
End-to-End Transmission Control
by Modeling Uncertainty about the Network State

Keith Winstein and Hari Balakrishnan
M.I.T. Computer Science and Artificial Intelligence Laboratory, Cambridge, Mass.

{keithw,hari}@mit.edu

ABSTRACT
This paper argues that the bar for the incorporation of a
new subnetwork or link technology in the current Internet is
much more than the ability to send minimum-sized IP pack-
ets: success requires that TCP perform well over any subnet-
work. This requirement imposes a number of additional con-
straints, some hard to meet because TCP’s network model is
limited and its overall objective challenging to specify pre-
cisely. As a result, network evolution has been hampered
and the potential of new subnetwork technologies has not
been realized in practice. The poor end-to-end performance
of many important subnetworks, such as wide-area cellular
networks that zealously hide non-congestive losses and in-
troduce enormous delays as a result, or home broadband net-
works that suffer from the notorious “bufferbloat” problem,
are symptoms of this more general issue.

We propose an alternate architecture for end-to-end re-
source management and transmission control, in which the
endpoints work directly to achieve a specified goal. Each
endpoint treats the network as an nondeterministic automa-
ton whose parameters and topology are uncertain. The end-
point maintains a probability distribution on what it thinks
the network’s configuration may be. At each moment, the
endpoint acts to maximize the expected value of a utility
function that is given explicitly. We present preliminary
simulation results arguing that the approach is tractable and
holds promise.

CATEGORIES AND SUBJECT DESCRIPTORS

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design — Network communications

GENERAL TERMS

Design, Performance

1. INTRODUCTION

Over the past several years, the bar for a new subnetwork
technology to become a first-class part of the Internet has
risen sharply. Previously, any network capable of sending

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.
Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

unfragmented 20-byte packets could be part of the Internet.
Today, the tacit requirement is that TCP perform well.

Network resource management, which can be grouped into
functions performed end-to-end and those done in the net,
has converged to a “fixed point” at the endpoints: TCP or
TCP-compatible congestion control. As a result, in-the-net
functions — for traffic engineering, packet scheduling, queue
management, rate adaptation, or stochastic loss handling —
must be engineered with TCP in mind.

This requirement is considerably harder to meet, not least
because TCP congestion control does not have an end goal
that is easy to state. Nor does TCP have well-understood dy-
namical behavior between many hosts contending for network
resources, and there is no deployed mechanism to inform TCP
about unconventional details of a network.

TCP generally models those behaviors of the Internet that
were exhibited in the 1980s, such as gateway buffer overflow
(represented in TCP’s congestion window), overall round-trip
time (RTT), and delay jitter (tacitly assumed to be a lightly-
tailed distribution, like a Gaussian) [16]. Newer phenomena
exhibited by wireless networks — such as variable bit rates,
intermittency and fading, and stochastic loss not caused by
congestion — are not accounted for in TCP’s model.

As a result, the need to accommodate TCP is distilled to the
subnetwork designer as a set of loose guidelines: e.g., hide
non-congestive packet losses, limit congestive packet loss
rates to no more than a few percent, prevent intra-flow packet
reordering, carefully provision queue sizes to be neither too
large nor too small, and pay attention to TCP dynamics in
queue management and scheduling. In fact, RFC 3819 from
the IETF provides 60 pages of “best current practice” advice
to Internet subnetwork designers [18], much of which focuses
on how to make subnetworks “play well” with TCP.

We contend that this “fixed point” has hampered the evo-
lution of interesting in-the-net behavior. More importantly,
these requirements have led to poor end-to-end performance
in many important subnetworks (perhaps because it isn’t easy
to distill best practice into a succinct form). Many of today’s
wide-area cellular networks zealously hide non-congestive
losses, and as a result can introduce delays of 10 seconds or
more, confounding TCP (Figure 1). Home broadband net-
works are often provisioned with gigantic buffer sizes, an
old problem now known as “bufferbloat.”1 Large buffers can
enhance the performance of a single TCP flow, but at a cost to

1http://www.bufferbloat.net/

1

http://www.bufferbloat.net/

Figure 1: Round-trip time during a TCP download on
the Verizon LTE network in Cambridge, Mass., Oct. 14,
2011 at 3 p.m.

