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ABSTRACT
Dynamic load balancing is a popular recent technique that
protects ISP networks from sudden congestion caused by
load spikes or link failures. Dynamic load balancing pro-
tocols, however, require schemes for splitting traffic across
multiple paths at a fine granularity. Current splitting
schemes present a tussle between slicing granularity and
packet reordering. Splitting traffic at the granularity of
packets quickly and accurately assigns the desired traffic
share to each path, but can reorder packets within a TCP
flow, confusing TCP congestion control. Splitting traffic at
the granularity of a flow avoids packet reordering but may
overshoot the desired shares by up to 60% in dynamic envi-
ronments, resulting in low end-to-end network goodput.

Contrary to popular belief, we show that one can sys-
tematically split a single flow across multiple paths without
causing packet reordering. We propose FLARE, a new traf-
fic splitting algorithm that operates on bursts of packets,
carefully chosen to avoid reordering. Using a combination of
analysis and trace-driven simulations, we show that FLARE
attains accuracy and responsiveness comparable to packet
switching without reordering packets. FLARE is simple and
can be implemented with a few KB of router state.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Protocols

General Terms
Algorithms, Design, Performance, Theory

Keywords
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1. INTRODUCTION
Load balancing is common in ISP networks. It is a key

component of traffic engineering, link bundling, and equal
cost multi-path routing [8, 28, 14, 6, 29]. Recent trends in
load balancing point toward dynamic protocols. These pro-
tocols map the traffic of an ingress-egress router pair onto
multiple paths and adapt the share of each path in real-
time to avoid hot-spots and cope with failures [18, 30, 12].
Protocols like TeXCP [18], COPE [30], and MATE [12] have
demonstrated the value of such approaches in reducing costs
and increasing network robustness.

Dynamic load balancing needs schemes that split traffic
across multiple paths at a fine granularity. Current traf-
fic splitting schemes, however, exhibit a tussle between the
granularity at which they partition the traffic and their
ability to avoid packet reordering. Packet-based splitting
quickly assigns the desired load share to each path. When
paths differ in delay, however, splitting at packet granular-
ity can reorder a large number of packets. TCP confuses

this reordering as a sign of congestion, resulting in degraded
performance. Even some UDP-based applications such as
VoIP [20] are sensitive to packet reordering. Flow-based
splitting, on the other hand, pins each flow to a specific
path and avoids packet reordering. But, flows differ widely
in their sizes and rates, and once assigned, a flow persists on
the path throughout its lifetime [34, 22, 26]. Consequently,
flow-based splitting may assign inaccurate amounts of traf-
fic to each path or fail to quickly re-balance the load in the
face of changing demands. This inability to quickly react to
traffic spikes congests links and reduces network goodput.

This paper shows that one can obtain the accuracy and re-
sponsiveness of packet-based splitting and still avoid packet
reordering. We introduce FLARE,1 a new traffic splitting
algorithm. FLARE exploits a simple observation. Consider
load balancing traffic over a set of parallel paths (Fig. 1).
If the time between two successive packets is larger than
the maximum delay difference between the parallel paths,
one can route the second packet —and subsequent pack-
ets from this flow— on any available path with no threat
of reordering. Thus, instead of switching packets or flows,
FLARE switches packet bursts, called flowlets. By defini-
tion, flowlets are spaced by a minimum interval δ, chosen to
be larger than the delay difference between the parallel paths
under consideration. FLARE measures the delay on these
paths and sets the flowlet timeout, δ, to their maximum de-
lay difference. The small size of flowlets lets FLARE split
traffic dynamically and accurately, while the constraint im-
posed on their spacing ensures that no packets are reordered.

This paper makes the following contributions.

(a) It introduces FLARE, showing that it is possible to sys-
tematically slice a TCP flow across multiple paths without
causing packet reordering.

(b) It formally analyses the traffic splitting problem. Our
analysis shows that deviation from the desired traffic split
is always smaller with flowlets than with flows, and depends
on the number of flowlets per time unit and the coefficient
of variation (standard deviation/mean) of flowlet sizes.

(c) It evaluates FLARE using extensive simulations run on
863 traces from tier-1 and regional providers, and reveals
the following findings.

• FLARE’s bandwidth allocation is highly accurate. It is al-
ways within a few percent of the desired shares, for both
static and dynamic splits. In contrast, splitting schemes
that pin a flow to a path like flow-based, S-Hash and BIN-
based overshoot the desired bandwidth allocation by an
average of 20%-60%, in dynamic environments, which re-
duces the overall goodput under high load. Packet-based
splitting, on the other hand, causes 1%-3% extra 3 dupli-
cate TCP acks, and thus hurts end-to-end goodput.

• FLARE is remarkably robust to errors in estimating the
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Figure 1: As long as the inter-packet spacing is larger than the
delay difference between the two paths, one can assign the two
packets to different paths without risking packet reordering.

delay difference of the parallel paths. It operates correctly
even with an estimation error as high as 100ms, a value
larger than the coast-to-coast round trip delay.

• FLARE’s state overhead is small. On all of the 863 traces
examined (with link capacities upto 10Gbps), FLARE can
track flowlets with a hash table of approximately 1000
entries, which fits in a few KB of memory. Further, the
state required scales roughly linearly with link capacity.

With its responsiveness and robustness against packet re-
ordering, FLARE enables a new generation of dynamic load
balancing schemes such as TeXCP [18] and COPE [30] to de-
liver its potential. Further, its simplicity and low-overhead
make it easy to implement and use in routers.

2. RELATED WORK
The work closest to FLARE is in the context of circuit

and optical switching It observes that switching user-data
bursts allows circuits to be established once for each burst,
and a single routing table look-up to be made for the entire
burst [4]. FLARE’s novelty stems from switching bursts to
achieve responsive load balancing without packet reordering.

