

 1

Policy-Directed Code Safety
by

David E. Evans

S.B. Massachusetts Institute of Technology (1994)
S.M. Massachusetts Institute of Technology (1994)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the
Massachusetts Institute of Technology

February 2000

©Massachusetts Institute of Technology 1999. All rights reserved.

Author………………………………………………………………………………………
David Evans

Department of Electrical Engineering and Computer Science
October 19, 1999

Certified by…………………………………………………………………………………
John V. Guttag

Professor, Computer Science
Thesis Supervisor

Accepted by…………………………………………………………………...……………
Arthur C. Smith

Chairman, Departmental Committee on Graduate Students

 3

Policy-Directed Code Safety
by

David E. Evans

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

Executing code can be dangerous. This thesis describes a scheme for protecting the user by
constraining the behavior of an executing program. We introduce Naccio, a general architecture
for constraining the behavior of program executions. Naccio consists of languages for defining
safety policies in a platform-independent way and a system architecture for enforcing those
policies on executions by transforming programs. Prototype implementations of Naccio have
been built that enforce policies on JavaVM classes and Win32 executables.

Naccio addresses two weaknesses of current code safety systems. One problem is that current
systems cannot enforce policies with sufficient precision. For example, a system such as the Java
sandbox cannot enforce a policy that limits the rate at which data is sent over the network without
denying network use altogether since there are no safety checks associated with sending data.
The problem is more fundamental than simply the choices about which safety checks to provide.
The system designers were hamstrung into providing only a limited number of checks by a design
that incurs the cost of a safety check regardless of whether it matters to the policy in effect.
Because Naccio statically analyzes and compiles a policy, it can support safety checks associated
with any resource manipulation, yet the costs of a safety check are incurred only when the check
is relevant.

Another problem with current code safety systems is that policies are defined in ad hoc and
platform-specific ways. The author of a safety policy needs to know low-level details about a
particular platform and once a safety policy has been developed and tested it cannot easily be
transferred to a different platform. Naccio provides a platform-independent way of defining
safety policies in terms of abstract resources. Safety policies are described by writing code
fragments that account for and constrain resource manipulations. Resources are described using
abstract objects with operations that correspond to manipulations of the corresponding system
resource. A platform interface provides an operational specification of how system calls affect
resources. This enables safety policies to be described in a platform-independent way and
isolates most of the complexity of the system.

This thesis motivates and describes the design of Naccio, demonstrates how a large class of safety
policies can be defined, and evaluates results from our experience with the prototype
implementations.

Thesis Supervisor: John V. Guttag
Title: Professor, Computer Science

 4

Acknowledgements

John Guttag is that rare advisor who has the ability to direct you to see the big picture when you
are mired details and to get you to focus when you are distracted by irrelevancies. John has been
my mentor throughout my graduate career, and there is no doubt that I wouldn’t be finishing this
thesis this millennium without his guidance.

As my readers, John Chapin and Daniel Jackson were helpful from the early proposal stages until
the final revisions. Both clarified important technical issues, gave me ideas about how to
improve the presentation, and provided copious comments on drafts of this thesis.

Andrew Twyman designed and implemented Naccio/Win32. His experience building
Naccio/Win32 helped clarify and develop many of the ideas in this thesis, and his insights were a
significant contribution to this thesis.

During my time at MIT, I’ve at the good fortune to work with many interesting and creative
people. The MIT Laboratory for Computer Science and the Software Devices and Systems group
provided a pleasant and dynamic research environment. Much of what I learned as a grad student
was through spontaneous discussions with William Adjie-Winoto, John Ankcorn, Anna Chefter,
Dorothy Curtis, Stephen Garland, Angelika Leeb, Ulana Legedza, Li-wei Lehman, Victor
Luchangco, Andrew Myers, Anna Pogosyants, Bodhi Priyantha, Hariharan Rahul, Michael
Saginaw, Raymie Stata, Yang Meng Tan, Van Van, David Wetherall, and Charles Yang. This
work has also benefited from discussions with Úlfar Erlingsson and Fred Schneider from Cornell,
Raju Pandey from UC Davis, Dan Wallach from Rice University, Mike Reiter from Lucent Bell
Laboratories, and David Bantz from IBM Research.

Geoff Cohen wrote the JOIE toolkit used as Naccio/JavaVM’s transformation engine and made
its source code available to the research community. He provided quick answers to all my
questions about using and modifying JOIE.

Finally, I thank my parents for their constant encouragement and support. I couldn’t ask for two
better role models.

