
A Locally Coordinated Scatternet Scheduling Algorithm

Godfrey Tan and John Guttag
MIT Laboratory for Computer Science

Cambridge, MA 02139�
godfreyt, guttag � @lcs.mit.edu

Abstract

There is growing interest in wireless personal area net-
works built from portable devices equipped with short-
range radio interfaces such as Bluetooth. These small
networks (called piconets) can be internetworked to form
larger scatternets by means of bridge nodes that participate
in more than one piconet on a time division basis. How well
this works depends to a large part on the mechanism used
to schedule communication across piconets.

In this paper, we present a novel online scatternet
scheduling algorithm, LCS, that effectively coordinates one-
hop neighbors to converge to an efficient scatternet-wide
communication schedule. Unlike previous work, LCS is
robust and responsive to network conditions, dynamically
adjusting the schedule based on varying workload condi-
tions. We demonstrate that LCS has good performance on
throughput, end-to-end packet latency and energy usage un-
der various traffic loads.

1. Introduction

Bluetooth [2] is emerging as one the RF technologies of
choice for short-range communication between low-power
devices. The standard specifies mechanisms for establish-
ing connection with nearby devices in an ad hoc man-
ner [2, 5, 3]. Bluetooth achieves robustness against interfer-
ence from nearby devices by employing a frequency hop-
ping technique and time division multiplexing (TDM). This
facilitates high densities of communicating devices, making
it possible for dozens of small networks (called piconets)
to co-exist and independently communicate in close prox-
imity without significant performance degradation. It is
also possible to internetwork multiple piconets to create a
larger scatternet. In this paper, we identify the challenges
in effectively scheduling Bluetooth communication links in
scatternets and present an efficient scheduling algorithm for
both intra-piconet and inter-piconet communication. While
some aspects of the work is Bluetooth-specific, most of our
results are applicable to any TDM-based link technology.

Scheduling communication links in Bluetooth scatter-
nets presents an interesting challenge. Two properties of
scatternets make this task a difficult one. First, devices in a
Bluetooth piconet communicate using a polling scheme in
which one side of a link plays the role of master and other
the role of a slave. A slave is allowed to transmit only if
it has been polled by the master in the preceding time slot.
Second, piconets are interconnected via bridge nodes that
participate in multiple piconets on a time division basis.

There are two types of bridge nodes: slave and master.
In Figure 1, master bridge � participates as slave in � ’s
piconet and as master in its own piconet. Slave bridge �
communicates as slave in both � and � ’s piconets. Coor-
dination among nodes is required to successfully and effi-
ciently transfer packets within the scatternet.

This paper presents a locally coordinated scheduling al-
gorithm (called LCS) for Bluetooth scatternets. LCS

� Coordinates one-hop neighbors to efficiently converge
to an efficient scatternet-wide link schedule,

� Dynamically adjusts for each link both the duration of
and the interval between communication events based
upon changing traffic patterns,

� Tolerates intermittent connectivity, and

� Allows for schedules that are optimized for system-
wide throughput, end-to-end communication latency,
or energy consumption.

LCS achieves an efficient scatternet wide schedule by

1. Computing the duration of the next meeting based on
queue size and past history of transmissions so that the
duration is just large enough to exchange all the back-
logged data,

2. Computing the start time of the next meeting based on
whether the data rate observed is increasing, decreas-
ing or stable so that it responds to varying traffic con-
ditions quickly without wasting resources,

3. Grouping together meetings with the same traffic char-
acteristics to reduce wasted bandwidth of nodes and
end-to-end latency,

1

2

Master

Slave

A B

C

D

E

Slave bridge

Master bridge

Figure 1. A Bluetooth scatternet

4. Aligning meetings at various parts of the scatternet
in a hierarchical fashion so that the number of par-
allel communication is high, increasing system-wide
throughput significantly, and

5. Reducing the amount of time a node spends transmit-
ting packets while the receiver is not ready, thus con-
serving energy.

The structure of scatternets can greatly influence the de-
sign of scatternet-wide scheduling algorithms. Several re-
search groups [9, 14, 13] have discussed the advantages of
loop-free topologies, and we designed LCS to work best
for such topologies. LCS does not depend on how piconets
are bridged. The scatternet formation scheme presented
in [13] uses master bridge nodes while the scheme described
in [9] uses slave bridge nodes. LCS provides efficient in-
tra and inter-piconet communication for scatternets using
both master nodes as bridges (as proposed in [13]) and slave
nodes as bridges (as proposed in [9]).

In Section 2 we present the design goals that drove our
design. In Section 3, we discuss the prior work in related
research areas. We present LCS in detail in Section 4, and
evaluate its performance through simulation in Section 5.

2 Design Goals

A scatternet scheduling algorithm must work well for
two general classes of application: delay sensitive and
throughput sensitive. Delay sensitive applications range
from simple applications controlling Bluetooth enabled
mice to voice and streaming applications. These appli-
cations send packets of fixed-size application data units
(ADUs) periodically and have worst case per-packet delay
requirements. The delay sensitive applications are usually
not bandwidth-intensive since ADUs tend to be small in size
and are not generated rapidly by the applications. Of course,

there could also be applications such as realtime video that
are both latency sensitive and bandwidth intensive.

Throughput sensitive applications include various file
transfer applications such as FTP and email applications.
Throughput sensitive applications are concerned with trans-
mitting large ADUs as quickly as possible. They tend to use
reliable transport protocols and are bursty in nature. These
applications are more concerned with the average through-
put available than the per-packet delay perceived.

Since many network nodes will be battery powered, en-
ergy efficiency is also an important consideration. The en-
ergy required to actually transmit and receive a bit of appli-
cation data is independent of scheduling algorithm. How-
ever, in many cases the energy consumed by communica-
tion overhead is significant or even dominant. In particular,
“listening” for packets that don’t arrive consumes a great
deal of energy. We therefore evaluate the energy efficiency
of a schedule as the ratio of the time the node has been ac-
tive to the number of application bytes a node successfully
transmits and receives.

