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Abstract

This thesis presents and evaluates the design and implementation of a user-level library
that performs bandwidth allocation among multiple application flows using multiple TCP
connections. This work is motivated by emerging trends in network overlay applications to
send multiple flows of data between machines. Existing approaches to manage the network
either do not offer the control over network resources that these applications need, or are
difficult to adopt.

We present a novel user-level approach to this problem that uses multiple TCP con-
nections, and we also present an evaluation of multiplexing strategies for the scheduler
that multiplexes the multiple application flows onto the multiple TCP connections. We
implemented and designed two scheduling algorithms, striping and pinning, to perform the
multiplexing and evaluated them for various application behavior and various link charac-
teristics through emulation.

We describe how striping is preferred for applications that are not delay dependent, as
well as applications that are not order dependent, while pinning is preferred for applications
that are heavily memory constrained. Our results show that, for delay-constrained applica-
tions, links with low loss and low number of cross traffic favor the striping scheduler, while
high loss or high numbers of cross traffic favor the pinning scheduler. Delay-constrained
applications that maintain high number of flows also favor the pinning scheduler, while
those that do not favor the striping scheduler.

We conclude that a user-level approach is both feasible and preferred, and that both
multiplexing approaches are viable options based on network characteristics and application
behavior.

Thesis Supervisor: Hari Balakrishnan
Title: Associate Professor
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Chapter 1

Introduction

Emerging overlay network applications are changing the way they utilize the computer
network. Instead of being simple applications that open up one connection between two
computers in the system, these new applications open up multiple connections between
computers. Applications like streaming databases, sensor networks, and even web clients
are networked applications that exhibit this particular pattern of network usage. This new
usage pattern raises the question of whether existing techniques for network management
are the optimal approaches when dealing with applications that send multiple flows of data
between machines.

To compare different approaches, we must first choose the criteria that we use to judge
them. One way of judging that one approach does better than another is if the application
obtains greater total throughput and lower application delay. These two metrics indicate
the degree of efficiency of network usage.

Furthermore, we can judge approaches in how they utilize the throughput that they
obtain. There is a growing need for such networked applications to divide the through-
put among the different flows in a manner that the application can specify how much of
the throughput a specific flow should receive. For example, in a sensor network, the net-
work may decide that readings from one sensor are more important than readings from
another, and hence, should be given comparatively higher throughput when possible. This
notion of predefined allocation of throughput has become much more important as multiple
application flows try to share the network resource.

Existing approaches to manage the network either do not meet acceptable levels of these
two criteria, do not utilize the network efficiently, or are implemented in ways such that
they are hard to adopt.

We therefore propose an approach that address this search for better network manage-
ment. Our approach is to make a user-level library that uses TCP as the transfer mechanism.
The library allows applications to open up multiple application flows, which we call chan-
nels. The data is then sent over several TCP connections to the destination. The library
runs either a striping scheduler or a pinning scheduler to multiplex the multiple channels
onto the multiple TCP connections. The striping scheduler takes the data packets from the
channels and places the packets onto any available TCP connection. The pinning scheduler
picks an assignment of channels to TCP connections and continues to send according to
that assignment.

This thesis attempts to show that a user-level implementation using TCP is a viable and
preferred method of efficiently managing the network. We also analyze the two approaches

11



of multiplexing application channels onto multiple TCP connections. We show that striping
allows applications to be more flexible in how they send data, but pinning gives applications
more robustness with changing network characteristics. We show that applications that are
not delay-dependent prefer to use striping, while heavily memory-constrained applications
prefer to use pinning. Delay-intensive and non-memory-constrained applications look at
the network characteristics and application behavior. If the network has both low packet
loss rate and low numbers of cross-traffic, then the applications prefer striping. Conversely,
high packet loss rate or high numbers of cross traffic favors pinning. If the application
consistently maintains many flows between all its machines, then pinning is preferred, while
if the application sometimes only has a few flows between its machines, then striping is
preferred.

In this thesis, we first define the problem as well as a few terms (Chapter 2) and present
a sample application to set the context of the work (Chapter 3). We then describe the
design approach, as well as the two scheduling algorithms in detail (Chapter 5). Finally, we
present an implementation of the ideas (Chapter 6), and evaluate the results (Chapter 7).

12



Chapter 2

Problem Definition

In this section, we describe a model that we use for the rest of the document to generally
describe a series of networked applications. The kinds of applications that this thesis relates
to are overlay network applications that multiplex many different application channels,
such as sensor networks, streaming databases, and web servers. We use this model to
analyze network usage and performance in these applications.

• A channel is a logically distinguishable application-layer virtual connection.

Our model is the simplest example of such a networked application, where an application
runs on two nodes with many channels between the nodes. The findings for this model can
be expanded to the scenario of a larger application with more nodes and more complex
channel networks in the system. As we can see in Figure 2-1, Node A is the sender, and
Node B the receiver. There are n channels of application data going from node A to node
B.

The model also takes into account the desire for applications to perform bandwidth

allocation among the different channels.

• bandwidth allocation: a division and reservation of the total available network
bandwidth among the different channels

To specify the bandwidth allocation, each channel is associated with a relative weight
(w1, w2, ..., wn) specifying the relative throughput desired for that channel. If we specify
the total throughput of all the channels combined to be 1, then a channel i should obtain

Node BNode A

Channel 2

Application Application

Channel

Channel 1

n

Figure 2-1: Simple Problem Model
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wi
∑

j=1..n
wj

throughput. Comparing two channels i and j, channel i expects to obtain wi

wj

times as much throughput as channel j on average.

• channel throughput: the rate of transfer of data in bytes per second of an application
channel

There are three goals in the mechanism that we want to create. The first goal is to have
efficient usage of the network, which means having high total throughput and low average
delay of data. The second goal is to achieve the desired bandwidth allocation specified
by the weight distribution of the channels. Finally, we would like to run all this with low
memory usage.
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Chapter 3

Sample Application: Medusa

We present an example of a system whose network usage fits the description in the model.
The system is Medusa, a distributed streaming database [6]. Medusa is designed as an
application-level overlay network, where the inputs are streams of real-time sensor data,
sent to any of the machines in the distributed Medusa system. A user can place continuous
queries on this data and get back a stream of results.

Medusa defines a set of operators that can be applied to the streams of data. To satisfy
a user query, Medusa creates a network of operators such that the resulting stream is the
answer to the query. In Figure 3-1, we see an example of such a network with two data
streams going through two operators, a filter operator and a join operator, to satisfy a user
query. This boxes-and-arrows diagram is then mapped onto actual machines in the system.

Figure 3-2 shows a possible such mapping from virtual boxes to physical machines. It
also shows that the physical mapping can span multiple machines if the input streams go
to different machines. In this example, the boxes are put on two different nodes, and a
channel is created between the two machines to transfer the output of the filter box to the
input of the join box.

As a result, the application sets up a series of application channels between machines
in the system to satisfy the user query. When many queries are simultaneously placed on
the system, there are many such operator networks, so any two machines in the overlay can
have multiple channels between them. Taking any two machines, then, gives us the model
described previously.

Medusa is also a system that has semantic information about the user queries and
input data. The system can distinguish between the different channels going between two
machines, and could want to allocate bandwidth unevenly. For example, one channel could
be part of an operator network that satisfies the user query for temperature readings in a
building. During a fire emergency, the system may wish to give this channel more priority
than another channel that is used to query energy conservation in the same building. As
another example, the system may wish to give a query by a building administrator more
resources than a query by a regular worker. In these cases, the system can place weights to
represent the relative importance of the queries, thereby controlling the amount of network
resources given to individual channels.

15



Data 1

Box 1:
   Filter

Box 2:
   Join

Data 2

User Query

Figure 3-1: Medusa Query Diagram: two
operators to fulfill a user query of two in-
put streams

Data 1 Data 2

Box 2Box 1

User Query

Figure 3-2: Medusa Node Diagram: the
two input data streams go to different ma-
chines in the system, so the two operators
are mapped onto two different nodes and a
channel is created between them to trans-
fer the data between the machines
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Chapter 4

Background and Related Work

The problem of performing efficient data transfer with bandwidth allocation for multiple
application channels has been explored previously with varying amounts of success. We
take a look at some approaches people have taken. We also introduce some concepts that
are relevant to this document. We assume that the reader has a basic understanding of
computer networks and is familiar with terms like bandwidth, delay, and packet loss rate
on network links.

4.1 Router-level Solutions

There are some implementations at the routers to try to perform bandwidth allocation
among different flows. [17] is a survey on current approaches to QoS (Quality of Service)
implementations at the router level, and shows that a variety of router implementations
have been proposed and studied, but its application has been limited to VPN (Virtual
Private Networks) and not in the general Internet. The Internet, which is dominated by IP,
is a stateless routing protocol, making it hard to control state. IntServ [5] and DiffServ [9]
are two attempts at this, but has been unsuccessful in widespread adoption.

Router-level solutions also perform sub-optimally because they cannot obtain application-
level information readily. Computation is also expensive at the routers, leaving router-level
solutions highly handicapped.

4.2 Kernel

A computer can run multiple programs simultaneously. The job of coordinating all the
different programs and to present them with system resources is the job of the kernel.
Applications that want to utilize system resources make system calls to the kernel. For
example, the kernel handles the interface to the network card of the computer and presents
an interface to the application to be able to utilize it.

4.3 TCP (Transmission Control Protocol)

One interface that the kernel presents to user programs is the TCP [18] interface. We look at
the effects of TCP in the rest of the document, so we explain how TCP works and behaves.

TCP is a network protocol that implements a reliable, in order delivery of packets
from the source to the destination, while probing for bandwidth and reacting to signs
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of congestion. To achieve this, TCP uses two main mechanisms, a sender/receiver sliding
window and packet acknowledgements (acks). We present TCP to the extent that is relevant
to this thesis in the following paragraphs. In [14] and [23], the authors more fully explain
TCP mechanisms.

The basic mechanism starts with the sender assigning a sequence number to each packet
that it sends out. The sender keeps track of all in-flight packets in its sender window. The
receiver receives a packet and puts the packet in its receiver window. The receiver then
slides the window as much as possible until it comes across a sequence number that it has
not received, sending all the packets that it slides over to the application. It then sends
back an acknowledgement for the last packet before the missing one to the sender. The
sender, upon receiving an acknowledgement, slides its window up to the sequence number
of the acknowledgement, and sends more packets to fill up the window.

4.3.1 Reliable In-order Delivery

TCP achieves reliable delivery through the use of the sender window and receiver acknowl-
edgements. As we described before, whenever the receiver receives a packet, it sends back
an acknowledgement with the last in-order packet sequence number that it has received.
So, if the receiver receives packets with sequence numbers {1,2,3,5,6,4}, then it returns ac-
knowledgements with sequence numbers {1,2,3,3,3,6}. The sender looks at the acks it has
received, and if determines that a packet has been lost in transmission, then it retransmits
that packet. It determines that a packet has been lost by the following two methods:

• Timeout is when the sender does not receive an acknowledgement for several esti-
mated round-trip times. When no acks are received for this time, the sender assumes
that a packet has been lost and the receiver has not received new data to send another
ack. Therefore, the sender sends the packet following the last ack it has received.