In datagram networks, a few proposals for traffic split-
ting forward packets onto multiple paths using a form of
weighted round-robin or deficit round robin [27] scheduling.
These schemes cause significant packet reordering and thus
are not used in practice. Alternative schemes avoid packet
reordering by consistently mapping packets from the same
flow to the same path. Commercial routers [11, 17] imple-
ment the Equal-Cost Multipath (ECMP) feature of routing
protocols such as OSPF and IS-IS. Hash-based versions of
ECMP divide the hash space into equal-size partitions cor-
responding to the outbound paths, hash packets based on
their endpoint information, and forward them on the path
whose boundaries envelop the packet’s hash value [9, 29].
Though these schemes provide a good performance when
operating with static load balancing, they are unsuitable
for the emergent dynamic load balancing protocols [18, 30],
where they may overshoot the desired load by as much as
60% (as shown in §9.5).

A few papers analyze the performance of various splitting
schemes. Cao et al. [9] evaluate the performance of a num-
ber of hashing functions used in traffic splitting. Rost and
Balakrishnan [25] evaluate different traffic splitting policies,
including rate-adaptive splitting methods.

Related work also exists in the area of load balancing [18,
12, 29, 31, 13]. Load balancing needs to split traffic across
multiple paths. Recent proposals, such as TeXCP [18],
COPE [30] and MATE [12], focus on dynamic approaches
where the desired split adapts to changes in the observed
load. This form of dynamic load balancing stresses cur-
rent traffic splitting schemes, which cannot quickly adapt
the amount of traffic on each path. FLARE provides an
ideal traffic splitting scheme for these dynamic load balanc-

ing algorithms because it quickly and accurately matches
the desired traffic split, while limiting packet reordering.

Of relevance to our work are recent efforts on improving
TCP’s robustness to packet reordering [21, 7, 33, 1]. If the
future TCP would be completely immune to packet reorder-
ing, a packet-based splitting technique would outperform
all other approaches. However, there is no indication such a
TCP will be deployed in the near future. Until then, there
is a need for an accurate traffic splitting mechanism with
minimal reordering.

3. SPLITTING PROBLEM
The traffic splitting problem is formalized as follows [25].

The aggregate traffic arriving at a router, at rate R, is com-
posed of a number of distinct transport-layer flows of varying
rates. Given N disjoint paths that can be used concurrently,
and a split vector ~F = (F1,F2, ..., FN ), where Fi ∈ [0, 1] and
Pi=N

i=1 Fi = 1, find a packet-to-path assignment such that
the traffic rate on path i is equal to Fi ×R.

The splitting problem is a key component of the general
problem of load balancing. In addition to a traffic splitter,
balancing the load across multiple paths requires a mech-
anism to find the splitting vector ~F . The splitting vector
may be static as in the case of balancing the load across a
link bundle connecting two routers. It might also dynam-
ically adapt to the congestion state along each path. This
paper assumes that the splitting vector is either statically
configured or dynamically provided by one of the recently
proposed traffic engineering solutions [18, 29, 12, 30].

4. FLOWLET SWITCHING
This section proposes flowlet-based splitting which aims

to combine the responsiveness of packet-based splitting with
the ability of flow-based splitting to avoid packet reordering.

A flowlet is a burst of packets from a given transport
layer flow. Flowlets are characterized by a timeout value,
δ, which is the minimum inter-flowlet spacing, i.e., packet
spacing within a flowlet is smaller than δ.

Flowlet-based splitting exploits a simple observation.
Consider the scenario in Fig. 1 where a set of parallel paths
diverge at a particular point and converge later. Each path
contains some number of hops. Given two consecutive pack-
ets in a flow, if the first packet leaves the convergence point
before the second packet reaches the divergence point, one
can route the second packet —and subsequent packets from
this flow— on to any available path with no threat of re-
ordering. Thus, by picking flowlet timeout larger than the
maximum latency of the set of parallel paths, consecutive
flowlets can be switched independently with no danger of
packet reordering. In fact, for any set of parallel paths, we
can further tighten the timeout value to the difference be-
tween the maximum and minimum path latencies. We call
this maximum delay difference, the Minimum Time Before
Switch-ability (MTBS). As long as the flowlet timeout, δ,
is larger than the MTBS, flowlet switching does not cause
packet reordering.

5. FLOWLET AWARE ROUTING ENGINE
FLARE is a traffic splitting mechanism. It resides on a

router that feeds multiple parallel paths. It takes as input
a split vector that could change over time. Upon receiving
a packet, FLARE determines the best path along which to



route the packet to achieve the desired split vector, and
forwards the packet appropriately.

FLARE relies on the flowlet abstraction to dynamically
and accurately split traffic along multiple paths without
causing reordering. FLARE has these three components.

(a) MTBS estimator: FLARE uses periodic pings to esti-
mate the delay difference between the parallel paths across
which it splits the traffic. It smoothes the estimate using
an exponential running average. FLARE sets the flowlet
timeout value δ to the maximum delay difference between
the parallel paths. This allows FLARE to assign flowlets of
the same flow to different parallel paths without reordering
packets. Of course, the delay estimate may contain errors
and variations. In §9.2, we use a large and diverse set of
trace-driven experiments to show that FLARE is robust to
such estimation errors.

(b) Flowlet-to-path assignment: FLARE uses a hash
table that maps flowlets to paths. Each table entry contains
two fields last seen time and path id. When a packet ar-
rives, FLARE computes a hash of the source IP, destination
IP, source port and destination port. (The authors of [9]
recommend a CRC-16 hash.) This hash is used as the key
into the flowlet table. If the current time is smaller than
last seen time + δ, the packet is part of an already ex-
isting flowlet. In this case, the packet is sent on the path
identified by path id and last seen time is set to current
time. Otherwise, the packet begins a new flowlet and may be
assigned to a new path. FLARE maintains a token counter
for each path to estimate how far the path is from its desired
load. It assigns new flowlets to the path with the maximum
number of tokens, sets path id to the new path id, and sets
last seen time to current time.