As we demonstrate in Section 5, there is often a tradeoff
between communication latency and energy consumption.
When two nodes fail to recognize that they could commu-
nicate, latency is increased. On the other hand, energy is
wasted when

1. An end node is active on a link while the other is busy
communicating on another link, or

2. Two end nodes establish a communication link with
each other but don’t exchange data during the entire
period the link is active, or

3. Bridge nodes switch between piconets with poorly
synchronized master clocks incurring the so-called
bridging overhead.

The key to managing this tradeoff is the way in which the
scheduler coordinates end nodes communicating on multi-
ple links. The coordination can be done statically or dynam-
ically.

A static scheme can be advantageous when traffic pat-
terns are known in advance and vary little over time. How-
ever, we don’t expect this situation to prevail in most cases.

LCS is a dynamic and distributed scheduling algo-
rithm. Nodes coordinates communication among neighbor-
ing nodes while allocating bandwidth based on current local
traffic conditions. LCS optimizes the overall efficiency of
the scatternet, in terms of throughput, latency and energy,
by minimizing wasted and missed communication oppor-
tunities and piconet switches. We discuss LCS in detail in
Section 4 after presenting some background material and an
overview of related work in the next section.

3. Background and Related Work

As discussed above, a Bluetooth scatternet connects a set
of piconets. Each piconet consists of one master and up to
seven slaves. Bluetooth is a time-slotted system where each
transmission time slot takes 625 microseconds. The master
and slaves use alternate transmission slots. In even slots,
the master sends a frame to a single slave, which responds
in the following odd slot. The Bluetooth standard calls for
links to have a maximum capacity of 1Mbps. However, the
effective data rate varies depending on the type of Blue-
tooth Baseband packets used. The Baseband data packets
can be 1, 3 or 5 slots long. Note that an ADU may be seg-
mented into multiple smaller Bluetooth Baseband packets.
Special POLL and NULL packets are used to poll (by mas-
ter) and respond (by slave) when there is no data packet
available. Thus a POLL-NULL sequence indicates that nei-
ther the master nor slave has data for the other.

Although protocols for intra-piconet scheduling have
been studied extensively [15, 8, 6, 7], there has been little re-
search work done for scatternet-wide link scheduling. The
authors in [1] present a scatternet scheduling scheme that
provides fair link bandwidth allocation. Each node makes
an independent decision to communicate with other nodes
depending on its fair share of bandwidth. Due to the lack
of coordination, their scheme does not scale as the num-
ber of forwarding hops along the communication path in-
creases beyond a couple of hops, and is not responsive to
varying traffic conditions. Racz et al. present a pseudo-
random scheduling scheme (called PCSS) for Bluetooth
scatternets [11]. In PCSS, every node randomly chooses
a communication checkpoint that is computed based on the
master’s clock and the slave’s device address. When both
end nodes show up at a checkpoint simultaneously, they
communicate until one of the nodes leaves to attend to an-
other checkpoint. In order to adapt to various traffic condi-
tions, PCSS measures the link utilization in a coarse grain
manner and adjusts the checking period accordingly.

The advantage of PCSS is that it achieves coordination
among nodes with very little overhead. However, since
PCSS is based on a randomized scheme, as the density of
nodes grows, there will be scheduling conflicts among var-
ious checkpoints resulting in missed communication events
in which one end node is actively waiting for another node
that is busy communication with some other node. LCS co-
ordinates nodes in a manner that eliminate all scheduling
conflicts. In response to changing traffic on a link, PCSS
increases or decreases the interval between two successive
communication events on that link by a fixed multiple. It
does not change the duration of communication events nor
does it coordinate with other links. This makes it less re-
sponsive to bursty traffic than LCS, which adjusts both the
intervals between communication events and the duration
of those events.

4. LCS: Locally Coordinated Scheduling

LCS is based on the concept of scheduled meetings
called appointments. End nodes on a particular link meet
according to their appointment and exchange data during
the meeting. Before the meeting is terminated, the two end
nodes1 negotiate the � ������� time and the minimum �	� �
��������
of their next meeting:

� A parent sends a list of possible future meeting start
and finish times to a child, and

� The child replies with desired start and finish times of
one future meeting, which fall within one of the meet-
ing periods suggested by the parent.

The choice of meeting time and duration by both par-
ent and child dictates the effectiveness of the link sched-
ule. LCS monitors the traffic characteristics associated with
each link and attempts to arrive at an efficient scatternet-
wide schedule based on them. The rest of this section de-
scribes LCS in detail and explains how it converges to an
efficient scatternet-wide schedule.

4.1. Protocol

LCS is distributed with each node running the same pro-
cedure as shown in Figure 2, RUN. Each node keeps an
ordered (by start time) list of outstanding appointments,��� � � � , and each appointment is denoted by a pair ���������
��� ,
where � is the communication link with which the appoint-
ment is associated and ��� and �
� represent the start and finish
times of the future meeting. Observe that there is always
exactly one outstanding appointment associated with each
link since two nodes negotiate for it at the end of the previ-
ous meeting.

This first meeting between the two nodes occurs when
they establish a new communication link. LCS requires the
nodes to remain active on that link for several time slots.
During this period, the nodes follow connection establish-
ment procedures required by higher Bluetooth layers such
as L2CAP. The nodes remain communicating until either i)
one of them needs to attend another meeting, ii) there is no
more data to exchange, or iii) there is no more buffer space
left at the receiving node to store packets. In each case,
one node declares the meeting over and then both nodes ne-
gotiate the start time and the duration of the next meeting.
Each node can then attend another meeting or sleep to save
power.

An end node indicates its desire to end the meeting by
sending a single-slot LCS packet (see SENDPKT). There are

1End nodes can be assigned parent and child roles starting from a des-
ignated root node in any loop-free networks for which LCS is designed to
work best.

