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Abstract
Prior research has proposed using peer-to-peer (P2P) content
delivery to serve Internet video at lower costs. Yet, such meth-
ods have not witnessed widespread adoption. An important
challenge is incentivization: what tangible benefits does P2P
content delivery offer users who bring resources to the table?
In this paper, we ask whether monetary incentives can help
attract peers in P2P content delivery systems. We first propose
Gringotts, a system to enable secure monetary incentives
for P2P content delivery systems. Gringotts provides a novel
Proof of Delivery mechanism that allows content providers
to verify correct delivery of their files, and shows how to use
cryptocurrency to pay peers while guarding against liars and
Sybil attacks. We then present results from an 876-person
professional survey we commissioned to understand users’
willingness to participate in Gringotts, and what challenges
remain. Our survey revealed that 51% would participate
for suitable financial incentives, and motivated the need for
alternate payment forms, device security, and peer anonymity.

1 Introduction
Video streams now constitute over 70% of global Internet traf-
fic [6, 27]. Most video is delivered to users today via Content
Distribution Networks (CDNs) like Akamai and CloudFlare.
Although CDN demand has nearly doubled since 2016 [6],
they are too expensive for many content providers to use [25].

To combat these high prices, there have been many
proposals to have peers cache and stream videos to each other,
either as supplements to existing CDNs [13, 16, 34–37], or as
decentralized peer to peer (P2P) systems [21,28]. For example,
peers within an Internet Service Provider (ISP) in a city could
stream videos directly to one another, avoiding expensive
Internet paths. By serving content using bandwidth and storage
resources that would otherwise go unused, such systems can
significantly reduce costs for content providers and CDNs.

Unfortunately, these proposals have not seen significant
adoption in practice, primarily due to a lack of sufficient
peer participation [4, 37]. A key reason is that traditional
P2P systems have relied on tit-for-tat incentivization strate-
gies [8, 23, 28], whereby clients (i.e., content consumers) must
also contribute resources and act as peers (i.e., content distribu-
tors). Coupling clients and peers in this way limits adoption: it
restricts content access for clients who do not wish (or are un-
able to) contribute resources, and fails to incentivize peers who
wish to contribute resources without downloading content.

We believe that the steady increases in client-side uplink
bandwidth and storage capacity [29] motivate revisiting P2P
content delivery, but with a focus on new mechanisms to se-
curely incentivize peers. In particular, we consider using mon-

etary payments as an incentive mechanism. Unlike tit-for-tat
strategies, monetary incentives can decouple clients from peers
in content delivery systems to increase potential participation.

Performing monetary payments securely is challenging.
Such incentives can lead to numerous financially motivated
attacks from any combination of malicious clients, peers, and
content providers. For example, a content provider can refuse
to pay a peer for content that was already delivered. Alterna-
tively, an adversary can create fake colluding clients and peers
to earn money without delivering any content (i.e., a Sybil
attack). These problems persist regardless of whether payment
is done using a central authority that everyone trusts (e.g., a
bank or the CDN) or a decentralized approach. For instance, a
central payment authority must reliably track all data transfers
to determine payments, but existing tracking techniques rely
on client- and peer-generated logs, making them vulnerable
to collusion attacks [1]. Thus, the key challenge is to assure
content providers that delivery is happening properly, despite
the fact that they are not directly involved in each data transfer.

Our first contribution is a lightweight solution to this prob-
lem in which content providers, clients, and peers collectively
produce a Proof of Delivery Chain (PoDC) that serves as a
proof for the delivery of a file from a set of peers to a client (§2).
PoDCs are unforgeable and tamper-proof: neither the peers nor
the content providers can manipulate them to affect payments.

Second, we present the design of Gringotts (§2), a system
that applies PoDC to decentralized P2P content delivery. Pay-
ments in Gringotts are made using a cryptocurrency. To dis-
tribute files, content providers advertise smart contracts for
each file to serve. Smart contracts embed proof of delivery
instructions, as well as information about where payments
will come from (i.e., the content provider’s cryptocurrency
account). Peers are then guaranteed payment for delivered con-
tent by broadcasting PoDCs on a blockchain; to ensure suffi-
cient scalability, Gringotts uses probabilistic payments to limit
blockchain transactions. Gringotts is also robust to various
forms of collusion and Sybil attacks with fake clients or peers.

