize queues with bursty contending flows.

Marple builds on In-band Network Telemetry [12, 26] (INT) that
exposes queue lengths at switches. However, Marple’s on-switch
aggregation goes beyond INT to determine contending flows at
the problematic queue through a customized query, without prior
knowledge of those flows. In comparison, a pure INT-based solution
may require a network operator to manually identify flows that could
contend at the problematic queue, and then collect data from the INT
endpoints for those flows.

5.4 Case study #2: Flowlet size distributions
We demonstrate another use case for Marple in practice: computing
the flowlet size distribution as a function of the flowlet threshold,
the time gap above which subsequent packets are considered to be
in different flowlets. This analysis has many practical uses, e.g.,
for configuring flowlet-based load balancing strategies [27, 60]. In
particular, the performance of LetFlow [60] depends heavily on the
distribution of flowlet sizes.

Our setup uses Mininet with a single switch connecting five hosts:
a single client and four servers. Flow sizes are drawn from an em-
pirical distribution computed from a trace of a real data center [28].
The switch runs the “flowlet size histogram” query from Fig. 7 for
six values of delta, the flowlet threshold.

Fig. 13 shows the CDF of flowlet sizes for various values of
delta. Note that the actual values of delta are a consequence of the
bandwidth allowed by the Mininet setup; a data center deployment
would likely use much lower delta values.

6 RELATED WORK
Endpoint-based monitoring. Owing to limited switch support
for measurement, many systems monitor network performance from
endpoints alone [16, 31, 53, 58, 62]. While endpoint solutions are
necessary for application context (e.g., socket calls), they are insuffi-
cient to debug all network problems, since endpoints lack visibility
into the network core. With switch-augmented endpoint solutions
such as INT, the data is scattered over multiple endpoints. We believe
networks will need both endpoint and switch-based systems because
each sees something the other cannot.

Switch-based monitoring. Most switch-based monitoring has fo-
cused on per-flow counts (e.g., NetFlow [7]) and sampling (e.g.,

sFlow [21]), not performance measurement. Packet sampling can
miss important events due to heavy undersampling [55]. Hardware
implementations of NetFlow do not keep a record of every flow,
since the flow lookup table cannot insert new flows at line rate in the
presence of hash collisions [46]. Marple solves exactly this problem
through its cache design and merging.

Line-rate packet capture devices, e.g., [10] record all packet traffic
at high data rates, providing valuable data for posthoc analyses of
network traffic. Ideally, performance monitoring should be possible
everywhere in a network, but the high data collection and storage
requirements make it impossible to run packet captures pervasively.
The same concern limits other strategies that mirror traffic or collect
packet digests from switches [8, 42, 65]. In comparison, Marple’s
flexible language and switch-based aggregation provide network-
wide performance monitoring at low data processing overhead, by
collecting only what is needed.

Sketches [34, 48, 49, 52, 63] and programmable switch coun-
ters [38, 54] expose traffic volume statistics using summary data
structures and flow counters on switches. Marple enables monitoring
performance statistics much broader than the flow-counter-based
statistics from these prior works (Fig. 7). Unlike sketches, which
trade off accuracy with memory, Marple implements counters with
full accuracy, since counting is a linear-in-state aggregation. Instead,
Marple trades off cache eviction rate with cache memory size.

In-band Network Telemetry (INT) [12, 44] exposes queue lengths
and other performance metadata from switches by piggybacking
them on the packet. Marple uses INT-like performance metadata, but
provides flexible aggregations directly on switches. Marple’s data
aggregation on switches provides three advantages relative to INT.
First, without aggregation, each INT endpoint needs to process per-
packet data at high data rates. Second, on-switch aggregation saves
the bandwidth needed to bring together per-packet data distributed
over many INT endpoints. Third, on-switch aggregation can handle
cases where INT packets are dropped before they reach endpoints.

Network query languages. Prior network query languages [35,
38, 41, 54] allow users to ask questions primarily about traffic vol-
umes and count statistics, since their input data is collected using
NetFlow and match-action rule counters [51]. In contrast, Marple
allows operators to ask richer performance questions by design-
ing new switch hardware to support Marple queries. Marple shares
some functional and relational constructs with Gigascope [35] and
Sonata [41], but supports aggregations directly in the switch. Marple
allows operators to program online queries over traffic, enabling the
collection of fine-grained customized statistics at low overhead. It is
complementary to offline query systems that answer post-facto ques-
tions over historical data collected by sampling or packet captures.