PROCEDURE RUN() �
do forever

� � � � � � ��� pop(��� � � �)
sleep for max((� ����� � ���),) slots
communicate on link �
if(wishes to end the meeting)

choose
��
���

based on the reason for termination
SENDPKT(

��
����
)

if(a LCS packet
�

is received)
RECVPKT(

�
)�

PROCEDURE SENDPKT(
��
����

) �
UPDATELINKSTATES(

���
, � ��)

��������� COMPUTEDURATION(
��
����

, � ��)
��������� COMPUTERECESS(

��
����
) � � � ���

��������� PARENTCONVERGE(������)
for each

� �"!
to #%$'&(& ���)+*, �-).*/ ��� vacant period after � �����

send a
��
����

pkt containing � ��� , �.����� and ��) *, �-) */ ��
PROCEDURE RECVPKT(

�
) �

if(
�

is from child)
SENDPKT(

�10 ��
���
)

else if(
�10 ��
����'�

LCS REP)
modify � � � � � with (

��0 ������ , �10 �������)
else /* LCS REQ, LCS QFULL, or LCS NONE */

��������� COMPUTEDURATION(
��
����

, � ��2� �10 � ��)
� ������� ������� � � � CHILDCONVERGE(������� , �)
send a LCS REP pkt containing ������ and �������
modify � � � � � with (������ , �������)�

Figure 2. Pseudo-code of the LCS protocol

three different kinds of termination packet, each indicating
a different reason for terminating the meeting. When a node
needs to attend another meeting, it informs the other node
by sending a LCS REQ packet. When the agreed duration
is longer than necessary to transmit the back-logged data,
the node sends a LCS NONE packet. As described before,
the POLL-NULL sequence indicates the absence of data to
exchange. Finally, when the receiver’s buffer is overflow-
ing, the receiver sends a LCS QFULL packet to the sender.
Note that other than the case when there is no data to ex-
change, two nodes communicate for at least ��� �3� � � � time
slots.

Sending a LCS packet of any kind marks the beginning
of the negotiation process for the future meeting. Note that
either parent or child can initiate the negotiation process
which includes two steps: i) the parent suggests possible
future appointments and ii) the child chooses the most suit-
able one among them. When the parent node realizes that

PROCEDURE UPDATELINKSTATES(tx, qsz) �
avg tx � tx 465 + (1 - 5) 4 avg tx
avg qsz � qsz 465 + (1 - 5) 4 avg qsz
����� max(clock, ���) � ���� � � ��� � ���879�
���1� ���;: ���
update avg r and avg u based on past #=<
values of

� � and ����
PROCEDURE COMPUTEDURATION(type, qsz) �

��������� max(avg tx, avg qsz)
if(type

�
LCS REQ and qsz > 0)

��������� ��������� qsz 4@?BA ,�C
��������� max(������� , qsz)
��������� min(� $'DFE , max(����� � , � $ *HG))
return ��������

PROCEDURE COMPUTERECESS() �� <I� � <�� 1
if(idle for long time and �J�K>L)

tar r �NM *HGO* �
else if(

� <QP # <)
tar r � average

�
value

if(no data transmitted or data rate is decreasing)
tar r � tar r 4@R

else if(data rate is increasing)
tar r � tar r

: R
if(tar r is unmodified and data rate is stable)

tar r � (tar u
:

avg u) 4 tar r� �����Q� min(MS$IDTE , tar r)
return

� ������

Figure 3. Pseudo-code to compute
�

and �

the current meeting is terminating, it calls appropriate rou-
tines to update per-link states and to compute the suitable
meeting times and durations, and then, sends a LCS packet
containing a list of possible meeting start and finish times.
The child replies with a LCS REP packet containing the
most suitable meeting time and duration. Each node then
modifies � � � � � accordingly and sleeps until it is time to at-
tend another meeting. The rest of this section explains the
protocol in detail.

4.2. Per-link States

The critical part of LCS is how it computes a suitable
future meeting time and duration. Computing the start time
and duration of a future meeting on a link depends not only
on the current and expected future traffic loads associated
with that link but also on the current and expected future

loads of adjacent links. Scheduling the meeting at the ear-
liest time may result in a waste of resources when there is
no data to exchange. Similarly, scheduling a long meeting
could result in a waste of bandwidth if there is not enough
data to be exchanged during that period. On the other hand,
scheduling short meetings increases the bridging overhead.

To deal with dynamic traffic conditions, each node mon-
itors the traffic characteristics of every adjacent link. Each
node maintains for each link � 2 the averages of: i) the num-
ber of slots used to transmit or receive data packets during
a meeting,

���
, ii) the combined output link queue size, � �� ,

iii) the recess interval,
�
, i.e., the time between the start time

of the current meeting and the finish time of the preced-
ing meeting associated with the same link, and iv) the link
� ��� � � � �������� , � � � E� , where � is the duration of the current
meeting. � � !

means that the nodes are utilizing all of its
allocated link bandwidth whereas � � 	 means that there is
no data to exchange.

When the negotiation process for a future meeting be-
gins, the link states are updated as described in UP-
DATELINKSTATES in Figure 3.

�)�� ���
and

�)�� � ��� are the
exponentially weighted moving averages associated with
the link and 	�� 5��

!
is the weight assigned to the most

recent value.
�)�� �

and
�)�� � are the unweighted averages

of the last #%< values of
�

and � respectively. We will ex-
plain how these averages are used in Section 4.4

All variables associated with the link have time-slot
units. Based on the link states, LCS computes the duration,
������� , and the recess interval,

� ����� , of the next meeting. The
start time of the next meeting, ���� � , is simply

� �����1� � � ��� ,
where � � ��� is the current clock value. Together � and

�
dic-

tate the bandwidth available to each link, per-packet latency
and energy efficiency. Imagine that two nodes are meeting
periodically to exchange a fixed amount of data. The band-
width allocated to the node is

�
� � < and can be increased

or decreased by adjusting either � or
�
. Also note that the

higher the value of
�
, the larger the end-to-end packet la-

tency and the more energy is conserved. In the next few
subsections, we explain how LCS computes � and

�
based

on the link states.