• Duplicate acks are successive acks received by the sender that have the same se-
quence number. Duplicate acks are sent by the receiver for either a lost packet or
packet reordering. TCP assumes that if duplicate acks are caused by reordering, then
it only causes one or two duplicate acks. Therefore, when the sender receives three or
more duplicate acks, then it assumes that a packet has been lost, and does a fast re-
transmit of the packet following the sequence number in the ack. Alternatively, there
is a modification to TCP that allows for the sending of SACK (Selective acknowl-
edgement), where the receiver can specify what packet it is missing, which allows for
more efficient retransmission.

TCP also guarantees in-order delivery of packets and achieves this using the receiver
window. The sliding receiver window does not slide unless the packets that it slides over
have all been received. All out-of-order packets stay in the window until the missing packets
arrive, after which the window slides past them and the packets are sent in order to the
application.

4.3.2 Bandwidth Probing and Congestion Avoidance via AIMD

TCP also provides mechanisms to probe for bandwidth and respond to network congestion
by changing its sender window sizes according to AIMD (Additive Increase Multiplicative
Decrease) principles and by self-clocking using acknowledgements.
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TCP ensures that packet conservation is maintained, meaning that there are at most the
sending window size number of packets in flight to the destination. This is maintained by
self-clocking using acknowledgements, meaning that the sender only sends another packet
when it receives an acknowledgement from the receiver. The receiver only sends an ac-
knowledgement when a packet has left the network, so each acknowledgement signifies one
less packet in the network. Therefore, in total, there are the same number of packets in
flight on the network.

To probe for bandwidth, the sender increases its window size by one packet every round-
trip-time (rtt), which is the additive increase component of AIMD. Increasing the window
size increases the number of packets sent on the network, and the throughput for the
connection is senderwindowsize

rtt
, so this results in higher throughput.

When the sender sends data too fast, it causes congestion at the routers, causing a
packet to be lost. As explained before, the sender notices a lost packet by either a timeout or
duplicate acks. In either case, the window size is dropped to half (Multiplicative Decrease).
This is the congestion avoidance algorithm. The multiplicative decrease, explained briefly,
is necessary because the routers are congested to the point of losing a packet, so drastic
measures are necessary to relieve the stress on the network.

4.3.3 Throughput constraints

TCP throughput in steady state for long-running flows is affected by packet loss rate and
rtt of the connection and the maximum size of the sender and receiver windows. TCP
uses AIMD for stability reasons, causing the packet loss rate to determine how frequently
the windows get halved, thereby limiting throughput. TCP increases its window size every
rtt, so this also affects throughput. Finally, memory constraints at the sender and receiver
in terms of the maximum window size places a hard limitation on the throughput of the
connection.

The analysis by Padhye et.al. [16] shows that TCP throughput for a long-running flow
not bound by link bandwidth is:

Throughput ≈ min{
Wmax

RTT
,

1

RTT
√

2bp
3

+ ...
} (4.1)

Wmax is the maximum size of the sender and receiver window, RTT is the round trip time,
p is the packet loss rate, and b is the number of packets acknowledged by a received ack
(which is usually two for modern TCP, called a cumulative ack).

This equation becomes important later in the document as we describe the importance
of socket buffers while running the experiments, and also to describe the effects as we change
RTT and p.

4.3.4 Multiple TCP Interaction

TCP flows perform AIMD to probe for bandwidth and to perform congestion avoidance.
The result of the AIMD algorithm is that multiple TCP flows compete with each other for
bandwidth. In the classic analysis of AIMD in [7], the authors show that, under assumptions
of synchronized feedback, AIMD converges to an efficient and fair state, and that no other
linear control does. By a fair state, the bandwidth at the bottleneck router is divided
evenly among the TCP flows, assuming that all the flows through this router are TCP

19



flows. The synchronized feedback requirement often translates to the requirement that
different connections have the same RTT, so the statement states that TCP connections
with the same RTT fairly share the bandwidth.

Other research has shown that TCP is unfair when this synchronized feedback assump-
tion is removed, because TCP increases its window size as 1

RTT
[12, 11]. These papers

show that TCP favors connections with lower RTT. Furthermore, TCP is unfair against
connections with multiple congested routers in its path [10], which affects the packet loss
rate of the connection.

4.4 Kernel-level Solutions

Kernel-level solutions provide complete access to system resources, and hence, can be both
complete and efficient. The majority of work done in the area of parallel connections has
been to improve the quality of parallel TCP transfers [2]. In [2], the author presents a way
of sharing TCP control information among multiple TCP connections for better congestion
and loss recovery. This, however, does not give the sort of control necessary to perform
bandwidth allocation, nor obtain as much throughput as possible.

The Congestion Manager [3, 4] is a kernel implementation that goes further to solve
the problem described before. Similar to [2], the CM aggregates congestion information for
concurrent flows, but it also exports an interface to the application in order to expose net-
work conditions and allow programs to have control over network usage. The CM provides
an asynchronous callback API so that the application is notified when it can send a certain
number of bytes of data, allowing both the CM to schedule the sends and the application
to choose what gets sent out. The CM can be configured to reserve a certain amount of
bandwidth for each channel, and the CM uses these weights to schedule the application
callback accordingly. Inside the CM, it aggregates all the flows to the same destination,
shares the congestion information among those flows, and performs the application callback
as desired.

While the CM solution provides an answer that works, the main downside to this is that
it is a big application in the kernel, and for reasons described later, are not preferred to a
user-level solution.

4.5 User Space

The user space is the realm of the application. A given program executes in the user
space until a system call is made, at which point the execution is transferred to the kernel
temporarily to perform some specific task.

4.6 User-level Solutions

The simplest of all solutions, and one that is the most commonly implemented, is the user-
level solution of opening up one TCP connection per connection. This is the easiest solution,
and offers reliable transfer of data, but it is both inefficient for short bursts of data and
incapable of performing bandwidth allocation aside from the case where every channel gets
the same bandwidth.

The majority of other work done in the user-level solution space are solutions for parallel
channels over a single connection [13, 22]. The MUX and SCP protocols are ways of
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efficiently multiplexing channels onto one connection, such as a TCP connection. These
solutions, though, both do not obtain as much throughput as desired, and also does not
perform bandwidth allocation.
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Chapter 5

Design

In this section, we present the design of the network manager as a solution to the problem
as defined in Chapter 2. The two main elements of the network manager are the following:

• the mechanism is a user level library using multiple TCP connections

• there are two different scheduling algorithms, striping and pinning, that multiplex
channels onto TCP connections

We first explain why we implement our network manager with a user space library
using multiple TCP connections. We then describe how this situation leads us to a new
model that multiplexes channels onto multiple TCP connections. Finally, we present the
two scheduling algorithms.

5.1 User level library using TCP

Unlike other approaches that implement network management and bandwidth allocation
mechanisms in the kernel, we implement the network manager in user space. We show that
implementations in the user space are preferable for development of a new idea.

The advantage of kernel implementations is the complete control over the system re-
sources, which lets designs in the kernel be optimally efficient. It is also flexible in the
interface that it provides to the application, allowing it to be able to communicate infor-
mation between the two.

However, there are some problems with kernel implementations. The biggest problem is
code maintainability. Kernel versions change frequently, and with each new kernel, the code
must be changed and thoroughly tested. This presents an obstacle to any kernel imple-
mentations, since most developing projects are unable to perform this level of maintenance.
Another issue is that kernel implementations must be extremely careful, because they can
have unbounded effects on the system. The care that must be taken to write kernel code
slows down development. Related to this is that the risks make system administrators re-
luctant to install programs that modify the kernel. An example of this is the Congestion
Manager [3, 4], which provides the functions but is not widely adopted. Once an idea has
been widely accepted, thoroughly tested, and highly integrated into everyday usage, then
it can be implemented in the kernel and added to every new version of the kernel.

Therefore, we chose an implementation in the user space rather than the kernel. The
constraint of such an implementation is that it must rely on existing interfaces with the
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kernel to access the network. There are two main interfaces that kernels support: a low level
network packet interface (UDP) and a higher level transmission control protocol (TCP).

We now look at the choice between UDP and TCP, and show why TCP is the preferred
approach for reasons of performance and simplicity.

An implementation built using the UDP interface gives applications a lot of control.
The implementation controls every packet sent to and received from the other machine, so
it has a lot of flexibility in the management of the application data and the management
of the network. However, having to control every packet has its downfalls. When dealing
with high bandwidth connections, as is undoubtedly true in the future, the program has
to constantly make decisions in the microsecond range. Programs, however, are context
switched by the operating system, and are not guaranteed such granularities of processor
control. This bounds the performance obtainable by implementations using UDP.

Implementations using UDP also has to implement bandwidth probing to utilize the
network, congestion control algorithms to be network-friendly, as well as a reliable transfer
mechanism to satisfy most applications. These mechanisms are hard to build correctly, as
shown by difficulties in kernel implementations even today.

An implementation using the TCP interface, on the other hand, can gain from the fact
that TCP already efficiently implements a lot of the mechanisms required. TCP implements
reliable transfer, bandwidth probing, and congestion control in an efficient manner in the
kernel, thereby reducing the amount of work that is required by the application. This also
removes the throughput limitation as explained in the UDP evaluation.

A problem with TCP implementations, however, is that the user application only has
limited control over how the kernel sends the data. We discuss the main limitation in the
following section, and show how we can work around it.

5.2 Increasing Throughput : Multiple TCP Connections

As described in Section 4.3.3 and Section 4.3.4, the throughput obtained by a TCP con-
nection is determined by the round-trip time, packet loss rate, and other cross traffic at
the bottleneck router. This is due to the AIMD congestion avoidance algorithm in TCP.
Applications that want to obtain more bandwidth cannot directly control how TCP changes
its window sizes, so they cannot change how much bandwidth one TCP connection gets. An
application can overcome this obstacle by opening up multiple TCP connections, thereby
getting a higher percentage of the bandwidth at the bottleneck router.

For a simple explanation of this approach, if there are k other flows going through the
bottleneck router, all TCP flows with the same RTT, opening up m connections allows the
application to obtain m

k+m
fraction of the total bandwidth. As long as k > 0, opening

up more connections gives higher total throughput. If k = 0, then multiple connections
merely compete with each other, reducing the efficiency of the connections [2], so this scheme
should not be used. However, the Internet today, and as we progress in the future, there
is almost always cross traffic. If the application is run on such a controlled environment to
have no cross traffic, then this approach is not necessary, and one TCP connection can be
used.

For the purposes of this document, we disregard the question of whether opening up
multiple connections to obtain a larger share of the bandwidth is an ethical usage of the
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Figure 5-1: Refined Problem Model

network. The simple defense to this is that existing applications already use this approach
to obtain more bandwidth, and TCP itself is unfair to connections with high RTT or those
with multiple congested routers in its path.

5.3 Refined Model

We have so far shown why we have chosen to have a user-level library using multiple

TCP connections. Let us then refine our model to include this decision.
As previously stated, we have two machines, Node A and Node B, running one applica-

tion. The application uses a user-level library to send the data across the network and to
receive it.

As we can see in Figure 5-1, applications open up n channels with weights (w1, w2,
..., wn) associated with them. Again, comparing two channels i and j, channel i expects
to obtain wi

wj
times as much bandwidth than channel j on average. The library then opens

up m TCP connections (henceforth, just called connections). The library runs a multi-
plexor, or scheduler, to determine how to multiplex the n channels onto the m connections.