0.2
0.3

2
3

0.1

1

10

0 50 100 150 200 250

R
ou

nd
-t

ri
p

tim
e

(s
)

Time (s)

latency-sensitive traffic and new TCP flows that must compete
with an incumbent flow that has already filled the buffer.

We propose an alternate approach for end-to-end resource
management and transmission control. Instead of writing
down rules for the endpoints to follow, as TCP does, we start
from the desired behavior and work backwards. The endpoint
maintains a flexible model of its uncertainty about the charac-
teristics of the network between source and destination. As
the sender receives acknowledgments from the receiver, it in-
fers whatever it may to reduce this uncertainty, e.g., about the
link speed, buffer size, volume and behavior of cross traffic,
amount of jitter, or even the topology of the network itself.
For example, in this framework it is easy to accommodate
both congestive loss and stochastic loss without becoming
confused as TCP does.

At each moment, the endpoint acts to maximize a utility
function that is given explicitly. When the network is un-
certain, that means the endpoint takes whatever action will
maximize the expected utility, taken over the distribution of
possible configurations of the network. For example, the
endpoint might try to achieve a fair allocation of throughput
between it and cross traffic.

Although efforts have been made to reverse-engineer the
utility function that TCP maximizes in steady state [20],
these utility functions generally concern themselves only with
throughput. In our system, the utility function is arbitrary and
may also include a penalty for creating latency for other users
of the network, meaning the sender will be discouraged from
filling all queues between it and the destination, unlike TCP.

By separating the network model and utility function
and making them first-class objects supplied to an endpoint
mulling when it should send, our system’s end goal can be
clearly stated: we take the best possible action to maximize
the supplied notion of utility, subject to the uncertainty we
have about the network.

We note that the idea of writing out an explicit function to

optimize in a distributed (end-to-end) way is the starting point
of distributed mechanism design (DAMD) [10]; our proposal
may be viewed as sharing some of the DAMD ethos, though
we have not focused on issues like strategy-proof mechanisms
that are central to prior DAMD work [8, 9]

We have implemented a preliminary inference engine to
calculate and take this best possible action, and here present
results from simulation arguing that this approach is tractable
and holds promise.

2. RELATED WORK

Network congestion control has been an active research
area for over 25 years, with scores of papers on the topic
and a variety of methods used in practice. However, most
implemented schemes share the basic structure developed by
Jacobson in the context of TCP congestion control (Tahoe
and then Reno) [16]. In essence, all TCP variants model the
entire network path using a single variable, cwnd, and use
incoming ACKs to adjust this value and send out data. TCP
also tracks the smoothed round-trip time (srtt) and linear devi-
ation (rttvar) to set the retransmission timeout value, resetting
cwnd to 1 segment when that happens. Much work has been
done on different increase/decrease rules for cwnd within this
architectural framework (e.g., NewReno [14], equation-based
congestion control [12], binomial control [2], CUBIC [13],
etc.). Other prior work has proposed using srtt increases to
incorporate delay into window increase decisions (e.g., Ve-
gas [6], FastTCP [26], etc.). Some other work has explicitly
estimated bandwidth to optimize TCP performance over net-
works with wired and wireless links (e.g., Westwood [23]).

A different line of work jointly designs end-to-end control
with explicit router participation, as in single-bit ECN [11],
multi-bit extensions like VCP [27], and more expressive
schemes like XCP [19]. Information set by routers help the
end system determine whether to adjust cwnd or an explicit
rate, but the approach still involves the sender modeling the
entire network using a single cwnd or rate variable.

TCP congestion control was not designed with an explicit
optimization goal in mind, but instead allows overall network
behavior to emerge from its rules.