7 CONCLUSION
Performance monitoring is a crucial part of the upkeep of any large
system. Marple’s network visibility and query language demystify
network performance for applications, enabling operators to quickly
diagnose problems. We want network operators to query for what-
ever they need, and not be constrained by limited switch feature sets.
Marple presents a step forward in enabling fine-grained and pro-
grammable network monitoring, putting the network operator—and
not the switch vendor—in control of the network.



SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA S. Narayana et al.

Acknowledgments. This work was supported by NSF grants CNS-
1563826, CNS-1526791, and CNS-1617702, DARPA I2O Award No.
HR0011-15-2-0047, and a gift from the Cisco Research Center. We
thank Jennifer Rexford, Fadel Adib, Amy Ousterhout, our shepherd
Marco Canini, and the anonymous SIGCOMM reviewers for their
thoughtful feedback.

REFERENCES
[1] 45 nanometer - Wikipedia, Technology demos. https://en.wikipedia.org/wiki/45_

nanometer#Technology_demos.
[2] An Update on the Memcached/Redis Benchmark. http://oldblog.antirez.com/post/

update-on-memcached-redis-benchmark.html.
[3] Barefoot: The World’s Fastest and Most Programmable Networks.

https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-
Most-Programmable-Networks.pdf.

[4] Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap
Machines). https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-
2-million-writes-second-three-cheap-machines.

[5] Broadcom First to Deliver 64 Ports of 100GE with Tomahawk II 6.4Tbps Ethernet
Switch. https://www.broadcom.com/news/product-releases/broadcom-first-to-
deliver-64-ports-of-100ge-with-tomahawk-ii-ethernet-switch.

[6] Cavium XPliant Switches and Microsoft Azure Networking Achieve SAI Routing
Interoperability. http://www.cavium.com/newsevents-Cavium-XPliant-Switches
-and-Microsoft-Azure-Networking-Achieve -SAI-Routing-Interoperability.html.

[7] Cisco IOS NetFlow. http://www.cisco.com/c/en/us/products/ios-nx-os-software/
ios-netflow/index.html.

[8] Configuring SPAN. http://www.cisco.com/c/en/us/td/docs/switches/lan/
catalyst2940/software/release/12-1_19_ea1/configuration/guide/2940scg_1/
swspan.html.

[9] Data center flow telemetry. http://www.cisco.com/c/en/us/products/collateral/data-
center-analytics/tetration-analytics/white-paper-c11-737366.html.

[10] Gigamon. https://www.gigamon.com/products/visibility-nodes/visibility-
appliances.html.

[11] How Fast is Redis? http://redis.io/topics/benchmarks.
[12] In-band Network Telemetry. https://github.com/p4lang/p4factory/tree/master/

apps/int.
[13] Intel FlexPipe. http://www.intel.com/content/dam/www/public/us/en/documents/

product-briefs/ethernet-switch-fm6000-series-brief.pdf.
[14] Intel64 and IA-32 Architectures Optimization Reference Manual.

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf.

[15] Marple proofs. http://web.mit.edu/marple/marple_tr.pdf.
[16] Microsoft bets big on SDN. https://azure.microsoft.com/en-us/blog/microsoft-

showcases-software-defined-networking-innovation-at-sigcomm-v2/.
[17] Multiply-accumulate operation. https://en.wikipedia.org/wiki/Multiply-

accumulate_operation.
[18] P4-16 Language Specification. http://p4.org/wp-content/uploads/2016/12/P4_16-

prerelease-Dec_16.html.
[19] P4 Behavioral Model. https://github.com/p4lang/behavioral-model.
[20] Redis. http://redis.io/.
[21] sFlow. https://en.wikipedia.org/wiki/SFlow.
[22] SRAM - ARM. https://www.arm.com/products/physical-ip/embedded-memory-

ip/sram.php.
[23] The CAIDA UCSD Anonymized Internet Traces 2014 - June. http://www.caida.

org/data/passive/passive_2014_dataset.xml.
[24] The CAIDA UCSD Anonymized Internet Traces 2016 - April. http://www.caida.

org/data/passive/passive_2016_dataset.xml.
[25] XPliant™ Ethernet Switch Product Family. http://www.cavium.com/XPliant-

Ethernet-Switch-Product-Family.html.
[26] The Future of Network Monitoring with Barefoot Networks. https://youtu.be/

Gbm7kDHXR-o, 2017.
[27] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,

V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed
Congestion-Aware Load Balancing for Datacenters. In SIGCOMM, 2014.

