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ABSTRACT
This paper describes the design, implementation, and eval-
uation of a replication scheme to handle Byzantine faults in
transaction processing database systems. The scheme com-
pares answers from queries and updates on multiple replicas
which are unmodified, off-the-shelf systems, to provide a sin-
gle database that is Byzantine fault tolerant. The scheme
works when the replicas are homogeneous, but it also allows
heterogeneous replication in which replicas come from dif-
ferent vendors. Heterogeneous replicas reduce the impact
of bugs and security compromises because they are imple-
mented independently and are thus less likely to suffer cor-
related failures.

The main challenge in designing a replication scheme for
transaction processing systems is ensuring that the differ-
ent replicas execute transactions in equivalent serial orders
while allowing a high degree of concurrency. Our scheme
meets this goal using a novel concurrency control proto-
col, commit barrier scheduling (CBS). We have implemented
CBS in the context of a replicated SQL database, HRDB
(Heterogeneous Replicated DB), which has been tested with
unmodified production versions of several commercial and
open source databases as replicas. Our experiments show
an HRDB configuration that can tolerate one faulty replica
has only a modest performance overhead (about 17% for
the TPC-C benchmark). HRDB successfully masks several
Byzantine faults observed in practice and we have used it to
find a new bug in MySQL.

Categories and Subject Descriptors: D.4.5 [Reliabil-
ity]: Fault-tolerance; H.2.4 [Systems]: Concurrency

General Terms: Design, Performance, Reliability

1. INTRODUCTION
Transaction processing database systems are complex, so-

phisticated software systems involving millions of lines of
code. They need to reliably implement “ACID” seman-
tics, while achieving high transactional throughput and high
availability. As is usual with systems of this size, we can
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expect them to contain thousands of fault-inducing bugs in
spite of the effort in testing and quality assurance on the
part of vendors and developers.

A bug in a transaction processing system may immedi-
ately cause a crash; if that happens, the system can take
advantage of its transactional semantics to recover from the
write-ahead log and the only impact on clients is some down-
time during recovery. However, bugs may also cause Byzan-
tine faults in which the execution of a query is incorrect,
yet the transaction commits, causing wrong answers to be
returned to the client or wrong data items to be stored in
the database. Examples of such faults include concurrency
control errors, incorrect query execution, database table or
index corruption, and so on (see Section 6). In fact, even if a
bug eventually results in a crash, the system could have per-
formed erroneous operations (and exhibited Byzantine be-
havior) between the original occurrence of the bug and the
eventual crash. Such faulty behavior is hard to mask because
it is difficult to tell if any given statement was executed cor-
rectly or not. Existing database systems offer no protection
against such faults.

This paper describes the design, implementation, and eval-
uation of a new replication scheme to handle both Byzantine
and crash faults in transaction processing systems. Our ap-
proach can be used with any system that supports transac-
tions consisting of “read” and “write” operations (e.g., read
and update queries) followed by a COMMIT or ABORT.
Thus it can be used with relational database systems, object-
oriented databases and object stores, semi-structured (XML)
query processing systems, etc. Our scheme requires no mod-
ifications to any database replica software; in fact, it does not
require any additional software to run on any machine host-
ing a replica database. Treating each replica as a “shrink-
wrapped” subsystem eases the deployment and operation of
our system and allows it to work with commercial offerings.

The primary goal of our system is correctness. We must
provide a single-copy serializable view of the database: the
group of replicas must together act as a single copy, assum-
ing no more than some threshold number of replicas, f , are
faulty. However, we also require that the performance of
our approach must not be substantially worse than that
of a single database. Achieving both goals simultaneously
is challenging because databases achieve high performance
through concurrency. The problem is that, if presented with
a workload consisting of operations from a set of concurrent
transactions, different replicas may execute them in different
orders, each of which constitutes a correct serial execution
at that replica. However, these local orders may not all be
consistent with a single global order, which is needed for



correctness. Ordering problems can be avoided by running
one transaction at a time, but this approach eliminates all
concurrency and performs poorly.

The key contribution of this paper is a new concurrency
control protocol, called commit barrier scheduling (CBS),
that allows our system to guarantee correct behavior while
achieving high concurrency. CBS constrains the order in
which queries are sent to replicas just enough to prevent con-
flicting schedules, while preserving most of the concurrency
in the workload. Additionally CBS ensures that users see
only correct responses for transactions that commit, even
when some of the replicas are Byzantine faulty. To our
knowledge, CBS is the first approach that provides both
correctness and good performance for replicated transaction
processing systems that handle Byzantine failures. CBS re-
quires that each replica implement concurrency control using
strict two-phase locking, but this is not onerous since two-
phase locking is used in many production databases.

Our system can be deployed with an identical set of repli-
cas, but we also support two other deployment scenarios.
First, the replicas might run different versions of a database
coming from a single vendor. Such a configuration provides
a way to test new versions, as well as a way to release new
versions without exposing clients to effects of introduced er-
rors. Second, the replicas might come from different vendors.
Such heterogeneous replicas are unlikely to share the same
set of bugs since their implementations were produced in-
dependently. Heterogeneity can also reduce the probability
that security vulnerabilities will affect the correct behavior
of the replicated system, because a single vulnerability will
likely affect only one of the replicas. Clearly all replicas in
a deployment must be similar, e.g., all are SQL relational
databases. Furthermore all non-faulty replicas must process
queries “identically”; we discuss this requirement further in
Section 4.

We have implemented CBS as part of HRDB (Heteroge-
neous Replicated DataBase), which uses SQL databases as
replicas. HRDB supports replicas from different vendors
(we have used IBM DB2, MySQL, Microsoft SQLServer, and
Derby). Our experiments with the HRDB prototype show
that it can provide fault-tolerance by masking bugs that ex-
ist in some but not all replicas. HRDB is capable of masking
deterministic bugs using replicas from heterogeneous vendors
and non-deterministic bugs using different versions from the
same vendor. In addition, using HRDB we discovered a se-
rious new non-deterministic bug in MySQL; a patch for this
bug will be included in the next MySQL release.

We found HRDB to have reasonable overhead of about
17% (compared to a single replica) on TPC-C, a database in-
dustry standard benchmark that models a high-concurrency
transaction processing workload. Analysis of this overhead
reveals that much of it is processing overhead, indicating
that even better performance can be achieved with further
tuning.

The rest of this paper is organized as follows. We begin
in Section 2 by discussing related work. Section 3 describes
the design of HRDB, commit barrier scheduling, and how
our scheme handles faults. Section 4 presents some prac-
tical issues related to database replication, while Section 5
describes our implementation. Sections 6 presents a survey
of bugs and our success at masking them with HRDB. We
demonstrate reasonable performance in Section 7 and con-
clude in Section 8.

2. RELATED WORK
To the best of our knowledge, HRDB is the first practical

Byzantine fault-tolerant transaction processing system that
is able to execute transactions concurrently. We begin by
discussing work on the use of replication to allow database
systems to survive crashes. Then we discuss research on
systems that tolerate Byzantine faults.

2.1 Database Replication for Crash Faults
Almost all work on database replication has dealt only

with crash failures. Several research projects and commer-
cial products use replication to avoid the downtime caused by
crashes [3, 4, 12, 14, 9, 5]. Systems can typically be classified
into eager or lazy replication based on whether they prop-
agate updates inside transaction boundaries or not. They
also differ in whether the clients observe a single-copy seri-
alizable view [14, 5, 4] or a more lax concurrency model [20,
12, 10]). Some work also explores the problem of providing
availability in a partitioned system [1]. Replicated DBMSs
also generally require access to the write-sets of each of the
transactions

None of these approaches can be used to tolerate Byzan-
tine faults, because all these systems assume that the pri-
mary replica processes the queries correctly. Its results are
simply propagated to the other secondary replicas without
any checking. For example, some systems use log shipping
or write-set extraction as a way to communicate results from
the primary to the secondaries [11, 24]. This approach can-
not provide Byzantine fault tolerance unless the log contains
the queries themselves, since otherwise it isn’t possible for
the secondaries to check what the primary did. Furthermore,
the answers returned to the client do not necessarily appear
in the log, and yet they must also be checked. Our approach
overcomes these problems while still providing good perfor-
mance.