4.3. Computing Meeting Duration

Procedure COMPUTEDURATION in Figure 3 calculates
the desired duration of the next meeting, �.��� � . The goal is
to allocate the minimal number of transmission slots for the
two nodes to exchange data when they meet the next time.
Simply put, we want to choose suitable �.��� � so that the link
utilization is high. LCS computes the expected amount of
data to be transmitted in next meeting as the function of the
weighted average of the past transmissions,

�)�� ���
, and of

the combined link queue size,
�)�� � �� . This allows LCS

2We are omitting the subscript � for each of these variables for clarity.

to respond quickly to sudden changes in traffic conditions.
We use exponentially weighted moving averages since the
most recent values give the best indication of the immediate
future.

When the meeting is terminated as a result of one of
the nodes needing to attend a different meeting and there
is still data in the current link’s queue, LCS increases the
next meeting duration (thus, channel bandwidth), �+��� � , by
? A ,�C 4 � ��� slots. This adjustment improves efficiency by
reducing the number of piconet switches and negotiation
overhead. We show in Section 5 that setting ? A ,�C � 	 0	�
works well for various traffic patterns.

Having a long communication interval at each hop will
increase buffering delay, and thus, per-packet latency, and
also starve other nodes. To avoid this, �+����� is upper-
bounded by � $'DFE . Thus, if multiple links are busy, each
of them will be able to transmit for � $IDTE slots. Further-
more, to ensure that the two nodes can communicate again
in the future, ����� � is lower-bounded by �;$ *HG .

4.4. Computing Recess Interval

Computing the recess interval before the next meeting
begins,

� ����� , is more complicated than computing �.����� .
The main challenge is to find a method that works well for
both bandwidth sensitive applications and latency sensitive
applications.� ����� is adjusted according to the data rate and the na-
ture of the traffic flows going through the link. If bandwidth
intensive flows are going through the link, we aggressively
allocate more bandwidth to the link. However, if the data
rate is decreasing as a result of some flows stopped transmit-
ting, we improve energy efficiency by reducing bandwidth
allocation. Furthermore, if the flows are latency or energy
sensitive, we provide flexibility to tradeoff between latency
and energy.

LCS detects a change in traffic conditions by compar-
ing the link characteristics of the two most recent intervals.
Based on

���
,
�
, and � , LCS determines whether the data rate

is i) increasing, ii) decreasing or iii) stable.3 If the data rate
is increasing, LCS increases the bandwidth allocated to the
link by reducing

�
. Conversely, if the data rate is decreas-

ing,
�

is increased to avoid meetings where no useful data
is exchanged.

COMPUTERECESS computes the next recess interval ac-
cording to current traffic conditions and stores it in

����� �
(for target recess). The first if statement increases respon-
siveness in a way described shortly. Unlike COMPUTEDU-
RATION, COMPUTERECESS adjusts

���	� �
once every # <

meetings and
� ����� is simply assigned to

����� �
. This al-

lows nodes to coordinate effectively as they settle on a sta-
ble meeting schedule for a certain period before the recess

3Exactly how LCS determines the nature of the traffic is subtle, and
omitted due to space constraints.

interval is adjusted again. Note that
����� �

is reset to the av-
erage

�
value measured every # < meetings. This feedback

mechanism enables LCS to adjust
���	� �

dynamically based
on the current traffic conditions. As we shall see in Sec-
tion 4.5, the measured

�
value between two meetings could

be different from
����� �

.
Increasing

����� �
will result in reduced bandwidth on that

link as nodes meet less frequently whereas decreasing
���	� �

will result in increased bandwidth. When there is no ap-
plication data exchanged during the last window, LCS in-
creases

����� �
by a factor of R > !

. Thus, if a link has been
idle for a long time (i.e. no data exchanged),

����� �
will be-

come big. When a node receives data after a long idling
period, LCS increases the responsiveness quickly by setting����� �

to M * GO* � (the first if statement). When LCS detects
the decline in data rate, it increases

����� �
by a factor of R .

When LCS detects the increase in data rate, it reduces
����� �

by a factor of R .
LCS constantly monitors the traffic condition to deter-

mine whether the data rate has become stable. The data
rate observed on a link can become stable for two different
reasons: i) the link is saturated, i.e. end nodes are already
transmitting data at a maximum capacity allocated, or ii)
the applications are non-bandwidth intensive and are trans-
mitting data at a steady low rate. If it is the former, we do
not adjust the recess interval since it will have no useful ef-
fect. If it is the latter, we can decrease the per-packet latency
by activating the link more frequently. Doing so decreases
the scheduling delay at each hop and thus, reduces end-to-
end packet latency. Unfortunately, this will also result in
higher energy usage since more frequently, nodes will not
have data to exchange.

Hence, when the data rate is stable, LCS adjusts
����� �

based on the predefined parameter
����� � .

����� � is a tar-
get utilization parameter that users can initialize, and LCS
adjusts

� ����� periodically so that the average utilization,�)�� � , will be close to
���	� � . For low data rate applica-

tions,
�)�� � is a direct measure of how often the nodes

meet compared to the actual rate of the data. If the end
nodes meet as frequently as the data packets are transmit-
ted,

�)�� � , will be close to
!
.
�)�� � � 	 0 � means that the

nodes are meeting roughly twice as fast as the data trans-
mission rate since at half of the meetings, there will be no
data to exchange.

We now explain how
����� � is used to control the end-

to-end latency and energy usage. Observe that the differ-
ence between the time that a packet is enqueued and the
time that the two nodes meet could be as high as

����� �
. We

call this difference the scheduling delay. Since this delay
adds up over each hop, an effective way to reduce end-to-
end latency is to reduce the scheduling delay at each hop.
This can be achieved by activating links more frequently,
i.e. reducing

���	� �
. However, as explained before, reduc-

ing
����� �

decreases average utilization, and thus, increases

PROCEDURE PARENTCONVERGE(������) �
if(tar r is unmodified)�

link ��� ����� and
���

are within � and ���� �
� � �����	 � ������� �K� min ��� ������ � ����� � �
�������'� � �����	
return ����� ��

PROCEDURE CHILDCONVERGE(�.����� , �) �
� ������� max(������� , �10 � �����)
for each � �10)+*, � �10).*/ �� �
��)��

�, P �10) *, and) �
�/� �10) */� 	 � min � �

�
�

�������'�)�� 	,
�������'� ��������� min �)�� 	/ �)�� 	, ��� ��� � �
return ��������� ��������� ��

Figure 4. Pseudo-code to converge to an effi-
cient schedule.