Our third contribution is an 876-person consumer survey
that we commissioned to understand users’ willingness to par-
ticipate in Gringotts (§4). To our knowledge, these are the first
published results on this question. Our key finding is that 51%
of respondents would participate. Those who would not partic-
ipate were primarily concerned with device security, content
liability, and impacts on device performance. Our survey also
revealed that 27% of users are already willing to accept cryp-
tocurrency payments (with 40% unsure due to lack of familiar-
ity). Thus, our findings motivate that, in order to fully realize
P2P content delivery, techniques for alternate payment forms,
device security, and anonymity for peers must be developed.



Figure 1: Downloading a file with Gringotts.

2 Secure and Practical Decentralized Incen-
tivization

In this section, we describe how Gringotts handles content de-
livery and payments. We discuss solutions to potential security
vulnerabilities and discuss practical overhead considerations.

2.1 Overview
Gringotts includes three major entities: a content provider
that generates content (e.g., videos), a client who requests
that content, and a peer who serves that content. To start, the
content provider creates a Smart Contract for each content
file that they would like to distribute. The Smart Contract
includes information about payments, describing how much
peers will earn by serving this file, where payments will come
from (i.e., the content provider’s cryptocurrency account), and
the rules that peers must follow to prove that they served a file
for payment (i.e., Proof of Delivery (PoD)). Files are broken
into chunks, and each chunk is placed on multiple peers who
agree to the content provider’s terms for that file.

Figure 1 illustrates how Gringotts handles a client request for
a single file. Client requests are initially forwarded to the con-
tent provider, who responds with an Initial Certificate (IC) that
provides a guide on how to download all of the file’s constituent
chunks. The IC includes a list specifying the peer (identified by
IP address and public key) to download each chunk from, along
with the address of a Backup Node, which is a trusted server
(e.g., a traditional CDN) to contact in the event that a peer is un-
reachable. Backup Nodes operate identically to normal peers,
generating a PoD for each request that they serve.1 The content
provider signs each IC with its private key to prevent forgery.

Upon receiving an IC, the client begins to download chunks
from the listed peers. Clients maintain a sequential chain of
PoD entries for each chunk they download, called the PoD
chain (PoDC). The first element in the chain is the IC served by
the content provider. After each successful chunk download,
the client sends the peer a hash of the current PoDC. The
peer then generates a new PoD (for the chunk they served) by
signing the hash with its private key. The peer commits this
PoD to the Blockchain, and also sends it to the client, which
adds it to the PoDC. Thus, at the end of the file download, the

1Backup Nodes can be deployed on programmable CDNs like Amazon
CloudFront [2], which can execute arbitrary computations on each request.

Blockchain contains the entire PoDC for the file download.
The PoDC effectively acts as a Blockchain, in that every link
in the chain can be verified by a third party to ensure that the
Smart Contract is not violated.

For simplicity, we described the client’s downloading
of chunks to be serial. This ensures sequential PoDs in
the PoDC, which is necessary for third party verification.
However, for improved performance, chunks for a file can
be downloaded in parallel streams, such that each stream
generates an independent PoDC comprised of chunks that are
downloaded serially. We also note that Gringotts can run atop
existing blockchains using standard cryptocurrencies.

2.2 Overheads

Content Provider Overheads. With Gringotts, every client
file request is first forwarded to the content provider which
generates an IC for the download. This overhead mimics that of
a video download with a traditional CDN. Clients traditionally
begin a video streaming session by first downloading a
Manifest file directly from the content provider; video content
is then downloaded directly from CDNs [17]. In fact, with
Gringotts, content providers can simply append ICs directly
to Manifest files. Manifest files can be further modified to
include hash values for each chunk in the file, allowing clients
to verify the integrity of the data they receive.

Blockchain Overheads. In the design presented in §2.1,
each chunk download is recorded on the Blockchain by
the corresponding peer. This transactional overhead may
overwhelm the Blockchain. For example, 50,000 YouTube
videos are watched every second, but existing Blockchains like
Ethereum [33] can only support 25 transactions per second.

To limit the overhead on the Blockchain, we propose us-
ing probabilistic payments. A simple approach is for content
providers to grant payments only for a PoD which is divisible
by a number N (specified in the Smart Contract). Peers would
only submit a PoD to the Blockchain if this condition is met, re-
ducing the number of Blockchain transactions by a factor of N.