 5

Table of Contents

1 Introduction 9

1.1 Threats and Countermeasures 10

1.2 Background 13

1.3 Design Goals 14
1.3.1 Security 16
1.3.2 Versatility 16
1.3.3 Ease of Use 17
1.3.4 Ease of Implementation 17
1.3.5 Efficiency 18

1.4 Contributions 18

1.5 Overview of Thesis 19

2 Naccio Architecture 21

2.1 Overview 21

2.2 Policy Compiler 23

2.3 Program Transformer 24

2.4 Walkthrough Example 26

3 Defining Safety Policies 29

3.1 Resource Descriptions 29
3.1.1 Resource Operations 30
3.1.2 Resource Groups 32

3.2 Safety Properties 33
3.2.1 Adding State 33
3.2.2 Use Limits 34
3.2.3 Composing Properties 35

3.3 Standard Resource Library 36

3.4 Policy Expressiveness 39

4 Describing Platforms 41

4.1 Platform Interfaces 41

4.2 Java API Platform Interface 43
4.2.1 Platform Interface Level 43
4.2.2 File Classes 45
4.2.3 Network Classes 48
4.2.4 Extended Safety Policies 49

 6

4.3 Win32 Platform Interface 52
4.3.1 Platform Interface Level 53
4.3.2 Prototype Platform Interface 54

4.4 Expressiveness 55

5 Compiling Policies 57

5.1 Processing the Resource Use Policy 57

5.2 Processing the Platform Interface 59

5.3 Generating Resource Implementations 60
5.3.1 Naccio/JavaVM 61
5.3.2 Naccio/Win32 62

5.4 Generating Platform Interface Wrappers 65
5.4.1 Naccio/JavaVM 65
5.4.2 Naccio/Win32 71

5.5 Integrated Optimizations 71

5.6 Policy Description File 73

6 Transforming Programs 75

6.1 Replacing System Calls 75
6.1.1 Naccio/JavaVM 75
6.1.2 Naccio/Win32 77
6.1.3 Other Platforms 78

6.2 Guaranteeing Integrity 78
6.2.1 Naccio/JavaVM 79
6.2.2 Naccio/Win32 81

7 Related Work 85

7.1 Low-Level Code Safety 85

7.2 Language-Based Code Safety Systems 86

7.3 Reference Monitors 89
7.3.1 Java Security Manager 89
7.3.2 Interposition Systems 90
7.3.3 Transformation-based Systems 93

7.4 Code Transformation Engines 94
7.4.1 Java Transformation Tools 94
7.4.2 Win32 Transformation Tools 95

8 Evaluation 97

8.1 Security 97

8.2 Versatility 99
8.2.1 Theoretical Limitations 100
8.2.2 Policy Expressiveness 100

8.3 Ease of Use 105

 7

8.4 Ease of Implementation 106

8.5 Efficiency 108
8.5.1 Test Policies 108
8.5.2 Policy Compilation 109
8.5.3 Application Transformation 112
8.5.4 Execution 113

9 Future Work 121

9.1 Improving Implementations 121
9.1.1 Assurance 121
9.1.2 Complete Implementations 122
9.1.3 Performance Improvements 123

9.2 Extensions 124

9.3 Deployment 126

9.4 Other Applications 128

10 Summary and Conclusion 131

10.1 Summary 131

10.2 Conclusion 132

References 133

 8

List of Figures

Figure 1. Naccio Architecture. 22
Figure 2. Wrapped system call sequence. 25
Figure 3. Interaction diagram for enforcing LimitWrite. 27
Figure 4. File System Resources. 31
Figure 5. NoBashingFiles property. 34
Figure 6. LimitBytesWritten Safety Property. 35
Figure 7. LimitWrite resource use policy. 36
Figure 8. Network Resources. 38
Figure 9. Platform interface wrapper for java.io.File class. 46
Figure 10. RFileMap helper class. 46
Figure 11. Platform Interface wrapper for java.io.FileOutputStream class. 47
Figure 12. Platform interface for java.net.Socket. 48
Figure 13. NCheckedNetworkOutputStream helper class. 49
Figure 14. Policy that limits network send rate by delaying transmissions. 50
Figure 15. Policy that limits bandwidth by splitting up and delaying network sends. 51
Figure 16. RegulatedSendSocket wrapper modification code. 51
Figure 17. NRegulatedOutputStream helper class (excerpted). 52
Figure 18. Naccio/Win32 platform interface wrapper for DeleteFileA. 54
Figure 19. Resource class generated by Naccio/JavaVM. 62
Figure 20. Resource headers file generated by Naccio/Win32. 63
Figure 21. Implementation resource.c generated by Naccio/Win32 for LimitWrite. 64
Figure 22. Pass-through semantics. 68
Figure 23. Generated policy-enforcing library class for java.io.FileOutputStream. 70
Figure 24. Results for jlex benchmark. 116
Figure 25. Results for tar execution benchmark. 117
Figure 26. Results for ftpmirror execution benchmark. 118

List of Tables

Table 1. Policy compilation costs. 110
Table 2. Program transformer results. 112
Table 3. Micro-benchmark performance. 114
Table 4. Benchmark checking. 115

 9

Chapter 1
Introduction

Traditional computer security has focused on assuring confidentiality, integrity and availability.
Confidentiality means hiding information from unauthorized users; integrity means preventing
unauthorized modifications of data; and availability means preventing an attacker from making a
resource unavailable to legitimate users. Military and large commercial systems operators are (or
at least should be) willing to spend large amounts of effort and money as well as to risk
inconveniencing their users in order to provide satisfactory confidentiality, integrity and
availability assurances.