D

A

B

E F

C

G H

1

1/3 1

2

2/3 2

3

Figure 5. A scatternet containing 8 nodes
where � is the root. The numbers on the
links denote the communication rounds as-
sociated with the links.

the energy usage. LCS allows users to set
���	� � so that

desired latency and energy requirements can be achieved.
COMPUTERECESS modifies

����� �
whenever

�)�� � is not
within � percent of

����� � . We will examine this latency
and energy tradeoff through simulation in Section 5. Lastly,����� �

is upper-bounded by MS$'DFE so that the two nodes will
meet every M $IDTE time slots even if they don’t have any data
to exchange. Although doing so could potentially result
in wasteful communication events, this is necessary to en-
sure that nodes can communicate again in a timely fashion
should data start arriving.

4.5. Converging to an Efficient Schedule

So far, our computation of �.����� and
� ����� of a link �

solely depends on the traffic conditions observed on that
link. However, since each link is activated on a time di-
vision basis, the overall efficiency of the node depends on

(st,ft)

(st,ft)

(s t+1,ft+1)(st+1,ft+1)

(v1
s, v1

f)

(v’1
s, v’1

f)

Parent’s listm

Child’s listm
(v’2

s, v’2
f)

d1 d2

g2

Figure 6. Parent and child’s meeting lists

how well various meetings on multiple adjacent links can
be coordinated. It is important that the scheduling of a new
meeting does not result in cancellation of existing meetings
since doing so will result in unsuccessful communication
events. LCS never schedules overlapped meetings and thus,
eliminates scheduling conflicts. Most importantly, LCS ar-
rives at an efficient scatternet-wide link schedule by coordi-
nating one-hop neighbors.

As explained in Section 4.1, either the parent or the child
may send a LCS packet (see SENDPKT) to begin the negoti-
ation process for determining the next meeting time and du-
ration. First, the parent node computes ������� and ������� and
sends a packet containing the following fields: i) the vacant
periods, ��) *, �) */ � , where

! � # $'&(& � , ii) the recom-
mended duration for the future meeting, �+����� , and iii) the
current link queue size, � �� . Note that � �� is the combined
size of both end nodes’ queues. Each pair of () *, ,) */) rep-
resents the start and finish times of a vacant period or �

��
in the meeting list ��� � � � of the parent (see Figure 6). The
child then picks the most suitable meeting time and duration
and informs the parent via a LCS REP packet. Both nodes
update their meeting list and continue executing RUN.

Keep in mind that LCS is designed to be used to sched-
ule loop-free scatternets. It takes advantage of the following
facts to converges to an efficient scatternet-wide link sched-
ule:

1. Starting from a root node, scheduling links in a hier-
archical fashion yields a scatternet-wide schedule in-
volving a maximal matching of active links, and

2. The efficiency of the scatternet-wide schedule depends
on how tightly meetings are scheduled at every level.

Consider the loop-free scatternet in Figure 5. Observe
that starting from the root node � , a maximal matching of
links can be scheduled simultaneously in each communica-
tion round. A matching is � �.� � � � � if no matching can
result by adding an extra link to it. For simplicity, assume
that this scatternet is constructed using master bridge nodes
and that � is a master node and � , � , and � are master
bridge nodes. Starting from � , we can assign a communi-
cation round to each link so that no two adjacent links have
the same communication round assigned. Observe that the

total number of links that can be activated in each communi-
cation round is also the maximum possible. The higher the
degree of parallelism, the larger the system-wide through-
put.

Since each meeting is scheduled independently based
on the traffic characteristics associated with the link, there
could be gaps between meetings in the node’s meeting list,��� � � � . Each gap can potentially become unused bandwidth
reducing the efficiency of the link schedule. Observe that
the higher the degree of fragmentation in � � � � � , the harder
it is for two nodes to negotiate for a mutually convenient
meeting. Thus, it is important that the number of gaps be-
tween meetings remains small. To achieve this, LCS or-
ganizes the meetings with similar traffic characteristics and
schedules them consecutively. As shown in the PARENT-
CONVERGE routine in Figure 4, LCS modifies ������ of link� so that the meeting begins right after the closet meeting
with similar data rate has ended. Of course, this adjustment
only happens if there is no change in traffic conditions, i.e.,����� �

is left unmodified by COMPUTERECESS.
The parent node then chooses #=$'&(& � vacant intervals af-

ter ������� . Each vacant interval ��) *, �-) */ � represents the gap
between two meetings whose start times are greater than
������� (see Figure 6). The start time of the last vacant in-
terval is always the maximum of the finish time of the last
meeting and ������ , and its duration is � . The parent then
sends the list of ��) *, �-) */ � along with ������� and � ��� to the
child. Observe that the child will always be able to pick a
meeting whose start and finish times fall between one of the
vacant intervals suggested by the parent.

When the child receives a LCS packet, it figures out
the most suitable meeting time and duration as shown in
RECVPKT. The child first updates its link states and calcu-
lates its own desired meeting duration. Sometimes, the du-
ration suggested by the parent may be different from the one
desired by the child and so the child simply picks the max-
imum of the two as � ����� . For each vacant interval ��) *, �)+*/ �
suggested by the parent, the child looks in its � � � � � to see
there is any vacant interval ��) � �, �) �

�/ � that falls within) *, and
) */ . If there is more than one vacant interval that meets the
requirements, the child picks the one with the highest effi-
ciency,

�
, defined as follows:

� � � 	 0	� 4 �
�

� �
� � �

�
� �

	 0 � 4��
�

��) �
�/ � � � ��� � � (1)

where �
� � � ��� � � ��� ���) �

�/ �)�� *, � , �
� � �)�� �, �� �.� �������-) �, � ��� ��)�� �, �) �, � , and ��� is the finish time of the

meeting preceding the vacant interval ��) � �, �) �
�/ � . �

�
repre-

sents the duration of a possible future meeting whereas �
�

represents the sum of the gap at parent and that at the child
if the future meeting is to take place between) �

�, and) �
�/ .