TCP congestion control assumes that all losses are caused
by congestion, and much work has been done in hiding non-
congestive stochastic losses from the sender using link-layer
or subnetwork-layer methods [1, 15, 22]. At an extreme,
some existing systems (some cellular wireless data networks)
seem to over-buffer and over-zealously retransmit packets
at the lower layers, leading to delays as high as multiple
seconds. Such networks badly degrade the performance of a
mix of short and long flows, and exhibit high latencies. Some
research has looked at end-to-end techniques that attempt to
distinguish congestion from non-congestive losses [5, 25, 3, 4,
7] using loss labeling, but thus far it has been unclear whether
that is possible to do reliably.

Our approach models the network path as a combination of
multiple non-deterministic idealized elements that explicitly
capture things like the link speeds, the stochastic loss rate,

2

buffer sizes, cross traffic, and other parameters. This model
is known as a partially observable Markov decision processes
(POMDP), for which there is a wealth of literature in the
operations research and artificial intelligence communities
that we benefit from [17, 24]. To our knowledge, applying
this approach to network resource management is novel.

Our proposal is inspired by recent work on developing FII,
a framework for evolvable network architectures [21]. FII
incorporates an end-system API that decouples applications
from the current socket layer. In a similar vein, we argue
that end-to-end transmission control should be decoupled
from rigid assumptions on the behavior of the underlying
subnetworks.

3. MODEL-BASED TRANSMISSION CONTROL

On today’s Internet, TCP’s estimated quantities often do
not correspond to actual parameters of the network. For
example, the congestion window reflects both the available
gateway buffer size in the network before buffer overflow will
cause segment loss, but also segment loss that occurs for any
other reason. On a network that includes a conventional FIFO
queue, the round-trip time is not intrinsic to the network;
it also depends on how fast the endpoints are sending and
whether they have chosen to fill up the queue.

The RTT variation depends on TCP’s own behavior and
that of cross traffic, and is often not lightly-tailed as TCP’s
retransmission rules implicitly assume. TCP maintains only
average estimates of these parameters and does not attempt to
quantify their uncertainty. Additionally, TCP’s model doesn’t
capture many behaviors of wireless networks, such as stochas-
tic loss, intermittent connectivity, and changes in link speed.

By contrast, in our formulation the endpoint models the
network explicitly as a nondeterministic automaton, as a com-
bination of idealized elements. Because real networks do
consist of human-engineered machinery and modelable natu-
ral phenomena (such as wireless fading), we believe such an
explicit model of the network may be realistic.

The sender maintains a probability distribution of the pos-
sible states that the network could be in. At every step, the
sender makes a decision about whether to send a packet im-
mediately, or to schedule a transmission for some specific
time in the future. It finds the decision that will maximize
the expected value of an instantaneous utility function, by
simulating the consequences of each possible timeout on the
distribution of possible network states.

Separating the model from the transmission controller and
making it an adjustable parameter will improve the evolvabil-
ity of end-to-end transmission control, because new subnet-
work technologies would no longer need to contort themselves
to meet TCP’s assumptions. If the model is rich enough, a new
subnetwork might find itself as simply a different configura-
tion of an already-modeled distribution of possible networks.
A model that captures most of the behavior of a real network
may be sufficient, without requiring each element of a real
network to be represented in the model. If a new subnetwork

exhibits truly novel behavior, that behavior could be modeled
as a new network element and the endpoints’ model extended.

Our approach consists of four parts: the model of the net-
work itself, a sender that simulates possible network states to
decide when best to transmit, an instantaneous utility function
that the sender is trying to optimize, and a receiver.

3.1 Modeling the Network
The model is built as a language of network elements,

corresponding to idealized versions of data structures and
phenomena that occur in real networks:2

BUFFER: A tail-drop queue, whose unknown parameters are the size of
the queue and its current fullness.

THROUGHPUT: A throughput-limited link, operating at a particular speed
in bits per second.

DELAY: An unknown delay.
LOSS: Stochastic loss, independently distributed for each packet at a

particular rate.
JITTER: A delay of a certain amount, introduced to randomly-selected

packets with a particular probability.
PINGER: An isochronous sender of cross traffic at a particular rate.
INTERMITTENT: Connects input and output only intermittently, and

switches from connected to disconnected according to a memoryless process
with particular interarrival time (mean-time-to-switch).