The goals of the scheduler are the following:

• Maximize usage of the network, meaning high total throughput and low average
delay

• Achieve as close to a good bandwidth allocation as possible as defined by the
weight distribution of the channels

• Run with a minimal runtime memory requirements

5.4 Multiplexing Schemes

Now that we have n channels and m connections, we need to determine how to multiplex
the data onto the connections.

A non-invasive approach to the application would be to open up one connection per
channel and send all the data from the channel onto the connection. This is analogous to
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not having the library at all and opening up individual TCP connections for each channel.
The problem with this is that there is be only minimal bandwidth allocation, where all the
channels get equal bandwidth regardless of their weights as described in Section 4.3.4, as
well as only limited throughput for low values of n, as described in Section 5.2 about having
multiple TCP connections.

We now look at two possible schemes, striping and pinning, and compare them.

5.4.1 Striping

One possible approach is to stripe the n connections onto the m connections. In striping,
the scheduler independently picks the channel that sends data and the connection that
data is sent on. The scheduler chooses the data to send, then stripes it to an available
connection. We first look at how the scheduler picks the channels and connections at each
iteration, then look at a side effect of this approach.

The scheduler chooses the channel to send in order to achieve the weight distribution
of throughput using a Deficit Round Robin algorithm(DRR) [21]. This algorithm is an
approximation of the Weighted Fair Queueing(WFQ) [8] algorithm, and achieves nearly
perfect fairness in throughput while running in O(1) time to process a packet rather than
the O(log n) time required in WFQ.

We now describe how the DRR algorithm works. The DRR algorithm operates in
rounds, and time is measured in rounds. To explain the algorithm, we assume that there
are n channels waiting to send with channel i having weight wi, and that the channels
always have data to send. We define the fairness ratio for channel i as fi = wi

∑

1≤j≤n
wj

. The

algorithm maintains a state variable DeficitScorei for each channel that gets updated.
At each round, each channel tries to send up to DeficitScorei bytes of data, as long as

all the packets sent are whole packets. Let bytesi,k be the number of bytes sent by channel
i at round k. Then, the new DeficitScorei = DeficitScorei − bytesi,k + fi ∗ C where C is
some constant that specifies how fast the algorithm moves along.

We choose the DRR algorithm to implement striping because this algorithm provides
a good fast way of achieving the bandwidth allocation. If the throughput of channel i at
time t is Thrui,t, then the optimal bandwidth allocation is the following:

OptimalThroughputi,t = fi ∗
∑

1≤j≤n

Thruj,t (5.1)

DRR then claims the following:

∀t ≥ 0 : OptimalThroughputi,t − Thrui,t ≤ Max (5.2)

where Max is the maximum size of a packet [21]. This bounds the difference from the
optimal distribution by Max bytes, which is very good as long as Max is relatively small
compared to values of Thrui,t.

After the channel is chosen in this manner, the scheduler then picks a connection to send
the data on by picking the first available connection. Therefore, the complete scheduling
algorithm is the following:
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Figure 5-2: Channel Reordering Example: One channel sends on two connections. TCP 1
loses packet 2, causing packets 2,5, and 6 to be delayed. At the same time, TCP 2 sends
the other packets, causing them to arrive at the receiver out of order. The receiver puts
all the packets into the reorder buffer. The circled packet, packet 1, can be sent to the
application in order. When packet 2 arrives after a TCP retransmit, the packets marked
with a hexagon, packets 3 and 4, can be sent to the application along with packet 2.

1. Run the deficit round robing algorithm until a channel sends data

2. Find the next connection that is ready to send

3. Send a packet from the channel to the connection

4. Go to step 1

Let us now look at a side effect of this approach: channel reordering. In this approach,
a channel can send data in parallel across multiple connections. Each connection, however,
can independently lose packets and time out in the TCP layer, and hence, the receiver can
experience different delays on the connections. While each connection sends the data in
order to the receiver, the packets within a channel may arrive out of order.

For example, as shown in Figure 5-2, if there is one channel sending to two connections
in parallel, then a packet loss on the first connection can cause the packets in the second
channel to arrive out of order. In such cases, the receiver must place the packets in a reorder
buffer. Packets that are ready to send to the application in order can be sent, while others
wait until this can happen. In the figure, we see that packet 2 is lost by connection 1.
Therefore, packets 3,4,7, and 8 arrive out of order at the receiver. Packet 1 is ready to be
sent to the application, but the others must wait. When TCP 1 finally retransmits packet
2, then packets 2,3, and 4 can be sent to the application in order.

If the application cares about preserving the order of the packets in a channel, then the
receiver must implement such a reordering scheme. This is a side effect of this design, but
can be accounted for. However, channel reordering affects the performance of this design,
as we see in the following sections.

In summary, the sender opens up m connections and stripes the n channels according
to the deficit round robin algorithm onto the first available connection. The receiver demul-
tiplexes the packets received on the m connections back into the n channels and reorders the
packets to send them to the receiving application in order.
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Figure 5-3: Pinning Algorithm Example: The left side shows the greedy best-fit algorithm
after making 2 pinning assignments. The channels are sorted in decreasing weight order
and placed into the bins one by one. The right side is after a few more iterations have
occurred. Each new channel is pinned to the connection with the least total weight already
pinned to it.

5.4.2 Pinning

Another way of sending the packets from the n channels onto the m connections is to pin
each of the channels onto a connection. The difference between this and the non-invasive
approach is that multiple channels can be pinned to a specific connection. We first look at
how the scheduler makes the pinning assignments from channels to connections, then look
at how the scheduler steps through execution.

The algorithm tries to pin the channels to the connections in a way to try to obtain the
appropriate bandwidth allocation as specified by the weights of the channels. TCP behavior
dictates that each of the connections with the same RTT gets the same bandwidth, so each
connection gets 1

m
portion of the total bandwidth. If we can find a pinning assignment such

that the sums of the weight of the channels in each connection are the same, then we reduce
the problem into finding the appropriate allocation within each of the connections.

This problem is analogous to two traditional problems. The first is the multiprocessor

scheduling problem, where there are a list of jobs with associated time costs and a list of
processors that can compute the jobs. The goal is to create a scheduling of jobs to minimize
the total time required to finish all the jobs. We concentrate on the other traditional problem
because it is easier to picture. The problem is a ball and bin packing problem, where
the balls have different weights, there are fixed number of bins, and the goal is to place
the balls in the bins in a way to get as close to equal weight bins as possible. We can also
further specify ”closeness” by stating that we want to minimize the weight of the heaviest
bin.

A simple yet powerful approximation algorithm was first described by Hochbaum and
Shmoys [1], which is a greedy algorithm that places the balls in a decreasingly ordered best fit
fashion. The balls are ordered in decreasing weight order, then a ball is taken one at a time
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and is placed into an empty bin if possible, else onto the lightest bin. To go back to our
specific problem, as shown in Figure 5-3, we order the channels by decreasing weight, then
pin them one by one to the connection that has the least sum of the weights of the channels
already pinned to it. The left picture shows the algorithm after two iterations, where the
channels are pinned to the first empty connection. The right picture shows the algorithm
after several more iterations, showing that the channels are pinned to the connection with
the least total sum weight.

This algorithm was shown to have a maximum weight bin that is at most two times
the optimal configuration, so this is considered a dual approximation to the problem. We
choose to use this approximation algorithm because the original problem is NP-complete,
and this algorithm is simple to implement while being a dual approximation.

Now that we understand the pinning algorithm, we look at how the scheduler uses this
pinning assignment to send the data. On an iteration of the scheduler, the scheduler first
chooses a connection to be able to send, then sends on that connection with data from
one of the channels pinned to it. Each connection can have multiple channels pinned to it,
so the connection sends according to the same deficit round robin algorithm as described
before, but only among the channels pinned to it. More concretely, the scheduler does the
following:

1. Wait for a connection that is ready to send

2. Look at all the channels pinned to this connection, and keep rerunning the steps of
the deficit round robin algorithm until a channel is chosen to send

3. Send the packet from the channel to the connection

4. Go to step 1

In summary, the pinning algorithm uses the greedy best fit approximation algorithm to
make a pinning assignment of the n channels onto the m connections. Then, as a connection
is able to send, the connection sends according to the DRR algorithm applied to the channels
pinned to it.
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Chapter 6

Implementation

In this section, we describe an implementation of the network manager as described by
the design in Chapter 5. We start by describing the program architecture, followed by a
description of program execution, and end by taking a closer look at the implementations
of the two multiplexing schedulers.

6.1 Environment

The library was written in C++ for the UNIX platform. The code was compiled using gcc-
3.2.2 on both RedHat 8.0 and FreeBSD 4.7 operating systems. The code extensively used
NMSTL, an asynchronous library for network sockets, written by Jon Salz. NMSTL can be
downloaded from http://nmstl.sourceforge.net/.

6.2 Program Architecture

The network manager is implemented as a user library, and is responsible for handling the
calls from the application to open up channels and for asynchronously sending the data.
The library runs in a separate thread from the user application and uses one asynchronous
EventLoop with event listeners to handle each of the network connections.

As we can see in Figure 6-1, the library consists of three main components, the Chan-

nel Queue Manager (CQM), Scheduler, and Connection Manager(CM), with the
CM containing a NetHandler object for each TCP connection. Applications make calls to
open, configure, and send data to channels through the interface provided by the CQM.
The Scheduler then performs the multiplexing of the data from the n channels that are
available at the CQM to the m connections maintained by the CM. The CM is responsible
for instantiating a NetHandler object for each TCP connection. The NetHandler queues
data for each connection and register itself with the EventLoop to send when the kernel
signals that the connection is available.

We now describe in detail the EventLoop and each of the components.

6.2.1 Event Loop and Program Execution

The method of coordinating all the different components is role of the asynchronous Event-
Loop. The EventLoop allows for handlers to wait on read/write availability on file descrip-

31



NH

NH

NH

Channelsn

Connectionsm
TCP m

CQM CM

configure channel

open channel

send channel

User−level Library

NetHandlers

Scheduler TCP 1

TCP 2

KernelApp

EventLoop

Figure 6-1: Overview of Program Architecture: Applications talk to the library through
the Channel Queue Manager (CQM). The Scheduler performs the multiplexing between
the channels and connections. Finally, the Connection Manager (CM) sends data on the
TCP connections by putting data on a NetHandler object and having them wait on the
asynchronous EventLoop to send data to the kernel.

tors. The EventLoop waits until an event occurs, as defined by the select statement in
UNIX. Examples of events that can wake up the library are write availability on a TCP
socket, read availability on a TCP socket, and read availability on a pipe used to message
within the library.

The library uses this event signaling mechanism to synchronize the sending of all the
different NetHandler objects. Each one of the NetHandler objects wait for the availability of
their specific TCP connections to send data. When the write availability event is triggered,
the NetHandler sends more data to the kernel.

The library also uses the EventLoop to signal to the Scheduler to wake up and schedule
more packets to send on the connections. This happens through a chain of events. First, a
NetHandler object is woken up by write availability on a connection. The NetHandler then
sends some data on the connection. If the NetHandler needs more data to send, then it
sends a signal registered by the CM to the Eventloop to queue more data. The CM is then
woken up by the EventLoop, after which it scans through all connections to find the ones
that need more data. Finally, it sends a signal registered by the Scheduler to wake up and
send data to these connections.