(c) Token-counting algorithm: The token-counting al-
gorithm estimates how far a path is from its desired alloca-
tion. FLARE assigns a token counter, ti , to each path, i , of
the set of parallel paths. The counter accumulates credits
proportionally to how far the path is from its desired load.
In particular, for every packet of size b bytes, all token coun-
ters are updated as follows:

ti = ti + Fi × b, ∀i (1)

where Fi is the fraction of the load to be sent on path i . The
packet is assigned to a path according to the flowlet-to-path
assignment algorithm. Once the packet has been assigned
to a particular path j , the corresponding token counter is
decremented by the size of the packet:

tj = tj − b. (2)

The intuition behind the token counting algorithm is simple.
The token counters succinctly track the cumulative effect
(deficit) of past assignment decisions – the fewer the bytes
a tunnel gets, compared to its desired share, the larger its
number of tokens. To correct for this deficit, whenever a
new flowlet arrives, it is assigned to the tunnel with the
maximum number of remaining tokens. But, it is also unde-
sirable to correct for decisions that have been made a long
time in the past. To bound the duration for which history
is maintained, FLARE introduces the notion of a measure-
ment interval (which defaults to 0.5s). Every measurement
interval, the token counters are reset allowing the splitter to
get a fresh start.

6. ANALYSIS
We formally analyze flowlet-based splitting to understand

the parameters controlling its performance.

6.1 Probabilistic Traffic Assignment
We analyze a splitting algorithm that assigns units of traf-

fic –packets, flowlets, flows– to paths with probabilities pro-
portional to the desired split vector; i.e., assign a traffic unit
to path i with probability fi , where fi is the desired load
share for path i . We are interested in how far the amount
of traffic assigned to a path is from its desired load.

We begin by defining some random variables. Let Sj de-
note the size of the j th unit, and I i

j be an indicator variable

that is 1 if the j th unit is assigned to path i and 0 otherwise.
Let N (t) be the number of traffic units to arrive over the
interval (0, t ]. At time t , the deficit of a path is defined as:

Di (t) =

PN(t)
i=1

`

I i
j − fi

´

Sj

E [
PN(t)

j=1 Sj ]
.

The definition of deficit is intuitive; the numerator captures
the difference between the amount of traffic assigned to the
path

P

j
I i
j Sj , and its desired load share

P

j
fiSj . To make

the quantity dimensionless, we normalize by the expected
volume of traffic to arrive by time t .

Theorem 6.1. A path’s deficit is bounded from above:

P(|Di (t)| > ε) <
1

4ε2E [N (t)]

„

(
σS

µS

)
2

+ 1

«

, (3)

where σS and µS are the standard deviation and mean of the
traffic unit size, respectively.

Proof A proof is given in Appendix A.

Equation 3 identifies two reasons why flowlet-based split-
ting should do better than flow-based splitting. It shows
that the deviation from desired split depends on two pa-
rameters: the number of traffic units N (t), and the coeffi-
cient of variation σS

µS
. Since any flow will generate at least

one flowlet, and in most cases many, N (t) is significantly
larger for flowlets than flows, making deviations from de-
sired load less likely under flowlet-based splitting. Indeed,
our traces show that N (t) is more than an order of magni-
tude larger for flowlets than for flows (see Fig. 3). As for the
coefficient of variation, σS

µS
, we can compute this value from

the empirical distribution of flow-size and flowlet-size dis-
tributions seen in our traces. Fig. 2 compares these values
showing that the coefficient of variation for flowlet sizes is
always smaller than that for flow size. Thus, overall, devia-
tions from desired splits are an order of magnitude less likely
with flowlet-based splitting than with flow-based splitting.

Using the Chebyshev inequality does not usually yield
tight bounds. But in our case, Eq. 3 is useful to compare
flowlets with flow switching. Also, for a deviation error ε, the
bound gets tighter as the measurement interval t increases.

Next, we show analytically that the deviation from the
desired split is smaller for flowlets than flows.

Theorem 6.2. For any sample path of flows, and for
which the flows are partitioned into flowlets, the upper bound



Trace Type Date Length (s) # of Traces Packets
(x 106)

# Flows >
5pkts (x 103)

Avg. Flow
Rate (Kbps)

% Bytes Non-TCP

Peering Mar’03 720 2 9.15 242.00 6.10 7.97%
LCSout May’03 3600 336 25.40 102.30 79.16 1.57%

NLANR-1 Mar’04 90 15 7.30 67.81 68.11 13.10%
NLANR-2 Apr’03 90 20 1.69 1.84 185.58 12.10%
Level2-ISP Apr’03 3600 1 1.48 16.39 5550.00 8.87%

HighCap Peering Apr’03 284 2 4.06 91.60 13.77 12.50%
LowCap Peering Oct’02 57600 1 44.87 546.00 34.60 22.40%

LBNL Sep’05 7200 2 127 810.87 398.79 0.00%
CESCA Feb’04 300 40 31.8 432.22 46.49 0.75%
CENIC Mar’05 600 261 19.98 90.61 166.43 1.00%

NLANR-3 Jan’04 300 133 6.48 37.47 199.31 2.11%
Abilene Jun’04 600 50 61.47 201.17 71.00 15.46%

Table 1: Packet Traces used in evaluation. We used 863 packet traces highly diverse in collection points, flow rates and flow sizes.
LCSout, LBNL and CESCA are access links at MIT, Lawrence Berkeley Labs and Univ. of Catalunya, Spain. NLANR-1 (610Mbps),
NLANR-2 (155Mbps), NLANR-3 (10Gbps), CENIC (10Gbps), Abilene (10Gbps) are backbone links. Level2-ISP is an internal link at a
small commercial ISP. The rest are peering links of different capacities.

in (3) is always smaller for flowlets than flows, i.e.:
 

„
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flowlet
S

µ
flowlet
S

«2

+ 1

!