The security concerns for typical home and non-critical business users are very different. In the
past, these users had limited security concerns. Since they were typically not connected to a
network, their primary concern was viruses on software distributed on floppy disks. Although
viruses could be a considerable annoyance, users who stuck to shrink wrapped software were
unlikely to encounter viruses, and the damage was limited to destroying files (or occasionally
hardware) on a single machine.

Today, nearly all computers are connected to the public Internet much of the time. Although the
benefits of connectivity are unquestioned, being on a network introduces significant new security
risks. The damage a program can do is no longer limited to damaging local data or hardware – it
can send personal information through the global Internet, damaging the operator’s reputation or
finances. Furthermore, the likelihood of executing an untrustworthy program is dramatically
increased. The ease of distributing code on the Internet means users often have little or no
knowledge about the origin of the code they choose to run. In addition, it is becoming hard to
distinguish the “programs” from the “data” – Java applets embedded in web pages can run
unbeknownst to the user; documents can contain macros that access the file system and network;
and email messages can contain attachments that are arbitrary executables.

The solution in high security environments is to turn off all mobile code and only run validated
programs from trusted sources. This can be done by configuring browsers and other applications
to disallow active contents such as Java applets and macros, or by installing a firewall that
monitors all network traffic and drops packets that may contain untrustworthy code. This
solution sacrifices the convenience and utility of the network, and would be unacceptable in many
environments. Instead, solutions should allow possibly untrustworthy programs to run, but allow
the user to place precise limits on what they may do. In such an environment, security
mechanisms must be inexpensive and unobtrusive. Anecdotal evidence suggests that any code
safety system that places a burden on its users will be quickly disabled, since its benefits are only
apparent in the extraordinary cases in which a program is behaving dangerously.

A code safety system provides confidence that a program execution will not do certain
undesirable things. Although much progress has been made toward this goal in the last few years,
current systems are still unsatisfactory. This work seeks to address two important weaknesses of
existing code safety systems:

 10

1. They cannot enforce sufficiently precise policies. This means either a program is allowed
to do harmful things, or users are unable to run some useful programs. For example, a
system like the Java sandbox cannot enforce a policy that limits the number of bytes that
may be written to the file system without preventing writing completely. This is a result
of the limited locations where safety checking can be done. The designers were forced to
select a small number of security-relevant operations that can have safety checking since
the overhead of a safety check is always suffered even if the policy in effect places no
constraints on the security-relevant operation.

2. The mechanisms they provide for defining safety policies are ad hoc and platform-
specific. Ad hoc policy definition mechanisms limit the policies that can be defined to
the class of policies considered by the system designers. It is impossible to anticipate all
possible attacks or security requirements, so ad hoc policy definition mechanisms are
inevitably vulnerable to new attacks. Tying policy definition to a particular execution
platform means that policy authors need to know intimate details about that platform, and
there is no opportunity to reuse policies on different execution platforms. This is a
problem for policy authors, but also limits what policies are available to users. Further, it
increases the gap between those people capable of writing and understanding policies and
those who must trust a provided definition.

This thesis demonstrates that it is possible to produce a code safety system that does not suffer
from these weaknesses without sacrificing convenience or efficiency. We describe Naccio1, an
architecture for code safety, and report on two prototype implementations: Naccio/JavaVM that
enforces policies on JavaVM classes, and Naccio/Win32 that enforces policies on Win32
executables. Naccio defines policies by associating checking code with abstract resource
manipulations. A Naccio implementation includes an operational specification of an execution
platform in terms of those abstract resource manipulations. Naccio enforces policies by
transforming programs to interpose checking code around security-critical operations.

1.1 Threats and Countermeasures

No security system can prevent all types of threats. Our focus is on threats stemming from
executing programs. We ignore threats that do not result from a legitimate user running a
program including compromised authentications and physical security breeches.

Different kinds of threats call for different countermeasures. Countermeasures for threats related
to program executions come in two basic forms: restrictions on which programs may run, and
constraints on what executions may do. Restrictions on which programs may run can be based on
trust and cryptography (only run programs that are cryptographically signed by someone I trust),
or based on static analysis that proves a program does not have certain undesired properties (only
run programs that a virus detector checks do not contain instruction sequences matching known
viruses). Constraints on what executions may do can be expressed as a policy.2 The policy that

1 The name Naccio is derived from catenaccio, a style of soccer defense popularized by Inter Milan in the
1960s. Catenaccio sought to protect the Inter net from attacks, by wrapping potential threats with a marker
that monitors their activity and aggressively removing potentially dangerous parts (that is, the ball) from
attackers as soon as they cross the domain protection boundary (also known as the midfield line).