One challenge with probabilistic payments is that the PoDC
will no longer be directly recoverable from the Blockchain,
since not all PoD entries will be present. However, the PoDC is
necessary to verify that a PoD is valid, i.e., that it corresponds
to a file delivery that adhered to the rules specified by the Smart
Contract. To overcome this, peers can request the current PoDC
from the client each time they generate a payment-eligible PoD.
The peer can then include the PoDC in its Blockchain entry.
It is important to note that PoDC transactions only occur once
every N chunk downloads. Further, we expect the size of each
PoD to be several bytes, implying PoDC sizes under a few KB.

Setting the value of N for probabilistic payments entails
a tradeoff: a large N implies low payment frequency, while
a low N limits the savings on Blockchain transaction costs.
Assume that N is selected such than an active peer gets paid
(on average) 10 times per day, or 300 times per month. We



make two observations. First, given that existing Blockchains
like Ethereum can handle 2.2 million transactions per day,
Gringotts would be able to support 220,000 active peers at
any time. Second, payment frequencies are relatively stable.
Specifically, the number of payments per month will be Bino-
mial distributed, with a mean of 300 and a standard deviation
of 17.3. Of course, the appropriate value of N will change
over time, as new Blockchains are created (e.g., Algorand [10]
claims to support 100x more throughput than Ethereum).

2.3 Detecting and Thwarting Attacks
Using monetary incentivization in decentralized settings has
inherent security risks, as any involved entity (content provider,
peer, or client) can be malicious, either independently or in
collusion. We primarily focus on financially-motivated attacks,
but also discuss other common attacks (e.g., DoS attacks).

2.3.1 Single-entity Attacks

Malicious peer. To get paid, a peer must generate a PoD that is
payment-eligible according to the Smart Contract. However, a
malicious peer could attempt to generate a PoD without serving
content to a client. Preventing such an attack in Gringotts
is relatively straightforward. Recall that a peer generates a
PoD using a hash of the PoDC that is provided by a client. If
a malicious peer does not serve a chunk, the client can simply
refuse to provide a PoDC hash (and subsequently download the
chunk from the Backup Node). Further, since peers only learn
the PoDC hash after serving a chunk, they cannot selectively
choose to only service requests that will lead to a payment.

Malicious content provider. A content provider’s goal is to
maximize content distribution while minimizing cost. Since
a content provider does not know a peer’s private key (which
is used to generated a PoD) in advance, it cannot predict what
a PoD will look like with a new IC. However, a malicious
content provider could generate ICs which have resulted in no
payments to a peer during past downloads. To prevent this, ICs
can be augmented to include a nonce, which serves as a unique
identifier for each IC. Each content provider’s nonces must
be monotonically increasing (e.g., timestamps), and clients
must include the appropriate nonce in each chunk request that
they send a peer (i.e., Step 3 in Figure 1). In this way, peers
can verify that incoming chunk requests are not intentionally
designed to prevent payment by reusing a nonce value.

There is one complication with having peers verify that
nonces are monotonically increasing. Given the decentralized
nature of Gringotts, client network latencies can create race
conditions for nonce verification at peers. For example,
consider a scenario in which two clients simultaneously
request a file from a content provider such that the difference
in their nonce values is one unit. The first client’s network
delay to load the first n chunks could be greater than the
corresponding delay for the second client, creating a scenario
where the second client’s request for chunk n + 1 reaches
the appropriate peer before that of the first client. To handle

such scenarios, peers can maintain a sliding window of past
nonce values. Incoming nonce values cannot match those in
the window, and must be larger than the nonce value received
immediately prior to the start of the window.

2.3.2 Collusion Attacks

Collusion between clients and content providers. As noted
above, a malicious content provider may want to prevent peers
from receiving payments. While monotonically increasing
nonces prevent the attack when a content provider acts
alone, they are insufficient when content providers collude
with clients. Specifically, a client (on behalf of a content
provider) could fail to provide a PoDC to a peer that generates
a payment-eligible PoD. Peers can certainly detect such
behavior, and immediately stop serving content on behalf of
the corresponding content provider. However, this poses a
payment issue: peers receive probabilistic payments, so simply
halting service for a content provider can yield significant
amounts of wasted, uncompensated work. One way to mitigate
this is for peers to request PoDC values from clients after
every chunk they serve, rather than only doing so after they
generate a payment-eligible PoD. In this way, peers would be
able to quickly detect malicious clients. However, this solution
adds significant bandwidth upload overheads to well-behaved
clients. Instead, peers should probabilistically request PoDC
values from clients. If the probability of requesting a PoDC
is higher than the probability that a peer receives a payment
for a chunk download, peers can identify malicious behavior
without wasting significant resources.