4ε2N (t)flowlet
<

 

„

σ
flow
S

µ
flow
S

«2

+ 1

!

4ε2N (t)flow
, (4)

where for the given sample path, N (t) is the realized number
of flows and flowlets, and µ and σ are the realized sample
mean and standard variation of flow and flowlet sizes.

Proof The proof is given in Appendix B.

The derivation of the above inequality makes no assump-
tions about the variability of the flow sizes, but only requires
a conservation of mass assumption that the sum of flow sizes
equals the sum of flowlet sizes. Thus, inequality 4 holds even
for the (non-realistic) hypothetical scenario of constant flow
sizes, for which the variance would be 0.

6.2 Analyzing FLARE’s Token Counter
Algorithm

We now shift attention to the advantages of FLARE’s to-
ken counting algorithm, described in §5(a). It is known that
using feedback about past decisions achieves better accu-
racy [27]. Here, we have the following conjecture.

Conjecture 1. FLARE’s token-counting algorithm has
the property that at all times and for all paths, the deviation,
measured in bytes, from the ideal split is less than or equal
to the maximum size of the splitting unit (packet, flowlets,
flows).

Though we do not have a proof, we have conducted many
numerical tests to check the validity of the above conjecture.
For example, splitting million random-sized units among
ten paths and repeating for thousand different random split
functions did not yield a counter-example.

7. EVALUATION ENVIRONMENT
We evaluate FLARE using trace-driven simulations. Our

dataset is large and diverse. It contains 863 packet traces
collected at tier-1 and regional ISPs, in US and Europe.
Table 1 summarizes our dataset.
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20.91
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Figure 2: Comparing the Coefficient of Variation (standard devi-
ation/mean) of flowlet size with flow size. Flowlets have a smaller
coefficient of variation therefore their deviation from the desired
bandwidth shares are also smaller, as shown in Eq. 3.

(a) Compared Splitting Schemes: We compare FLARE
against four prior traffic splitting schemes, which are sum-
marized in Table 2.

• Packet-Based Splitting: We use Deficit Round Robin to
simulate packet-based traffic splitting [27], which is highly
accurate [25].

• Flow-Based Splitting: We simulate flow-based splitting by
assigning each new flow to the path farthest away from its
desired traffic share, and retaining the assignment for the
duration of the flow.

• S-HASH Splitting: We also simulate a static-hash split-
ting scheme (S-HASH) by hashing the arriving packet’s
source and destination IP addresses and ports into a large
space, then allocating the hash space to the various paths
proportionally to their desired traffic shares [25].

• Bin-Based Splitting: Finally, we test a bin-based scheme
that hashes flows into a small number of bins, typically
16, and assigns bins to paths proportionally to the de-
sired split. This approach is used in Cisco and Juniper
routers [11, 17].

(b) Simulation Setup: We assume the router at which the
trace is collected to be feeding multiple parallel paths, and
splitting the traffic among them according to a desired split
vector. We evaluate how well FLARE tracks the desired
splits without reordering packets.

Our simulations use three parallel paths for balancing the
load. To stress FLARE, we simulate parallel paths with
a large difference in their delays. Unless stated differently,
the MTBS is 50ms (a value close to coast-to-coast round

trip time). Our experiments use both a static vector ~Fs =



Technique Reorder Overhead Dynamically Adapt

Packet-
Based

Yes – Yes

Flow-
Based

No per flow state mildly

Bin-
Based

Yes # of bins mildly

Hash-
Based

No – No

Flowlet-
Based

hardly
any

5KB Table Yes

Table 2: The Splitting Techniques Compared in this Paper

(.3, .3, .4), and dynamic vectors

~Fd (t) = .13(1, 1, 1) + .6(sin4x , sin2x · cos2x , cos2x ),

where x (t) = 2πt
p

. In particular, to evaluate responsiveness,

we use two dynamic split vectors, ~Fd1, which reflects changes
over long time scales (p=40min), and ~Fd2, which reflects
changes over short time scales (p=4min). The amplitude
and period of these vectors are chosen based on [2, 10] to
reflect traffic variations reported in the Internet.

(c) Performance Metrics: We use the following metrics.

• Splitting Error: An optimal traffic splitting policy ensures
that path i receives the desired fraction of the traffic Fi ,
on any timescale. In practice, the actual fraction of traffic
sent on i , F ′

i , deviates from the desired share. We measure
the splitting error as:

Error =
1

N

N
X

i=1

|Fi − F ′

i |

Fi

,

Accuracy = 1 − Error .

Here, N is the number of parallel paths among which the
traffic is divided. The graphs report the average error over
non-overlapping windows of 300ms. We choose this win-
dow because routers usually buffer 300ms worth of traffic.
Errors over longer intervals can cause packet drops. Note
that splitting error for the dynamic split vectors ~Fd1 and
~Fd2 measures responsiveness of the techniques.

• Reordering Measure: In our trace-driven simulations, we
estimate the disturbance of a certain splitting algorithm
as the probability that a packet triggers 3 dup-acks due
to the reordering caused by the splitting scheme. While
other measures exist [6], we chose this measure because
TCP fast-retransmit treats 3-dup-acks as a congestion sig-
nal, and reacts to it by entering a recovery state.

(d) Closed-Loop Simulations: Trace-driven simula-
tions capture the characteristics of Internet traffic, but can-
not observe how TCP’s congestion control interacts with
FLARE. Thus, in §9.4, we present the results of closed-loop
simulations that use the ns-2 TCP implementation and a
FLARE module. We use the packet traces in Table 1 to ob-
tain distributions of flow sizes and flow inter-arrival times,
which we use to generate simulated flow arrivals and the
corresponding transfer sizes. However, within a flow, the
packet arrivals and the congestion windows are dictated by
the events that occur during a simulation.