SQUAREWAVE: Regularly alternates between connected and discon-
nected with a certain period.

ISENDER: A sender that follows our approach by maintaining a model of
the network and scheduling transmissions to maximize the expected utility.

RECEIVER: The ISENDER’s destination, which conveys the time of each
packet received back to the ISENDER.

Some of these elements are non-deterministic. For exam-
ple, when a packet is sent to LOSS, the element both loses
the packet with probability p, and sends it on with probability
1− p.

The network elements can be combined in various ways:

SERIES: Connects two network elements and sends the output of one to
the input of the other.

DIVERTER: Routes packets from one source (such as the cross traffic) to
one network element, and all other traffic to a different element.

EITHER: Sends traffic either to one element or another, switching with a
specified mean-time-to-switch.

By combining these elements arbitrarily, it is possible
to model more complicated networks. For example, a
PINGER followed by one or more JITTERs can model a non-
isochronous source of cross traffic. Multiple queues may be
chained. Some cross traffic may be present only on some links
but not others, and then only intermittently. The entire con-
nection may die occasionally. Buffer sizes and throughputs
can vary over time.

3.2 Sender’s transmission behavior
The ISENDER is the object that implements our approach.

It has two jobs: (1) maintain a model of the network con-
figuration with specified uncertainty and (2) send packets
according to a schedule that maximizes the expected utility.
2Figure 2 illustrates how these components can fit together in a real
network.

3

The first task is accomplished using standard probabilistic
techniques. Initially, the ISENDER has substantial uncertainty
about the configuration of the network. There may be a
THROUGHPUT whose link speed was drawn uniformly from a
wide distribution. Each BUFFER may have a total size drawn
from some distribution, with some unknown initial fullness.
The rate of cross traffic and amount of jitter are also assumed
to have been drawn from some probability distribution. We
refer to this initial probability distribution as the “prior.”

The ISENDER currently uses simple rejection sampling to
maintain this probability distribution on the possible network
configuration. At any point in time, it maintains a list of all
possible configurations of the network and their correspond-
ing probability.

Every time it receives an ACK from its RECEIVER or its
timer (set below) expires, the ISENDER receives an event and
wakes up. It simulates each of the possible network states
since the last wakeup to see what results they would have
produced at their simulated RECEIVER.

Any state that produces results inconsistent from what actu-
ally happened is removed from the list, and the probabilities
of all remaining configurations are increased so that they still
sum to unity. This process can be viewed as the sequential
application of Bayes’ theorem.

A nondeterministic element may “fork” the model into two
possibilities; e.g., when LOSS receives a packet, it forks the
model into a case where the packet is lost and one where it is
sent. Both configurations are then simulated further.

Such forks do not generally lead to an unbounded explo-
sion, because their effects do not linger forever. A packet that
flowed through LOSS will eventually arrive at its destination
and leave the network. Eventually, the two possible states
of the network may become identical and can be compacted
back into one state.

When a possibly-lost packet has gone into a buffer and
has affected the timing of future packets, this “compaction”
may not occur for some time. By contrast, if stochastic loss is
assumed to occur only at the “last mile” of the link — after any
buffers or throughput-limited links — then the consequences
of stochastic loss do not linger.

Because network configurations are continually forking
and because there may always be some ambiguity about the
true state of the network, the number of network configura-
tions is generally not pared down to one. However, we have
found that the ISENDER can usually quickly pare down the
prior to a smaller list of possibilities as it homes in on a good
estimate of the network parameters.

This rejection-sampling approach is limited computation-
ally; we have found that maintaining more than a few million
possible discrete channel configurations is impractical. A
more sophisticated scheme and scalable would use the ap-
proximate techniques of Bayesian inference that have been
developed in the literature of POMDPs, such as Markov-chain
Monte Carlo and belief compression, to represent continuous
priors.

The ISENDER’s second job is to, at every step, take the
action that maximizes the expected value of the utility. This
“action” may be one of two options: (a) “send now” or (b)
“sleep until time t.” (We assume the sender will always send
packets of uniform length.)