[28] Alizadeh, Mohammad. Empirical Traffic Generator. https://github.com/datacenter/
empirical-traffic-gen, 2017.

[29] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of Control
Dependence to Data Dependence. In POPL, 1983.

[30] A. Arasu, S. Babu, and J. Widom. The CQL Continuous Query Language: Seman-
tic Foundations and Query Execution. The VLDB Journal, 2006.

[31] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred. Taking the Blame
Game out of Data Centers Operations with NetPoirot. In Proceedings of the 2016
Conference on ACM SIGCOMM 2016 Conference, SIGCOMM ’16, 2016.

[32] T. Benson, A. Akella, and D. A. Maltz. Network Traffic Characteristics of Data
Centers in the Wild. ACM International Measurement Conference, Nov. 2010.

[33] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz. Forwarding Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN. In SIGCOMM, 2013.

[34] G. Cormode and S. Muthukrishnan. An Improved Data Stream Summary: The
Count-Min Sketch and Its Applications. Journal of Algorithms, 2005.

[35] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A Stream
Database for Network Applications. In SIGMOD, 2003.

[36] D. R. Ditzel and D. A. Patterson. Retrospective on High-level Language Computer
Architecture. In ISCA, 1980.

[37] M. Dobrescu, K. Argyraki, and S. Ratnasamy. Toward Predictable Performance in
Software Packet-processing Platforms. In NSDI, 2012.

[38] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: A Network Programming Language. In ICFP, 2011.

[39] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown. Design Principles for
Packet Parsers. In ANCS, 2013.

[40] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In SIGCOMM, 2015.

[41] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and W. Willinger.
Network Monitoring is a Streaming Analytics Problem. In HOTNETS, 2016.

[42] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. I Know
What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks.
In NSDI, 2014.

[43] S. Hart, E. Frachtenberg, and M. Berezecki. Predicting Memcached Throughput
Using Simulation and Modeling. In Symposium on Theory of Modeling and
Simulation, 2012.

[44] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières. Millions of Little
Minions: Using Packets for Low Latency Network Programming and Visibility.
In SIGCOMM, 2014.

[45] S. P. Jones and P. Wadler. Comprehensive Comprehensions. In Proceedings of the
ACM SIGPLAN Workshop on Haskell Workshop, 2007.

[46] M. Kumar and K. Prasad. Auto-learning of MAC addresses and lexicographic
lookup of hardware database. US Patent App. 10/747,332.

[47] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid Prototyping
for Software-defined Networks. In HotNets, 2010.

[48] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A Better NetFlow for Data
Centers. In NSDI, 2016.

[49] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman. One Sketch
to Rule Them All: Rethinking Network Flow Monitoring with UnivMon. In
SIGCOMM, 2016.

[50] W. M. McKeeman. Language directed computer design. In Proceedings of the
November 14-16, 1967, fall joint computer conference, 1967.

[51] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Comput. Commun. Rev., 38(2):69–74, Mar. 2008.

[52] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. DREAM: Dynamic Resource
Allocation for Software-defined Measurement. In SIGCOMM, 2014.

[53] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Trumpet: Timely and Precise
Triggers in Data Centers. In SIGCOMM, 2016.

[54] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker. Compiling Path Queries.
In NSDI, 2016.

[55] P. Phaal. SFlow sampling rates, 2016. http://blog.sflow.com/2009/06/sampling-
rates.html.

[56] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet Transactions: High-Level
Programming for Line-Rate Switches. In SIGCOMM, 2016.

[57] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Programmable Packet
Scheduling at Line Rate. In SIGCOMM, 2016.

[58] P. Tammana, R. Agarwal, and M. Lee. Simplifying Datacenter Network Debugging
with PathDump. In OSDI, 2016.

[59] D. Ungar, R. Blau, P. Foley, D. Samples, and D. Patterson. Architecture of SOAR:
Smalltalk on a RISC. In ISCA, 1984.

[60] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let it Flow: Resilient
Asymmetric Load Balancing with Flowlet Switching. In NSDI, 2017.

