
Botz-4-Sale: Surviving Organized DDoS Attacks That
Mimic Flash Crowds

Srikanth Kandula Dina Katabi Matthias Jacob Arthur Berger
MIT Princeton MIT/Akamai

{kandula,dina}@csail.mit.edu mjacob@princeton.edu awberger@mit.edu

Abstract– Recent denial of service attacks are mounted by
professionals using Botnets of tens of thousands of compro-
mised machines. To circumvent detection, attackers are increas-
ingly moving away from bandwidth floods to attacks that mimic
the Web browsing behavior of a large number of clients, and tar-
get expensive higher-layer resources such as CPU, database and
disk bandwidth. The resulting attacks are hard to defend against
using standard techniques, as the malicious requests differ from
the legitimate ones in intent but not in content.

We present the design and implementation of Kill-Bots, a
kernel extension to protect Web servers against DDoS attacks
that masquerade as flash crowds. Kill-Bots provides authentica-
tion using graphical tests but is different from other systems that
use graphical tests. First, Kill-Bots uses an intermediate stage
to identify the IP addresses that ignore the test, and persistently
bombard the server with requests despite repeated failures at
solving the tests. These machines are bots because their intent
is to congest the server. Once these machines are identified,
Kill-Bots blocks their requests, turns the graphical tests off, and
allows access to legitimate users who are unable or unwilling to
solve graphical tests. Second, Kill-Bots sends a test and checks
the client’s answer without allowing unauthenticated clients ac-
cess to sockets, TCBs, and worker processes. Thus, it protects
the authentication mechanism from being DDoSed. Third, Kill-
Bots combines authentication with admission control. As a re-
sult, it improves performance, regardless of whether the server
overload is caused by DDoS or a true Flash Crowd.

1 Introduction

Denial of service attacks are increasingly mounted by
professionals in exchange for money or material bene-
fits [35]. Botnets of thousands of compromised machines
are rented by the hour on IRC and used to DDoS online
businesses to extort money or obtain commercial advan-
tages [17, 26, 45]. The DDoS business is thriving; in-
creasingly aggressive worms can infect up to 30,000 new
machines per day. These zombies/bots are then used for
DDoS and other attacks [17, 43]. In particular, [35] re-
ports that a Massachusetts businessman “paid members
of the computer underground to launch organized, crip-
pling DDoS attacks against three of his competitors”. The
attackers used Botnets of more than 10,000 machines.
When the simple SYN flood failed, they launched an
HTTP flood, downloading many large images from the
victim server. “At its peak, the onslaught allegedly kept

the victim company offline for two weeks.” In another in-
stance, attackers ran a massive number of queries through
the victim’s search engine, bringing the server down [35].

To circumvent detection, attackers are increasingly
moving away from pure bandwidth floods to stealthy
DDoS attacks that masquerade as flash crowds. They pro-
file the victim server and mimic legitimate Web brows-
ing behavior of a large number of clients. These at-
tacks target higher layer server resources like sockets,
disk bandwidth, database bandwidth and worker pro-
cesses [13, 24, 35]. We call such DDoS attacks Cy-
berSlam, after the first FBI case involving DDoS-for-
hire [35]. The MyDoom worm [13], many DDoS extor-
tion attacks [24], and recent DDoS-for-hire attacks are all
instances of CyberSlam [12, 24, 35].

Countering CyberSlam is a challenge because the re-
quests originating from the zombies are indistinguishable
from the requests generated by legitimate users. The ma-
licious requests differ from the legitimate ones in intent
but not in content. The malicious requests arrive from
a large number of geographically distributed machines;
thus they cannot be filtered on the IP prefix. Also, many
sites do not use passwords or login information, and even
when they do, passwords could be easily stolen from the
hard disk of a compromised machine. Further, checking
the site-specific password requires establishing a connec-
tion and allowing unauthenticated clients to access socket
buffers, TCBs, and worker processes, making it easy to
mount an attack on the authentication mechanism itself.
Defending against CyberSlam using computational puz-
zles, which require the client to perform heavy compu-
tation before accessing the site, is not effective because
computing power is usually abundant in a Botnet. Fi-
nally, in contrast to bandwidth attacks [27, 40], it is diffi-
cult to detect big resource consumers when the attack tar-
gets higher-layer bottlenecks such as CPU, database, and
disk because commodity operating systems do not sup-
port fine-grained resource monitoring [15, 48]. Further,
an attacker can resort to mutating attacks which cycle be-
tween different bottlenecks [25].

This paper proposes Kill-Bots, a kernel extension that
protects Web servers against CyberSlam attacks. It is tar-
geted towards small or medium online businesses as well
as non-commercial Web sites. Kill-Bots combines two



functions: authentication and admission control.

(a) Authentication: The authentication mechanism is ac-
tivated when the server is overloaded. It has 2 stages:

• In Stage1, Kill-Bots requires each new session to solve
a reverse Turing test to obtain access to the server. Hu-
mans can easily solve a reverse Turing test, but zombies
cannot. We focus on graphical tests [47], though Kill-
Bots works with other types of reverse Turing tests. Le-
gitimate clients either solve the test, or try to reload a
few times and, if they still cannot access the server, de-
cide to come back later. In contrast, the zombies which
want to congest the server continue sending new re-
quests without solving the test. Kill-Bots uses this dif-
ference in behavior between legitimate users and zom-
bies to identify the IP addresses that belong to zombies
and drop their requests. Kill-Bots uses SYN cookies
to prevent spoofing of IP addresses and a Bloom filter
to count how often an IP address failed to solve a test.
It discards requests from a client if the number of its
unsolved tests exceeds a given threshold (e.g., 32).

• Kill-Bots switches to Stage2 after the set of detected
zombie IP addresses stabilizes (i.e., the filter does not
learn any new bad IP addresses). In this stage, tests are
no longer served. Instead, Kill-Bots relies solely on the
Bloom filter to drop requests from malicious clients.
This allows legitimate users who cannot, or do not want
to solve graphical puzzles access to the server despite
the ongoing attack.

(b) Admission Control: Kill-Bots combines authentica-
tion with admission control. A Web site that performs
authentication to protect itself from DDoS encounters a
general problem: It has a certain pool of resources, which
it needs to divide between authenticating new arrivals and
servicing clients that are already authenticated. Devoting
excess resources to authentication might leave the server
unable to fully serve the authenticated clients, and hence,
wastes server resources on authenticating new clients that
it cannot serve. On the other hand, devoting excess re-
sources to serving authenticated clients reduces the rate at
which new clients are authenticated and admitted, leading
to idle periods with no clients in service.

Kill-Bots computes the admission probability α that
maximizes the server’s goodput (i.e., the optimal proba-
bility with which new clients should be authenticated). It
also provides a controller that allows the server to con-
verge to the desired admission probability using simple
measurements of the server’s utilization. Admission con-
trol is a standard mechanism for combating server over-
load [18, 46, 48], but Kill-Bots examines admission con-
trol in the context of malicious clients and connects it
with client authentication.