The Scheduler is also woken up by the CQM when there is new data available for a
channel, because it is possible that all the NetHandlers are empty and are waiting idly for
more data.

6.2.2 Channel Queue Manager (CQM)

The Channel Queue Manager is the component responsible for managing the channels.
It has three tasks:

1. provide an interface to the application to access the channels

2. provide an interface to the Scheduler to give it data as required

3. Queue the data for the application while the data waits to be scheduled to send
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struct ChannelInfo {

ChannelID id;

DestinationAddress destination;

ApplicationQueue queue;

int current_sequence_number;

};

Figure 6-2: Channel Information for
CQM: the CQM keeps data for each chan-
nel created by the application: id handle,
the destination, the application queue to
hold the data, and the current sequence
number of the packets

class NetHeader {

unsigned int channel_id;

unsigned int seq_num;

unsigned int request_type;

unsigned int length;

};

class NetPacket {

NetHeader head;

string packet;

};

Figure 6-3: Packet and Packet Header
Format

To the application, the CQM provides an interface to open channels, configure channels,
and send data on channels. The usage pattern for an application is to 1)open a channel, 2)
configure the channel to have weight w, and 3) send data on the channel.

When the application opens a channel to a destination, the CQM creates a data structure
as shown in Figure 6-2. The CQM registers the channel for the destination, creates an
application queue for that channel, and returns a handle to the application that can be
used to reference the channel, much like what the kernel does in giving a file descriptor
to an application. The application then sends the data together with the handle, and the
CQM puts the data in the appropriate application queue.

To the Scheduler, the CQM provides an interface to provide the necessary data when
sending data to a connection. The CQM is responsible for preparing the data as a packet
that contains a library-specific header necessary for operation. As Figure 6-3 shows, the
NetPacket contains the data to send in a string as well as a NetHeader class that provides
the library with the necessary meta-data to send the packet appropriately. The NetHeader
class contains a channel id that identifies the application channel, a sequence number to
order the packets in sequence at the receiver, a request type to distinguish control mes-
sages from data packets, and the length of the packet to be able to correctly parse the
NetPacket at the receiver. After the CQM sends a packet for a channel, it increments the
current sequence number for the channel by one to continue the sequence.

6.2.3 Connection Manager (CM)

The Connection Manager is the component that is responsible for sending the data on
the open connections with the kernel as fast as possible. The CM divides the work for each
connection into a subcomponent, the NetHandler.
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class NetHandlerData {

DestinationInfo destination;

TCPSocket socket;

DataQueue queue;

unsigned int threshold;

IOHandle notify_queue;

};

Figure 6-4: NetHandler Information for CM: Each
NetHandler has its own data queue to store a buffer of data
for efficient throughput. It also has a threshold value so that
it can request for more data before the queue becomes empty.
The IOHandle is the handle to the CM to wake up and fill
up the queue.

Each NetHandler object is responsible for exactly one connection to send data to. When
instantiated with a destination address, it makes a series of system calls to the kernel to
open a TCP socket to that destination. As Figure 6-4 shows, this data is stored for each
NetHandler. Also, in order to send data efficiently, each NetHandler keeps a FIFO data
queue. This ensures that the NetHandler always has more data to send, because otherwise,
the CM can have an empty queue and have to wait for the application to give it more
data when connections are available. In order to keep the queue full, the NetHandler has
a threshold value, and when the queue size gets below the threshold, then the NetHandler
sends a request to the CM to fill up the queue to at least queue fill factor ∗ threshold,
which is some multiple of the threshold value as determined by the Scheduler.

The NetHandler schedules itself to be woken up by the EventLoop when the socket is
signalled as being available for write. When the NetHandler wakes up, it sends as many
bytes as possible from the front of the queue to the connection. It removes as many bytes
from the queue as was sent to the connection, and it reschedules itself with the Event
Loop. Finally, if the queue drops below threshold, it signals to the CM via the IOHandle
notify queue to wake up and give it more data to fill up the queue. The IOHandle is one side
of a pipe, and the CM is registered with the EventLoop to wait on the other side of the pipe.

The Connection Manager provides the Scheduler with an interface to the connections.
Whenever an application opens a channel with a destination, the CM makes sure that there
are m connections open with the destination. For the first channel, the CM instantiates
m NetHandler objects and assigns to each NetHandler a handle, a connection id, that the
Scheduler uses to identify this connection.

As mentioned before, the CM registers itself with the EventLoop to listen on a pipe, so
the NetHandlers can wake up the CM when the data queue drops below threshold, at which
point the CM writes to the pipe which signals the Scheduler to wake up and check the CM
for the list of connnections that need more data.
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Pseudocode for the Reorder Buffer:
begin

current sequence number = 0;
while packet := receive data() do

buffer[packet.header.seq num] = packet;
while buffer[current sequence number + 1] 6= empty do

call send to app(buffer[current sequence number + 1]);
current sequence number + +;

od

od

end

Figure 6-5: Reorder Buffer Pseudocode

6.2.4 Scheduler

The Scheduler is the component that is responsible for multiplexing the channels onto the
connections in a specific manner to obtain the desired bandwidth allocation. It registers
itself with the EventLoop to be woken up when it has been signalled by another component
via writing to a pipe. When the Scheduler wakes up, it goes through the specific algorithm
to fill the necessary connections with data to send.

The Scheduler uses the CM interface to access the list of connections to know how much
data can be sent for each connection. The CM returns a list of connections, their queue
sizes, and the threshold for each connection. The Scheduler keeps a value, queue fill factor,
and for connections whose queue sizes are below threshold, it fills it up to queue fill factor∗
threshold.

To pick what channels send the data, the Scheduler follows the specific implementation
algorithm, and it has access to the interface provided by the CQM. The CQM tells the
Scheduler the size of the next packet on each application queue, which the Scheduler can
then use to determine which channel gets to send. Also, the CQM provides the Scheduler
with the relative weight of each connection, which it can use to achieve the appropriate
bandwidth allocation.

The specific algorithms for the striping and pinning are described in Section 5.4.1 and
Section 5.4.2. The implementation of these algorithms are shown in the next section.

6.2.5 Reorder Buffer

In the cases where a channel is sent over more than one connection, the packets for a
specific channel may arrive at the destination in a different order than when they were
sent. Applications often have a requirement that the data they send needs to arrive at
the destination while preserving order. We therefore implement a Reorder Buffer to send
packets to the application in the original order.

This Reorder Buffer acts much like the TCP receiving window. The pseudocode for
this element is shown in Figure 6-5. The incoming packets are placed into a buffer indexed
by their packet header sequence numbers. The Reorder Buffer maintains a counter that
remembers the sequence number of the last packet sent to the application. If a packet
with the next sequence number resides in the buffer, then that packet is sent out to the
application, and the counter is incremented by one.
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6.3 Scheduling Algorithm: Striping

The steps of the Striping algorithm, as described in Section 5.4.1, are to perform Deficit
Round Robin (DRR) to achieve bandwidth allocation and send on a first-available basis
to multiple connections to achieve high throughput. When the EventLoop wakes up the
Scheduler, the striping scheduling algorithm does the following:

1. pick the channel to get data from according to deficit round robin

2. pick the first available connection and sends the data to it

We will explain the implementation of the algorithm in detail here. The pseudocode is
available in Figure 6-6.

The Scheduler needs to maintain a state variable for each channel, scorei, to keep track
of the deficit score as described in the DRR algorithm. The Scheduler first queries the CM
to get the list of connections and their respective queue sizes and thresholds. From here, the
Scheduler selects the subset of connections that have queue sizei < thresholdi and puts it
into the list conns, because these connections are the connections that can take more data.

The Scheduler then picks the channel to send via the deficit round robin algorithm. It
searches for the channel that has the least fi = next packet sizei−scorei

wi
, because this is the

channel that has the least number of steps to go before being allowed to send a packet,
according to DRR. The division by wi reflects that each channel moves wi steps for every
global step, thereby giving channels with higher weights more bandwidth. Suppose we
choose to send from channel k. The Scheduler proceeds fk global steps forward in the DRR
algorithm. The other channels are then updated to reflect that they were not able to send
during this time, so they increase their score by fk ∗wi (same reason for multiplying by wi),
except for channel k, the one that sent, which resets itself to 0. The Scheduler has, at this
point, successfully performed an iteration of DRR.

The Scheduler has to then choose the connection to send the data. Among the con-
nections in conns, it finds the one with the least queue size and chooses this connection
to send. If we choose channel k, and this results in queue sizek + next packet sizek >

thresholdk ∗ queue fill factor, then this connection is deemed full and is removed from
conns. In this way, the Scheduler sends the data on a first-available basis onto the connec-
tions.

6.4 Scheduling Algorithm: Pinning

There are two goals of the pinning algorithm. The first goal is to simplify sending by pre-
selecting a pinning assignment of channels to connections, so that a channel continues to
send on the same connection. The second goal is to try to achieve bandwidth allocation by
performing a decreasingly ordered best fit greedy algorithm, as described in Section 5.4.2,
which is a dual approximation to Weighted Fair Queueing. The majority of this algorithm is
implemented at the time of channel creation, so we start the detailed description by looking
at how the Scheduler chooses the assignment. The pseudocode for this section is shown in
Figure 6-7.

The Scheduler first orders the channels by decreasing weight order. It obtains the weights
of the channels by querying the CQM, and sorts the list using an introsort algorithm [15]
that runs in worst case complexity O(n log n) that is implemented in STL for C++.
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Pseudocode for stripe scheduling at an iteration:
begin

comment: sets up the conns variable for later usage
conns := {};
foreach conn ∈ CM.get queue status() do

if conn.queue size < conn.threshold
then conns.insert(conn) fi od

.

while conns 6= {} do

comment: choose channel to send
bestchannel := 1;
for i := 1 to n do

if steps left(i) < steps left(bestchannel) defined below
then bestchannel := i;

fi od

.

comment: choose connection to send to
bestconnection := 1;
for i := 1 to conns.size() do

if conns[i].queue size < conns[bestconnection].queue size

then bestconnection := i;
fi od

.

comment: Update status variables
for i := 1 → n do

channel[i].score+ = steps left(bestchannel) ∗ wi;
od

conns[bestconnection].queue size+ = channel[bestchannel].next packet size;
channel[bestchannel].score := 0;
channel[bestchannel].next packet size := new packet size;
.

comment: send from the channel bestchannel to the connection bestconnection
send data(bestchannel, bestconnection);
.

comment: remove connection if full
if conn full(bestconnection) defined below

then conns.remove(bestconnection); fi

od

where

funct steps left(i) ≡ (channel[i].next packet size − channel[i].score) ∗ 1

wi
;

.

funct conn full(i) ≡
if (conns[i].queue size > conns[i].threshold ∗ queue fill factor)

then true;
else false;

fi

.

end

Figure 6-6: Detailed pseudocode for striping scheduler
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Pseudocode for establishing pinning assignments:
begin

Channels := {channel[1], channel[2], ..., channel[n]};
OrdChannels := sort(Channels, introsort,decreasing);
.

comment: Perform the assignments using the state variable bin[i]
∀i. bin[i] = 0;
for i := 1 → n do

minbin := 1;
for j := 1 → m do

if bin[j] < bin[minbin] then minbin := j; fi

od

MakeAssignment(OrdChannels[i],minbin);
bin[minbin]+ = OrdChannels[i].weight;

od

end

Figure 6-7: Pseudocode for Establishing Pinning Assignments: first makes the assignment
of channels to connections, then secondly the pseudocode for runtime execution

The Scheduler then takes each channel and assigns it to a connection that has the least
weight assigned to it so far. It maintains a state variable, binj, that keeps track of how much
total weight each connection has been assigned. Channel i finds bin j with the minimum
size and makes the pinning assignment of channel i to connection j, as well as adding its
weight into that bin binj = binj + weighti.