Conceptually, then, the approach is simple: when the
ISENDER wakes up, it makes a list of strategies including
sending immediately and at every delay up to the slowest rate
the ISENDER could optimally send. We evaluate the conse-
quences of each strategy on each possible network configu-
ration, and choose the strategy that maximizes the expected
value of the utility.

If the RECEIVER notifies the ISENDER before x seconds
have passed that it has received some data, the sender will be
woken up early and will reevaluate the best decision. Thus,
the sender is really deciding at each step either to send, or to
establish a timeout of a duration that maximizes utility.

3.3 Utility
This approach leads to some subtleties about how utility

is defined. The simplest approach would be to credit the
sender with some amount of utility for every byte that is
received in the future. However, we wish to consider only
the consequences of one sending decision at a time, looking
forward only a finite number of seconds, and calculate the
instantaneous utility of each packet.

This is defined as the packet size in bits, divided by
eτ , where τ is the number of milliseconds in the future
when the packet will be received. This has the effect
of nearly linearly rewarding throughput — the accumu-
lated instantaneous utility of a stream of packets will cor-
respond almost linearly to the actual throughput for any re-
alistic bitrate, since ∑

∞
t=0 e−t/(1000r) ≈ 1000r + 0.5 for r >

1
100 packets per second.

The sender considers the utility to itself — which it can
observe, since it receives its own packets — and also to any
cross traffic, which it only observes in simulation. The utility
function can optionally penalize latency experienced by the
cross traffic, e.g. if the cross traffic is a video conference or
other delay-sensitive traffic, which will discourage the sender
from filling up a queue. The utility function may include a
parameter varying the relative value of cross traffic compared
with our own.

The sender does not need accumulate the total instanta-
neous utility under each possible delay forever — only until
the consequences of each hypothetically sent packet have
ceased to linger and every possible set of network config-
urations has become identical again, irrespective of delay
decision. It chooses the delay that produces the highest accu-
mulated utility over that interval and sleeps until that point.

We stress that the sender’s algorithm need not be executed
in real time. For a particular model and distribution of pos-
sible states, there will be a policy that can be computed in
advance that prescribes the utility-maximizing behavior.

3.4 Receiver behavior

4

The RECEIVER accumulates packets and wakes up the
SENDER for each one, notifying it of the received time and se-
quence number of the packet. In our preliminary experiments,
we consider the sender and receiver clocks to be synchronized
and the return path to be lossless. In the future, clock skew
may need to be incorporated into the model as a parameter to
be estimated.

3.5 Limitations

One important limitation at this stage is that we have not
yet experimented with any networks that contain more than
one ISENDER, or any network elements performing TCP.
The question of an ideal sender’s interaction with TCP, or
with itself — whether starting with the same or different
assumptions, and whether optimizing the same or a different
utility function — will be of great importance to the practical
realization of our approach.

Our current network elements are sparse — we will need to
add some allowance for non-FIFO scheduling, active queue
management, multipath intra-flow routing, and other real-life
phenomena.

Finally, in initial experiments the network model represents
the entire round-trip path between source and destination and
back to source. We have modeled the return path as lossless
and instant. In general, both paths will need to be modeled.

4. RESULTS

We have implemented the above design in C++ and embed-
ded the ISENDER in an event-driven network simulation and
tested it in a variety of configurations.

The sender reaches a predictable, ideal result in simple con-
figurations, such as a single ISENDER connected to a queue,
drained by a throughput-limited link. It begins tentatively if
it is not sure of the link speed and initial buffer occupancy.
Once it has inferred those parameters, it simply sends at the
link speed from there on out.

If cross traffic is present and the utility function penalizes
induced latency to other traffic, then the ISENDER drains the
buffer before sending at the link speed.

We present here the results of a more complicated model,
shown in Figure 2. We simulate isochronous cross traffic of
an unknown speed, fading in and out intermittently. Both the
sender and cross traffic feed into the same tail-drop buffer of
unknown size, which is drained by a link of unknown speed.
The packets then undergo stochastic loss with an unknown
rate before arriving at their corresponding receivers. The
sender only hears acknowledgments from its own receiver.