Some work on replication for databases resembles ours in
that it requires no changes to the replicas; instead these
systems have been implemented as “middleware” to sepa-
rate them from the complexity of DBMS internals [18, 21,
16, 8]. None of these systems tolerate Byzantine faults.
Clients interact with the middleware, which distributes work
to the database replicas to provide fault-tolerance or scalabil-
ity. These systems require a concurrency control scheme to
keep the replicas synchronized so that they can provide some
transaction isolation guarantee to the user. One approach re-
quires clients to pre-declare the tables involved in the query,
and then schedules transactions using coarse-grained (table-
granularity) locks [2]. Rather than imposing a schedule,
our approach uses the databases’ own concurrency manager
to avoid introducing artificial dependencies, thus permitting
higher concurrency. The Pronto [19] system for high avail-
ability uses a primary-secondary scheme for transaction or-
dering, but executes transactions serially on the secondaries.
C-JDBC [8] is similar to our approach in performing replica-
tion entirely on the SQL level and supporting heterogeneous
databases, but it runs updates and commits sequentially. Fi-
nally, some recent work has focused on providing snapshot
isolation (SI) instead of serializability [21, 16] to take ad-
vantage of SI implementations in PostgreSQL and Oracle.
These systems preserve some concurrency in a middleware-
based replication system, but use knowledge of the write-set
of transactions to resolve ordering conflicts.



2.2 Tolerating Byzantine Faults
A scheme for Byzantine fault-tolerant database replica-

tion was proposed two decades ago [17], but this work does
not appear to have been implemented and the proposal did
not exhibit any concurrency, implying that it would have
performed quite poorly.

Gashi et al. [10] discuss the problem of tolerating Byzan-
tine faults in databases and document a number of Byzantine
failures in bug reports from real databases (see the discus-
sion in Section 6). They propose a middleware-based solu-
tion where transactions are issued to replicas and the results
are voted on to detect faults. They do not, however, present
a protocol that preserves concurrency or discuss the associ-
ated problem of ensuring equivalent serial schedules on the
replicas.

The BFT library [6] provides efficient Byzantine fault-
tolerance through state machine replication; it requires that
all operations be deterministic. One might ask whether this
library, previously used for NFS, can be easily adapted to
transactional databases. BFT ensures that all the replicas
process operation requests in the same order; in our sys-
tem operations are queries, COMMITs, and ABORTs. As
originally proposed, BFT requires that operations complete
in order; with this constraint, the first query to be blocked
by the concurrency control mechanism of the database would
cause the entire system to block. The authors of [15] propose
a way to loosen this constraint by partitioning operations
into non-conflicting sets and running each set in parallel.
To do this, however, they require the ability to determine
in advance of execution whether two operations (or trans-
actions) conflict, which is possible in some systems (such as
NFS). In database systems, however, the statements of the
transaction are often not available at the time the transac-
tion begins. Furthermore, just determining the objects that
a single database statement will update involves evaluating
predicates over the contents of the database (an operation
that must itself be properly serialized.) To see why, con-
sider an update in an employee database that gives a raise
to all employees who make less than $50,000; clearly, it is
not possible to determine the records that will be modified
without (partially) evaluating the query. In contrast, our
scheme does not require the ability to determine the trans-
action conflict graph up front but still preserves concurrency
while ensuring that state machine replication works properly.

BASE [7] is an extension of BFT that allows the use of het-
erogeneous replicas by implementing stateful conformance
wrappers for each replica. Typically, the conformance wrap-
per executes the operations while maintaining additional
state that allows it to translate between the local state of
the replica and the global system state. Our system interacts
with replicas via SQL, which is a more expressive interface
than the BASE examples. Rather than maintaining state
in the wrapper, our scheme depends on rewriting the SQL
operations to keep the replicas’ logical state the same. A
more full featured implementation might maintain wrapper
state to circumvent some vagaries of SQL.

Any system that tolerates Byzantine faults requires that
no more than 1/3 of the replicas are faulty. Recent work [26]
shows that agreement under a Byzantine fault model with f
allowed faulty nodes requires 3f + 1 replicas, but execution
only requires 2f + 1. Thus a two-tier system can use 3f + 1
lightweight nodes to perform agreement and only 2f + 1

nodes to execute the workload. We use this property in our
design.

3. HRDB DESIGN
This section describes our system. We begin by discussing

our assumptions about databases. Then we provide an
overview of our approach. Sections 3.3 through 3.5 present
the details. We conclude in Section 3.6 with a discussion of
the correctness of our system.

3.1 Database Assumptions
Each database transaction consists of a sequence of

queries, followed by a COMMIT or ABORT. Queries can
read, update, insert, or delete entries in the database.
Database systems ensure that queries are executed at the
database in the order they are issued by the client. We
assume that clients wait for the response to one statement
before sending the next.1

Databases provide ACID semantics for transactions [13],
which requires both a concurrency control model and a re-
covery mechanism. For the former, we require serializable
execution: the effect of running a group of transactions is the
same as running them sequentially in some order. The latter
typically takes the form of a write-ahead log that is used by
the system to recover from crash failures; after recovery the
system guarantees that modifications of all transactions that
committed survive the crash, and that modifications of all
other transactions are discarded. We assume the existence
of a recovery mechanism (all production databases provide
such).

While several different concurrency control mechanisms
have been proposed, we require the databases in our system
to use strict two-phase locking. With strict two-phase lock-
ing transactions acquire read and write locks on data items
as they access them, and these locks are held until the end
of the transaction. Strict two-phase locking is the most com-
monly used concurrency control mechanism; for example, it
is used in SQLServer, MySQL, and DB2. We cannot han-
dle databases (like Oracle) that use alternative techniques
like snapshot isolation, which do not provide true serializ-
ability. In ongoing work, we are looking at ways to relax our
concurrency control requirement.

Concurrency control mechanisms such as two-phase lock-
ing determine the synchronization constraints as transac-
tions run, by observing the items they access. Thus the
serial schedule is determined after the fact. It is sometimes
possible, given a limited workload, to preprocess queries and
determine the schedule in advance, but this is very difficult
to do in general. Since we want our system to work for an
arbitrary mix of transactions, we do not rely on such pre-
processing.

3.2 Overview
In HRDB, clients do not interact directly with the

database replicas. Instead they communicate with a shep-
herd, which acts as a front-end to the replicas and coordi-
nates them. Figure 1 shows the HRDB system architecture.
Client applications do not know they are talking to a repli-
cated system because HRDB provides a single-copy serial-
izable view of the replicated database. We assume that all

1This assumption simplifies exposition. The system also
works when multiple statements of a transaction are pre-
sented in a single request.
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Figure 1: HRDB system architecture.

transactions that run on the replicas are sent via the shep-
herd.

HRDB is parametrized by f , the number of simultaneously
faulty replicas it can tolerate. It requires only 2f+1 database
replicas because the replicas do not carry out agreement;
instead they simply execute statements sent to them by the
shepherd. The figure illustrates a system in which f = 1.

In this paper, we assume the shepherd itself is trusted
and does not have Byzantine faults, though it might crash
(e.g., because the machine it runs on crashes). Since the
complexity and amount of code in the shepherd is orders of
magnitude smaller than in the replicas, we believe that as-
suming non-Byzantine behavior is reasonable. Furthermore,
we expect that a trusted shepherd is the most likely way the
system would be deployed in practice. Nevertheless we are
investigating (as future work) ways to make the shepherd
Byzantine-fault tolerant by running 3f + 1 shepherd repli-
cas; the problem turns out to be non-trivial if we want to
avoid significant performance degradation.

As shown in the figure, the shepherd runs a single coor-
dinator and one replica manager for each back-end replica.
The coordinator receives statements from clients and for-
wards them to the replica managers. Replica managers ex-
ecute statements on their replicas, and send answers back
to the coordinator. The coordinator sends results back to
the clients, compares query answers for agreement, and de-
termines when it is safe for transactions to commit. The
coordinator may also decide to abort and retry transactions
or initiate repair of faulty replicas.