Collusion between clients and peers (Sybil attack). In an
effort to increase payments, peers can collude with clients
to lie about content delivery, thereby earning money without
expending any resources. As a first step towards prevention,
Gringotts’s content providers randomize the peers that are re-
sponsible for serving the chunks of a file, making it difficult
for a colluding client to contact a colluding peer. However, this
is insufficient since the cost of creating a client is zero. A mali-
cious peer can spawn a large number of clients to ensure that a
significant number of clients contact it. In this model, each mali-
cious client can generate a PoD for the first chunk in a file if it is
intended to be served by a colluding peer; otherwise, the client
can terminate the connection without wasting any resources.

Unfortunately, existing anomaly detection approaches to
prevent collusion are unable to detect such attacks [1]. Instead,
Gringotts enforces that the first chunk in each file is down-
loaded from a secure, trusted node (e.g., a traditional CDN).
This modification creates an overhead to client generation,
since a client must expend bandwidth resources to download
the first chunk of a file, before they can download subsequent
chunks of the file from peers hoping to earn money. This over-
head, in turn, makes Sybil attacks economically unfeasible.

To better understand this solution, consider a file download
in which download bandwidth costs peers $x per chunk, con-
tent providers pay $y per chunk download (on average), and



peer upload costs are $z per chunk. Further, assume that the
fraction of malicious peers owning the chunks of that file is m,
and the file comprises l chunks. If peers and clients collude, the
expected cost for a client to download the file up to chunk i is,

Cost[i] = 1·x+
(
i−1

)
·
(
m·0+(1−m)·x

)
(1)

This equation states that the first chunk will be downloaded
from a secure node (costing x). Additionally, if the remaining
i−1 chunks are routed to peers with equal probability, then
a fraction m of these chunks will be downloaded with zero
cost, while the remaining chunks will be downloaded from
honest peers. Similarly, the expected value of payments to a
malicious peer for the file download until chunk i is,

Payment[i]=(i−1)·m·y (2)
The attack can be deemed economically unfeasible if

the cost to the colluding client is greater than the payments
received by the malicious peer, or,

Payment[i]< Cost[i], ∀i∈N

=⇒ y≤ x
(

1
m
−1

)
(3)

Further, to make the system monetarily feasible for peers,
their compensation ($y) should be greater than the bandwidth
costs of uploading a chunk. This enforces an additional
constraint

y > z (4)
These constraints bound payments based on the fraction of

malicious peers serving the chunks in a file. For example, if the
payment for a file is twice that of the download cost (y=2·x),
then more than 33% of the peers holding the chunks for that
file must collude to make the attack economically feasible.

Can a malicious peer spawn a large number of colluding
peers to achieve high values of m for a particular file? Such an at-
tack is unfeasible as a colluding peer will have to respond to re-
quests from well-behaved clients, consuming peer bandwidth.
Failing to respond to these requests can be easily detected by
existing anomaly detection techniques. We do note, however,
that the above approach works only if content providers ensure
randomization of peer selection for chunk downloads and con-
tent providers periodically mandate churn in the list of peers
considered for a given file. Otherwise, a small number of ma-
licious peers might still potentially achieve a high value for m.

Finally, a key property of the proposed solution is that it
does not impose any overhead on well-behaved clients, as
bandwidth is only used to download chunks in the requested
file. However, requiring that the first chunk of each file is down-
loaded from a trusted node reduces the potential savings of
using peer resources for content delivery, since infrastructure-
backed nodes must now serve 1/l fraction of overall traffic.

2.3.3 Non-financial Attacks

Malicious client. Though clients are not involved in the
financial aspects of content delivery, they can still perform
attacks on the system. Most notably, a group of malicious
clients can perform a Denial of Service (DoS) attack on a

content provider by failing to support payments to peers
for serving that content provider’s chunks. Peers that detect
such behavior can decide to not serve the content provider’s
files, preventing content distribution. However, peers can
only detect that a client is preventing payments after serving
a chunk and requesting a PoDC from the client. A PoDC
is requested with probability p for each chunk download,
implying that a client will have to download 1/p chunks
from a peer before receiving a request for a PoDC. Since p
is intentionally kept to small values, the client will have to
expend significant bandwidth resources (downloading chunks)
in order to carry out such a DoS attack, making it impractical.

3 Availability and Quality of Service
Beyond secure incentivization, content providers also expect
high Quality of Service (QoS) and availability. This requires ef-
ficient file placement strategies (i.e., deciding what peers serve
content). Gringotts supports prior P2P file placement strate-
gies [22, 36], and provides content providers with more flexi-
bility in influencing content delivery pricing and performance.