[61] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,
G. A. Gibson, and B. Mueller. Safe and Effective Fine-Grained TCP Retransmis-
sions for Datacenter Communication. In SIGCOMM, 2009.

[62] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kandula, and C. Kim.
Profiling Network Performance for Multi-tier Data Center Applications. In NSDI,
2011.

[63] M. Yu, L. Jose, and R. Miao. Software Defined Traffic Measurement with OpenS-
ketch. In NSDI, 2013.

[64] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized Streams:
Fault-tolerant Streaming Computation at Scale. In SOSP, 2013.

[65] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,
M. Zhang, B. Y. Zhao, and H. Zheng. Packet-Level Telemetry in Large Datacenter
Networks. In SIGCOMM, 2015.

https://en.wikipedia.org/wiki/45_nanometer#Technology_demos
https://en.wikipedia.org/wiki/45_nanometer#Technology_demos
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
http://oldblog.antirez.com/post/update-on-memcached-redis-benchmark.html
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://barefootnetworks.com/media/white_papers/Barefoot-Worlds-Fastest-Most-Programmable-Networks.pdf
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://www.broadcom.com/news/product-releases/broadcom-first-to-deliver-64-ports-of-100ge-with-tomahawk-ii-ethernet-switch
https://www.broadcom.com/news/product-releases/broadcom-first-to-deliver-64-ports-of-100ge-with-tomahawk-ii-ethernet-switch
http://www.cavium.com/newsevents-Cavium-XPliant-Switches
-and-Microsoft-Azure-Networking-Achieve
-SAI-Routing-Interoperability.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2940/software/release/12-1_19_ea1/configuration/guide/2940scg_1/swspan.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2940/software/release/12-1_19_ea1/configuration/guide/2940scg_1/swspan.html
http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2940/software/release/12-1_19_ea1/configuration/guide/2940scg_1/swspan.html
http://www.cisco.com/c/en/us/products/collateral/data-center-analytics/tetration-analytics/white-paper-c11-737366.html
http://www.cisco.com/c/en/us/products/collateral/data-center-analytics/tetration-analytics/white-paper-c11-737366.html
https://www.gigamon.com/products/visibility-nodes/visibility-appliances.html
https://www.gigamon.com/products/visibility-nodes/visibility-appliances.html
http://redis.io/topics/benchmarks
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-fm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://web.mit.edu/marple/marple_tr.pdf
https://azure.microsoft.com/en-us/blog/microsoft-showcases-software-defined-networking-innovation-at-sigcomm-v2/
https://azure.microsoft.com/en-us/blog/microsoft-showcases-software-defined-networking-innovation-at-sigcomm-v2/
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
https://en.wikipedia.org/wiki/Multiply-accumulate_operation
http://p4.org/wp-content/uploads/2016/12/P4_16-prerelease-Dec_16.html
http://p4.org/wp-content/uploads/2016/12/P4_16-prerelease-Dec_16.html
https://github.com/p4lang/behavioral-model
http://redis.io/
https://en.wikipedia.org/wiki/SFlow
https://www.arm.com/products/physical-ip/embedded-memory-ip/sram.php
https://www.arm.com/products/physical-ip/embedded-memory-ip/sram.php
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2014_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
https://youtu.be/Gbm7kDHXR-o
https://youtu.be/Gbm7kDHXR-o
https://github.com/datacenter/empirical-traffic-gen
https://github.com/datacenter/empirical-traffic-gen
http://blog.sflow.com/2009/06/sampling-rates.html
http://blog.sflow.com/2009/06/sampling-rates.html

	Abstract
	1 Introduction
	2 The Marple Query language
	3 Scalable Aggregation at Line Rate
	3.1 The associative condition
	3.2 The linear-in-state condition
	3.3 Scalable aggregation functions
	3.4 Handling non-scalable aggregations
	3.5 A unified condition for mergeability
	3.6 Hardware feasibility

	4 Query compiler
	4.1 Network-wide to switch-local queries
	4.2 Query AST to pipeline configuration
	4.3 Handling linear-in-state aggregations

	5 Evaluation
	5.1 Hardware compute resources
	5.2 Memory and bandwidth overheads
	5.3 Case study #1: Debugging microbursts
	5.4 Case study #2: Flowlet size distributions

	6 Related Work
	7 Conclusion
	References