The coordinator and replica managers must run the state-
ments of transactions in a way that satisfies the following
three objectives:

• Ensure that all non-faulty replicas have equivalent log-
ical state such that they will return the same answer
to any given query.

• Ensure that the client always gets correct answers to
queries belonging to transactions that commit, even
when up to f replicas are faulty.

• Detect faulty replicas and flag them for repair.

The first objective can be met by coordinating the replicas
to guarantee that they all execute equivalent serial sched-
ules. The naive approach of running transactions one at a
time to effect equivalent serial schedules on the replicas has
poor performance. At the other extreme, simply sending the
transactions concurrently to a set of replicas will usually lead
to different serial schedules, because each replica can pick a
different, yet “correct”, serial ordering. Our solution to this
problem is commit barrier scheduling (CBS). CBS ensures
that all non-faulty replicas execute committed transactions
in equivalent serial orders, while at the same time preserving
much of the concurrency of the individual replicas.

In CBS, one replica is designated to be the primary, and
runs statements of transactions slightly in advance of the
other secondary replicas. The order in which transactions
complete on the primary determines a serial order. CBS
ensures that all the non-faulty secondaries commit trans-
actions in an order equivalent to that at the primary. To
improve performance, the shepherd observes which queries
from different transactions are able to execute concurrently
without conflicts at the primary, and allows the secondaries
to execute these queries concurrently.

CBS depends on our assumption that the replicas use
strict two-phase locking for two reasons. First, strict two-
phase locking exposes information about concurrency avail-
able in the workload, which we can use to achieve good per-
formance. Strict two-phase locking ensures that a transac-
tion T will hold all read and write locks acquired by any
query in T until after T commits (or aborts). With two-
phase locking if a transaction T1 is able to complete a query
Q1 after a query Q2 from transaction T2 has run (or is run-
ning) but before T2 commits (or aborts), then Q1 and Q2 do
not conflict and can be executed in any order. Furthermore,
Q1 does not conflict with any statement of T2 before Q2. The
coordinator uses this property to extract concurrency infor-
mation by observing the primary execute transactions: if the
(non-faulty) primary allows a set of queries to run without
conflicting, then the secondaries can run these queries con-
currently (e.g., in parallel), or in any order, without yielding
a different equivalent serial ordering from the primary.

The second reason CBS depends on strict two-phase lock-
ing has to do with the correctness of our voting mechanism.
If a transaction has executed to completion and produced
some answers, the shepherd must have confidence that the
transaction could actually commit with those answers. Un-
der strict two-phase locking, a transaction holds locks until
the end of the transaction; thus a transaction that has exe-
cuted all of its queries will be able to commit (unless the ap-
plication issued an ABORT or the system crashed), because
it has all the resources it needs to do so. Not all concurrency
control protocols satisfy these two properties, which is why
we do not support them.

Our approach of using the primary to determine if queries
can run in parallel performs well only when the primary’s
locking mechanism is an accurate predictor of the sec-
ondary’s mechanism. For example if the primary locks indi-
vidual rows, while the secondary locks pages, the secondary
might block when the primary does not. Such blocking is



not a correctness issue, but it does affect performance. To
avoid it we additionally require (for good performance) that
concurrency control at the replica selected to be the primary
is sufficiently blocking:

A replica is sufficiently blocking if, whenever it
allows two queries to run in parallel, so do all
other non-faulty replicas.

For good performance CBS requires f + 1 sufficiently block-
ing replicas so that we can freely use any of them as a pri-
mary

3.3 Commit Barrier Scheduling
CBS does not limit concurrency for processing queries at

the primary in any way. When the coordinator receives a
query from a client, it immediately sends it to the primary
replica manager, which forwards it to the primary replica.
Hence, the primary replica can process queries from many
transactions simultaneously using its internal concurrency
control mechanism (strict two-phase locking). As soon as
it returns a response to a query, the coordinator sends that
query to each secondary replica manager. Each of them
adds the query to a pool of statements that will eventually
be executed at the corresponding secondary.

The pool of statements for a secondary manager can con-
tain many statements, and these statements can come from
multiple transactions. The job of the secondary manager
is to send these statements to the secondary, with as much
concurrency as possible, while ensuring that the secondary,
in the absence of faults, will execute the statements in a se-
rial order equivalent to that at the primary. To achieve this
property, the secondary manager delays sending statements
to the secondary replica, using three ordering rules:

• Query-ordering rule. A query or COMMIT of trans-
action T can be sent to the secondary only after the
secondary has processed all earlier queries of T .

• Commit-ordering rule. A COMMIT for transaction T
can be sent to a secondary only after the secondary has
processed all queries of all transactions ordered before
T .

• Transaction-ordering rule. A query from transaction
T2 that was executed by the primary after the COM-
MIT of transaction T1 can be sent to a secondary only
after it has processed all queries of T1.

These rules are the only constraints on delaying statement
execution on the secondaries; they permit considerable con-
currency at the secondaries.

The first two rules are needed for correctness. The query-
ordering rule ensures that each individual transaction is ex-
ecuted properly. The commit-ordering rule ensures that sec-
ondaries serialize transactions in the same order as the pri-
mary.

The transaction-ordering rule is needed only for perfor-
mance because it avoids deadlocks at secondaries. For ex-
ample, suppose query Q2 of T2 ran at the primary after the
primary committed T1. If a secondary ran Q2 before run-
ning some statement Q1 from T1, Q2 might acquire a lock
needed to run Q1, thus preventing T1 from committing at
the secondary. The transaction-ordering rule prevents this
reordering. However, it allows statements from T2 that ran
before T1 committed on the primary to be run concurrently

with statements from T1 on the secondaries (such statements
are guaranteed not to conflict because strict two-phase lock-
ing would not have allowed Q2 to complete on the primary if
it had any conflicts with Q1.) Hence, CBS preserves concur-
rency on the secondaries. In particular, if the secondary pool
contains a number of queries, each from a different transac-
tion, and there are no COMMITs in the pool, all of the
queries can be sent to the secondary replica concurrently.

The coordinator sends the primary’s response to a query
to the client as soon as it receives it. If the primary is faulty,
this response may not be correct. It may seem that we could
avoid sending incorrect responses to the client by waiting
until f secondaries provide results that agree with that of
the primary, but waiting does not always work when the
primary is Byzantine-faulty, as explained in section 3.3.2.

Instead, we determine the correctness of the response after
the fact and abort the transaction if the response is incorrect.
The coordinator delays processing a COMMIT request for a
transaction T until at least f +1 replicas are ready to commit
T:

A replica is ready to commit transaction T if it
has processed all queries of T and also all queries
of every transaction ordered before T .

The coordinator will allow the commit only if the query re-
sults sent to the client are each agreed to by f secondaries
that are ready to commit T ; otherwise it aborts the transac-
tion. Thus we ensure that the client receives correct answers
for all transactions that commit.

3.3.1 Commit Barriers
We implement the transaction-ordering rule using commit

barriers. The coordinator maintains a global commit bar-
rier counter, B. Before the coordinator sends a COMMIT
request for transaction T to the replicas, it sets T ’s barrier,
T.b, to B, then increments B. Additionally, when the coor-
dinator gets a response to query Q from the primary, it sets
Q’s barrier, Q.b, to B. A secondary replica manager waits to
send Q to the secondary until it has received responses from
all queries of committed transactions T such that T.b ≤ Q.b.

The use of commit barriers is conservative: it may delay
a query unnecessarily (e.g., when the query doesn’t conflict
with the transaction whose COMMIT is about to be pro-
cessed). It is correct, however, because delaying the running
of a query isn’t wrong; all it does is cause the processing of
that transaction to occur more slowly.

The pseudo-code for the coordinator is given in Figure 2.
The code is written in an event-driven form for clarity, al-
though our implementation is multi-threaded. The code for
the primary replica manager is not shown; this manager is
very simple since it sends each statement to its replica as
soon as it receives it from the coordinator, and returns the
result to the coordinator. Figure 3 shows the code for a
secondary replica manager.