Fig. 1 summarizes Kill-Bots. When a new connection
arrives, it is first checked against the list of detected zom-
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Figure 1: Kill-Bots Overview. Note that graphical puzzles
are only served during Stage1.

bie addresses. If the IP address is not recognized as a
zombie, Kill-Bots admits the connection with probabil-
ity α = f(load). In Stage1, admitted connections are
served a graphical puzzle. If the client solves the puzzle,
it is given a Kill-Bots HTTP cookie which allows its fu-
ture connections, for a short period, to access the server
without being subject to admission control and without
having to solve new puzzles. In Stage2, Kill-Bots no
longer issues puzzles; admitted connections are immedi-
ately given a Kill-Bots HTTP cookie.

Kill-Bots has a few important characteristics.

• Kill-Bots addresses graphical tests’ bias against
users who are unable or unwilling to solve them.
Prior work that employs graphical tests ignores the re-
sulting user inconvenience as well as their bias against
blind and inexperienced humans [32]. Kill-Bots is the
first system to employ graphical tests to distinguish
humans from automated zombies, while limiting their
negative impact on legitimate users who cannot or do
not want to solve them.

• Kill-Bots sends a puzzle without giving access to
TCBs or socket buffers. Typically, sending the client
a puzzle requires establishing a connection and allow-
ing unauthenticated clients to access socket buffers,
TCB’s, and worker processes, making it easy to DoS
the authentication mechanism itself. Ideally, a DDoS
protection mechanism minimizes the resources con-
sumed by unauthenticated clients. Kill-Bots introduces
a modification to the server’s TCP stack that can send
a 1-2 packet puzzle at the end of the TCP handshake
without maintaining any connection state, and while
preserving TCP congestion control semantics.

• Kill-Bots improves performance, regardless of whether
server overload is caused by DDoS attacks or true Flash
Crowds, making it the first system to address both
DDoS and Flash Crowds within a single framework.
This is an important side effect of using admission con-
trol, which allows the server to admit new connections
only if it can serve them.

• In addition, Kill-Bots requires no modifications to
client software, is transparent to Web caches, and is
robust to a wide variety of attacks (see §4).

We implement Kill-Bots in the Linux kernel and eval-
uate it in the wide-area network using PlanetLab. Addi-
tionally, we conduct an experiment on human users to
quantify user willingness to solve graphical puzzles to



access a Web server. On a standard 2GHz Pentium IV
machine with 1GB of memory and 512kB L2 cache run-
ning a mathopd [9] web-server on top of a modified Linux
2.4.10 kernel, Kill-Bots serves graphical tests in 31µs;
identifies malicious clients using the Bloom filter in less
than 1µs; and can survive DDoS attacks of up to 6000
HTTP requests per second without affecting response
times. Compared to a server that does not use Kill-Bots,
our system survives attack rates 2 orders of magnitude
higher, while maintaining response times around their
values with no attack. Furthermore, in our Flash Crowds
experiments, Kill-Bots delivers almost twice as much
goodput as the baseline server and improves response
times by 2 orders of magnitude. These results are for an
event driven OS that relies on interrupts. The per-packet
cost of taking an interrupt is fairly large ≈ 10µs [23]. We
expect better performance with polling drivers [30].

2 Threat Model

Kill-Bots aims to improve server performance under Cy-
berSlam attacks, which mimic legitimate Web browsing
behavior and consume higher layer server resources such
as CPU, memory, database and disk bandwidth. Prior
work proposes various filters for bandwidth floods [7, 16,
21, 27]; Kill-Bots does not address these attacks. Attacks
on the server’s DNS entry or on the routing entries are
also outside the scope of this paper.

We assume the attacker may control an arbitrary num-
ber of machines that can be widely distributed across the
Internet. The attacker may also have arbitrarily large
CPU and memory resources. An attacker cannot sniff
packets on the server’s local network or on a major link
that carries traffic for a large number of legitimate users.
Further, the attacker does not have physical access to the
server itself. Finally, the zombies cannot solve the graph-
ical test and the attacker is not able to concentrate a large
number of humans to continuously solve puzzles.

3 The Design of Kill-Bots

Kill-Bots is a kernel extension to Web servers. It com-
bines authentication with admission control.

3.1 Authentication

During periods of severe overload, Kill-Bots authenti-
cates clients before granting them service. The authen-
tication has two stages that use different authentication
mechanisms. Below, we explain in detail.

Normal Suspected 
Attack

LOAD ≥ κ1

LOAD � κ2 < κ1

Figure 2: A Kill-Bots server transitions between NORMAL
and SUSPECTED ATTACK modes based on server load.

3.1.1 Activating the Authentication Mechanism

A Kill-Bots Web-server is in either of two modes,
NORMAL or SUSPECTED ATTACK, as shown in Fig. 2.
When the Web server perceives resource depletion
beyond an acceptable limit, κ1, it shifts to the
SUSPECTED ATTACK mode. In this mode, every new
connection has to solve a graphical test before alloca-
tion of any state on the server takes place. When the
user correctly solves the test, the server grants the client
access to the server for the duration of an HTTP ses-
sion. Connections that began before the server switched
to the SUSPECTED ATTACKmode continue to be served
normally until they terminate. However, the server will
timeout these connections if they last longer than a cer-
tain duration (our implementation uses 5 minutes). The
server continues to operate in the SUSPECTED ATTACK
mode until the load goes down to its normal range and
crosses a particular threshold κ2 < κ1. The load is esti-
mated using an exponential weighted average. The values
of κ1 and κ2 will vary depending on the normal server
load. For example, if the server is provisioned to work
with 40% utilization, then one may choose κ1 = 70%
and κ2 = 50%.

A couple of points are worth noting. First, the server
behavior is unchanged in the NORMAL mode, and thus
the system has no overhead in the common case of no
attack. Second, an attack that forces Kill-Bots to switch
back-and-forth between the two modes is harmless be-
cause the cost for switching is minimal. The only poten-
tial switching cost is the need to timeout very long con-
nections that started in the NORMAL mode. Long connec-
tions that started in a prior SUSPECTED ATTACK mode
need not be timed out because their users have already
been authenticated.

3.1.2 Stage 1: CAPTCHA-Based Authentication

After switching to the SUSPECTED ATTACK mode, the
server enters Stage1, in which it authenticates clients us-
ing graphical tests, i.e., CAPTCHAs [47], as in Fig. 4.

(a) Modifications to Server’s TCP Stack: Upon the ar-
rival of a new HTTP request, Kill-Bots sends a graphical
test and validates the corresponding answer without allo-
cating any TCBs, socket buffers, or worker processes on
the server. We achieve this by a minor modification to the
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Figure 3: Kill-Bots modifies server’s TCP stack to send tests
to new clients without allocating a socket or other connec-
tion resources.

Figure 4: Screenshot of a graphical puzzle.