8. EMPIRICAL STUDY OF FLOWLETS
One can argue that switching flowlets from one path to

another should not reorder packets. But for this observation

to be beneficial, it should be possible to divide a flow into
many small flowlets. Even more, since most of the bytes are
in long TCP flows [34], for FLARE to achieve good perfor-
mance the origins of flowlets cannot be limited to short flows,
flows that are just starting with a small window of one or
two packets, or flows that are suffering timeouts. Unless the
long TCP flows arrive in short bursts, flowlet-based split-
ting will not show a major performance improvement over
flow-based splitting.

8.1 Do flowlets really exist?
First, we look at how the number of flowlets increases with

the flow size. Fig. 3 plots the average number of flowlets
per flow as a function of the flow size. The figure shows
data from all traces combined. It shows that large flows
do get chopped into many small flowlets. Indeed, even if
FLARE sets flowlet timeout to 50ms, (i.e., the paths over
which FLARE is balancing the load differ in their delays
by as much as 50ms), large flows are still chopped to many
small flowlets. Fig. 4 lends further proof to the viability
of flowlet switching. It plots the cumulative distribution of
traffic bytes vs. flowlet (and flow) sizes over all our traces.
Note that more than 60% of the data bytes are contained in
small flowlets < 25KB , a significant improvement from the
about 5% of the bytes that are contained in flows < 25KB .

8.2 Where do flowlets come from?
In fact, the main origin of flowlets is the burstiness of TCP

at RTT and sub-RTT scales. Prior work has shown that a
TCP sender tends to send a whole congestion window in one
burst or a few clustered bursts and then wait idle for the rest
of its RTT. This behavior is caused by ack compression,
slow-start, and other factors [16, 32, 35]. This burstiness
enables a FLARE router to consider a long TCP flow as
a concatenation of short flowlets separated by idle periods,
which is necessary for the success of flowlet-based splitting.

Fig. 5 supports this argument. It is computed using all of
our traces for δ=MTBS=50 ms. The figure plots the time
between arrivals of two consecutive flowlets from the same
flow normalized by the RTT of the flow (RTT is computed
using the MYSTERY TCP analyzer [19]). The graph shows
that the vast majority of flowlets are separated by less than
one RTT, indicating that a flowlet is usually a congestion
window or a portion of it.

Though we focus on TCP, evidence from traces shows that
flowlets exist even in non-TCP traffic. Perhaps the predom-
inant source of burstiness is interrupt coalescing – modern
OS’es handle multiple pending interrupts at a time to reduce
the overhead of taking an interrput. This means packets
that arrive at a NIC close to each other in time appear to
the kernel as if they arrived back to back. Other sources of
burstiness include silence suppression (in VoIP over UDP)
and user think times (in persistent HTTP).

9. FLARE’S PERFORMANCE
Now that we have established the abundance of flowlets

in Internet traffic, we evaluate FLARE’s performance.

9.1 FLARE’s Accuracy
First, we show that FLARE accurately matches the de-

sired split even when the maximum delay difference between
the paths, MTBS, is excessively large. Fig 6 shows the
splitting error as a function of flowlet timeout, δ, averaged
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errors as a function of flowlet timeout interval δ for the static, ~Fs ,

the mildly dynamic, ~Fd1, and the dynamic ~Fd2 split functions.

over all traces. Since FLARE sets δ=MTBS, the figure
also presents the error as a function of increased MTBS.
The figure shows results for the split vectors: ~Fs , ~Fd1, and
~Fd2. Note that when δ = 0 we have packet-based split-
ting, whereas when δ → ∞ we obtain flow-based splitting.
The figure shows that flowlet-based splitting achieves an
accuracy comparable to packet-based splitting, as long as
δ <100 ms, i.e., the paths’ MTBS is less than 100ms. Given
typical values for one-way delay in the Internet (e.g., coast-
to-coast one-way delay is less than 40ms), a delay difference
<100ms should apply to many possible sets of parallel paths.
Also note that the errors of flow-based splitting –i.e., δ = ∞–
range between 20% and 70% depending on the dynamism of
the desired split.

Why Flowlet Splitting is Accurate? First, there are
many more flowlets than flows, leading to many opportuni-
ties to rebalance an imbalanced load. Table 3 shows that
flowlet arrival rates are an order of magnitude higher than
flow arrival rates, in our traces. This means that in every
second, flowlet-based splitting provides an order of magni-
tude more opportunities to rebalance an incorrect split than
with flow-based splitting. Second, as shown in Fig. 4, most
of the bytes are in small flowlets, allowing load rebalancing
at a much finer granularity than at the size of a flow.

9.2 Robustness to Errors in MTBS Estimation
FLARE uses periodic pings to estimate the MTBS of the

paths across which it balances the load. It sets the flowlet
timeout δ to the estimated MTBS. If the MTBS is under-
estimated, FLARE would operate with a flowlet timeout
smaller than the actual MTBS, i.e., δ < MTBS . In this
case, there are no guarantees that packet reordering does
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Figure 8: Topology used in the closed-loop experiments.

not occur. This section uses experimental data to show that
FLARE is robust to errors in the MTBS estimate.

Fig. 7 shows the probability of mistakenly triggering TCP
3 dup acks, as a function of MTBS − δ and δ, for the case
of 3 paths with a split vector ~Fs , and path latencies (x , x +
0.5 MTBS , x + MTBS ). The figure shows that FLARE is
tolerant to bad estimates of MTBS, i.e., the probability of
3-dup acks is negligible even for large values of MTBS −
δ. In particular, Fig. 7 shows that for any δ > 50ms, the
percentage of packets that trigger a TCP window reduction
is less than 0.06%, even when the error in estimating the
MTBS is as large as 100ms. The impact of such reordering
is negligible in comparison with typical drop probabilities in
the Internet [23, 3], and thus on average is unlikely to affect
TCP’s performance.