Figure 4 shows an example schedule of three transactions,
T1, T2, and T3, executed by the primary. Each COMMIT
(“C”) causes the barrier, B, to be incremented. With CBS,
the secondary replicas can execute the statements from dif-
ferent transactions in the same barrier (i.e., between two
COMMITs) in whatever order they choose; the result will
be equivalent to the primary’s serial ordering. Of course,
two statements from the same transaction must be executed
in the order in which they appear. Note that CBS does not



• Event: Receive query Q from client.
Action: Send Q to primary replica manager.

• Event: Receive response for query Q from the primary
replica manager.
Actions:

1. Send the response to the client.
2. Q.b← B.
3. Record response as Q.ans.
4. Send Q to secondary replica managers.

• Event: Receive response from a secondary replica man-
ager for query Q.
Action: Add response to votes(Q).

• Event: Receive ABORT from client.
Actions:

1. Send ABORT to replica managers.
2. Send acknowledgment to client.

• Event: Receive COMMIT for transaction T from
client.
Actions: Delay processing the COMMIT until f + 1
replicas are ready to commit T . Then:

1. If the response Q.ans sent to the client for some
query Q in T is not backed up by f votes in
votes(Q) from replicas that are ready to commit
T , send ABORT to the replica managers and in-
form the client of the ABORT.

2. Otherwise:
(a) T.b← B; B ← B + 1.
(b) Send acknowledgment to client.
(c) Send COMMIT to replica managers.

Figure 2: Pseudo-code for the coordinator.

1. For each ABORT statement for a transaction T in the
pool, discard from the pool any queries of T that have
not yet been sent to the replica and send the ABORT
to the replica.

2. For each query Q in the pool, determine whether it is
ready as follows:
(a) All earlier queries from Q’s transaction have com-

pleted processing.
(b) All queries of committed transactions T such that

T.b ≤ Q.b have completed processing.
3. A COMMIT of transaction T in the pool is ready if all

queries such that Q.b < T.b have completed processing
at the secondary replica.

4. Execute each query Q or COMMIT that is ready on
the replica and send the result to the coordinator.

Figure 3: Pseudo-code for secondary managers.

B=1 B=3B=2B=0

T1
0 0R  (x)   W  (x) C

T2
0 W  (z)2R  (y) C

T3
0 1R  (z) W  (z) C

Figure 4: Example schedule of three transactions, as
executed by the primary. Note that the coordinator
does not know the identities of x, y, and z (or even
that they are distinct). Each query is super-scripted
with the barrier CBS would assign to it.

Faulty primary Replica R1 Replica R2
T1 : A = 1 T1 : A = 1 T1: Waiting for T2

T2 : A = 1 T2: Waiting for T1 T2 : A = 1

Figure 5: A faulty primary’s reply could match a
non-faulty secondary’s reply and be the majority.
The variable A is initially 0 at all replicas, and each
transaction increments the value of A by 1.

extract all available concurrency. For example, a secondary
manager delays sending T3’s W (z) to the secondary until
after the secondary has processed all queries of T1. This
is because we assume, conservatively, that T3’s W (z) might
conflict with queries of T1. The same rule prevents sending
T2’s W (z) before T3’s W (z) has been processed and in this
case the delay is needed since there is a conflict.

3.3.2 Handling a Faulty Primary
The pseudo-code in Figures 2 and 3 provides correct be-

havior even when the primary is Byzantine faulty. Obviously
it handles a primary that fails by returning a wrong answer.
However a faulty primary might have a concurrency control
bug, so that it allows transactions that conflict to run in
parallel. A concurrency error is most likely to lead to trans-
actions being unable to make progress because they block at
secondaries; we handles such cases by selective aborts and
retries on the secondaries. But it is also possible that a
transaction is able to make progress even when the primary
has a concurrency control bug.

The example in Figure 5 illustrates the point. Consider
two transactions, T1 and T2, each of which increments a vari-
able A and returns its value. If A were 0 to start with, then
the correct value after executing both transactions should be
2. However if the primary is faulty the following might occur:
The primary runs T1 and T2 concurrently, incorrectly return-
ing A = 1 as the result of both increment statements. Each
secondary is correct; however, replica R1 runs T1 before T2,
acquiring the lock for A and blocking T2. Similarly, replica
R2 runs T2 before T1, blocking T1. Furthermore, replica R1
endorses the primary’s response for T1 and replica R2 en-
dorses the primary’s response for T2. Thus waiting for f +1
replicas to agree on an answer before sending it to the client
does not ensure that the answer is correct!

The scenario illustrates two issues that arise when the pri-
mary is Byzantine-faulty. The first is that non-faulty repli-
cas can have trouble processing COMMITs. For example,
suppose T1 commits first. Then replica R2 will be unable



to process the COMMIT because it hasn’t finished execut-
ing the statements of T1. To handle this problem, a replica
manager that is unable to process a COMMIT will abort
other transactions that are “in progress”, i.e., for which the
replica has processed some statements but has not yet re-
ceived a COMMIT. Thus the replica manager for replica R2
will eventually abort T2, allowing it to finish processing T1.
It can then re-run T2.

The second issue is that when transactions re-run, they
can produce different answers. When replica R2 aborts T2,
commits T1, and then re-runs T2, it will produce the final
answer of 2. Replica R1 will also produce this answer, since
it runs T2 after the commit of T1. Furthermore, this answer
is correct and we need to notice that the answer sent to the
client for T2 was wrong and abort the transaction.

Our protocol ensures correct behavior because it requires
matching query responses from replicas that are ready to
commit transaction T . One point to note here is that a
replica can change its vote and we consider only the last vote
provided by the replica in deciding whether the transaction
can commit. Once a replica is ready to commit a transaction,
its answer is stable (i.e., it will never change), assuming the
replica is non-faulty.

3.3.3 Discussion
With CBS, clients must be prepared to occasionally re-

ceive wrong answers for transactions that abort. Thus, all
answers in CBS must be considered“tentative”until the com-
mit point, after which they are guaranteed to be correct (as-
suming no more than f faulty replicas). Our semantics will
not cause a problem for clients that work in “auto commit”
mode (COMMIT sent implicitly after each query). Our se-
mantics will also not be a problem for clients that respect
transactional semantics and do not let values produced by a
transaction “escape” to the application prior to commit —
most database applications are programmed in this way. Fi-
nally, note that even if bad results did escape, the situation
is still better than it is today without CBS, because CBS
will abort the transaction and ensure that the replicas have
the correct logical state, whereas in existing systems, wrong
answers are simply returned without any warning.

An additional point is that we get performance bene-
fits from returning the primary’s answer to the client im-
mediately, as it reduces statement latency as observed by
the client. It allows the processing of transactions to be
pipelined: the primary executes the next statement while the
secondaries execute the previous one. Sending the primary’s
response to the client as soon as it arrives also improves
overall system performance because transactions complete
more quickly and therefore hold database locks for shorter
periods.

CBS allows a replica manager to send commits from dif-
ferent transactions to the replica concurrently. Having mul-
tiple outstanding commits allows the database to make use
of group commit, an important optimization for reducing
stable storage overhead.

A final point is that if the primary is not faulty and its
concurrency control is sufficiently blocking, non-faulty sec-
ondaries will always be able to execute queries executed by
the primary. If the primary’s concurrency control isn’t suffi-
ciently blocking, a secondary might detect a conflict between
queries that ran concurrently on the primary, and block one
of them, potentially leading to a deadlock. CBS handles

such situations by selectively aborting and later re-running
transactions on the secondaries. After a sufficient number
of aborts and re-runs, all transactions will be processed,
thus ensuring that an insufficiently blocking primary does
not compromise liveness, though it reduces system through-
put.

3.4 View Changes
If the primary is faulty, CBS may be unable to make

progress efficiently. The way to handle a faulty primary
is to do a view change in which a new primary is selected
by the coordinator and the old one is demoted to being a
secondary. While any replica can be selected as the new pri-
mary, the best performance results from selecting one that
is sufficiently blocking.