Therefore,
� �

ensures that the child schedules the meeting

at the earliest time (first term) that will result in the small-
est combined gap (second term) at both parent and child’s��� � � � . Figure 6 shows the meeting lists of both child and
parent during the negotiation process. In the figure, there
are two possible vacant intervals in the child’s ��� � � � during
which the next meeting can be scheduled. According to the
Equation 1, the child will pick the first one. The child then
sends a

� ��� M���� packet containing the desired meeting
start and finish times � �������� ������� � . Both nodes update their
meeting list properly, terminate the meeting, and either go
to sleep or attend a meeting associated with a different link.

4.6. Fault Tolerance, Fairness and Implementation

In practice, links may temporarily fail due to crashes or
mobility. Therefore, an end node may not show up dur-
ing the agreed-upon meeting period. A master node detects
the absence of a slave node when it does not receive any
response after polling it for #��	� � � times consecutively. Sim-
ilarly, a slave node assumes that the master is absent after
not being polled in # �
� � � consecutive even slots. This grace
period is necessary to cater for clock drifts especially when
two nodes haven’t met for a long period.

When end nodes do not meet in the agreed meeting pe-
riod, they both reschedule the future meeting automatically
based on the last agreed meeting start time, � � D , � . Each
node chooses an appropriate future meeting beginning at
� � D , ����� 	 4��� D * � , where �� D * � is the waiting period and �
is the number of rescheduling attempts.

If a node detects that the other end node misses the meet-
ing for several times, it will assume that its counterpart has
disappeared and disconnect the Bluetooth link. If a node de-
sires to re-connect to the scatternet, it must again go through
the discovery procedures required by the scatternet forma-
tion scheme as described in [13].

We are currently investigating to integrate a suitable fair
queuing algorithm with our scheduling scheme. Several
existing algorithms such as Fair Queuing [4] and Deficit
Round Robin (DRR) [12] exist to provide fairness among
competing flows going through routers. Both schemes re-
quire proper classification of flows and a significant amount
of memory and thus, may not be suitable for Bluetooth
devices with small memory. Fair bandwidth allocation in
Bluetooth is further complicated by the facts that forward-
ing nodes communicate on adjacent links on a time division
basis.

LCS can be implemented within the existing Bluetooth
specification. The only mechanism required by LCS is how
to activate and deactivate communication links as needed.
The Bluetooth specification describes two mechanisms to
achieve that goal: � � � and Sniff. LCS can work with either
mechanism, but we omit the details due to space constraint.

0

100

200

300

400

500

600

1 2 3 4 5 6

T
hr

ou
gh

pu
t (

kb
it/

s)

Number of Hops

TSS
Offline Optimum

Figure 7. Achieved throughput of a TCP flow.

5. Performance Evaluation

To evaluate the effectiveness of our algorithm, we devel-
oped a Bluetooth simulator as an extension to the Network
Simulator (

� �) [10] and implemented LCS in this simula-
tor. We conducted simulation runs under several different
scatternet topologies and various traffic loads and measured
average throughput available, end-to-end packet latency and
energy usage. The results show that LCS responds quickly
to changing traffic conditions and scales well with the in-
crease in the scatternet size and the number of flows. The
rest of this section discusses the simulation setup and per-
formance results in detail.

We use the scatternet formation scheme described in [13]
to generate loop-free topologies of various sizes. For each
scatternet size

�
, where

�
is the total number of nodes in

the network, we run simulations on 20 different topologies
and use the average in evaluating LCS’s performance. Ap-
plications are started simultaneously several seconds after a
single connected scatternet of size

�
has been formed. We

use two different types of applications with varying needs:
FTP and CBR. FTP applications use TCP (New Reno) as
data transport and attempt to send as much data as possible
within the simulation period. CBR applications send fixed-
size packets at a low rate of

�
kbps. The size of each TCP

packet is 512 bytes and that of CBR packet is 335 bytes.
Each flow sends data for about �O	�		� .

We set the LCS parameters as follows: � $ * G � � � ,
� $'DFE � � 	 	 , M $IDTE � ! 	�	 	 , R � !�0 �

, ?BA ,�C � 	 0	� . � $ * G
and M $'DFE dictate the amount of overhead for maintaining
active links with no data to exchange whereas � $'DFE de-
termines the maximum communication period on any link.
R decides how quickly

�
is increased or decreased when

there is a change in traffic conditions and ? A ,�C is a fac-
tor by which � is increased when the link is busy. We use����� � � 	 0	� for all the simulations except when other wise
noted.

 0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

1 2 3 4 5 6

E
nd

-t
o-

en
d

Pa
ck

et
 L

at
en

cy
 (

s)

Number of Hops

tar_u = 0.25
tar_u = 0.35
tar_u = 0.50
tar_u = 0.65
tar_u = 0.75

(a) CBR per-packet delay

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

1 2 3 4 5 6

Pe
r-

pa
ck

et
 C

on
nt

im
e

(s
)

Number of Hops

tar_u = 0.25
tar_u = 0.35
tar_u = 0.50
tar_u = 0.65
tar_u = 0.75

(b) CBR per-packet conntime

0.026

0.028

0.030

0.032

0.034

0.036

0.038

0.040

0.042

0.044

0.046

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Pe
r-

pa
ck

et
 C

on
nt

im
e

(s
)

End-to-end Packet Latency (s)

tar_u = 0.25
tar_u = 0.35
tar_u = 0.50
tar_u = 0.65
tar_u = 0.75

(c) Delay v.s. conntime (4 hops)

Figure 8. End-to-end delay and per-packet conntime of a CBR flow

5.1. Effects of Number of Hops

In this subsection, we analyze how the number of
forwarding hops along the communication path impacts
throughput, latency, and energy consumption.