<html>
<form method = “GET” action=“/validate”>            

<img src = “PUZZLE.gif”>                               
<input type = “password” name = “ANSWER”>
<input type = “hidden” name = “TOKEN” value = “[]”>

</form>                                                               
</html>

Figure 5: HTML source for the puzzle

Puzzle ID (P) Random (R) Hash (P, R, C, secret)Creation Time (C)

32 96 32 32

Figure 6: Kill-Bots Token

server TCP stack. As shown in Fig. 3, similarly to a typi-
cal TCP connection, a Kill-Bots server responds to a SYN
packet with a SYN cookie. The client receives the SYN
cookie, increases its congestion window to two packets,
transmits a SYNACKACK and the first data packet that
usually contains the HTTP request. In contrast to a typ-
ical connection, the Kill-Bots kernel does not create a
new socket upon completion of the TCP handshake. In-
stead, the SYNACKACK is discarded because the first
data packet from the client repeats the same acknowledg-
ment sequence number as the SYNACKACK.

When the server receives the client’s data packet,
it checks whether it is a puzzle answer. An
answer has an HTTP request of the form GET
/validate?answer=ANSWERi, where i is the puzzle
id. If the packet is not an answer, the server replies with a
new graphical test, embedded in an HTML form (Fig. 5).
Our implementation uses CAPTCHA images that fit in 1-
2 packets. Then, the server immediately closes the con-
nection by sending a FIN packet and does not wait for
the FIN ack. On the other hand, the client packet could
be a puzzle answer. When a human answers the graph-

ical test, the HTML form (Fig. 5) generates an HTTP
request GET /validate?answer=ANSWERi that re-
ports the answer to the server. If the packet is an answer,
the kernel checks the cryptographic validity of the AN-
SWER (see (c) below). If the check succeeds, a socket is
established and the request is delivered to the application.

Note the above scheme preserves TCP congestion con-
trol semantics, does not require modifying the client soft-
ware, and prevents attacks that hog TCBs and sockets by
establishing connections that exchange no data.
(b) One Test Per Session: It would be inconvenient if
legitimate users had to solve a puzzle for every HTTP
request or every TCP connection. The Kill-Bots server
gives an HTTP cookie to a user who solves the test cor-
rectly. This cookie allows the user to re-enter the system
for a specific period of time, T (in our implementation,
T = 30min). If a new HTTP request is accompanied
by a cryptographically valid HTTP cookie, the Kill-Bots
server creates a socket and hands the request to the appli-
cation without serving a new graphical test.
(c) Cryptographic Support: When the Kill-Bots server
issues a puzzle, it creates a Token as shown in Fig. 6. The
token consists of a 32-bit puzzle ID P , a 96-bit random
number R, the 32-bit creation time C of the token, and a
32-bit collision-resistant hash of P , R, and C along with
the server secret. The token is embedded in the same
HTML form as the puzzle (Fig. 6) and sent to the client.

When a user solves the puzzle, the browser reports the
answer to the server along with the Kill-Bots token. The
server first verifies the token by recomputing the hash.
Second, the server checks the Kill-Bots token to ensure
the token was created no longer than 4 minutes ago. Next,
the server checks if the answer to the puzzle is correct. If
all checks are successful, the server creates a Kill-Bots
HTTP cookie and gives it to the user. The cookie is cre-
ated from the token by updating the token creation time
and recording the token in the table of valid Kill-Bots
cookies. Subsequently, when a user issues a new TCP
connection with an existing Kill-Bots cookie, the server
validates the cookie by recomputing the hash and ensur-
ing that the cookie has not expired, i.e., no more than 30
minutes have passed since cookie creation. The Kill-Bots
server uses the cookie table to keep track of the number of
simultaneous HTTP requests that belong to each cookie.
(d) Protecting Against Copy Attacks: What if the at-
tacker solves a single graphical test and distributes the
HTTP cookie to a large number of bots? Kill-Bots in-
troduces a notion of per-cookie fairness to address this
issue. Each correctly answered graphical test allows the
client to execute a maximum of 8 simultaneous HTTP
requests. Distributing the cookie to multiple zombies
makes them compete among themselves for these 8 con-
nections. Most legitimate Web browsers open no more
than 8 simultaneous connections to a single server [20].



3.1.3 Stage 2: Authenticating Users Who Do Not An-
swer CAPTCHAs

An authentication mechanism that relies solely on
CAPTCHAs has two disadvantages. First, the attacker
can force the server to continuously send graphical tests,
imposing an unnecessary overhead on the server. Second,
and more important, humans who are unable or unwilling
to solve CAPTCHAs may be denied service.

To deal with this issue, Kill-Bots distinguishes legiti-
mate users from zombies by their reaction to the graph-
ical test rather than their ability to solve it. Once the
zombies are identified, they are blocked from using the
server. When presented with a graphical test, legitimate
users may react as follows: (1) they solve the test, imme-
diately or after a few reloads; (2) they do not solve the
test and give up on accessing the server for some period,
which might happen immediately after receiving the test
or after a few attempts to reload. The zombies have two
options; (1) either imitate human users who cannot solve
the test and leave the system after a few trials, in which
case the attack has been subverted, or (2) keep sending
requests though they cannot solve the test. However, by
continuing to send requests without solving the test, the
zombies become distinguishable from legitimate users,
both human and machine.

In Stage1, Kill-Bots tracks how often a particular IP
address has failed to solve a puzzle. It maintains a Bloom
filter [10] whose entries are 8-bit counters. Whenever a
client is given a graphical puzzle, its IP address is hashed
and the corresponding entries in the Bloom filter are in-
cremented. In contrast, whenever a client comes back
with a correct answer, the corresponding entries in the
Bloom filter are decremented. Once all the counters cor-
responding to an IP address reach a particular threshold ξ
(in our implementation ξ=32), the server drops all pack-
ets from that IP and gives no further tests to that client.

When the attack starts, the Bloom filter has no impact
and users are authenticated using graphical puzzles. Yet,
as the zombies receive more puzzles and do not answer
them, their counters pile up. Once a client has ξ unan-
swered puzzles, it will be blocked. As more zombies get
blocked, the server’s load will decrease and approach its
normal level. Once this happens the server no longer is-
sues puzzles; instead it relies solely on the Bloom filter
to block requests from the zombie clients. We call this
mode Stage2. Sometimes the attack rate is so high that
even though the Bloom filter catches all attack packets,
the overhead of receiving the packets by the device driver
dominates. If the server notices that both the load is stable
and the Bloom filter is not catching any new zombie IPs,
then the server concludes that the Bloom filter has caught
all attack IP addresses and switches off issuing puzzles,
i.e., the server switches to Stage2. If subsequently the

Var Description
α Admission Prob. Drop probability=1 − α.
λa Arrival rate of attacking HTTP requests
λs Arrival rate of legitimate HTTP sessions
1

µp
Mean time to serve a puzzle

1

µh
Mean time to serve an HTTP request

ρp Fraction of server time spent in authenticating clients
ρh Fraction of server time spent in serving authenticated clients
ρi Fraction of time the server is idle
1

q
Mean # of requests per legitimate session

Table 1: Variables used in the analysis

load increases, then the server resumes issuing puzzles.
In our experiments, the Bloom filter detects and blocks

all offending clients within a few minutes. In general,
the higher the attack rate, the faster the Bloom filter will
detect the zombies and block their requests. A full de-
scription of the Bloom filter is in §5. We detail Kill-Bots
interaction with Web proxies/NATs in §8.