Availability. Content providers must ensure that their files
are hosted on a sufficient number of peers to tolerate bursts
in request volume. Smart contracts provide a flexible way for
content providers to influence the replication and availability
of their files. Specifically, payment policies in Smart Contracts
can be easily modified to reflect current demands of a file. For
example, a content provider can pay more for a file during peak
demand times, akin to surge pricing with services like Uber.

Quality of Service (QoS). To ensure fast content down-
loads [14], each Blockchain record can be modified to include
client-observed QoS metrics for the corresponding chunk
download. Content providers can then factor in QoS decisions
into file placement and payment policies (via Smart Contracts).
For example, a content provider can select a peer for a chunk
download only if the predicted download speed could support
the lowest video bitrate. If no peers can meet the QoS goal, the
content provider can redirect requests to the backup node (we
discuss routing in §6). We note that misreported QoS informa-
tion by malicious clients can be easily detected (and mitigated)
by considering all published QoS values for each peer.

4 Consumer Survey
To understand the expectations and requirements for user par-
ticipation in a P2P content delivery service, we commissioned
a third-party professional organization to undertake aN 876-
person consumer survey in the US. 95% of respondents were
between the ages of 18-60; 52% were female; 45% of annual
household incomes were between $25K-$100K. Each partic-
ipant was asked 11 questions, relating to payments, resource
availability, and participation concerns. Our key findings are:

• 51% of users said they would participate.
• Of those who would participate, 70% expect to earn no

more than 50% of their monthly Internet bill.
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Figure 2: Key consumer survey findings.

Concern Fraction concerned
Security and Privacy 82.8%

Liability for Illegal Content 50.5%
Performance Impact on Device 47.1%

Payment Concerns 42.1%
Personal Ethics 29.4%

Table 1: Concerns for users who specified that they would not
participate in the service.

Concern Fraction concerned
Don’t Know How to Use/Sell 59.7%

Not Setup to Receive 54.7%
Volatility and Risk 49.1%

Don’t Know What it is 21.9%
Other 6.9%

Table 2: Concerns for users who specified that they would not
be willing to accept payment in cryptocurrency.

• 27% of users are willing to accept payment in the form of
cryptocurrency; 40% were unsure about cryptocurrency
payments, while 33% were unwilling.

• Users who would not participate were most concerned
with security and privacy (83%), liability over content
(50%), and impact on device performance (47%).

Feasibility of participation. We asked users about the devices
they have to store/serve content, the free storage space of those
devices, and the amount of time they would use those devices
in the service. 83% of users owned a laptop, and 82% of laptop
owners reported free storage space of more than 20 GB. For
context, consider that storing an average 4-minute YouTube
video that supports 5 bitrates requires 200 MB of space. Peers
with more than 20 GB of free storage can store more than
100 average videos. Further, consider that the average uplink
capacity in the US is 22 Mbits/s [20]. Streaming HD video
requires an average of 5 Mbits/s throughput [19], suggesting
that peers should be able to stream up to 4 HD videos in parallel.
Experiments with an Apache web server on a desktop with a
2.8 GHz processor reveal that mean and peak CPU utilization
(single core) are 0.36% and 13%, respectively, for 4 concurrent
HD videos, and 1.7% and 33% for 16 concurrent video streams.

The remaining considerations are daily participation times
and earnings. 65% of laptop owners stated that they use their
computers for more than 2 hours a day. Serving content for
2 hours a day on a 22 Mbits/s link amounts to 580 GB of data
served per month. If we assume that peers earn $0.05/GB [3],
they will make $29 per month, which is more than the re-

quirement of covering half of their monthly Internet costs (the
average US plan costs $50 per month [11]). These numbers are
conservative as 66% of users would keep their laptops on for
longer times, even when not in use, to serve (and earn) more.

Concerns. Figure 2a shows that 49% of users would not partic-
ipate in the service. Table 1 lists the concerns shared by those
users. As shown, a significant fraction of users were concerned
about the impact that the service would have on their device,
both with respect to security and privacy, and device/network
performance. Thus, a practical deployment must ensure host
machine isolation and caps for resource consumption. Many
users would not participate due to content liability concerns,
stemming equally from ethical considerations, legality, and
privacy. Consequently, the majority of users were willing to
serve movies/shows/news, but only 11% were willing to serve
adult content, promoting distributed content filtering and the
inclusion of content information in Smart Contracts.