We start by looking at the available throughput for TCP
flows between a random source and destination pairs in
a scatternet containing 20 nodes. Figure 7 compares the
throughput available to the application (noted as LCS) and
the optimal offline throughput. For the one hop case, the of-
fline optimal throughput is simply the maximum TCP data
rate that can be achieved on a Bluetooth link using 512-byte
packets. We can see that LCS achieves ����� of the opti-
mal throughput. The main overhead of LCS in this case is
maintaining other active links that do not have any data to
exchange. (Recall that each idle link is scheduled for � $ * G
time slots every MS$'DFE time slots.)

The optimal throughput is halved when the number of
forwarding hops is more than one. This is because each
bridge node that is forwarding packets needs to divide its
time between receiving packets from one link and transmit-
ting it over a different link. Ideally, all forwarding nodes
will either be receiving or forwarding data simultaneously
and hence, the optimal multi-hop throughput available will
be one-half of the optimal one-hop throughput. As Fig-
ure 7 shows, the TCP throughput achieved by LCS is not
far from the optimal. The distance from optimal increases
only slowly as the number of forwarding hops increases.

The throughput achieved by LCS is superior to that
achieved by PCSS described in [11]. The authors in [11]
conducted simulations to measure the achieved throughput
of a single TCP flow going through various numbers of
nodes connected in a chain. The published results show that
PCSS achieves about

!�� �
kbps for a 2-hop TCP flow com-

pared with � � 	 kbps achieved by LCS (see Figure 7). We
note that the comparison will be much more meaningful if
we have integrated PCSS in our Bluetooth simulator and we
plan to do so in the future.

Figure 8(a) shows the end-to-end packet latency ob-
served by a single CBR flow sending a ��� � -byte packet ev-
ery 	 0 � ��	�� for various

����� � values. Recall that
����� � is

the target utilization parameter that can be defined by ap-
plications.

����� � � 	 0 � means that LCS nodes along the
forwarding path will be communicating twice as often as
the data rate. As expected, the end-to-end latency increases
as the number of hops increases and the lowest

����� � value
yields the lowest latency.

To evaluate energy efficiency, we look at per-packet
conntime–the ratio of the average time each busy node
spends in the � �� �3� � �(� � state communicating with neigh-
bors to the number of data packets communicated during
each simulation run. Since the amount of energy is needed
for a node in active state to transmit, receive or listen for
data packets is comparable, conntime is a good measure of
energy efficiency.

As shown in Figure 8(b), the curve for the smallest
���	� �

value yields the highest conntime since it stays active for
the most amount of time to transfer the same amount of
data. Figure 8(c) shows the tradeoff between end-to-end
packet latency and per-packet conntime for 4-hop flows. By
adjusting

����� �
appropriately, applications can achieve the

desired balance of packet delay and energy usage.

5.2. Effects of Scatternet Size

The size of the scatternet impacts both throughput and
latency. The experiments covered in this section suggests
that LCS scales well with the increase in scatternet size.

We evaluate this impact under the assumption that ev-
ery node in the scatternet both sends and receives data. In
particular, each node sends data to a random destination
node and no two source nodes send to the same destination
node. Thus, for a scatternet with

�
nodes, there are exactly�

flows.
First, we examine the average throughput per flow when

all flows are TCP flows. As shown in Figure 9(a), the av-

0

20

40

60

80

100

120

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

kb
it/

s)

Scatternet Size

TCP-Average

(a) Average throughput

600

700

800

900

1000

1100

1200

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

kb
it/

s)

Scatternet Size

TCP-Total

(b) Total throughput

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

 0.30

 0.35

 0.40

 0.45

 0.50

5 10 15 20 25 30 35

E
nd

-t
o-

en
d

Pa
ck

et
 L

at
en

cy
 (

s)

Scatternet Size

CBR-Average

(c) Average packet latency

Figure 9. Throughput and latency achieved by all TCP flows and all CBR flows respectively

0

20

40

60

80

100

120

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

kb
it/

s)

Scatternet Size

TCP-Average
CBR-Average

(a) Average throughput

400

500

600

700

800

900

1000

1100

1200

5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

kb
it/

s)

Scatternet Size

Total

(b) Total throughput

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 10 15 20 25 30 35

E
nd

-t
o-

en
d

Pa
ck

et
 L

at
en

cy
 (

s)

Scatternet Size

CBR-Average

(c) Average packet latency

Figure 10. Throughput and latency achieved by mixed TCP and CBR flows

erage throughput goes down as the size of the scatternet in-
creases. This is because as the scatternet size

�
increases

the number of applications (also
�

) increases. Thus, the
average throughput goes down. However, the total through-
put increases with the increase in scatternet size (see Fig-
ure 9(b)). This interesting behavior is because the scatter-
net formation scheme we used produced topologies where
average hop counts between any two nodes grows logarith-
mically as the scatternet size increases [13]. Since we setup�

TCP flows from random source and destination pairs, the
average path length of the flows also grows logarithmically
with the increase in scatternet size. As a result, the number
bottleneck links through which multiple flows go also in-
creases logarithmically with the increase in scatternet size.
The system-wide throughput improves, and in fact, the total
throughput achieved by all the flows increases linearly with
the increase in scatternet size.

We now examine the average end-to-end packet latency
observed by all CBR flows. The setup is the same as the
previous one except that each node now sends a 335-byte
data packet every 	 0	� ��	�� . Note that the end-to-end packet

latency is dominated by the scheduling delay (see Sec-
tion 4.4). The delay increases slowly as

�
increases (see

Figure 9(c)). Again, this is because the average path length
of the flows grows logarithmically with the increase in scat-
ternet size. The average delay slowly increases with the
increase in average hop count.