A correct view change must ensure that all transactions
that committed prior to the view change continue to be com-
mitted afterwords. This condition is easy to satisfy: retain
these transactions and abort all the others. A less draco-
nian approach is to choose as the new primary a sufficiently
blocking secondary that has completed processing all the
statements in its pool; this way the aborts can be avoided.
That secondary has agreed with all decisions made by the
primary so far and therefore we can treat those decisions as
if it made them. However, because the primary could be
Byzantine faulty, there may be no secondary that is able to
execute all statements in its pool. In this case, the coordi-
nator times out waiting for a secondary to become eligible.
Then it aborts all currently executing uncommitted trans-
actions, and promotes a secondary that has committed all
previous transactions.

It is always safe to do a view change, but view changes are
undesirable since they can cause transactions to abort and
interfere with the system making progress. The coordinator
tries to decide when to do view changes intelligently but it
doesn’t always know when the primary is faulty. Clearly it
knows the primary is faulty if it must abort a transaction
due to incorrect results sent to a client. But if the primary
doesn’t respond, it might not be faulty; instead there might
just be a network problem. Additionally, it may not be
obvious which replica is faulty; for example, if the primary
allows two statements to run in parallel, and a secondary
blocks on one of them, this could mean that the secondary
is faulty, or it could mean that the primary is faulty! Instead,
the coordinator relies on heuristics: timers to limit waiting
for the primary to respond, or counts of the number of times
secondaries are blocking.

These heuristics need to ensure forward progress by guar-
anteeing the system will eventually choose a good replica as
primary and will give it sufficient time to do its work. We
use techniques similar to those that control view changes in
BFT [6] for this task, e.g., by choosing a new primary from
all possible primaries and, when a series of view changes
happen one after another, increasing timeouts exponentially
between changes.

3.5 Fault Recovery
We now discuss how our system deals with failed nodes,

i.e., how it brings them back into a state where they can
correctly participate in the protocol. We begin by discussing
recovery of replicas that have suffered a crash failure. Then
we discuss how to recover Byzantine-faulty replicas. Finally,
we discuss recovery of the shepherd.



3.5.1 Recovery of a Crashed Replica
When a replica goes offline and then recovers, it rejoins the

system in a consistent, but stale, state: all transactions that
it did not commit prior to its failure have aborted locally. To
become up-to-date, the replica must re-run any transactions
that it aborted, but that were committed or are in progress
in the system. All statements needed to recover the replica
are in the pool of its manager.

A replica manager considers a replica to have crashed
when the database connection to the replica breaks. If the
manager had sent a COMMIT to the replica prior to learn-
ing that the connection had broken, but did not receive a
reply, it cannot know whether that COMMIT had been pro-
cessed before the replica went down. It cannot re-run the
transaction if it already completed.

To allow the replica manager to determine what happened,
we add a transaction log table to each replica; the table in-
cludes a row for each committed transaction, containing the
commit barrier for that transaction. We also add a query
to the end of each transaction to insert such a row in the
table. If the transaction committed prior to the failure, the
transaction log table will contain an entry for it. When the
connection is re-established, the replica manager reads the
transaction log table, compares the list of committed trans-
actions with information maintained on the shepherd, and
replays any missing committed transactions. After all the
committed transactions have been processed, the manager
starts running statements of in-progress transactions.

Adding this extra statement to each transaction will not
result in deadlocks because each transaction only touches
the log table on its last statement, after the coordinator has
cleared it to commit. Also, the table need not be large. We
can truncate a replica’s log table periodically by determining
the barrier, T.b, of the oldest transaction, T , not commit-
ted at this replica, and durably storing this information on
the shepherd. Then we can overwrite the log table on that
replica to contain only entries from T.b on.

Of course, the database connection between the replica
manager and a replica can break even when the replica has
not failed. When such a network failure occurs, both par-
ties will detect the failure (and each will assume that the
other has failed). The replica will simply abort all pending
transactions. When the shepherd re-initiates the connection
to the replica after the failure heals, it re-runs transactions
that have not yet committed, using information in the log
table to avoid running transactions more than once. Hence,
there is essentially no difference between how the shepherd
handles a failure of a replica and how it handles a failure of
the network between it and the replica.

Note finally that we can be smart about how we run trans-
actions at slow replicas, including those that recover from
crashes: we can avoid sending read-only transactions and
read-only queries. By executing only state-changing queries,
we can bring slow replicas up to date more quickly.

3.5.2 Recovery of a Byzantine-faulty Replica
Some mechanism is needed to detect and repair a

Byzantine-faulty replica. This task must be done in a timely
way, because otherwise our assumption of no more than f
faulty replicas could be violated. Although a complete treat-
ment of replica recovery is infeasible in this paper, we de-
scribe the basic solution we are developing here.

As discussed in Section 3.4, the coordinator cannot always
know when a replica has suffered a Byzantine failure. There-
fore we cannot rely on knowing about the failure in a timely
way. For example, some faults are silent: the database state
is corrupted, but the problem doesn’t show up in the re-
sponses sent to the coordinator. Silent faults can occur due
to hardware problems; they also occur during updates and
even during the processing of supposedly read-only queries.
Eventually these faults will be detected when the affected
tables are read, but this might be so far in the future that
it could too late (i.e., by then more than f nodes might be
corrupted). If the fault is due to an update, we could catch
it by injecting a query to read what the update wrote, but
this approach would significantly increase the cost of updates
and would not catch other kinds of silent faults.

An additional problem is that the recovery mechanisms
described in the previous sections aren’t sufficient: they as-
sume the replica is non-faulty, but out of date. If the replica
is Byzantine, however, its state may be corrupted and re-
running transactions won’t fix this problem. Instead we need
a way to restore the state of the replica; after that, we can
use the techniques in the previous section to bring it up to
date.

Therefore we are exploring a proactive approach where
a background scanning process compares the information
stored in the different databases and then repairs databases
found to be faulty. It can do this by using queries to iden-
tify faults in replicas. These queries are based on knowledge
of what is stored in the databases: we simply compare the
content of the tables. This “compare and repair” scheme ex-
haustively scans the replicas, identifies deviations in them,
and executes repairs. In each compare and repair step, we
rely on the assumption that at least f + 1 replicas are non-
faulty; this way we can recognize a faulty replica (since its
state disagrees with that of the majority) and we can repair
it (by replacing the bad state with what is stored at the
majority).

For large databases, this recovery scheme could take a lot
of time. We are exploring schemes to reduce this cost. The
idea is to compare tables by comparing hashes of groups of
their rows; preliminary results indicate that this scheme will
perform quite well.

Each compare and repair step needs to run as a transac-
tion, but there can be relatively few of these compared to
transactions coming from clients; i.e., we check in the back-
ground continuously but slowly. As long as these queries are
run infrequently, or at idle times, their performance impact
will be small.

3.5.3 Recovery from a Shepherd Crash
To survive crashes the shepherd maintains a write-ahead

log. When the coordinator determines that it can commit a
transaction, it writes the transaction queries (and their bar-
riers), along with the COMMIT to the log. The coordinator
forces the log to disk before replying to the client. The log
is also forced to disk after logging a replica’s transaction log
table information prior to truncating the table. Note that
the coordinator can employ the “group commit” optimiza-
tion, where by delaying the processing of a COMMIT, the
system can write a series of log records in one disk operation.

To recover from a crash, the shepherd reads the log, identi-
fies all committed transactions, and initializes the statement
pools at the managers to contain the statements of these



transactions. It knows which transactions to include in a
replica manager’s pool by examining the replica’s transac-
tion log table, just as if the replica had crashed. The shep-
herd can start accepting new client transactions when the
replica selected as primary has completed executing all the
statements in its pool.

The shepherd’s log can be truncated by removing infor-
mation about transactions that have committed at all the
replicas. We can expect that most of the time all replicas
are running properly and therefore the log need not be very
large.

3.6 Correctness
In this section we present an informal discussion of the

safety and liveness of our system. We assume here that no
more than f replicas are faulty simultaneously.

3.6.1 Safety
CBS is safe because it guarantees that correct replicas have

equivalent logical state, and that clients always get correct
answers to transactions that commit.