The ISENDER is initialized with a prior that includes, as
one possibility, the true value of most of the parameters. The
prior represents a discretized uniform distribution over the
following ranges:

Figure 2: Network model used in experiment

Pinger

r (packets per sec)

ISender

Buffer

capacity (bits)
initial fullness

Throughput
c (bits per second)

Loss
p (loss rate)

Receiver

Receiver

(acknowledgments)

Intermittent
t (mean-time-to-switch)

Figure 3: Results of varying priority to cross traffic

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
eq

u
en

ce
N

u
m

b
er

Time (s)

cross traffic using 70% of link no cross traffic cross traffic using 70% of link

α = 0.9

α = 1.0

α = 2.5

α = 5

Parameter Prior belief Actual
c (link speed) 10,000≤ c≤ 16,000 12,000
r (packets per second) 0.4c≤ r ≤ 0.7c 0.7c
t (mean time to switch) 100 s n/a
p (loss rate) 0≤ p≤ 0.2 0.2
buffer capacity (bits) 72,000≤ x≤ 108,000 96,000
initial fullness 0≤ x≤ buffer capacity 0

The true network can carry one 1,500-byte packet per sec-
ond and stochastically loses 20% of all packets. Although
the ISENDER assumes the PINGER switches on and off inter-
mittently according to a memoryless process, in reality we
switch deterministically every 100 seconds and observe the re-
sults. The ISENDER does not see the PINGER’s traffic directly
or receive acknowledgments; it has to infer probabilistically
whether the PINGER is sending.

Our utility function is our own instantaneous throughput,
times some multiple α of the throughput achieved by the cross
traffic. By increasing this α , we should see the ISENDER
become more deferential to cross traffic.

The results are shown in Figure 3. The ISENDER behaves
as desired. Irrespective of α , the sender starts out slowly
when it is uncertain of the channel parameters. As it narrows
down the possible channel configurations, it begins to send at
the optimal rate for its notion of utility.

5

During the period that the cross traffic is not sending, the
ISENDER always sends at the exact link speed. (By the time
the cross traffic shuts off 100 seconds in, the sender has
figured out all the parameters of the channel, including the
fact that the cross traffic occupies 70% of the link and the
20% packet loss.) The effect of α is to change the timidity
with which the ISENDER reaches the conclusion that the cross
traffic has switched off, and to adjust the sending rate when
competing with the cross traffic.

When α < 1, the sender has no reason to defer to the cross
traffic and sends at the (discovered) link speed. When α = 1,
it senses the presence of the cross traffic and the fact that
it occupies 70% of the link, and fills in the rest of the link.
These calculations are not perfect because the ISENDER itself
is operating under 20% packet loss. When α > 1, the sender
becomes more and more deferential to the cross traffic.

Except for the case when α < 1, the ISENDER never causes
a buffer overflow, since this would hurt overall utility by
dropping one of the other sender’s packets. For the sender
who prioritizes his own packets above the cross traffic, the
best decision is to flood out all of the other sender’s packets.

5. CONCLUSION

This paper makes two contributions. The first is an argu-
ment that the requirement that subnetworks be capable of
running TCP well hampers the effective integration of new
network technologies into the Internet. The second is a pro-
posal for end-to-end transmission control that departs from
TCP to overcome this problem. The proposed architecture
models the various features of a network path explicitly and
associates probabilities with the different states the path can
be in. At each moment, the endpoint acts to maximize the
expected value of a utility function that is given explicitly.
It has the ability to adapt to new technologies (which can
be introduced without making any assumptions about the
ends) by being able to discover their operational properties
dynamically.

Our simulation results, though on a simple network con-
figuration, still demonstrate that TCP-like behavior can be
derived from first principles in a network against unknown,
intermittent cross traffic, even in the presence of 20% packet
loss. Because the utility function and model are arbitrary and
the sender simply does the best thing possible given the in-
formation it has, this approach shows promise for being able
to flexibly evolve endpoint behavior in response to changing
subnetwork technologies and user preferences.