We will now take a look at what happens during runtime. The pseudocode for this
section is shown in Figure 6-8. During execution, the CM wakes up the Scheduler when
connections are available. The Scheduler chooses a connection, then follows the same DRR
algorithm as the striping Scheduler, except that the range of channels to choose from is now
not all the channels, but the channels that are pinned to that connection.

The pinning Scheduler first queries the CM and obtains the list conns as described
in Section 6.3. It then chooses the connection in conns that has the least queue size.
The Scheduler then looks up all the channels that are pinned to this connection, and
among these channels, finds the channel that has the least fi = next packet sizei−scorei

wi
. It

chooses to send this channel onto this connection, and makes the appropriate updates to
the next packet size, score, and conns as described before for the striping Scheduler.
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Pseudocode for Pinning Scheduler:
begin

comment: sets up the conns variable for later usage
same as striping Scheduler
.

while conns 6= {} do

comment: choose connection to send to
same as striping Scheduler
.

comment: choose channel to send from
PinnedChannels := {set of channels assigned to this connection};
bestchannel := 1;
for i := 1 to PinnedChannels.size() do

if steps left(i) < steps left(bestchannel) defined below
then bestchannel := i;

fi od

.

comment: Update status variables
do the same as in striping, but only to the channels in PinnedChannels
comment: send and remove full connection
same as striping Scheduler

od

where

funct steps left(i) ≡
(PinnedChannels[i].next packet size − PinnedChannels[i].score) ∗ 1

wi
;

.

end

Figure 6-8: Pseudocode for Running the Pinning Scheduler: Very similar to the striping
Scheduler pseudocode, except for order and the selection of channels to choose from for a
given connection
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Chapter 7

Evaluation

In this section, we evaluate the implementation described in the previous chapter. We first
describe the methodology of the experiments and the measurements, then evaluate and
compare each of the two schedulers.

7.1 Methodology

7.1.1 Netbed

In order to gain the benefits of an actual implementation with the flexibility of choosing link
characteristics to test the range of different network environments, we ran our experiments
on the Utah Netbed [24], which derived from the Utah Emulab Testbed. Netbed is an
environment made to facilitate network and distributed system research through emulation.
It offers a large number of heterogeneous nodes and configurable network, providing virtual
machines in a virtual network environment for experimentation. It also provides ease of
use through automated setup and configuration.

Netbed is comprised mainly by 168 PCs in University of Utah and 50 at University of
Kentucky. Each machine has five 100Mb Ethernet interfaces, one used for control, and the
other four used for any configuration in the experiment. The computers are connected via
programmable high-end switches to the testbed backplane, which are themselves connected
by 2 Gb/s links.

The network is properly emulated through isolation from other networks and emula-
tion of network characteristics within the experiment. An experiment isolates itself from
other experiments running on the Netbed through the use of Virtual LAN (VLAN) tech-
nology implemented in the routers. The experiments emulate network characteristics by
using DummyNet [20], a configurable network simulator implemented in the kernel that
simulates routers with bounded queue sizes and different queueing policies, as well as band-
width and delay of communication pipes. Netbed inserts DummyNet nodes in between two
experimental nodes, and by going through the DummyNet, it transparently emulates net-
work link characteristics between any two machines. DummyNet allows the virtual network
topologies to be implemented with two kinds of router queues, DropTail and Random Early
Detection, with configurable parameters.

An experiment sets up a network topology by sending the system a configuration file
of a virtual topology written in ns script [19]. The Netbed system automatically maps the
virtual nodes to physical machines, loads the appropriate operating system on them, and
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Figure 7-1: Network Topology: Experiments going from Node A to Node B through the
bottleneck link between router 1 and router 2. There are 2 cross-traffic TCPs also going
through this link. The routers are running RED.

configures the network to have the right network characteristics, the right routers, and the
right routing information.

7.1.2 Network Topology

The network topology we configure in the emulation takes into consideration that we want
to reduce the number of variables as well as having cross-traffic TCP connections to study
the effects of cross traffic on the scheduling algorithms. As Figure 7-1 shows, we use a
”dumbbell” network topology, where two network paths share the same bottleneck link.
The first path is our experiment path, going from node A to node B through two routers,
router 1 then router 2. The second path is our cross traffic path, going from node C to
node D also through router 1 then router 2. This topology allows the experiment running
on node A and node B to not be affected by the other applications in the emulation.

In order to isolate the bottleneck to be the link between router 1 and router 2, the
connections from the nodes to the routers are high bandwidth low delay links (100 Mbps,
0 ms) with no packet loss. The link between the two routers changes depending on the
experiments, but this link runs slower than the links between the routers and the nodes,
ensuring that the bottleneck link remains the same. The routers implemented a RED
queue with a maximum average size of 40 packets, so we avoid having synchronization
issues between the multiple TCP connections..

7.1.3 Cross Traffic

We run cross traffic TCP connections to study the effects of the scheduling algorithm
in shared network environments. Each of our experiments runs two cross traffic TCP
connections from node C to node D. The programs run on 600 MHz Intel machines running
FreeBSD 4.7. Node D runs a server that accepts TCP connections and throws away the
data. Node C runs a client that opens up TCP connections, sets up the socket buffer to 200
KB, then sends data as fast as possible indefinitely. The programs run on different machines

42



Packet Header

1000 bytes

              request type
                   packet length       sequence number

channel id

Packet Data

random charstimestamp

Figure 7-2: Packet Data

than those that run the experiments to minimize unwanted processor or bus effects on the
experiment.

7.1.4 Sender and Receiver

The Sender and the Receiver are part of a sample application that uses the implementation
of the network manager. Each of our experiments sends data from the Sender on node A to
the Receiver on node B, both of which are 600 MHz Intel machines running FreeBSD 4.7.

The Sender can be configured to simulate many types of applications and many config-
urations of the library. The Sender takes in parameters specifying the number of channels
n, the number of connections m, the size of the total socket buffer s (explained later), and
the relative weights of each channel w. The Sender sets up the CQM and CM with these
parameters.

One goal of the experiments is to observe how the different scheduling algorithms achieve
proper bandwidth allocation. We choose not to specify all the weights of the channels
individually, because this is tedious and hard to analyze, and we also choose not to make
all the weights the same, because this is not as interesting of a case as different weight
distribution. Therefore, we choose one parameter, the relative weight w, and combine it with
the number of channels n to arrive at the weight distribution. The weight of each successive
channel is wi−1. So, the weights for the channels {channel1, channel2, ..., channeln} are
{1, w, w2, ..., wn−1}.

The experiments assume that the application always has more data to send. The case
when not all of the channels are sending adds unnecessary complexity to the problem. The
Sender also timestamps the packet just before placing it in a small NetHandler queue, which
almost immediately gets sent to the kernel buffer. The timestamp is useful for measurements
as described later in the document

The Receiver, on the other hand, is a passive element that takes statistics on the ex-
periment. It receives data sent on the m connections and demultiplexes them onto the n
channels based on the channel id in the packet header. Since these packets can arrive out
of order within a channel, each channel is connected to a Reorder Buffer as described in
Section 6.2.5. The packets are removed from the Reorder Buffer whenever possible, mea-
surements are taken, then the packets are discarded. These measurements are kept in a
statistics log file and processed later for analysis.
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7.1.5 Application Data

As shown in Figure 7-2, the application data packets are 1000 bytes each, and contain a
16 byte packet header consisting of the channel id, the sequence number, the request type,
and the length of each packet. The rest of the packet is an 8-byte timestamp and 976 bytes
of filler data.

Since the experiments run in batches, the experiments are carefully constructed to not
interfere with one another. Each experiment starts by sending a start packet, distinguishable
by the packet type in the packet header. The start packet signals the Receiver to start
collecting a new set of measurements. Next, the Sender waits for 2 seconds to ensure
delivery of the start packet, then sends data for 60 seconds. After 60 seconds, the Sender
waits again for 2 seconds to make sure that all of the data is sent, then finally, it sends a
stop packet to tell the receiver to stop taking this set of measurements.

7.1.6 Measurements and Evaluation Metrics

In order to quantify the effectiveness of the two schedulers, the analysis looks at the met-
rics for sending performance, bandwidth allocation, and memory usage. These metrics are
calculated from experiment measurements of throughput, delay, and reorder buffer size. We
first describe these metrics and how they are calculated. Then, we describe how the mea-
surements for these metrics are collected by the Receiver.

The first metric is the sending performance metric, which is a measure of how
well the network is being utilized. We calculate this by calculating totalthroughput

delay
for the

experiment. This metric is meaningful because having high throughput and low delay means
that the network is being utilized well. Inefficiencies in the system may cause throughput to
drop, or delay to increase. Higher values for this metric mean better sending performance.

The second metric is the bandwidth allocation metric. The Receiver takes the dis-
tribution of average throughput measurements of each channel and compares this with two
different distributions, the optimal distribution and the expected distribution. The analy-
sis uses two ways of comparing distributions, Root-Mean-Squared (RMS) of the absolute
difference and the RMS of the percentage difference.

The first distribution is the optimal distribution, which is used to calculate how far the
observed distribution differed from the weight distribution. As described in Section 7.1.4,
the sender picks a relative weight w, and chooses the weights for each connection by taking
powers of w : weighti = wi−1. The optimal distribution is calculated by taking the total
bandwidth of the experiment and dividing it in such a way to get relative weights of w
for each channel. For example, if there are three channels, then the relative weights would
be 1, w, and w2. Therefore, the first channel should have 1

1+w+w2 fraction of the total

bandwidth, the second w
1+w+w2 , and the third w2

1+w+w2 . This is the optimal distribution
that the implementation would like to achieve.

The second distribution is the expected distribution, which is computed for the pinning
scheduler to calculate the difference between the observed distribution and the distribution
that the pinning assignment algorithm should have given. This distribution shows whether
the difference of the observed distribution from the optimal distribution is caused by the
scheduler dynamics or by the ordered best fit pinning algorithm. The expected distribution
is calculated by first stepping through the pinning assignment algorithm. For 3 channels
and 2 connections, the weights would be 1, w, and w2. The pinning assignment algorithm
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would assign channel 1 to connection 1, and channels 2 and 3 to connection 2. Since
behavior of multiple TCP connections dictate that the connections are expected to have
equal bandwidth, the expected bandwidth for each connection is 1

2
totalbandwidth. Channel

1 should then have 1

2
of the total bandwidth. The second connection has two channels with

weights w and w2, so channel 2 should have 1

2

w
w+w2 fraction of the total bandwidth, and

channel 3 should have 1

2

w2

w+w2 .