Safety depends on the following assumption about
databases: if correct replicas start in the same state and
execute the same set of transactions in equivalent serial or-
ders, they will end up in equivalent states and will produce
identical answers to all queries in those transactions. This
condition is satisfied by databases that ensure serializabil-
ity. Safety additionally depends on our assumption that the
replicas use two-phase locking.

The job of our system is to ensure that it presents trans-
actions requested by clients to the databases in a way that
ensures they will produce equivalent serial orders. The
query-ordering rule ensures that each transaction runs at
each replica as specified by the client; thus the transactions
seen by the replicas are identical. Furthermore the commit-
ordering rule ensures that COMMITs are sent to the replicas
in a way that causes them to select equivalent serial orders.
Suppose the commit-ordering rule allowed a transaction to
commit only after all previous transactions have commit-
ted. All replicas will then implement identical commit or-
ders, and since commit order is equivalent to serial order, all
replicas thus implement equivalent serial orders. When the
commit-ordering rule is relaxed to require only that all pre-
vious transactions are executed (but not committed), strict
two-phase locking ensures that no two conflicting transac-
tions will reach this point simultaneously. Thus we can be
sure that correct replicas will have equivalent states after
they execute the same set of transactions.

Additionally, clients receive only correct results for queries
of transactions that commit because we vote on the answers:
f + 1 replicas must agree to each query response. The vote
ensures that at least one correct replica agrees with the re-
sult, which implies that the result is correct. However, it is
crucial that we delay the vote until each contributing replica
is ready to commit the transaction, since only at that point
can we be sure it is producing the answer that happens by
executing that query at that place in the serial order. Strict
two-phase locking ensures that, barring faults, a transaction
that is ready to commit can be successfully committed with
the answers that it has produced.

We continue to provide correct behavior even in the face
of the various recovery techniques (recovery of a crashed
replica, recovery from a database disconnection, recovery of

the shepherd). The shepherd records complete information
about committed transactions, and allowing it to recover
from replica crashes and network disconnections; the log ta-
bles at the replicas are crucial to this recovery since they
prevent transactions from executing multiple times. The
write-ahead log at the shepherd ensures that the informa-
tion about committed transactions isn’t lost if the shepherd
crashes.

View changes do not interfere with correct behavior be-
cause we retain information about committed transactions.
Replica repair is also not an issue, since it replaces bad tables
at a faulty replica with good information agreed to by f + 1
replicas (and therefore agreed to by at least one non-faulty
replica).

Finally note that the transaction-ordering rule is not
needed for correctness. Instead, this rule is important for
performance, because it ensures (assuming the primary is
non-faulty and sufficiently blocking) that the secondaries ex-
ecute queries in an order that avoids spurious deadlocks.

3.6.2 Liveness
Given a non-faulty primary, CBS is live assuming that

messages are delivered eventually and correct replicas even-
tually process all messages they receive.

However, the primary may be faulty. We handle this case
through the view change mechanism, which allows us to
switch from a faulty primary to a non-faulty primary.

The problem with view changes is that there are cases
where we can’t be sure that the primary is faulty, and yet
we do the view change anyway, e.g., when the primary is
merely slow to respond or secondaries are incorrectly order-
ing transactions. An adversary could cause us to do a view
change in which a non-faulty primary is replaced by a faulty
replica. However, the adversary cannot cause us to continu-
ously do view changes, without making progress in between,
because we exponentially increase the timeouts that govern
when the next view change happens, and we select primaries
in a way that will eventually lead to a non-faulty one. Even-
tually these timeouts will become large enough so that a
non-faulty primary will be able to make progress, assum-
ing that network delays cannot increase forever. Under this
assumption (used for BFT [6]), our system is live.

4. HETEROGENEITY ISSUES
In this section we discuss two important issues that arise

when heterogeneous database replicas are used. Recall that
we require that each query presented by a client be pro-
cessed identically by each replica. The first issue is language
compatibility—different replicas may actually use different
query languages. For example in HRDB our replicas all
handle SQL queries. However, because database vendors
implement vendor-specific SQL extensions, SQL is unfortu-
nately not a “universal” standard and some translation may
be required.

The second issue occurs even in a homogeneous deploy-
ment, though it is exacerbated by heterogeneity: some
queries may execute non-deterministically. For example, be-
cause relations are unordered sets, different replicas may end
up returning differently ordered responses to the same SQL
query. This section discusses how HRDB addresses these
issues in the context of SQL databases.



4.1 SQL Compatibility
No two databases implement identical variants of the SQL

language. Although most of these differences are not in the
implementation of the SQL ANSI standard, requiring ap-
plications to use only the standard core is restrictive. To
address this SQL compatibility issue, we present two possi-
bilities: an online solution and an offline alternative.

The online solution is for the shepherd to translate
from client issued SQL into database-native SQL for each
database replica to execute. There are existing software
packages [22, 23] that accomplish this complex task. To
improve performance, the shepherd could also maintain a
cache of translated statements to avoid re-translating com-
mon statements. A database administrator could then look
over the repository of cached translations and optimize them
for better performance.

The offline solution is to hide non-standard SQL from the
shepherd by burying it in views and stored procedures. Both
views and stored procedures are often written by database
administrators offline to improve performance. By indepen-
dently implementing the same view or stored procedure on
each heterogeneous database, the implementation details of
the operation are removed from the SQL sent by the client
application to HRDB. Of course, using views or stored pro-
cedures requires users of HRDB to implement their queries
in several different database systems.

In general, either of these solutions may require some ef-
fort by users to port their SQL queries to several different
database systems. Some effort may also be required to set
up identical tables on different systems and optimize perfor-
mance via creation of indices and other optimizations. We
believe that these overheads are not overly onerous, espe-
cially given the increased robustness and fault tolerance that
HRDB offers.

For the purposes of our implementation, we have built a
basic translation layer for each database system that rewrites
SQL queries using simple syntactic transformations (e.g.,
translating date and time functions, handling various data
definition language expressions, etc.).

4.2 Non-determinism
The coordinator needs to compare replies to SQL queries

from database replicas to determine the correct answer. The
coordinator compares both the result sets and the meta-
data returned for each query. However, SQL allows non-
determinism in how a database answers a query: rows of
a result set may be returned in any order unless an order
has been specified. In addition, some functions (like times-
tamps and auto-generated row IDs) return database-specific
answers.

We solve the problem of non-deterministic row ordering
by rewriting all queries to include an appropriate ORDER BY

clause. This approach is likely to perform better than having
the coordinator sort result sets because it can take advantage
of the optimized sorting routines in the replica databases.
Of course, the performance of some queries may degrade,
and other solutions—hashing result sets and comparing the
hashes, for example—might also be feasible.

Non-deterministic functions (like time stamp creation via
calls to built-in functions executed at insert time) can re-
sult legitimate deviations in database state. In the case of
timestamps, a fully featured coordinator could compute the
value and rewrite the query itself. For our prototype, the

application developer is responsible for writing queries that
do not contain non-deterministic functions.

5. IMPLEMENTATION
We implemented the HRDB prototype in Java and it com-

prises about 8,000 total lines of code. Clients interact with
the shepherd using JDBC, thus allowing HRDB to work
with existing applications. The replica managers also use
JDBC to interact with their replica databases. Configur-
ing the shepherd only requires providing it the JDBC URLs
of the databases to connect to. We have successfully run
HRDB with MySQL (4.1 and 5.1), IBM DB2 V9.1, Microsoft
SQLServer 2005 Express, and Derby 10.1. Two other com-
mon options, Oracle and PostgreSQL, use snapshot isolation
and are thus incompatible.

JDBC access involves blocking operations: its calls do not
return until the database returns an answer to the query.
Thus, the shepherd must run each concurrent transaction
in a separate thread on the replica manager. Overall, to
support c concurrent transactions, the shepherd must use
c(2f + 1) threads. Our implementation uses a thread pool
to limit the number of threads and allocates threads to client
connections using an asynchronous I/O mechanism to detect
which clients have transactions ready for processing.