The combination of the results in this section and
in the previous section show that by setting delta to



Trace Arrival Rate
(/sec)

Number of Con-
current Items

Flows Flowlets Flows Flowlets

LCSout 118.44 1278.84 1477.96 (2030) 29.98 (60)
Peering 611.95 8661.43 8477.33 (8959) 28.08 (56)
NLANR-1 3784.10 35287.04 47883.33 (57860) 240.12 (309)
NLANR-2 111.33 2848.76 1559.33 (1796) 50.66 (71)
Level2-
ISP

202.47 295.98 826.76 (931) 1.00 (7)

HighCap-
Peering

697.63 7747.06 7080.26 (7683) 54.01 (98)

LowCap-
Peering

29.11 345.13 446.69 (769) 5.50 (32)

LBNL 283.18 2177.63 3265.82 (3786) 43.12 (94)
CESCA 4964.36 46407.65 71667.36 (78640) 476.83 (598)
CENIC 305.59 3206.75 3880.80 (4368) 72.49 (112)
NLANR-3 386.00 6838.35 7419.30 (8406) 112.27 (177)
Abilene 2730.70 21807.54 22589.67 (24415) 351.74 (465)

Table 3: Flowlets arrive at a much higher rate than flows; but
there are many fewer concurrent flowlets than flows. The values
outside parenthesis are averages while the numbers inside are the
maximum values.
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Figure 9: Error as a function of the flowlet table size for the three

split vectors, ~Fs , ~Fd1,~Fd2. The solid line shows the average error
across all traces while the errorbars are one standard deviation
long. FLARE achieves low errors without storing much state.
A table of 103 five-byte entries is enough for the studied traces.
The figure also shows the error for flow-switching, averaged over
all traces, and the three split vectors. In contrast, error in flow-
switching stabilizes only at table size of 106.

max (MTBS estimate, 50ms), FLARE obtains good accu-
racy (as shown in Fig. 6) and high robustness to errors in
MTBS estimation (as shown in Fig. 7). In §9.5, we support
these results further by showing FLARE’s accuracy and ro-
bustness as functions of the dynamism of the split vector
and we compare FLARE with other splitting schemes.

9.3 Negligible Overhead
An important result of this paper is the tiny overhead in-

curred by flowlet-based splitting. FLARE requires a router
to perform a single hash operation per packet and maintain
a few KB hash table, which easily fits into the router’s cache.
We have estimated the required hash table size by plotting
the splitting error as a function of the size of the hash table.
Fig. 9 shows the error in our traces for both the static split
vector ~Fs and the dynamic vectors ~Fd1, ~Fd2. It reveals that
the errors converge for a table size as small as 103 entries.

Compare the overhead of flowlet-based splitting with flow-
based splitting. Flow-based splitting requires per-flow state
to maintain the flow-to-path assignment. Fig. 9 shows the
average splitting error for flow-based splitting as a function
of the hash table size. The table required by flow-based
splitting is more than three orders of magnitude larger than
flowlet splitting.

Why Does Flowlet Switching Require Only a Small

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  20  40  60  80  100  120  140

N
et

w
or

k 
G

oo
dp

ut
 (

M
bp

s)

Delay Difference (ms)

Flare
Flow

Packet Switching
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Figure 11: Closed-Loop Simulation shows that the inaccuracy of
flow-based splitting hurts end2end goodput. Between [220, 400]s,
one of the paths in Fig. 8 sees an extra 150Mbps of cross traf-
fic. Traffic is split 20%-80% during this period to account for the
change in available bandwidth (50Mbps on one path and 200Mbps
on the other). Flow-splitting results in less goodput during this
period as it is unable to move ongoing flows away from the con-
gested path.

Table? At first, it seems contradictory that we need a
smaller table to track flowlets though there are many more
flowlets than flows. the large number of flowlets in a trace,
FLARE only needs to maintain state for concurrently ac-
tive flowlets, i.e., flowlets that have packets in flight, in the
network. Table 3 shows that the average number of concur-
rent flowlets is many orders of magnitude smaller than the
number of concurrent flows. Indeed the maximum number
of concurrent flowlets in our traces never exceeds a few hun-
dreds. To track these flowlets without collision, the router
needs a hash table of about a thousand entries, which is
relatively cheap.

9.4 Closed-Loop Simulations of FLARE
Trace-driven simulations capture the characteristics of In-

ternet traffic, but cannot observe how TCP’s congestion
control interacts with FLARE. To investigate that issue,
we implement a closed-loop simulator in ns-2. We use a
simple topology with two parallel paths shown in Fig. 8.
the traffic split ratio ~Fs = (0.5, 0.5) matches the bottle-
neck capacities: L1 = L2 = 200Mb/s. A splitting agent
(e.g., FLARE) splits traffic across these parallel paths. Our
simulations have bandwidth delay product buffers, DropTail
queues, 1500 byte packets, and traffic on the reverse paths.
We play the traces in §7 to generate the flow arrivals and the
corresponding transfer sizes. Flows that stall for more than
one minute are terminated to prevent the number of flows in
the simulation from increasing indefinitely. Packet arrivals
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Figure 12: Comparison between various splitting schemes. FLARE is significantly more accurate than flow-based, S-HASH, and BIN-
based splitting schemes and its robustness to reordering is an order of magnitude higher than packet-based splitting. We show the
mean (solid bars) and standard deviation (thin lines) of the splitting error and percentage of 3-dupacks averaged across traces for static,
mildly dynamic, and dynamic split vectors. The experiment uses δ=50 ms and MTBS=70 ms. FLARE’s reorderings arise from this
assumed estimation error. When δ=MTBS, FLARE shows no reordering. Note S-HASH cannot be run with dynamic splits.

and the congestion windows are dictated by the events that
occur during a simulation.

Our closed-loop simulations, detailed below, show that:

• FLARE interacts benignly with TCP timers and conges-
tion control. In particular, splitting a TCP flow across
multiple paths using flowlet switching has no negative im-
pact on TCP throughput.