3.2 Admission Control
A Web site that performs authentication to protect itself
from DDoS has to divide its resources between authen-
ticating new clients and servicing those already authenti-
cated. Devoting excess resources to authentication might
leave the server unable to fully service the authenticated
clients; thereby wasting the resources on authenticating
new clients that it cannot serve. On the other hand, devot-
ing excess resources to serving authenticated clients may
cause the server to go idle because it hasn’t authenticated
enough new clients. Thus, there is an optimal authentica-
tion probability, α∗, that maximizes the server’s goodput.

In [39], we have modeled a server that implements an
authentication procedure in the interrupt handler. This
is a standard location for packet filters and kernel fire-
walls [3, 29, 38]. It allows dropping unwanted packets
as early as possible. Our model is fairly general and in-
dependent of how the authentication is performed. The
server may be checking client certificates, verifying their
passwords, or asking them to solve a puzzle. Further-
more, we make no assumptions about the distribution or
independence of the inter-arrival times of legitimate ses-
sions, or of attacker requests, or of service times.

The model in [39] computes the optimal probability
with which new clients should be authenticated. Below,
we summarize these results and discuss their implica-
tions. Table 1 describes our variables.

When a request from an unauthenticated client arrives,
the server attempts to authenticate it with probability α
and drop it with probability 1 − α. The optimal value of
α–i.e., the value that maximizes the server’s goodput (the
CPU time spent on serving HTTP requests) is:

α∗ = min

(

qµp

(B + q)λs + qλa
, 1

)

, and B =
µp

µh
, (1)
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Figure 7: Comparison of the goodput of a base/unmodified
server with a server that uses authentication only (TOP) and
a server that uses both authentication & admission control
(BOTTOM). Server load due to legitimate requests is 50%. The
graphs show that authentication improves goodput, is even bet-
ter with admission control, particularly at high attack rates.

where λa is the attack request rate, λs is the legitimate
users’ session rate, 1

µp
is the average time taken to serve a

puzzle, 1

µh
is the average time to serve an HTTP request,

and 1

q is the average number of requests in a session. This
yields an optimal server goodput, which is given by:

ρ∗g = min

(

λs

qµh
,

λs

(1 + q
B )λs + q λa

B

)

. (2)

In comparison, a server that does not use authentication
has goodput:

ρb
g = min

(

λs

qµh
,

λs

λs + qλa

)

. (3)

To combat DDoS, authentication should consume fewer
resources than service, i.e., µp >> µh. Hence, B >> 1,
and the server with authentication can survive attack rates
that are B times larger without loss in goodput.

Also, compare the optimal goodput, ρ∗

g, with the good-
put of a server that implements authentication without ad-
mission control (i.e., α = 1) given by:

ρa
g = min

(

λs

qµh
, max

(

0, 1−
λa + λs

µp

))

. (4)

For attack rates, λa > µp, the goodput of the server with
no admission goes to zero, whereas the goodput of the
server that uses admission control decreases gracefully.

Fig. 7 illustrates the above results: A Pentium-IV,
2.0GHz 1GB RAM, machine serves 2-pkt puzzles at a
peak rate of 6000/sec (µp = 6000). Assume, conserva-
tively, that each HTTP request fetches 15KB files (µh =
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Figure 8: Phase plot showing how Kill-Bots adapts the ad-
mission probability to operate at a high goodput

1000), that a user makes 20 requests in a session (q =
1/20) and that the normal server load is 50%. By substi-
tuting in Eqs. 3, 4, and 2, Fig. 7 compares the goodput of a
server that does not use authentication ( base server) with
the goodput of a server with authentication only (α = 1),
and a server with both authentication and admission con-
trol (α = α∗). The top graph shows that authentication
improves server goodput. The bottom graph shows the
additional improvement from admission control.

3.3 Adaptive Admission Control
How to make the server function at the optimal admission
probability? Computing α∗ from Eq. 1 requires values
for parameters that are typically unknown at the server
and change over time, such as the attack rate, λa, the le-
gitimate session rate, λs, and the number of requests per
session, 1

q .
To deal with the above difficulty, Kill-Bots uses an

adaptive scheme. Based on simple measurements of the
server’s idle cycles, Kill-Bots adapts the authentication
probability α to gradually approach α∗. Let ρi, ρp, ρh de-
note the fraction of time the server is idle, serving puzzles
and serving HTTP requests respectively. We have:

ρh + ρp + ρi = 1. (5)

If the current authentication probability α < α∗, the au-
thenticated clients are too few and the server will spend
a fraction of its time idle, i.e., ρi > 0. In contrast, if
α > α∗, the server authenticates more clients than it can
serve and ρi = 0. The optimal probability α∗ occurs
when the idle time transitions to zero. Thus, the con-
troller should increase α when the server experiences a
substantial idle time and decrease α otherwise.

However, the above adaptation rule is not as simple as
it sounds. We use Fig. 8 to show the relation between
the fraction of time spent on authenticating clients ρp and
that spent serving HTTP requests ρh. The line labeled
“Zero Idle Cycles” refers to the states in which the sys-
tem is highly congested ρi = 0 → ρp + ρh = 1. The line
labeled “Underutilized” refers to the case in which the



system has some idle cycles, i.e., α < α∗. In this case, a
fraction α of all arrivals are served puzzles. The average
time to serve a puzzle is 1

µp
. Thus, the fraction of time

the server is serving puzzles ρp = αλs+λa

µp
. Further, an α

fraction of legitimate sessions have their HTTP requests
served. Thus, the fraction of time the server serves HTTP
is ρh = α λs

qµh
, where 1

µh
is the per-request average ser-

vice time, and 1

q is the average number of requests in a
session. Consequently,

∀α < α∗ : ρh =

(

λs

λs + λa

µp

qµh

)

ρp,

which is the line labeled “Underutilized” in Fig. 8. As
the fraction of time the system is idle ρi changes, the sys-
tem state moves along the solid line segments A→B→C.
Ideally, one would like to operate the system at point B
which maximizes the system’s goodput, ρg = ρh, and
corresponds to α = α∗. However, it is difficult to operate
at point B because the system cannot tell whether it is at
B or not; all points on the segment B–C exhibit ρi = 0.
It is easier to stabilize the system at point E where the
system is slightly underutilized because small deviations
from E exhibit a change in the value of ρi, which we can
measure. We pick E such that the fraction of idle time at
E is β = 1

8
.

Next, we would like to decide how aggressively to
adapt α. Substituting the values of ρp and ρh from the
previous paragraph in Eq. 5 yields:

∀α < α∗ : α

(

λa + λs

µp
+

λs

qµh

)

= 1 − ρi.