Using JDBC for the database replica interface also means
that result sets must be unmarshaled in the replica man-
ager and remarshaled to be sent to the client, since the wire
format of each result set is database-specific. This step is
also necessary to store the result set from the primary for
comparison with the result sets from the secondaries. For
large result sets, the unmarshal / remarshal step can incur
a significant overheard.

We note that it might be too expensive to have each replica
return the entire query result when the result is large. A
way to reduce this cost is to have secondaries return a hash
of the result instead. For example, the coordinator could
rewrite the query for secondary replicas to nest the query
statement in an aggregate that computes a hash over the
entire result set. Most databases implement a standard hash
function, like MD5, which could be used for this purpose.
This optimization would significantly reduce the bandwidth
requirements at the cost of increased computation at the
database replicas.

6. ANALYSIS OF BUGS
This section first looks at the presence and character of

bugs in databases, then describes HRDB’s ability to tolerate
and even discover bugs.

6.1 Bugs in Databases
We performed a simple analysis of bug reports in three

database systems: DB2, Oracle and MySQL. Our goal was
to understand to what extent reported bugs return incorrect
answers to clients rather than cause crashes. Because it is
hard to get access to authoritative information about bugs in
practice, we looked at information available on vendor web
sites about bug fixes. In all cases, we found thousands of bug
reports, a rate consistent with other large software systems.

We divided the bugs into two broad categories: those
that caused wrong results to be reported or the database
to be corrupted and those that caused a crash. It is possible
that crash-inducing bugs also caused wrong results to be re-



Bug category DB2 Oracle MySQL
2/03-8/06 7/06-11/06 8/06-11/06

DBMS crash 120 21 60
Non-crash faults 131 28 64
Incorrect answers 81 24 63
DB corruption 40 4 (inc. above)
Unauth. access 10 unknown 1

Table 1: Summary of bugs reported in different sys-
tems. In all cases, over 50% of the reported bugs
cause non-crash faults resulting in incorrect answers
to be returned to the client, database corruption,
or unauthorized accesses. Current techniques only
handle crash faults. The numbers for the different
systems are reports over different time durations, so
it is meaningless to compare them across systems.

ported; we count these as crashes. Table 1 summarizes the
results.

DB2: We looked at the set of bugs (called “Authorized
Program Analysis Reports”, or APARs) reported as being
fixed in DB2 UDB 8 Fixpaks 1 through 13; these were re-
leased between February 2003 and August 2006. There are
several thousand such reports—many of the reports are re-
lated to tools associated with DB2, or with the optimizer
generating inefficient query plans. However, a number of
them result in database corruption or incorrect answers that
neither the user nor the database system itself would de-
tect. Examples of such bugs include reports titled “incorrect
results returned when a query joins on char columns of dif-
ferent lengths and uses like predicate with string constant”,
“query compiler incorrectly removes a correlated join pred-
icate leading to an incorrect result set”, and “in some rare
cases, reorg operations may result in corrupted index”.

Of the 251 bugs reported, the majority (131) caused non-
crash faults.

Oracle: We studied bugs that were fixed between July
and November 2006 for an upcoming release (labeled version
11.1 at the time) of the Oracle Server Enterprise Edition by
searching the Oracle Bug Database on the Oracle Metalink
Server. We did not characterize security bugs, as these are
reported separately from the database engine. The number
of our sampled bugs that cause wrong results or database
corruption (28) exceeds the number that cause crashes (21).

MySQL: We analyzed 90 days of bug reports from
MySQL between August 15 and November 13, 2006. Of
the 900 issues reported, about 131 of them are verified is-
sues inside the database server. As with DB2 and Oracle,
more than half of the verified MySQL database system en-
gine bugs result in wrong answers.

Because current recovery and replication techniques only
handle bugs that immediately cause crashes, they apply to
less than half of the bugs seen in this informal study. We
also note that our results are consistent with those reported
by Gashi et al. in a recent and more detailed study [10] of
181 bugs in PostgreSQL 7.0 and 7.2, Oracle 8.0.5, and SQL
Server 7. They tested these systems and found that 80 of
the reported bugs result in “non-self-evident” faults—i.e., in
incorrect answers without crashes or error messages. They
also report that for all but five bugs, the bug occurred in
only one of the four systems they tested, and in no case did
any bug manifest itself in more than two systems.

6.2 Tolerance of Bugs with HRDB
To demonstrate HRDB’s ability to tolerate non-fail-stop

failures, we attempted to reproduce some of the bugs found
in our study. We focused on bugs that could be triggered
by specific SQL statements as they are easier to exhibit,
reserving a more general study for future work. We note that
we only attempted to reproduce a small number of bugs.

We successfully reproduced seven such bugs in the produc-
tion versions of database systems that we used (see Figure
6). We ran our system with the bugs using the configurations
shown in the figure and we were able to successfully mask
the failure in each case. Some bugs used SQL that was sup-
ported by all vendors; we were able to mask these bugs using
databases from different vendors, since none of them ap-
peared across vendors. Other bugs involved vendor-specific
syntax and thus were applicable only to certain databases.
We were able to mask bugs in MySQL 4.1.16 using MySQL
5.1.11, and to mask bugs in MySQL 5.1.11 using MySQL
4.1.16, demonstrating the utility of our system even within
different versions of the same database.

6.3 Discovery of Bugs using HRDB
While producing the performance results detailed in fol-

lowing section, we noticed that when running HRDB with
3 identical MySQL replicas, the primary was producing an-
swers that did not match the secondaries’ answers. Upon
further investigation, we found that MySQL was allowing
phantom reads: a query in transaction T1 was seeing in-
serts from transaction T2 despite T2 being ordered after T1.
Isolation level SERIALIZABLE should not permit phantom
reads.

We submitted the details of the case to the MySQL devel-
opment team, and they quickly verified that it was a bug.
MySQL failed to acquire the correct locks in SELECT queries
that use an ORDER BY ... DESC. The bug affected every
version of MySQL since 3.23 and they quickly proposed a
patch.

The discovery of this bug demonstrates HRDB’s ability
to find bugs. In this case, the bug was non-deterministic
(timing dependent), and from looking at the MySQL bug
database, possibly noticed previously but dismissed as unre-
producible.

7. PERFORMANCE ANALYSIS
In this section, we evaluate the performance of HRDB un-

der a high-concurrency workload. Our tests were done with
2f + 1 = 3 replicas, 1 primary and two secondaries, which
can tolerate 1 faulty replica. Our implementation does not
perform logging on the shepherd. The tests were run on
a cluster of Dell Poweredge 1425 machines running Fedora
Core 4 Linux, each with dual processor 2.8 GHz Xeons with
2GB of RAM and SATA 160 GByte disks, and all attached to
the same gigabit Ethernet switch. Some tests also included a
Dell OPTIPLEX GX620 3.8Ghz with 4GB of RAM running
Windows XP. The databases used were MySQL 4.1.22-max
and 5.1.16 with InnoDB tables, IBM DB2 V9.1, and Com-
mercial Database X2. We also ran experiments with Apache
Derby 10.1.3.1 (a Java-based database) but omit perfor-
mance numbers here as it is much slower than the other
systems.

2Database name omitted due to licensing constraints



Bug Description Faults Doesn’t Fault
MySQL #21904 Parser problem with IN() subqueries MySQL 4.1, 5.1 DB2, Derby
MySQL #7320 Aggregates not usable where they should be MySQL 4.1 MySQL 5.1
MySQL #13033 INNER JOIN and nested RIGHT OUTER JOIN MySQL 4.1 MySQL 5.1
MySQL #24342 MERGE tables use wrong value when checking keys MySQL 5.1 MySQL 4.1
MySQL #19667 GROUP BY containing cast to DECIMAL MySQL 5.1 MySQL 4.1
DB2 #JR22690 Query optimizer optimizes away things it shouldn’t DB2 V9.0 MySQL 4.1
Derby #1574 UPDATE with COALESCE and subquery Derby 10.1.3 MySQL 5.1, DB2

Figure 6: Bugs we reproduced and masked with HRDB.