• End-to-end goodput improves with FLARE. Packet-based
splitting reduces the end-to-end goodput when the par-
allel paths differ in latency, whereas flow-based splitting
hurts end-to-end goodput when the traffic splits change
dynamically.

While, the results in the previous sections focus on split-
ting errors and the probability of 3 dup-acks, the results be-
low focus on end-to-end performance, particularly network
goodput. Fig. 10 evaluates the impact of reordering on good-
put as the delay difference between the two paths increases.
The figure reveals two important results. First, reordering
caused by packet-based splitting significantly hurts goodput.
In fact, high-rate flows suffer the most because their larger
congestion windows make it more likely that reordering will
cause three dupacks. Second, FLARE can split the same
TCP flow down paths whose one-way latencies are differ-
ent by as much as 100ms without adversely interacting with
TCP timers or hurting TCP throughput. This is because
flows tend to use both paths and hence, the averaging em-
ployed by TCP timers ends up with a weighted average of
the two latencies. Further, the TCP RTO estimator is highly
conservative–it uses four times the variance in RTT [24].

Fig. 11 shows that the poor accuracy of flow splitting
hurts network goodput. Between t = [220, 400]s, one of
the paths sees an extra 150Mbps load. During this period,
traffic that was split evenly between the two paths is now
split at 20%-80% because the loaded path only has 50Mbps
of available capacity in contrast to 200Mbps on the unloaded
path. Flow-splitting cannot move ongoing flows away from
the congested path. This congests the overloaded path, re-
sults in a high drop rate, and reduces the overall goodput.
FLARE, on the other hand, reacts quickly and ensures that
both ongoing and new flows get to spend some time on each

of the two paths avoiding any flow from being starved. It
is worth noting here that Flare succeeds in splitting a TCP
flow down multiple paths that have different available band-
width and is not affected by transient congestion.

9.5 Comparison with Other Splitting Schemes
We compare FLARE with other splitting schemes vis-a-vis

splitting errors and TCP disturbance. The experiments are
for δ=50ms and MTBS=70ms, which accounts for potential
errors in the estimation of MTBS.

Fig. 12 shows the results for static, mild dynamic, and dy-
namic split vectors. The figure shows that FLARE is a good
tradeoff between accuracy, responsiveness, and robustness to
reordering. Its errors are significantly lower than flow-based,
S-HASH, and BIN-based splitting schemes, and its tendency
to trigger TCP congestion window reduction is negligible.

FLARE’s advantages are most prominent when split vec-
tors are dynamic. In this case, FLARE is almost as re-
sponsive as packet-based splitting. In contrast, flow-based
splitting overshoots the desired splits by 60%, on average.
Packet-based splitting triggers 3 dup ack events at a rate
comparable to or higher than the loss rate in the Internet [23,
5]. The S-HASH scheme, has a reasonable splitting accuracy
for a static split vector, but does not react to dynamic split
vectors. The BIN-based splitting scheme, cannot split traffic
at granularity smaller than 1

# of bins
and allows packets to

be re-ordered when a bin is moved from one path to another.

10. CONCLUDING STATEMENTS
We have introduced the concept of flowlet-switching and

developed an algorithm which utilizes flowlets in traffic split-
ting. Our work reveals several interesting conclusions. First,
highly accurate traffic splitting can be implemented with lit-
tle to no impact on TCP packet reordering and with negligi-
ble state overhead. Next, flowlets can be used to make load
balancing more responsive, and thus help enable a new gen-
eration of realtime adaptive traffic engineering. Finally, the
existence and usefulness of flowlets show that TCP bursti-
ness is not necessarily a bad thing, and can in fact be used
advantageously.
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Appendix A: How far can probabilistic assign-
ment be from the desired split ratio?
As a conceptual model for the fractional splitting of traffic, con-
sider placing balls sequentially in one of m bins. The bins rep-
resent the set of parallel paths, whereas the balls refer to the
splitting unit which could be a packet, a flow, or a flowlet. The
ball size, Sj refers to the size of the splitting units, and hence
follows a particular distribution: packet size distribution, flow
size distribution, or flowlet size distribution. For simplicity, we
assume the sizes of the various balls are independent and iden-
tically distributed random variables. Let N (t) denote a random
variable for the number of balls to arrive over a time interval (0,
t]. For the following it is not needed to specify the nature of the
arrival process of balls, though we do assume that N (t) is inde-
pendent of the ball sizes, Sj .2 The objective is to assign the N (t)
balls to the bins such that the total load is split between the bins

according to some given split ratios ~f = (f1, . . . , fm),
Pm

1 fi = 1.
Assume a simple, probabilistic scheme in which each ball is

tossed into bin i with probability fi , equal to the desired split
ratio. Focus on an arbitrary bin i , and let I i

j be an indicator

variable that denotes the event that ball j went into bin i . Then,
I i
j = 1 with probability fi and is 0 otherwise. Further, I i

j is

independent of the indicator variables of other balls. Note,

E [I i
j − fi ] = 0, and E [(I i

j − fi )
2
] = fi(1 − fi ). (5)

Suppose we continue splitting over a time interval (0, t] during
which N (t) balls arrive. The number of bytes sent down tunnel
i during this interval is:

Bi (t) =

N(t)
X

j=1

I i
j Sj ,

In contrast, the desired split is fi
PN(t)

j=1 Sj and the deviation from

the desired split, normalized by the expected total traffic volume
is:

Di (t) =

PN(t)
j=1 (I i

j − fi )Sj

E
h

PN(t)
j=1 Sj

i .

Applying the strong law of large numbers to the right hand
side above and noting that the expected value of I i

j − fi is zero,

(and given that the number of balls to arrive, N (t) approaches
∞ as t → ∞ and the expected ball size, E [Sj ], is finite), then the
deviation Di (t) approaches 0 with probability one, as t → ∞.