Hence, ∀α[t], α[t + τ ] < α∗:

α[t + τ ]

α[t]
=

1 − ρi[t + τ ]

1 − ρi[t]
⇒

∆α

α[t]
=

∆ρi

1 − ρi[t]
,

where α[t] and α[t + τ ] correspond to the values at time
t and τ seconds later. Thus, every τ=10s, we adapt the
admission probability according to the following rules:

∆α =















γ1α
ρi−β
1−ρi

, ρi ≥ β

−γ2α
β−ρi

1−ρi
, 0 < ρi < β

−γ3α. ρi = 0

(6)

where γ1, γ2, and γ3 are constants, which Kill-Bots set
to 1

8
, 1

4
, and 1

4
respectively. The above rules move α

proportionally to how far the system is from the chosen
equilibrium point E, unless there are no idle cycles. In
this case, α is decreased aggressively to go back to the
stable regime around point E.

4 Security Analysis

This section discusses Kill-Bots’s ability to handle a va-
riety of attacks from a determined adversary.

(a) Socially-engineered attack: In a socially-engineered
attack, the adversary tricks a large number of humans to
solving puzzles on his behalf. Recently, spammers em-
ployed this tactic to bypass graphical tests that Yahoo and
Hotmail use to prevent automated creation of email ac-
counts [4]. The spammers ran a porn site that downloaded
CAPTCHAs from the Yahoo/Hotmail email creation Web
page, forced its own visitors to solve these CAPTCHAs
before granting access, and used these answers to create
new email accounts.

Kill-Bots is much more resilient to socially engineered
attacks. In contrast to email account creation where the
client is given an ample amount of time to solve the puz-
zle, puzzles in Kill-Bots expire 4 minutes after they have
been served. Thus, the attacker cannot accumulate a store
of answers from human users to mount an attack. Indeed,
the attacker needs a continuous stream of visitors to his
site to be able to sustain a DDoS attack. Further, Kill-
Bots maintains a loose form of fairness among authen-
ticated clients, allowing each of them a maximum of 8
simultaneous connections. To grab most of the server’s
resources, an attacker needs to maintain the number of
authenticated malicious clients much larger than that of
legitimate users. For this, the attacker needs to control a
server at least as popular as the victim Web server. Such
a popular site is an asset. It is unlikely that the attacker
will jeopardize his popular site to DDoS an equally or less
popular Web site. Furthermore, one should keep in mind
that security is a moving target; by forcing the attacker to
resort to socially engineered attacks, we made the attack
harder and the probability of being convicted higher.
(b) Polluting the Bloom filter: The attacker may try to
spoof his IP address and pollute the Bloom filter, causing
Kill-Bots to mistake legitimate users as malicious. This
attack however is not possible because SYN cookies pre-
vent IP spoofing and Bloom filter entries are modified af-
ter the SYN cookie check succeeds (Fig. 10).
(c) Copy attacks: In a copy attack, the adversary solves
one graphical puzzle, obtains the corresponding HTTP
cookie, and distributes it to many zombies to give them
access to the Web site. It might seem that the best solu-
tion to this problem is to include a secure one-way hash of
the IP address of the client in the cookie. Unfortunately,
this approach does not deal well with proxies or mobile
users. Kill-Bots protects against copy attacks by limit-
ing the number of in-progress requests per puzzle answer.
Our implementation sets this limit to 8.
(d) Replay attacks: A session cookie includes a secure
hash of the time it was issued and is only valid during
a certain time interval. If an adversary tries to replay a
session cookie outside its time interval it gets rejected.
An attacker may solve one puzzle and attempt to replay
the “answer” packet to obtain many Kill-Bots cookies.
Recall that when Kill-Bots issues a cookie for a valid an-



swer, the cookie is an updated form of the token (Fig 6).
Hence, replaying the “answer” yields the same cookie.
(e) Database attack: The adversary might try to col-
lect all possible puzzles and the corresponding answers.
When a zombie receives a puzzle, it searches its database
for the corresponding answer, and sends it back to the
server. To protect from this attack, Kill-Bots uses a large
number of puzzles and periodically replaces puzzles with
a new set. Generation of the graphical puzzles is rela-
tively easy [47]. Further, the space of all possible graphi-
cal puzzles is huge. Building a database of these puzzles
and their answers, distributing this database to all zom-
bies, and ensuring they can search it and obtain answers
within 4 minutes (lifetime of a puzzle) is very difficult.
(f) Concerns regarding in-kernel HTTP header pro-
cessing: Kill-Bots does not parse HTTP headers; it pat-
tern matches the arguments to the GET and the Cookie:
fields against the fixed string validate and against a 192-
bit Kill-Bots cookie respectively. The pattern-matching
is done in-place, i.e. without copying the packet and is
cheap; < 8µs per request (§6.1.2).
(g) Breaking the CAPTCHA: Prior work on automat-
ically solving simple CAPTCHAs exists [33], but such
programs are not available to the public for security rea-
sons [33]. However, when one type of CAPTCHAs get
broken, Kill-Bots can switch to a different kind.

5 Kill-Bots System Architecture

Fig. 9 illustrates the key components of Kill-Bots, which
we briefly describe below.
(a) The Puzzle Manager consists of two components.
First, a user-space stub that asynchronously generates
new puzzles and notifies the kernel-space portion of the
Puzzle Manager of their locations. Generation of the
graphical puzzles is relatively easy [1], and can either be
done on the server itself in periods of inactivity (at night)
or on a different dedicated machine. Also puzzles may be
purchased from a trusted third party. The second compo-
nent is a kernel-thread that periodically loads new puzzles
from disk into the in-memory Puzzle Table.
(b) The Request Filter (RF) processes every incoming
TCP packet addressed to port 80. It is implemented in
the bottom half of the interrupt handler to ensure that un-
wanted packets are dropped as early as possible.

Fig. 10 provides a flowchart representation of the RF
code. When a TCP packet arrives for port 80, the RF
first checks whether it belongs to an established connec-
tion in which case the packet is immediately queued in
the socket’s receive buffer and left to standard kernel pro-
cessing. Otherwise the filter checks whether the packet
starts a new connection (i.e., is it a SYN?), in which case,
the RF replies with a SYNACK that contains a standard
SYN cookie. If the packet is not a SYN, the RF examines

User Space

Kernel

Web  ServerWeb ServerNET

Memory
Bloom Filter Cookie Table

Kernel
Network 
Stack

Puzzle Table

Request Filter

Puzzle Manager

Figure 9: A Modular representation of the Kill-Bots code.

whether it contains any data; if not, the packet is dropped
without further processing. Next, the RF performs two
inexpensive tests in an attempt to drop unwanted pack-
ets quickly. It hashes the packet’s source IP address and
checks whether the corresponding entries in the Bloom
filter have all exceeded ξ unsolved puzzles, in which case
the packet is dropped. Otherwise, the RF checks that the
acknowledgment number is a valid SYN cookie.