The actual bandwidth allocation metric is computed by calculating the Root-Mean-
Squared (RMS) of the difference between the distributions. The RMS between the optimal
and observed distribution gives one metric, and the RMS between the expected and observed
distributions gives the other metric. A higher metric means that the distributions are farther
away, hence the bandwidth allocation observed is worse. Similarly, the metrics are computed
for the percentage difference between the distributions, rather than the absolute difference.

RMS(opt) =

√

1

n

∑

i=1..n

(throughputi − opt throughputi)2 (7.1)

RMSperc(opt) =

√

√

√

√

1

n

∑

i=1..n

(
throughputi − opt throughputi

opt throughputi
)2 (7.2)

RMS(exp) =

√

1

n

∑

i=1..n

(throughputi − exp throughputi)2 (7.3)

RMSperc(exp) =

√

√

√

√

1

n

∑

i=1..n

(
throughputi − exp throughputi

exp throughputi
)2 (7.4)

The final metric is the memory usage metric, which is a measure of how much memory
the algorithms take to run. While memory is generally inexpensive compared to application
throughput and delay, some systems are heavily memory constrained. These systems care
about how much memory the scheduling algorithm takes up. This metric is primarily the
size of the reorder buffer, because this value is determined by the behavior of the scheduling
algorithm, while other data structures are just measurements of implementation efficiency
and are also not very substantial. Lower value for this metric means better memory usage.

To calculate these metrics, the Receiver takes measurements for throughput, delay, and
memory usage while receiving the data for each experiment. The measurements are taken
by the Reorder Buffer component, starting when the start packet arrives, and ending when
the stop packet arrives. These values are then used to compute the evaluation metrics for
send performance, bandwidth allocation, and memory usage as described previously.

For throughput, the experiment keeps the throughput on a per-channel basis as well
as the total throughput of all the channels combined. The Reorder Buffer sums the number
of bytes received for the channel from the start packet to the stop packet and divides it
by the length of the experiment to get the average throughput per second for the channel.
The throughput for each channel is summed up to get the average throughput for the whole
experiment.

For delay, the experiment keeps two different measurements: the TCP delay and the
application delay. The Reorder Buffer reads the first 8 bytes of the packet data , giving it
the send time of the packet. It then records the time of packet reception before putting the
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packet into the reorder buffer, calculating the time difference as the TCP delay. It records
the time again when the packet is dequeued, calculating the difference with the send time
as the application delay of the packet. The clocks on the two machines are synchronized
using ntptime, a networked system time synchronizer, putting the two system clocks within
a few ten microseconds apart. The individual delay times are averaged together with all
the other packets, giving the average TCP delay and the average application delay for the
experiment.

For memory size, the Reorder Buffer keeps track of the average size of its buffer. The
size at any point in time is calculated by summing up the total number of bytes of all the
packets in the reorder buffer. A sample point is taken after each packet is received, put in
the buffer, then as many packets as possible are dequeued in order. The final value used is
the average of all the sample points.

7.1.7 Experiments

We ran a series of experiments to study how varying the number of channels n and the
number of connections m affects performance for each of the schedulers. We also varied
the link characteristics (bandwidth B, delay D, and packet loss rate P) to determine how
different network conditions affect performance of each of the schedulers.

Each experiment lasts for 60 seconds, which provides enough time to get past the initial
startup behavior of the experiment to look at steady-state behavior.

As a default, we run experiments with 15 channels, 5 connections, and relative weight
of 0.8 between the channels, on a 10 Mbps link with 25 ms one-way delay (50ms RTT) and
packet loss rate of 0%. We then run experiments varying one variable at a time from the
default values. We vary the number of channels n from 1, 2, 3, 4, 5, 7, 10, 13, 16, and 20,
the number of connections m from 1, 2, 3, 4, 5, 7, 10, 13, 16, 18, 20, 23, 26, and 30. We
also vary bandwidth B from 3Mbps, 5, 8, 11, 14, 18, 25, 35, and 50 Mbps, one-way delay
D
2

from 0, 3, 5, 7, 10, 15, 20, 30, 40, 50, and 75 ms, and packet loss rate P from 0, 0.1, 0.2,
0.4, 0.8, 1.5, 2, 3, and 5 percent.

We produce graphs for each of these experiments. For every set of parameters, we run
the experiments 15 times and plot both the mean and the standard deviation.

Variable Units Default Range

m connections 5 1, 2, 3, 4, 5, 7, 10, 13, 16, 18, 20, 23, 26, 30
n channels 15 1, 2, 3, 4, 5, 7, 10, 13, 16, 20
B Mbps 10 3, 5, 8, 11, 14, 18, 25, 35, 50
D ms 25 0, 3, 5, 7, 10, 15, 20, 30, 40, 50
P percent 0 0, 0.1, 0.2, 0.4, 0.8, 1.5, 2, 3, 5

7.1.8 Socket Buffer

One side effect of our choice to use TCP is that the application has to set the kernel socket
buffer. Understanding and correctly setting the socket buffer is crucial to making sure that
we are not tainting the measurements of the scheduling algorithms.

Let us first describe the role of the socket buffer. The socket buffer is the memory that
the kernel uses to hold the runtime data structures for TCP. The main usage of this memory
is to store the packets in the TCP sending window. There are several side effects for not
setting the socket buffer size appropriately for a connection.
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Setting the socket buffer size too low limits the throughput achieved by the connection.
Since the socket buffer contains the sending window, bounding the socket buffer size also
bounds the maximum sending window. TCP sending window normally undergoes AIMD,
increasing additively for successful window transfers and decreasing multiplicatively for lost
packets, and oscillates consistently under stable network conditions. However, if the socket
buffer limit is less than peak of this oscillation, then the window size can no longer increase.
The Kernel now sends at a constant rate, and does not probe for enough of the total
bandwidth. Therefore, the socket buffer limit should be at least greater than the maximum
sending window size.

The maximum sending window size is determined by how much data can be sent out
before the acknowledgement of the data can be received. The acknowledgement takes at
least a round-trip time to return, because the packet has to get to the destination and the
ack has to come back. During this time, the sender can send bandwidth ∗ rtt bytes of data,
which is called the bandwidth-delay product of the connection. Therefore, the socket buffer
size should be at least the bandwidth-delay product.

Setting the socket buffer size below a few network packets increases the delay and de-
creases the throughput of the connection. This happens because if there are only a few
packets in the sending window, then the receiver does not send enough duplicate acks for
the sender to perform a fast retransmit as defined in Section 4.3.1. Therefore, the connection
suffers from a timeout, which decreases throughput and increases delay of the packets.

However, setting the socket buffer size too high increases the application delay experi-
enced by the packets. The kernel continues to accept packets from the application until
the socket buffer is full. Therefore, if the socket buffer size is much larger than the sending
window, then the buffer contains packets that cannot be sent yet because it is not in the
sending window. These packets incur greater application delay, which is important because
the application no longer has access to those packets that are sent to the kernel.

We adjust the size of the socket buffers for each of the experiments to match these
constraints. Since we run m connections, we first look at the aggregated throughput of the
connections, and set the aggregate socket buffer size for all the connections. The aggregate
throughput of m connections with two cross traffic TCP connections is roughly B ∗ m

m+2

where B is the bandwidth of the bottleneck link. This is because the connections all have
the same RTT, and TCP connections with the same RTT fairly share the available band-
width at the bottleneck router (Section 4.3.4). Therefore, the expected throughput for each
individual connection is B

m+2
.

We finally set the socket buffer size for each connection to be the maximum of 5000
bytes, which accounts for the minimum socket buffer size, and the bandwidth-delay product,
which is B

m+2
∗ (2D), where the factor of two is because we want the round-trip delay rather

than the one-way delay.

socket buffer size = max{5000bytes,
B ∗ 2D

m + 2
} (7.5)

7.2 Results: Sending Performance

The sending performance, as described in Section 7.1.6, shows how well the Scheduler
utilizes the available network resources. This metric looks at two measurements, the delay
and throughput measurements. We compare the two schedulers by evaluating at how they
react to the different parameters.
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Figure 7-4: Striping: Channels vs. Delay

7.2.1 Striping Scheduler

The sending performance of the striping Scheduler is highly influenced by the number of
connections m. We show that there is an optimal choice for the number of connections
depending on the importance of throughput and delay to the application. We show that
this optimal choice changes as the number of cross traffic connection and the packet loss
rate P of the connection changes.

The delay experienced by the striping algorithm can be broken down to two distinct
sources, the TCP delay and the reordering delay. Taking the TCP delay and the application
delay measurements, as described in Section 7.1.6, the reordering delay is application delay−
TCP delay. This is the delay incurred by the packets while in the reorder buffer but are
unable to be processed by the application due to a missing packet earlier in the sequence.

Figure 7-3 and Figure 7-4 show how the delay is affected by changing the number of
connections m and the number of channels n respectively.

As we increase the number of connections, we find that the channels experience more
reordering, causing the reordering delay to increase. This is because a lost packet in one
connection does not prevent all the other connections from sending their data which may
be out of order. With m connections, if one connection experiences a timeout and delays
its packets for c rtt’s, then the other connections send total bandwidth ∗ m−1

m
∗ c ∗ rtt

bytes as long as they also do not lose packets. Also, opening up m connections causes the
window increasing scheme to increase by m packets every rtt and decrease by 1

m
when it

loses packets, which is a more aggressive probing of the available bandwidth, and causes
more packet losses than before. This further adds to the fact that increasing the number
of connections increases the number of packets that get reordered, and hence increases the
reordering delay. In Figure 7-3, we see that at m = 14, we have approximately 100ms of
reordering delay, and at m = 30, we have 1.2s of reordering delay. The slight rise in TCP
delay is the result of the minimum socket buffer size limit, which is explained in the pinning
scheduler, but the main contributor to the application delay is the reordering delay. In
either case, more connections cause higher delay.

We find that increasing the number of channels n causes reordering delay to decrease
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Figure 7-5: Striping: Link delay vs. Av-
erage Delay
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Figure 7-6: Striping: Packet Loss vs. Av-
erage Delay

slightly. Figure 7-4 shows this for the case when the number of channels m = 5. If a packet
is lost and a channel delayed, hence causing a set of packets to be received out of order,
then this affects only the channels that contain packets in this set. As n increases, the
delayed packets affect a lower percentage of the total number of packets. If, in a period of
time, P packets are sent and L of them are delayed by a connection, then this affects up
to L channels. On average, every channel receives P

n
packets, so LP

n
packets are affected.

While this is only a rough estimation, we can see how increasing n can cause the number
of delayed packets to reduce, thereby decreasing the average reordering delay.

We also find that link delay causes a linear increase in TCP delay (Figure 7-5), and
higher packet loss rates cause higher reordering delay (Figure 7-6). The link delay adds to
the TCP delay, and does not cause an increase in the reordering delay. This shows that the
effects of link delay on application delay are quite limited, and only affects it in a simple
manner. Higher packet loss rates means that the connections are more likely to timeout, and
each timeout causes more packets to arrive out of order, thereby increasing the reordering
delay.

In conclusion, the main causes for high application delay are high number of connec-
tions, high link delay, and high link packet loss rate.