2Alternatively, we could have defined N in terms of bytes
and not time; in particular we could define N (b) to be the
ball number for which the sum of ball sizes first equals or
exceeds b bytes. The analysis would follow the same logic
and yield the same upper bound, Eq. 13.



Thus, if hypothetically one had an infinite number of balls, then
this simple probabilistic assignment of balls to bins would achieve
the desired fractional assignment.

Of more interest, we wish to bound the probability that the
normalized deviation for an arbitrary bin is larger than ε at an
arbitrary, finite time t . For this, we use the bound due to Cheby-
shev [15]:

P(|Di (t) − E [Di(t)]| > ε) <
σ2
Di

ε2
, (6)

where σ2
Di

is the variance of the deviation Di (t).

Note that E(Di |N (t) = n, ~S = ~s), for any given choice of
number of balls and ball sizes, ~s , is

=

Pn
j=1 E

h

(I i
j − fi)sj

i

E
h

PN(t)
j=1 Sj

i =

Pn
j=1 sj

E
h

PN(t)
j=1 Sj

i · E [I i
j − fi ] = 0. (7)

This is due to linearity of expectation and from Eq. 5. This leads
to,

E(Di ) = E
N(t), ~S

h

E(Di |N (t) = n, ~S = ~s)
i

= E
N(t), ~S

[0] = 0.

(8)

Similarly E(Di · Di |N (t) = n, ~S = ~s)

=
E

h

P

j s2
j · (I i

j − fi)
2

+
P

j !=k sj sk · (I i
j − fi ) · (I i

k
− fi )

i

(E [
PN(t)

j=1 Sj ])2
,

=

P

j s2
j · fi (1 − fi)

(E [
PN(t)

j=1 Sj ])2
. (9)

The first part is due to expanding the product of Di · Di into
n square terms and n2 − n product terms. The second part is
due to Eq. 5. The product terms cancel out since I i

j and I i
k

are

independent. This immediately leads to E(Di · Di)

= fi (1 − fi ) ·
E

h

PN(t)
j=1 S2

j

i

(E [
PN(t)

j=1 Sj ])
2

=
fi (1 − fi ) · E [N (t)] · E [S2

j ]

(E [N (t)] · E [Sj ])
2

≤
E [S2

j ]

4E [N (t)] · (E [Sj ])2
. (10)

For the above, we use the independence of N (t) and Sj and that

since fi ∈ [0, 1], fi (1 − fi ) ≤
1
4
.

From Eqs. 8, 10, the variance

σ2
Di

= E [Di .Di ] − E2[Di ] ≤
E [S2

j ]

4E [N (t)] · (E [Sj ])2
. (11)

Plugging Eqs. 8, 11 into Eq. 6 yields

P(|Di(t)| > ε) <
E [S2

j ]

4ε2E [N (t)]E2[Sj ]
(12)

=
1

4ε2E [N (t)]

„

(
σS

µS

)
2

+ 1

«

. (13)

Eq. 13 is obtained from 12 by subtracting and adding E 2[Sj ]
to the numerator, and where σS and µS denote respectively the
standard deviation and mean of the ball size. The ratio σS/µS is
known as the coefficient of variation and is a common, normalized
measure for the variability of a random variable.

Appendix B: Comparing bounds on deviation
for Flowlets and Flows
We prove the inequality 4 in Section 6, showing that the bound on
deviation is tighter for flowlets than for flows based on a sample-
path argument and the “conservation of mass” assumption that
for any sample path:

sum of flow sizes = sum of flowlet sizes (14)

and to exclude the trivial case where each flow is ”partitioned”
into just one flowlet, we assume that at least one flow is indeed
partitioned into at least two flowlets.

Let sample average number of flowlets in a flow, denoted N̄ be:

N̄ =
number of flowlets

number of flows
. (15)

From Eq. 14, 15, the sample means of flow and flowlet sizes,
denoted respectively m[Sflow ] and m[Sflowlet] are related as fol-
lows:

m[Sflow ] =
sum of flow sizes

number of flows
=

sum of flowlet sizes

number of flowlets/N̄

= N̄ ·
sum of flowlet sizes

number of flowlets
= N̄ · m[Sflowlet] (16)

For the second moments, consider first an arbitrary flow size,

S
flow
j , which has been partitioned into Nj flowlets and where

S
flowlet

kj
is the size of the k th flowlet in the flow j . The square

of the flow size is:

“

S
flow
j

”2
=

0

@

Nj
X

k=1

S
flowlet
kj

1

A

2

>

Nj
X

k=1

“

S
flowlet
kj

”2
. (17)

The last inequality is due to the fact that the square of the sum
of positive values is greater than the sum of the squares of these
values and is the key for the next step.

Let us denote the sample second moments respectively as
m

ˆ

(Sflow)2
˜

and m
ˆ

(Sflowlet)2
˜

, and the number of flows and

flowlets respectively as N flow and Nflowlet . Summing up both
sides of Eq. 17 over all flows yields:

m[(Sflow)2] ≡
1

Nflow

Nflow
X
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“

S
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Nflow

Nflow
X
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=
N̄

Nflowlet

Nflow
X

j=1

Nj
X

k=1

“

S
flowlet
kj

”2
= N̄ · m[(Sflowlet)2](18)

where the double sum on the right hand side is the sum over all
flowlets of the square of the flowlet sizes.

Dividing both sides of Eq. 18 by the square of the sample mean
flow size, Eq. 16, we obtain:

m[(Sflow)2]
`

m[Sflow ]
´2

>
1

N̄
·

m[(Sflowlet)2]
`

m[Sflowlet]
´2

(19)

The format of the inequality 4 is obtained easily from Eq. 19 by
noting that the second moment is the sum of squared mean and
variance, dividing both sides by 4ε2N (t)flow and using Eq. 15.