The other primary user concern was with respect to
payments. 27% of respondents were willing to accept
payments in cryptocurrency, 40% were unsure, and 33% were
against it (Figure 2b). Table 2 shows that this concern was
largely due to unfamiliarity, as many users did not support
cryptocurrency payment because they either did not know
how to use/sell them, or they were not setup to receive them.
Further, a significant fraction of users were concerned with
the volatility and risk of cryptocurrencies. We expect these
numbers to decrease in upcoming years as cryptocurrencies
evolve and become more widely used, but our results do
motivate exploration of secure alternative payment forms.

5 Related Work

Secure Incentivization. Past incentivization strategies for
P2P file-sharing systems have focused primarily on preventing
“free-riding” using tit-for-tat mechanisms [8, 24]. However,
early approaches could not effectively prevent against mali-
cious parties [23]. More recently, there have been proposals to
use virtual currencies to solve the free-riding issue [22, 28, 32].
In these solutions, users are granted and debited virtual
currency for each transaction they participate in; a central
authority is responsible for verifying all transactions. Unlike
Gringotts, all of these solutions incentivize only consumers of
a service to become resource contributors, limiting adoption.

Peer-to-Peer Systems. Numerous prior systems such as
BitTorrent have motivated the potential of P2P file delivery
services [7,8,15,26]. Gringotts borrows promising techniques
from these systems including policies on file placement
and routing strategies (§3). More recently, Filecoin [9] is a
P2P file storage service, which uses cyptocurrency-based
incentivization to attract peers to store files. Filecoin relies on
a “Proof of Storage” (not “Proof of Delivery” like Gringotts)
technique which cannot be directly applied to content delivery.
Moreover, Filecoin does not let third parties (e.g., content
providers) sponsor a client’s download of a file.



6 Discussion

Feedback. This paper primarily focuses on secure incen-
tivization, a key part to P2P content delivery. However, we
are seeking feedback about the additional challenges that
must be overcome to realize P2P content delivery in practice,
both related to our user survey results and not (e.g., from a
content provider’s perspective). In addition, we hope to receive
suggestions for other domains where secure incentivization
and PoDCs can be used beyond content delivery. For instance,
could Gringotts be used to build a decentralized overlay
network for scaling blockchain transactions [12]?
Controversial aspects. Gringotts’s use of peer resources for
content delivery presents a tension with the goals of ISPs, since
having peers serve files increases upstream traffic (and costs)
for ISPs. Prior work has demonstrated that one way to resolve
this tension is to use intelligent peer selection algorithms where
peers in the same autonomous system as a client are preferen-
tially selected [5, 37]. However, it is not clear how this would
work alongside other ISP mechanisms for revenue generation.
Likely discussion. We hope that this paper generates discus-
sion along four axes. First, for which Internet services should
we revisit P2P support? Second, how can we address the
concerns of peers highlighted in our user survey (§4)? Third,
can Gringotts’s secure incentivization strategy be applied to
more generalized resource sharing settings? A key challenge
to generalization is creating a policy which can prove that a
service-specific task was performed correctly. For example,
Gringotts requires “Proof of Delivery,” Filecoin [9] uses “Proof
of Storage,” and offloading GPU-based tasks to peers (rather
than costly cloud services) would require “Proof of Faithful
Computation.” Fourth, in this paper, we only considered peers
to be personal computers. To increase participation, could other
devices be used, such as continually-powered WiFi routers,
IoT devices, or unused machines in colocation datacenters?
Open issues. In addition to the challenges from our user
survey (§4), a key open issue relates to routing. With Gringotts,
content providers send clients a list of peers to contact for each
file chunk. Generating this list in a centralized manner [8]
adds computational overhead to the content provider, who
must keep track of the set of live peers that is hosting its files.
Decentralized routing strategies (e.g., Distributed Hash Tables
(DHTs) [18,30]) can help overcome overheads of a centralized
routing strategy but they suffer from several challenges. First,
randomizing peer selection with DHTs is difficult, since mali-
cious nodes can directly influence routing decisions, enabling
Sybil attacks [31]. Second, discovering the peer to contact for
each chunk takes non-negligible time, harming QoS.
Circumstances for failure. If Gringotts fails to attract enough
peers, P2P content delivery might not be able to achieve
desired availability and QoS requirements. So, while PoDC
approach seems robust to vulnerabilities, it does not guarantee
adoption. Though this is tolerable when P2P is used to augment
existing CDNs, it may preclude standalone P2P systems.
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