While delay has a negative effect on sending performance, higher throughput means
better sending performance. As we change change the number of connections m, we find
that throughput increases. We also find that increasing bandwidth, lowering delay, and
lowering packet loss rate all positively affect throughput.

As the number of connections m increases, the experiment obtains more bandwidth
from the cross traffic, causing the total throughput to increase. Figure 7-7 shows that
the throughput roughly follows the m

m+2
∗ total bandwidth expectation as described in

Section 5.2.

Changing the link characteristics follows the trends for TCP as described in Section 4.3.3.
Increasing bandwidth changes a linear increase in throughput, while changing the delay
and packet loss rate changes the throughput according to the 1

RTT∗
√

P
limitation of TCP

throughput.
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Figure 7-7: Striping: Connections vs.
Throughput
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Figure 7-8: Striping: Connections vs.
Sending Performance
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Figure 7-10: Striping: Connections vs.
Sending Performance 2

The throughput, then, is affected negatively by low m, low B, high RTT, and high P.

The sending performance metric is a combination of the delay and throughput character-
istics, computed as delay

throughput
. The most meaningful variable is the number of connections

m in the experiment. As Figure 7-8 shows, there is a peak in sending performance.

Initially, the sending performance increases because the experiment obtains more through-
put from the cross traffic, while delay is staying the same. But, as the number of connections
m increases, the rate of increasing throughput decreases, and the increasing delay caused
by reordering takes over, causing the sending performance metric to go down. Therefore,
the optimal value of m is somewhere in the middle.

This point of optimal m, however, shifts as link characteristic changes. The main cause
of the shift is an increase in the packet loss rate, which causes the optimal point for m to
shift to lower values. As Figure 7-9 and Figure 7-10 shows, higher values of packet loss
rate causes delay to increase, thereby causing the optimal sending performance to decrease.
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Figure 7-11: Pinning: Connections vs.
Average Delay
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Figure 7-12: Pinning: Channels vs. Aver-
age Delay

This, as we shall see later, determines whether the striping approach is a good approach.

In conclusion, the striping Scheduler’s sending performance peaks at a certain number
of connections m, which shifts both to lower values of m and lower sending performance
as packet loss rate increases. The sending performance is independent on the number of
channels.

7.2.2 Pinning Scheduler

Like the striping Scheduler, the pinning Scheduler is also very influenced by the number
of connections. We show that increasing the number of connections m increases sending
performance, but once it exceeds the number of channels n, then sending performance does
not change. Furthermore, if there are a lot of cross traffic connections, then the bandwidth
obtained decreases, and higher values of n are required to be able to achieve the same
bandwidth. This shows that the pinning scheduler is fit for applications that continue to
maintain a high number of channels. We also show that the choice of an appropriate m for
sending performance is relatively stable under changing network conditions.

Application delay for the pinning scheduler consists only of the TCP delay, and there-
fore, follows the behavior of delay for aggregated TCP connections. The Scheduler pins each
channel to a connection, and since TCP sends packets to the library in order (Section 4.3.1,
the library does not have to do any reordering. Therefore, the variables that affect appli-
cation delay are the same as those that affect delay of aggregate TCP connections, which
are m, link delay and link packet loss rate.

The TCP delay caused by an increasing number of connections m results from the
minimum socket buffer size limitation as described in Section 7.1.8. As m increases, the
bandwidth obtained by an individual connection decreases, thereby decreasing the band-
width delay product for that connection. The socket buffer size, then, keeps on decreasing
until the minimum buffer size limit is reached. After this point, the socket buffer size starts
to be higher than the bandwidth-delay product, so the packets incur more delay while in the
socket buffer and waiting to be sent. However, when m > n, increasing the number of con-
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Figure 7-13: Pinning: Link delay vs. Av-
erage Delay
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Figure 7-14: Pinning: Packet Loss vs. Av-
erage Delay

nections does not cause a change in the sending performance. This is because the pinning
algorithm has no more channels to assign to those connections, hence those connections go
unused and do not affect sending performance.

Figure 7-11 shows this effect. For these experiments, the socket buffer size is 80KB
with two cross traffic connections, so the socket buffer size limit reaches when 5KB = 80

m+2

(Section 7.1.8), or m = 14 connections. As can be seen in Figure 7-11, the delay starts to
have an increase at m = 14. Then, as m > n, which happens at m = 15 with 15 channels,
the delay stays constant.

Changing the number of channels n affects the delay when n < m, where changing n
changes the number of used connections. As Figure 7-12 shows, within this region of n < m

where m = 5 connections, delay increases as n increases.

Changing network conditions also affects TCP delay. As Figure 7-13 shows, increasing
link delay causes packets to take longer to reach the other computer, causing the TCP delay
to increase proportionally. Increasing packet loss rate also causes TCP delay to increase,
as connections lose more packets and have to wait for packets to be retransmitted before
being able to send them to the CM in order. Figure 7-14 shows this increase in TCP delay.

The analysis of throughput for the pinning Scheduler is exactly analogous to the analysis
for the striping Scheduler, except for the fact that everything stays constant in the region
where the number of connections exceeds the number of channels (m > n).

Increasing the number of connections m causes an increase in throughput, which is the
result of the connections in the experiment gaining a higher portion of the bandwidth at
the bottleneck router. Figure 7-15 shows the increase according to the B ∗ m

m+2
equation

for this effect (Section 5.2). But, as m exceeds the number of channels, n = 15, we see that
the throughput becomes constant. Any more connections that are added remain unused, so
this does not affect throughput. By this point, however, the incremental gain of throughput
for a connection is low enough that this limitation does not affect total throughput much.
However, if the number of channels is low, or if there are many other cross traffic TCP
connections, then this limitation hinders the library from obtaining a high percentage of
the available bandwidth.
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Figure 7-15: Pinning: Connections vs.
Throughput

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0  5  10  15  20  25  30

S
en

dP
er

fo
rm

an
ce

 (
by

te
s/

se
c^

2)

#Connections (TCP)

#Connections vs SendPerformance (assign)

SendPerformance

Figure 7-16: Pinning: Connections vs.
Sending Performance
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Figure 7-18: Pinning: Connections vs.
Sending Performance 2

The effects of network characteristics on throughput parallel those with the striping
Scheduler. Increasing bandwidth changes a linear increase in throughput, while changing
the delay and packet loss rate changes the throughput according to the 1

RTT∗
√

P
limitation

of TCP throughput.

Combining the behavior of delay and throughput, we see that sending performance
generally increases as m increases, and that higher values of n relative to the number of
cross traffic connections allows for better performance.

As Figure 7-16 shows, increase in m causes the sending performance to increase until
one of two things happen. The first is the case that the minimum socket buffer is reached,
which causes the delay to go up, causing the send performance to go down. This can be seen
in Figure 7-16 when m = 14, as described in the delay section. The second is the case that
m > n, in which the delay and throughput remains constant, and takes precedence over
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the first case. Before these limits, the sending performance initially increases due to rising
throughput, while delay stays relatively constant. Then, the rate of increase of throughput
decreases, while delay starts to increase at the minimum socket buffer size limit. But finally,
as m > n, the connections go unused, and hence, does not affect performance.

Sending performance is better when there are more active connections open. However, if
the number of channels n is low, then this limits the number of active connections, thereby
limiting the sending performance. Figure 7-17 and Figure 7-18 shows this trend. The
throughput and sending performance decreases as n decreases. Throughput also decreases
as the number of cross traffic connections rise, so more cross traffic leads to lower perfor-
mance, and higher values of n are required to be able to achieve the same performance level.

In conclusion, the pinning Scheduler’s sending performance does better as the number
of connections increases, but is adversely affected by low number of channels.

7.2.3 Comparison

The previous two subsections show how each of the schedulers, striping and pinning, perform
according to the sending performance metric. We now compare the two to show that the
pinning algorithm is able to have better sending performance when the number of channels n
is high. We also show that, for links with a low packet loss rate, the striping scheduler is still
able to obtain good throughput with reasonable delays, but as the number of connections m
increases, the delay becomes much greater than that for the pinning scheduler. On the other
hand, we show that when n is low, the pinning scheduler is unable to obtain a full capacity
of throughput, and hence, the striping scheduler performs better for sending performance.

We have drawn these two conclusions from above:

• The striping Scheduler’s sending performance peaks at a certain number of connections
m, which shifts both to lower values of m and lower sending performance as packet
loss rate increases. The performance is also independent of the number of channels.

• The pinning Scheduler’s sending performance does better as the number of connections
increases, but is adversely affected by low number of channels.

Looking at the application delay for the two schedulers in Figure 7-19, we see that the
striping Scheduler has more delay, and the difference grows as the number of connections
m increases. While the striping Scheduler grows with m, the pinning Scheduler maintains
a constant delay, because it does not have to suffer from reordering delay. We also see that,
as packet loss rate increases, the delay worsens further for the striping Scheduler.

Figure 7-20 compares the throughput for the two schedulers, and it shows that the
throughput for the two are equivalent, until the pinning Scheduler becomes bounded in
the case where there are more connections m than channels n, in this case when m = 15.
Striping Scheduler has at least as much throughput as the pinning Scheduler, and for cases
of low n, the striping Scheduler obtains more throughput than the pinning Scheduler.

Finally, Figure 7-21 shows the sending performance metric, as computed by throughput
delay

for the two Schedulers. The exact numbers for this graph are only meaningful in showing
the trends, since the equation for the metric is chosen only to describe that high throughput
and low delay is better for sending performance. The throughput for the two schedulers
are the same for the most part, since the number of channels n for the pinning algorithm
is high (n = 15). However, the delay for the striping Scheduler grows as m grows. This is
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Figure 7-19: Comparison: Connections vs
Average Delay
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Figure 7-23: Striping: Connections vs.
Bandwidth Allocation (optimum %)

shown by the decreasing sending performance when the number of connections m increases.
However, for the appropriate choice of m, we see that the striping Scheduler is still able to
obtain relatively good sending performance. As long as the application delay is acceptable,
the striping Scheduler performs as well as the pinning Scheduler.

As the number of channels n decreases, the pinning Scheduler performance decreases,
because any extra connections of m > n remain unused instead of increase sending perfor-
mance. As packet loss rate increases, the striping Scheduler performance decreases, which
is caused by increasing delay.

In conclusion, the pinning Scheduler has better sending performance than the striping
Scheduler when the number of channels n is high. However, the striping Scheduler, for an
appropriate choice of the number of connections m, is still able to obtain high throughput
with reasonable delay, and remains a viable option. For low n, the pinning Scheduler be-
comes limited in performance, and the striping Scheduler is able to obtain better sending
performance.

7.3 Results: Bandwidth Allocation

The bandwidth allocation metric, as described in Section 7.1.6, is a measurement of how
well the scheduler achieves the throughput ratio between the channels. We compute the
RMS as well as the RMSperc between the observed throughput and both the optimal and
expected distributions. We show that the striping Scheduler achieves the optimal allocation
to within one packet per channel. The pinning Scheduler, on the other hand, performs well
if the number of channels n is much greater than m, but poorly otherwise.