If the packet passes all of the above checks, the RF
looks for 3 different possibilities: (1) this might be the
first data packet from an unauthenticated client, and thus
it goes through admission control and is dropped with
probability 1−α. If accepted, the RF sends a puzzle and
terminates the connection immediately; (2) this might be
from a client that has already received a puzzle and is
coming back with an answer. In this case, the RF verifies
the answer and assigns the client an HTTP cookie, which
allows access to the server for a period of time; (3) it is
from an authenticated client that has a Kill-Bots HTTP
cookie and is coming back to retrieve more objects. If
none of the above is true, the RF drops this packet. These
checks are ordered according to their increasing cost to
shed attackers as cheaply as possible.
(c) The Puzzle Table maintains the puzzles available to
be served to users. To avoid races between writes and
reads to the table, we divide the Puzzle Table into two
memory regions, a write window and a read window.
The Request Filter fetches puzzles from the read win-
dow, while the Puzzle Manager loads new puzzles into
the write window periodically in the background. Once
the Puzzle Manager loads a fresh window of puzzles, the
read and write windows are swapped atomically.
(d) The Cookie Table maintains the number of concur-
rent connections for each HTTP cookie (limited to 8).
(e) The Bloom Filter counts unanswered puzzles for
each IP address, allowing the Request Filter to block re-
quests from IPs with more than ξ unsolved puzzles. Our
implementation sets ξ = 32. Bloom filters are character-
ized by the number of counters N and the number of hash
functions k that map keys onto counters. Our implemen-
tation uses N = 220 and k = 2. Since a potentially large
set of keys (32-bit IPs), are mapped onto much smaller



storage (N counters), Bloom filters are essentially lossy.
This means that there is a non-zero probability that all
k counters corresponding to a legitimate user pile up to
ξ due to collisions with zombies. Assuming a distinct
zombies and uniformly random hash functions, the prob-
ability a legitimate client is classified as a zombie is ap-
proximately (1 − e−ka/N )k ≈ (ka

N )k . Given our choice
of N and k, this probability for 75,000 zombies is 0.023.

6 Evaluation

We evaluate a Linux-based kernel implementation of
Kill-Bots in the wide-area network using PlanetLab.

6.1 Experimental Environment
(a) Web Server: The web server is a 2GHz P4 with 1GB
RAM and 512kB L2 cache running an unmodified math-
opd [9] web-server on top of a modified Linux 2.4.10
kernel. We chose mathopd because of its simplicity.
The Kill-Bots implementation consists of (1) 300 lines of
modifications to kernel code, mostly in the TCP/IP pro-
tocol stack and (2) 500 additional lines for implementing
the puzzle manager, the bloom filter and the adaptive con-
troller. To obtain realistic server workloads, we replicate
both static and dynamic content served by two web-sites,
the CSAIL web-server and a Debian mirror.
(b) Modeling Request Arrivals: Legitimate clients gen-
erate requests by replaying HTTP traces collected at the
CSAIL web-server and a Debian mirror. Multiple seg-
ments of the trace are played simultaneously to control
the load generated by legitimate clients. A zombie is-
sues requests at a desired rate by randomly picking a URI
(static/dynamic) from the content available on the server.
(c) Experiment Setup: We evaluate Kill-Bots in the
wide-area network using the setup in Fig. 11. The Web
server is connected to a 100Mbps Ethernet. We launch
CyberSlam attacks from 100 different nodes on Planet-
Lab using different port ranges to simulate multiple at-
tackers per node. Each PlanetLab node simulates up to
256 zombies—a total of 25,600 attack clients. We em-
ulate legitimate clients on machines connected over the
Ethernet, to ensure that any difference in their perfor-
mance is due to the service they receive from the Web
server, rather than wide-area path variability.
(d) Emulating Clients: We use WebStone2.5 [2] to emu-
late both legitimate Web clients and attackers. WebStone
is a benchmarking tool that issues HTTP requests to a
web-server given a specific distribution over the requests.
We extended WebStone in two ways. First, we added
support for HTTP sessions, cookies, and for replaying
requests from traces. Second, we need the clients to is-
sue requests at specific rate independent of how the web-
server responds to the load. For this, we rewrote Web-
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Figure 10: The path traversed by new sessions in Kill-Bots.
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Figure 11: Our Experimental Setup.
Function CPU Latency

Bloom Filter Access .7 µs

Processing HTTP Header 8 µs

SYN Cookie Check 11 µs

Serving puzzle 31 µs

Table 2: Kill-Bots Microbenchmarks

Stone’s networking code using libasync [28], an asyn-
chronous socket library.

6.1.1 Metrics

We evaluate Kill-Bots by comparing the performance of
a base server (i.e., a server with no authentication) with
its Kill-Bots mirror operating under the same conditions.
Server performance is measured using these metrics:
(a) Goodput of legitimate clients: The number of bytes
per second delivered to all legitimate client applications.
Goodput ignores TCP retransmissions and is averaged
over 30s windows.
(b) Response times of legitimate clients: The elapsed
time before a request is completed or timed out. We
timeout incomplete requests after 60s.
(c) Cumulative number of legitimate requests
dropped: The total number of legitimate requests
dropped since the beginning of the experiment.

6.1.2 Microbenchmarks

We run microbenchmarks on the Kill-Bots kernel to mea-
sure the time taken by the various modules. We use the
x86 rdtsc instruction to obtain fine-grained timing in-
formation; rdtsc reads a hardware timestamp counter
that is incremented once every CPU cycle. On our 2GHz
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Figure 12: Kill-Bots under CyberSlam: Goodput and average response time of legitimate users at different attack rates for both
a base server and its Kill-Bots version. Kill-Bots substantially improves server performance at high attack rates.

web-server, this yields a resolution of 0.5 nanoseconds.
The measurements are for CAPTCHAs of 1100 bytes.

Table 2 shows our microbenchmarks. The overhead for
issuing a graphical puzzle is ≈ 40µs (process http header
+serve puzzle), which means that the CPU can issue puz-
zles faster than the time to transmit a 1100B puzzle on
our 100Mb/s Ethernet. However, the authentication cost
is dominated by standard kernel code for processing in-
coming TCP packets, mainly the interrupts (≈ 10µs per
packet [23], about 10 packets per TCP connection). Thus,
the CPU is the bottleneck for authentication and as shown
in §6.4, performing admission control based on CPU uti-
lization is beneficial.

Note also that checking the Bloom filter is much
cheaper than other operations including the SYN
cookie check. Hence, for incoming requests, we per-
form the Bloom filter check before the SYN cookie
check (Fig. 14). In Stage2, the Bloom filter drops all
zombie packets; hence performance is limited by the cost
for interrupt processing and device driver access. We
conjecture that using polling drivers [23, 30] will improve
performance at high attack rates.

6.2 Kill-Bots under CyberSlam

We evaluate the performance of Kill-Bots under Cyber-
Slam attacks, using the setting described in §6.1. We
also assume only 60% of the legitimate clients solve the
CAPTCHAs; the others are either unable or unwilling to
solve them. This is supported by the results in §6.6.