5.3. Effects of Mixed Traffic

In this section, we analyze how well LCS accommodates
a mixture of bandwidth intensive and low-bandwidth but
delay sensitive applications. We again setup a flow from
each node to a random destination. For each scatternet of

�
nodes, there are G � TCP flows and G � CBR flows.

Figure 10(a) depicts the average throughput per flow
achieved by each class of flows. Again, the average TCP
throughput goes down as the total number of flows in-
creases. Compared to Figure 9(a), the average throughput
is higher since there are only G � TCP flows compared to

�
flows in Figure 9(a). However, the total throughput of

�
mixed flows as shown in Figure 10(b) is significantly less

than that of
�

TCP flows in Figure 9(b) for every scatternet
size. There are two reasons for this. First, when there are�

TCP flows from
�

nodes, every link is busy exchanging
data. But, when there are only G � TCP flows, some bridge
nodes will have links that only carry CBR traffic and as a
result, they devote some of their time to carrying non-TCP
traffic. Note that each of those link is allocated at least

� $ *HG slots every meeting. Second, the presence of those
links result in a higher degree of fragmentation in bridge
nodes’ meeting lists and thus, it becomes harder for LCS to
coordinate links without some inefficiency. Nevertheless,
it is clear that LCS maintains high throughput for the TCP
flows while providing the necessary throughput required by
the CBR flows.

Figure 10(c) shows the average packet latency achieved
by the CBR flows. Compared to Figure 9(c), the average
delay here is an order of magnitude worse. The reason for
this is the increased buffering delay at each forwarding node
as TCP packets fill up the link queues and CBR packets get
stuck at the end of the queues. A simple solution to this
problem is to employ some fair queuing algorithm such as
DRR [12]. Since DRR guarantees max-min fairness, the
packets from low bandwidth flows are forwarded shortly
after being enqueued. Thus, the buffering delay at each
bridge node will be close to zero and the average end-to-end
packet latency perceived by the CBR flows will be mainly
dependent on the scheduling delay and similar to the results
shown in Figure 9(c).

6. Summary

LCS is a dynamic and distributed scheduling algorithm
for scatternets. Nodes coordinate communication among
neighboring nodes while allocating bandwidth based on
current local traffic conditions. LCS optimizes the overall
efficiency of the scatternet, in terms of throughput, latency
and energy, by minimizing wasted and missed communica-
tion opportunities and piconet switches. It also allows nodes
to tradeoff between energy efficiency and latency. Finally,
LCS tolerates disruption in connectivity by providing a fall-
back communication mechanism when nodes are not able
to communicate during the agreed upon periods.

Although LCS can work with any scatternet topology,
it is optimized for loop-free topologies. We have imple-
mented LCS in a detailed Bluetooth simulator and con-
ducted simulations over several different loop-free topolo-
gies of various sizes and with various traffic loads. The sim-
ulation results show that LCS achieves high TCP through-
put and low packet latency and low node activity time
(which corresponds to low energy consumption) for low
bandwidth applications.

7. Acknowledgments

We would like to thank Allen Miu, Magdalena Balazin-
ska, and Kyle Jamieson for their valuable insights during
many discussions.

References

[1] S. Baatz, M. Frank, C. Kuhl, P. Martini, and C. Scholz.
Adaptive Scatternet Support for Bluetooth using Sniff
Mode. In IEEE Conference of Local Computer Networks,
Tampa, FL, November 2001.

[2] Specification of the Bluetooth System. http://www.
bluetooth.com/, December 1999. Bluetooth Special
Interest Group document.

[3] J. Bray and C. Sturman. Connection Without Cables. Pren-
tice Hall, 2001.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queueing Algorithm. Internetworking: Re-
search And Experience, 1:3–26, April 1990.

[5] J. Haartsen. The Bluetooth Radio System. IEEE Personal
Communications Magazine, pages 28–36, February 2000.

[6] N. Johansson, U. Korner, and P. Johansson. Performance
Evaluation of Scheduling Algorithms for Bluetooth. In Fifth
International Conference on Broadband Communications,
Hong Kong, November 1999.

[7] M. Kalia, D. Bansal, and R. Shorey. MAC Scheduling and
SAR Policies for Bluetooth: A Master Driven TDD Pico-
Cellular Wireless System. In 6th IEEE International Work-
shop on Mobile Multimedia Communications (MOMUC),
San Diego, CA, November 1999.

[8] M. Kalia, S. Garg, and R. Shorey. Efficient Policies for
Increasing Capacity in Bluetooth: An Indor Pico-Cellular
Wireless System. In IEEE Vehicular Technology Confer-
ence, Tokyo, 2000.

[9] C. Law, A. K. Mehta, and K.-Y. Siu. Performance of a New
Bluetooth Scatternet Formation Protocol. In ACM Sympo-
sium on Mobile Ad Hoc Networking and Computing, Long
Beach, CA, October 2001.

[10] ns-2 Network Simulator. http://www.isi.edu/
vint/nsnam/, 2000.

[11] A. Racz, G. Milklos, F. Kubinszky, and A. Valko. A Pseudo
Random Coordinated Scheduling Algorithm for Bluetooth
Scatternets. In ACM Symposium on Mobile Ad Hoc Net-
working and Computing, Long Beach, CA, October 2001.

[12] M. Shreedhar and G. Varghese. Efficient Fair Queuing using
Deficit Round Robin. In Proc. of ACM SIGCOMM, August
1995.

[13] G. Tan. Self-organizing Bluetooth Scatternets. Master’s the-
sis, Massachusetts Institute of Technology, Jan. 2002.

[14] G. Zaruba, S. Basagni, and I. Chlamtac. Bluetrees-
Scatternet Formation to Enable Bluetooth-Based Ad Hoc
Networks. In IEEE International Conference on Commu-
nications, pages 273–277, 2001.

[15] H. Zhu, G. Cao, G. Kesidis, and C. Das. An Adaptive Power-
Conserving Service Discipline for Bluetooth. In IEEE Inter-
national Conference on Communications, New York, NY,
April 2002.