7.3.1 Striping Scheduler

The nature of striping gives near-optimal bandwidth allocation. As described in Sec-
tion 5.4.1 and in Equation 5.2, the deviation of throughput for any channel is within one
application packet off of the optimal if all the packets in transit at the end of the experi-
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Figure 7-27: Pinning: Connections vs.
Bandwidth Allocation (expected %)

ment are to be included. For our experiments, our packet sizes are all at 1000 bytes, so the
maximum difference for any configuration of m and n for a specific channel is within 1000
bytes. This is shown for differing values of m and n in Figures 7-22 and 7-24.

7.3.2 Pinning Scheduler

The pinning Scheduler has less flexibility in how it sends data, because it pins the channels
onto connections. Because of this, the pinning Scheduler is not able to achieve optimal
bandwidth allocation. However, for the case when there are many more channels than con-
nections (n >> m), the pinning Scheduler is still able to obtain good bandwidth allocation.
We also show that the deviations are caused by the nature of the chosen algorithm, as
opposed to being caused by runtime dynamics.

From Figure 7-26, we can see that increasing values of m causes the RMSperc(optimum)
to increase. Initially, when there are more channels than connections (n = 15 channels),
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Figure 7-29: Pinning: Channels vs. Band-
width Allocation (expected %)

then the assigning algorithm does well in obtaining good bandwidth allocation. However, as
m → n, the bandwidth allocation gets worse. This is because many channels are assigned
to their own connection, and all the connections get approximately the same throughput.
Therefore, these channels get the same throughput regardless of their weights. This can be
shown with the case of m = n, where each channel is assigned its own connection, so all the
channels get the same throughput. This, clearly, is not optimal. As m > n, the bandwidth
allocation metric does not change, since the extra connections are not used.

We can show that these effects are due to the properties of the assignment algorithm
rather than the dynamics at runtime by looking at the expected bandwidth assignment
metric (Figure 7-27). We can see that the RMSperc is now within 10%, which means that
the bandwidth allocation was not too far away from the expected distribution.

We can observe the same reasoning behind the trends as we fix the number of connections
m and increase the number of channels n. Figure 7-28 shows the RMSperc as we fix m = 5.
Initially, as n < m, increasing the number of channels n causes the bandwidth allocation to
become worse. This is because each channel is pinned to its own connection, so there is no
bandwidth allocation occurring aside from the equal distribution obtained by the multiple
TCP connections. Since the channels are given weights wi = (winitial)

i−1 (Section 5.3), if all
the channels are given the same bandwidth, then the deviation from the optimal increases
as the number of channels increases. Then, as n > m, the algorithm is better able to pin the
channels to connections in a way to even out the total weight assigned to each connection,
which makes bandwidth allocation better (Section 5.4.2).

Again, we can see that these are effects of the pinning algorithm rather than on the run-
time behavior by looking at the RMSperc of the expected distribution. Figure 7-29 shows
the RMSperc within a few percent, which shows that the experiment does not deviate much
from the distribution expected by the algorithm.

Figure 7-30 shows that bandwidth allocation with lower numbers of channels n is not
achievable. When n = 3, any value of m > 12 suffers from lots of reordering, until it flattens
off when m > n.

In conclusion, we see that the pinning scheduler is able to achieve good bandwidth allo-
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Figure 7-30: Pinning: Connections vs. Bandwidth Allocation (optimum) 2
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cation when n >> m, but otherwise, is unable to achieve good bandwidth allocation.

7.3.3 Comparison

The evaluations of the bandwidth allocation for each of the schedulers shows the following:

• Striping gives near optimal bandwidth allocation

• The pinning scheduler is able to achieve good bandwidth allocation when n >> m,
but otherwise, is unable to achieve good bandwidth allocation.

We now compare the two schedulers to show that the striping Scheduler always has
better bandwidth allocation than the pinning Scheduler. For the pinning Scheduler to
obtain better bandwidth allocation, then the number of channels n must be much larger
than the number of connections m (n >> m).

As Figure 7-31 shows, striping Scheduler achieves near-perfect bandwidth allocation,
while the pinning Scheduler performs poorly when the number of connections m increases.
In this case of the number of channels n = 15, as m → n, the bandwidth allocation for the
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Figure 7-33: Striping: Connections vs.
Memory Usage

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0  10000  20000  30000  40000  50000

R
eo

rd
er

_B
uf

fe
r_

S
iz

e 
(b

yt
es

)

Bandwidth (kbps)

Bandwidth vs Reorder_Buffer_Size (stripe)

Reorder_Buffer_Size

Figure 7-34: Striping: Bandwidth vs.
Memory Usage

pinning Scheduler gets worse. Then, as n decreases, we see that bandwidth allocation gets
even worse, because n >> m never happens.

Figure 7-32 shows the same dynamics. The striping Scheduler gives good bandwidth
allocation and the pinning Scheduler performs better as n >> m where m = 5 in this case.

In conclusion, the striping Scheduler always has better bandwidth allocation, being near-
perfect. The pinning Scheduler can achieve good bandwidth allocation as n >> m, but as
m → n, the bandwidth allocation gets worse.

7.4 Results: Memory Usage

The memory usage metric shows us how much memory is required by the schedulers to
operate. As explained in Section 7.1.6, we look at the size of the reorder buffer to calculate
the memory efficiency of the Schedulers. We show that the striping Scheduler requires more
memory as the number of connections increases, as well as when bandwidth, packet loss,
or delay increases. On the other hand, the pinning Scheduler has near-constant memory
requirements for all conditions. Therefore, systems that are heavily memory constrained
should use the pinning Scheduler.

7.4.1 Striping Scheduler

The size of the reorder buffer for the striping Scheduler parallels the reordering delay metric.
Reordering delay is caused by more packets being in the reordering buffer, as is the size of
the reorder buffer. Therefore, like the trends for reordering delay, the reorder buffer size
grows as the number of connections m increases, as well as bandwidth, packet loss, and
delay increase.

Figure 7-33 shows the size of the reorder buffer as the number of connections m increases.
This parallels the increasing reorder delay in Figure 7-3. Similarly, Figure 7-34 shows rising
reorder buffer size for increasing values of bandwidth. The packet loss rate and link delay
cause similar effects as the reordering delay, which are shown in Figure 7-6 and Figure 7-5.
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Figure 7-35: Compare: Connections vs. Memory Usage

7.4.2 Pinning Scheduler

Memory size in the Scheduler primarily comes from the reordering buffers, but since TCP
already does the reordering for us and there is no reordering in the reorder buffer, memory
usage stays very low. Therefore, the pinning Scheduler is very memory-efficient, and is
suited for systems with heavy memory constraints.

7.4.3 Comparison

The previous two sections show us how the memory usage for the two Schedulers behave
with changing parameters. We find that:

• The striping Scheduler reorder buffer size grows as the number of connections m
increases, as well as bandwidth, packet loss, and delay increase.

• The pinning Scheduler is very memory-efficient

We now compare the two to highlight that the pinning Scheduler always uses less memory
than the striping Scheduler, so the pinning Scheduler will be preferred for applications with
heavy memory constraints.

Figure 7-35 shows that the pinning Scheduler reorder buffer size stays constant at zero,
while the striping Scheduler reorder buffer size increases as m increases. Furthermore, we
have shown previously that the striping Scheduler reorder buffer size grows as the band-
width, link delay, and packet loss rate increase. Under changing network conditions, then,
the memory size of the striping Scheduler can fluctuate.

In conclusion, we have shown that the pinning Scheduler has better memory size perfor-
mance than the striping Scheduler, and is well suited for applications with heavy memory
constraints, even under changing network conditions.

7.5 Summary: Striping versus Pinning

We have so far individually evaluated the three metrics, sending performance, bandwidth
allocation, and memory size. In this section, we will summarize the findings and develop
an overall evaluation of the two Schedulers.
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We have shown that the pinning Scheduler has better sending performance for high
numbers of connections n, but the performance becomes limited as n decreases toward the
number of connections m. The striping Scheduler, although with more delay, can achieve
comparable sending performance under low packet loss rate conditions, and is not affected
by the choice of the number of channels n.

We have also shown that the striping Scheduler has near-perfect bandwidth allocation,
and the pinning Scheduler can also achieve good bandwidth allocation if n >> m, but as
n → m, good bandwidth allocation becomes impossible.

Finally, we have shown that the pinning Scheduler has constant memory usage, regard-
less of network conditions.

We now evaluate the two Schedulers from an application perspective to find the appro-
priate Scheduler for an application.

If the application is not delay dependent, then the striping Scheduler provides good
throughput and good bandwidth allocation, and is versatile to both program behavior in
the number of connections that the application keeps open, as well as to changing network
characteristics like changing available bandwidth, packet loss rate, and delay. The pinning
Scheduler does not achieve as good bandwidth allocation and is not versatile to application
behavior.

If the application is heavily memory constrained, then the application prefers the
pinning Scheduler for its constant memory size under changing network conditions. The
striping Scheduler will fluctuate depending on bandwidth, packet loss rate, and delay of the
network.

If the application is delay dependent and not memory constrained, then the choice
depends on the normal characteristic of the network, the normal application behavior, and
the variables that are likely to change.

If the network has low packet loss rate and a low number of expected cross traffic, then the
striping Scheduler is able to obtain good sending performance, while having good bandwidth
allocation. Conversely, if the network has high packet loss rate or high numbers of cross
traffic, then the striping Scheduler is unable to obtain good sending performance, and the
pinning Scheduler is preferred.

If the application has low number of channels at one time, then the striping Scheduler
is preferred, because the pinning Scheduler sending performance and bandwidth allocation
both perform poorly. If the application has high number of channels, then the pinning
Scheduler achieves better sending performance with good bandwidth allocation.

Therefore, if the application can have either stable network characteristics or stable
application behavior, then the choice is as stated above. Otherwise, the application chooses
the scenarios in which it accepts worse performance.

62



Chapter 8

Conclusion

In this thesis, we concentrate on the problem of achieving good network utilization and
bandwidth allocation for overlay network applications that send multiple flows of data
between its machines. We present a new user-level approach with multiple TCP connections,
and show that this design leverages the code maintainability of a user-level implementation
with the simplicity and efficiency of an implementation that uses TCP.

We then look at the problem of picking a multiplexing strategy to multiplex the multiple
application flows onto the multiple TCP connections. This thesis presents and analyzes two
multiplexing strategies, striping and pinning. The striping strategy aggregates all the flows
and stripes them across the TCP connections according to a deficit round robin algorithm.
The pinning strategy pins flows to TCP connections according to a ordered best fit algorithm
that is a dual approximation of the analogous multiple processor scheduling problem.

This work goes further to implement and evaluate the two scheduling strategies to
determine how the two strategies compare. We find the following:

• If the application is not delay dependent, then the application prefers striping Sched-
uler

• If the application is heavily memory constrained, then the application prefers pinning
Scheduler

• If the application is delay dependent and not memory constrained, then the choice
depends on the normal characteristic of the network and the normal application be-
havior.

– If the network has low packet loss rate and a low number of expected cross traffic,
then the striping Scheduler is preferred

– If the network has high packet loss rate or high numbers of cross traffic, then the
pinning Scheduler is preferred.

– If the application has low number of flows at one time, then the striping Scheduler
is preferred

– If the application consistently has high number of flows, then the pinning Sched-
uler is preferred

We have shown that a user-level implementation using TCP is both viable and highly
attractive, and that both striping and assigning multiplexing schemes are possible choices
depending on the network conditions, application constraints, and application behavior.
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