We use the TPC-C [25] query mix to test our system be-
cause it produces a high concurrency transaction processing
workload with non-trivial transaction interaction. TPC-C
simulates an order-entry environment where a set of clients
issue transactions against a database. The TPC-C work-
load is heavily slanted towards read/write transactions, with
read-only transactions comprising only 8% of the workload.
Our implementation uses the same transaction types but
does not attempt to model the keying, wait, and think times.
Instead, each client waits for a set period of time (between
180 ms and 220 ms).

Our main objective with these experiments is to measure
the overhead of the HRDB shepherd and to determine how
much concurrency the commit barrier scheduling protocol is
able to preserve in a typical online transaction processing
workload. We note that the HRDB implementation is an
untuned Java prototype and the TPC-C implementation is
also untuned.

7.1 HRDB Overhead
To measure the overhead associated with the HRDB shep-

herd, we compared running the TPC-C workload against a
database directly to running it through the HRDB shepherd.
The database is loaded with 30 warehouses and 10 districts
per warehouse to provide ample concurrency. We used small
(1/6th size) warehouses so our untuned TPC-C implementa-
tion would achieve reasonable throughput on our hardware.
The results are shown in Figure 7. The error bars show the
standard deviation of 7 runs for each data point.

To determine the sources of performance overhead, we ran
the shepherd in a number of different modes. In Passthrough
mode, the shepherd has only one database replica, running
MySQL. Since it has no secondaries it does not use any repli-
cation machinery or commit barrier scheduling; hence it rep-
resents the overhead of using a shepherd. Shepherd 3DBs,
CBS represents the performance of HRDB using commit
barrier scheduling with three MySQL 5.1 database replicas.
Shepherd 3DBs, SS (Sequential Secondaries) is an execution
mode modeled after the Pronto [19] system, where the coor-
dinator waits until the commit is received before executing
the transaction on the secondaries. Furthermore, the secon-
daries execute transactions sequentially, thus avoiding any
possibility of incorrectly ordering transactions. In Shepherd
3DBs, Serial mode, transactions are executed one at a time
on the entire replica set.

Unsurprisingly, the best performance is achieved by in-
teracting with the database directly. The Passthrough line
shows that there is negligible overhead from the middleware.
CBS performs very well (about 17% performance loss at sat-
uration), demonstrating the effectiveness of CBS at extract-
ing concurrency. Most of the performance loss comes from

waiting for agreement before committing the transaction.
Since the transaction holds locks on the primary during the
waiting period, other conflicting transactions are prevented
from making forward progress. Thus additional latency prior
to commit reduces the available concurrency in the workload,
reducing throughput.

The SS performance (52% overhead) demonstrates that
the additional complexity of CBS provides substantial per-
formance benefits. SS does not need a sufficiently blocking
primary, nor must it ever abort and retry transactions on the
secondaries due to ordering conflicts. However, SS cannot
perform transaction execution pipelining, forcing it to wait
longer for agreement before commit. Additionally, it lacks
concurrent execution at the secondaries. These two issues
result in SS running 42% slower than CBS at saturation.

Finally, the Serial performance (91% overhead) is limited
because it does not scale as more clients are added. Note
that a naive SQL analysis based on table-locking to deter-
mine which transactions do not conflict would have similar
performance to Serial on this workload. The two most com-
mon transaction types in TPC-C (accounting for 88% of the
workload) both write to the same table.

We also experimented with varying the wait time and
number of warehouses. Changes in wait time shift the num-
ber of clients required to reach saturation, but do not affect
the relative performance of CBS with respect to MySQL.
Reducing the number of warehouses increases transaction
contention for locks. Under high contention, transaction
throughput is inversely proportional to transaction latency.
Since the shepherd (and CBS) introduce additional latency,
the shepherd overhead increases significantly in high con-
tention situations.

7.2 Heterogeneous Replication
Now we demonstrate that HRDB is capable of using a het-

erogeneous replica set, and that a sufficiently blocking pri-
mary is a reasonable, but not necessary, assumption. We im-
plemented the TPC-C workload in standard SQL, and thus
were able to run it against MySQL 4.1 and 5.1, DB2, and
Commercial Database X. Our implementation does simple
rewriting of SQL queries to allow the benchmark to work, in-
cluding handling issues with NULL ordering, column types,
and different function names. We ran the test with 20 clients
on a 10 (small) warehouse workload, with the objective of
demonstrating feasibility and relative performance of various
configurations (not databases).

Figure 8 shows the throughput results for a number of
configurations. The Direct configuration is one where the
test harness interacts directly with the database. The
Passthrough configuration adds an intermediary that per-
forms query and result forwarding. Primary is a 3 database
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(MySQL 5.1, DB2, Commercial Database X) configuration
with the given database as the primary. Serial is a 3 database
(MySQL 5.1, DB2, Commercial Database X) configuration,
where transactions are executed serially (without concur-
rency).

In the absence of faults and with a sufficiently blocking
primary, HRDB runs at the speed of the slowest of the f +1
fastest replicas or the primary, whichever is slower. With
MySQL as the primary, the slowest of the f + 1 fastest is
Commercial Database X, and the system performs as ex-
pected. With DB2 as the primary, the primary is the bot-
tleneck. Commercial Database X is not sufficiently blocking
for MySQL; if it is the primary, this causes MySQL to block
on one of the statements of the workload. With MySQL
blocked, the shepherd must wait for DB2 and thus the per-
formance is capped by DB2’s performance.

7.3 Fail-stop faults
To demonstrate that HRDB survives fail-stop faulty repli-

cas, we measured transaction throughput while one replica
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was crashed and restarted. We ran a 20 client TPC-C work-
load and recorded the timestamps at which each replica com-
mitted each transaction. Figure 9 shows a replica being
crashed 76 seconds into the test and restarted 40 seconds
later. In this time, the rest of the system continues execut-
ing because it can tolerate a faulty replica. When the faulty
replica restarts, it is 500 transactions behind.

For the overall system, the performance impact of a
crashed replica is negligible. When the replica restarts, it is
able to catch up with the rest of the replicas because it does
not execute any reads. For this workload, the slow replica
was able to execute transactions at nearly three times the
rate of the rest of the replicas (750 vs. 250 transactions in
20 seconds). This result demonstrates that transiently slow
or rebooted replicas can catch up with the other replicas.

8. CONCLUSION
HRDB shows, for the first time, a practical way to tolerate

Byzantine faults in transaction processing systems while en-
suring that transaction statements can execute concurrently
on the replicas. The key idea is commit barrier schedul-
ing, which allows the coordinator in the shepherd to observe
transaction execution on the primary and ensure that all
non-faulty secondaries execute transactions in an equivalent
serial order. CBS ensures that all replicas have the same
logical state and that clients get correct answers for all com-
mitted transactions.

We have implemented CBS as part of HRDB, which pro-
vides a single-copy serializable view of a replicated rela-
tional database system using unmodified production ver-
sions of several commercial and open-source databases as
the replicas. Our experiments show that HRDB can toler-
ate one faulty replica with only a modest performance over-
head (about 17% for the TPC-C benchmark on a homoge-
neous replica set). Furthermore, HRDB is 10 times faster on
TPC-C than a naive implementation that forcibly serializes
all transactions. We also showed how HRDB is able to mask
faults observed in practice, including one that we uncovered
in MySQL.

HRDB has a number of attractive properties. First, it re-
quires no modifications to the database systems themselves.
Second, it does not require any analysis of SQL queries to
detect conflicts, which is intractable for complex queries at



finer granularities than table-level conflicts, and which may
not work at all for materialized views or stored procedures.
Third, HRDB is able to preserve substantial amounts of con-
currency in highly concurrent database workloads.

We conclude this paper by outlining some avenues for fu-
ture work. The most immediate future work items for us
are to: (1) develop, implement, and evaluate efficient al-
gorithms for reconciling divergent database replicas, (2) ex-
plore scheduling algorithms for alternate concurrency control
schemes (e.g., snapshot isolation), (3) further reduce shep-
herd overhead by implementing programmatic and algorith-
mic optimizations, and (4) develop methods for Byzantine
replication of the shepherd while preserving reasonable per-
formance.
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