Much work remains to be done to demonstrate the utility of
these ideas. More complex network paths have to be handled,
as mentioned in §3.5. The rejection-sampling approach is not
as scalable as other approaches, as mentioned earlier. Many
more extensive simulations and experiments need to be done
to convince the community of these ideas. Our hope is that
this paper has intrigued and convinced the reader that this line
of work is a promising architectural and technical direction
worth discussing and refining.

6. ACKNOWLEDGMENT

This work was funded by NSF award CNS-1040072.

REFERENCES
[1] H. Balakrishnan, S. Seshan, and R. Katz. Improving Reliable Trans-

port and Handoff Performance in Cellular Wireless Networks. ACM
Wireless Networks, 1(4), Dec. 1995.

[2] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algo-
rithms. In INFOCOM, 2001.

[3] D. Barman and I. Matta. Effectiveness of loss labeling in improving
TCP performance in wired/wireless networks. In ICNP, 2002.

[4] D. Barman and I. Matta. A Bayesian approach for TCP to distinguish
congestion from wireless losses. In WiOpt, 2004.

[5] S. Biaz and N. Vaidya. Discriminating congestion losses from wireless
losses using inter-arrival times at the receiver. In ASSET, 1999.

[6] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In SIGCOMM,
1994.

[7] S. Cen, P. Cosman, and G. Voelker. End-to-end differentiation of
congestion and wireless losses. EEE/ACM Trans. on Networking,
11(5):703–717, 2003.

[8] J. Feigenbaum, C. Papadimitriou, R. Sami, and S. Shenker. A BGP-
based mechanism for lowest-cost routing. Distributed Computing,
18(1):61–72, 2005.

[9] J. Feigenbaum, R. Sami, and S. Shenker. Mechanism design for policy
routing. In PODC, 2004.

[10] J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism
design: Recent results and future directions. In DIAL-M, 2002.

[11] S. Floyd. TCP and Explicit Congestion Notification. CCR, 24(5), Oct.
1994.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based
Congestion Control for Unicast Applications. In SIGCOMM, 2000.

[13] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. ACM SIGOPS Operating System Review, 42(5):64–74,
July 2008.

[14] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP. In SIGCOMM, 1996.

[15] IEEE P802.1-93/20b0. Draft Standard IEEE 802.11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifica-
tions.

[16] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.
[17] L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101:99–
134, 1998.

[18] P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Ludwig, J. Mah-
davi, G. Montenegro, J. Touch, and L. Wood. Advice for Internet
Subnetwork Designers, 2004. RFC 3819, IETF.

[19] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[20] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability. Journal
of the Operational Research Society, 49:237–252, 1998.

[21] T. Koponen, S. Shenker, H. Balakrishnan, N. Feamster, I. Ganichev,
A. Ghodsi, P. Godfrey, N. McKeown, G. Parulkar, B. Raghavan, et al.
Architecting for innovation. CCR, 2011.

[22] A. Larmo, M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and H. Wie-
mann. The LTE link-layer design. IEEE Comm. Mag., 47(4):52–59,
2009.

[23] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang. TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links. In MobiCom, 2001.

[24] N. Meuleau, K.-E. Kim, L. P. Kaelbling, and A. R. Cassandra. Solving
POMDPs by Searching the Space of Finite Policies. In Intl. Conf. on
Uncertainty in Artificial Intelligence, 1999.

[25] N. Samaraweera. Non-congestion packet loss detection for TCP error
recovery using wireless links. IEEE Comm., 146(4):222–230, 1999.

[26] D. Wei, C. Jin, S. Low, and S. Hegde. FAST TCP: motivation, archi-
tecture, algorithms, performance. IEEE/ACM Trans. on Networking,
14(6):1246–1259, 2006.

[27] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One more bit
is enough. IEEE/ACM Trans. on Networking, 16(6):1281–1294, 2008.

6

	Introduction
	Related Work
	Model-Based Transmission Control
	Modeling the Network
	Sender's transmission behavior
	Utility
	Receiver behavior
	Limitations

	Results
	Conclusion
	Acknowledgment