Fig. 12 compares the performance of Kill-Bots with a
base (i.e., unmodified) server, as the attack request rate
increases. Fig. 12a shows the goodput of both servers.
Each point on the graph is the average goodput of the
server in the first twelve minutes after the beginning of
the attack. A server protected by Kill-Bots endures attack
rates multiple orders of magnitude higher than the base
server. At very high attack rates, the goodput of the Kill-
Bots server decreases as the cost of processing interrupts
becomes excessive. Fig. 12b shows the response time of
both web servers. The average response time experienced
by legitimate users increases dramatically when the base
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Figure 13: Comparison of Kill-Bots’ performance to server
with no attackers when only 60% of the legitimate users
solve puzzles. Attack lasts from 600s to 2400s. (a) Good-
put quickly improves once bloom catches all attackers. (b)
Response times improve as soon as the admission control re-
acts to the beginning of attack. (c) Admission control is useful
both in Stage1 and in Stage2, after bloom catches all zombies.
Puzzles are turned off when Kill-Bots enters Stage2 improving
goodput.

server is under attack. In contrast, the average response
time of users accessing a Kill-Bots server is unaffected
by the ongoing attack.

Fig. 13 shows the dynamics of Kill-Bots during a Cy-
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Figure 14: Kill-Bots under Flash Crowds: The Flash Crowd
event lasts from t=1200s to t=3000s. Though Kill-Bots has a
slightly lower throughput, its Goodput is much higher and its
avg. response time is lower.

berSlam attack, with λa = 4000 req/s. The figure also
shows the goodput and mean response time with no at-
tackers, as a reference. The attack begins at t = 600s and
ends at t = 2400s. At the beginning of the attack, the
goodput decreases (Fig. 13a) and the mean response time
increases (Fig. 13b). Yet, quickly the admission prob-
ability decreases (Fig. 13c), causing the mean response
time to go back to its value when there is no attack.
The goodput however stays low because of the relatively
high attack rate, and because many legitimate users do
not answer puzzles. After a few minutes, the Bloom fil-
ter catches all zombie IPs, causing puzzles to no longer
be issued (Fig. 13c). Kill-Bots now moves to Stage2

and performs authentication based on just the Bloom fil-
ter. This causes a large increase in goodput (Fig. 13a)
due to both the admission of users who were earlier un-
willing or unable to solve CAPTCHAs and the reduc-
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Figure 15: Cumulative numbers of dropped requests and
dropped sessions under a Flash Crowd event lasting from t =

1200s to t = 3000s. Kill-Bots adaptively drops sessions upon
arrival, ensuring that accepted sessions obtain full service, i.e.
have fewer requests dropped.

tion in authentication cost. In this experiment, despite
the ongoing CyberSlam attack, Kill-Bots’ performance in
Stage2 (t = 1200s onwards), is close to that of a server
not under attack. Note that the normal load significantly
varies with time and the adaptive controller (Fig. 13c)
reacts to this load t ∈ [1200, 2400]s, keeping response
times low, yet providing reasonable goodput.

6.3 Kill-Bots under Flash Crowds
We evaluate the behavior of Kill-Bots under a Flash
Crowd. We emulate a Flash Crowd by playing our Web
logs at a high speed to generate an average request rate of
2000 req/s. The request rate when there is no flash crowd
is 300 req/s. This matches Flash Crowd request rates re-
ported in prior work [19, 20]. In our experiment, a Flash
Crowd starts at t = 1200s and ends at t = 3000s.

Fig. 14 compares the performance of the base server
against its Kill-Bots mirror during the Flash Crowd event.
The figure shows the dynamics as functions of time. Each
point in each graph is an average measurement over a
30s interval. We first show the total throughput of both
servers in Fig. 14a. Kill-Bots has slightly lower through-
put for two reasons. First, Kill-Bots attempts to operate
at β=12% idle cycles rather than at zero idle cycles. Sec-
ond, Kill-Bots uses some of the bandwidth to serve puz-
zles. Fig. 14b reveals that the throughput figures are mis-
leading; though Kill-Bots has a slightly lower throughput
than the base server, its goodput is substantially higher
(almost 100% more). This indicates that the base server
wasted its throughput on retransmissions and incomplete
transfers. Fig. 14c provides further supporting evidence–
Kill-Bots drastically reduces the avg. response time.

That Kill-Bots improves server performance during
Flash Crowds might look surprising. Although all clients
in a Flash Crowd can answer the graphical puzzles, Kill-
Bots computes an admission probability α such that the
system only admits users it can serve. In contrast, a
base server with no admission control accepts additional
requests even when overloaded. Fig. 14d supports this
argument by showing how the admission probability α
changes during the Flash Crowd event to allow the server



to shed away the extra load.
Finally, Fig. 15 shows the cumulative number of

dropped requests and dropped sessions during the Flash
Crowd event for both the base server and the Kill-Bots
server. Interestingly, the figure shows that Kill-Bots
drops more sessions but fewer requests than the base
server. The base server accepts new sessions more often
than Kill-Bots but keeps dropping their requests. Kill-
Bots drops sessions upon arrival, but once a session is
admitted it is given a Kill-Bots cookie which allows it
access to the server for 30min.

Note that Flash Crowds is just one example of a sce-
nario in which Kill-Bots only needs to perform admission
control. Kill-Bots can easily identify such scenarios–high
server load but few bad bloom entries. Kill-Bots decou-
ples authentication from admission control by no longer
issuing puzzles; instead every user that passes the admis-
sion control check gets a Kill-Bots cookie.

6.4 Importance of Admission Control
In §3.2, using a simple model, we showed that authentica-
tion is not enough, and good performance requires admis-
sion control. Fig. 16 provides experimental evidence that
confirms the analysis. The figure compares the goodput
of a version of Kill-Bots that uses only puzzle-based au-
thentication, with a version that uses both puzzle-based
authentication and admission control. We turn off the
Bloom filter in these experiments because we are inter-
ested in measuring the goodput gain obtained only from
admission control. The results in this figure are fairly
similar to those in Fig. 7; admission control dramatically
increases server resilience and performance.

6.5 Impact of Different Attack Strategies
The attacker might try to increase the severity of the at-
tack by prolonging the time until the Bloom filter has dis-
covered all attack IPs and blocked them, i.e., by delaying
transition from Stage1 to Stage2. To do so, the attacker
uses the zombie IP addresses slowly, keeping fresh IPs
for as long as possible. We show that the attacker does
not gain much by doing so. Indeed, there is a tradeoff
between using all zombie IPs quickly to create a severe
attack for a short period vs. using them slowly to prolong
a milder attack.

Fig. 17 shows the performance of Kill-Bots under two
attack strategies; A fast strategy in which the attacker in-
troduces a fresh zombie IP every 2.5 seconds, and a slow
strategy in which the attacker introduces a fresh zombie
IP every 5 seconds. In this experiment, the total num-
ber of zombies in the Botnet is 25000 machines, and the
aggregate attack rate is constant and fixed at λa = 4000
req/s. The figure shows that the fast attack strategy causes
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Figure 17: Comparison between 2 attack strategies; A fast
strategy that uses all fresh zombie IPs in a short time, and a slow
strategy that consumes fresh zombie IPs slowly. Graphs show
a tradeoff; the slower the attacker consumes the IPs, the longer
it takes the Bloom filter to detect all zombies. But the attack
caused by the slower strategy though lasts longer has a milder
impact on the goodput and response time.

a short but high spike in mean response time, and a sub-
stantial reduction in goodput that lasts for a short inter-
val (about 13 minutes), until the Bloom filter catches the
zombies. On the other hand, the slow strategy affects per-
formance for a longer interval (∼ 25 min) but has a milder
impact on goodput and response time.

6.6 User Willingness to Solve Puzzles
We conducted a user study to evaluate the willingness
of users to solve CAPTCHAs. We instrumented our re-
search group’s Web server to present puzzles to 50% of
all external accesses to the index.html page. Clients that
answer the puzzle correctly are given an HTTP cookie
that allows them access to the server for an hour. The
experiment lasted from Oct. 3 until Oct. 7. During that
period, we registered a total of 973 accesses to the page,
from 477 distinct IP addresses.

We compute two types of results. First, we filter out



Case %Users
Answered puzzle 55%
Interested surfers who answered puzzle 74%

Table 3: The percentage of users who answered a graphical
puzzle to access the Web server. We define interested surfers
as those who access two or more pages on the Web site.

requests from known robots, using the User-Agent
field, and compute the fraction of clients who answered
our puzzles. We find that 55% of all clients answered
the puzzles. It is likely that some of the remaining re-
quests are also from robots but don’t use well-known
User-Agent identifiers, so this number underestimates
the fraction of humans that answered the puzzles. Sec-
ond, we distinguish between clients who check only the
group’s main page and leave the server, and those who
follow one or more links. We call the latter interested
surfers. We would like to check how many of the in-
terested surfers answered the graphical puzzle because
these users probably bring more value to the Web site.
We find that 74% of interested users answer puzzles. Ta-
ble 3 summarizes our results. These results may not be
representative of users in the Internet, as the behavior of
user populations may differ from one server to another.

7 Related Work

Related work falls into the following areas.
(a) Denial of Service: Much prior work on DDoS de-
scribes specific attacks (e.g., SYN flood [36], Smurf [11],
reflector attacks [34] etc.), and presents detection tech-
niques or countermeasures. In contrast to Kill-Bots,
prior work focuses on lower layers attacks and bandwidth
floods. The backscatter technique [31] detects DDoS
sources by monitoring traffic to unused segments of the
IP address space. Traceback [40] uses in-network sup-
port to trace offending packets to their source. Many
variations to the traceback idea detect low-volume at-
tacks [5, 41, 49]. Others detect bandwidth floods by mis-
match in the volumes of traffic [16] and some [27] push-
back filtering to throttle traffic closer to its source. An-
derson et al. [7] propose that routers only forward pack-
ets with capabilities. Juels and Brainard [8] first pro-
posed computational client puzzles as a SYN flood de-
fense. Some recent work uses overlays as distributed
firewalls [6, 21]. Clients can only access the server
through the overlay nodes, which filter packets. The au-
thors of [32] propose to use graphical tests in the overlay.
Their work is different from ours because Kill-Bots uses
CAPTCHAs only as an intermediate stage to identify the
offending IPs. Further, Kill-Bots combines authentica-
tion with admission control and focusses on efficient ker-
nel implementation.
(b) CAPTCHAs: Our authentication mechanism uses
graphical tests or CAPTCHAs [47]. Several other reverse

Turing tests exist [14, 22, 37]. CAPTCHAs are currently
used by many online businesses (e.g. Yahoo!, Hotmail).
(c) Flash Crowds and Server Overload: Prior work [18,
48] shows that admission control improves server per-
fomance under overload. Some admission control
schemes [15, 46] manage OS resources better. Oth-
ers [20] persistently drop TCP SYN packets in routers
to tackle Flash Crowds. Still others [42, 44] shed extra
load onto an overlay or a peer-to-peer network. Kill-Bots
couples admission control with authentication.

8 Limitations & Open Issues
A few limitations and open issues are worth discussing.
First, Kill-Bots interacts in a complex manner with Web
Proxies and NATs, which multiplex a single IP address
among multiple users. If all clients behind the proxy are
legitimate users, then sharing the IP address has no im-
pact. In contrast, if a zombie shares the proxy IP with
legitimate clients and uses the proxy to mount an attack
on the Web server, Kill-Bots may block all subsequent
requests from the proxy IP address. To ameliorate such
fate-sharing, Kill-Bots increments the Bloom counter by
1 when giving out a puzzle but decrements the Bloom
counters by x ≥ 1 whenever a puzzle is answered. Kill-
Bots picks x based on server policy. If x > 1, the proxy
IP will be blocked only if the zombies traffic forwarded
by the proxy/NAT is at least x − 1 times the legitimate
traffic from the proxy. Further, the value of x can be
adapted; if the server load is high even after the Bloom fil-
ter stops catching new IPs, Kill-Bots decreases the value
of x because it can no longer afford to serve a proxy that
has such a large number of zombies behind it.

Second, Kill-Bots has a few parameters that we have
assigned values based on experience. For example, we
set the Bloom filter threshold ξ = 32 because even legit-
imate users may drop puzzles due to congestion or inde-
cisiveness and should not be punished. There is nothing
special about 32, we only need a value that is neither too
big nor too small. Similarly, we allow a client that an-
swers a CAPTCHA a maximum of 8 parallel connections
as a trade-off between the improved performance gained
from parallel connections and the desire to limit the loss
due to a compromised cookie.

Third, Kill-Bots assumes that the first data packet of
the TCP connection will contain the GET and Cookie
lines of the HTTP request. In general the request may
span multiple packets, but we found this to happen rarely.

Forth, the Bloom filter needs to be flushed eventu-
ally since compromised zombies may turn into legitimate
clients. The Bloom filter can be cleaned either by re-
setting all entries simultaneously or by decrementing the
various entries at a particular rate. In the future, we will
examine which of these two strategies is more suitable.



9 Conclusion
The Internet literature contains a large body of research
on denial of service solutions. The vast majority assume
that the destination can distinguish between malicious
and legitimate traffic by performing simple checks on the
content of packets, their headers, or their arrival rates.
Yet, attackers are increasingly disguising their traffic by
mimicking legitimate users access patterns, which allows
them to defy traditional filters. This paper focuses on pro-
tecting Web servers from DDoS attacks that masquerade
as Flash Crowds. Underlying our solution is the assump-
tion that most online services value human surfers much
more than automated accesses. We present a novel design
that uses CAPTCHAs to distinguish the IP addresses of
the attack machines from those of legitimate clients. In
contrast to prior work on CAPTCHAs, our system allows
legitimate users to access the attacked server even if they
are unable or unwilling to solve graphical tests. We im-
plemented our design in the Linux kernel and evaluated it
in Planetlab.
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