2 Not to be confused with an organizational security policy that specifies what policy to enforce on different
types of programs.

 11

should be enforced on an execution depends on how much trust the user has in the program and
how much knowledge is available about its expected behavior. Ideally, all executions would run
with a policy that limits them to exactly the behavior deemed acceptable for that program. This is
not possible, however, since users cannot be expected to research and encode the limits of
expected behavior for every program before running it. Instead, we should use different policies
as countermeasures to different types of threats. Threats where code safety is an important
countermeasure include viruses, Trojan horses, faulty programs and user mistakes.

Viruses

Viruses are code fragments that propagate themselves automatically. The damage they cause
ranges from causing a minor annoyance to destroying hard drives and distributing confidential
information. Every few weeks a new virus attack is reported widely in the mainstream media
[NYTimes99a, NYTimes99b, NYTimes99c]. �

Although early computer viruses spread by attaching themselves to programs, extensibility
features in modern email programs and web browsers make creating and spreading viruses much
easier. A recent example is the Melissa Word macro virus [Pethia99]. It propagates using an
infected Word document contained in an email message. When a user opens the infected
document, the macro executes automatically (unless Word macros are disabled). The macro then
lowers the macro security settings to permit all macros to run when future documents are opened
and propagates itself by sending infected email messages to addresses found in the user’s
Microsoft Outlook address books. The macro also infects the standard document template file
that is loaded by default by all Word documents. If the user opens another Word document, that
document will be mailed along with the virus to addresses in the user’s address books.

The most common virus countermeasures are virus detection programs such as McAfee
VirusScan [McAfee99] and Symantec Norton AntiVirus [Symantec98]. Nearly every new PC
comes with virus detection software installed. Most virus detectors scan files for signatures
matching a database of known viruses. Commercial products for detecting viruses recognize tens
of thousands of known viruses, and their vendors employ large staffs to identify new viruses.

The problem with this approach is that it depends on recognizing a known virus, so it offers no
protection against new viruses. Because viruses like the Melissa macro virus can spread
remarkably quickly over the Internet, they can do considerable damage before they are identified
and virus detection databases can be updated. The damage inflicted by Melissa was limited to
propagating itself and sending possibly confidential files to known addresses. A terrorist
motivated to cause as much damage as possible could fairly easily create a variant of Melissa that
inflicts far more harm.

To detect or prevent damage from previously unidentified viruses requires an approach that does
not depend on recognizing a known sequence of instructions. Some commercial virus detection
products include heuristics for identifying likely viruses based on static properties of the code or
dynamic properties of an execution [Symantec99]. These approaches lead to an arms race
between virus creators and virus detectors, as virus creators go to greater lengths to make their
viruses hard to detect. Although heuristic detection techniques show some promise, it is unlikely
that they will ever be able to correctly distinguish all viruses from legitimate programs.

A different approach is to limit the damage viruses can cause and their ability to propagate by
observing and constraining program behavior. For example, the damage done by macro viruses
could be limited by enforcing a policy on Microsoft Word executions. We would want to enforce
different policies on Word executions depending on whether they were started to read a document

 12

embedded in an email message or web page, or started to edit a trusted document. When Word is
used to edit a local document, perhaps a policy that prohibits any network transmission would be
adequate. For documents from untrustworthy sources, a reasonable policy would require explicit
permission from the user before Word transmits anything over the Internet, reads sensitive files,
alters the registry, or modifies the standard document templates.

Trojan horses

A Trojan horse is an apparently useful program that also does some things the user considers
undesirable. There have been many instances where an attacker has distributed a deliberately
malicious program in the guise of a useful one. For example, someone distributed a version of
linux-util that contained a login program that would allow unauthorized users to execute arbitrary
commands [CERT99b].

In addition, there are programs a user may consider malicious even if the author did not intend to
produce a malicious attack. For example, an early version of the Microsoft Network client would
read and transmit the user’s directory structure [Risks95]. While most users would be unaware
that this is occurring, and would not be overtly damaged by it (other than losing bandwidth that
could have been used for transmitting useful data), many would consider it a privacy violation.

Countermeasures for Trojan horses are similar to those for viruses, except that more precise
policies may be needed. Although it would be difficult to monitor the information sent over the
network by the Microsoft Network client, it would be possible to detect suspicious transmissions
and alert the user. A more reasonable policy would ignore the actual transmitted data but place
restrictions on which files, directories and registry entries could be examined, thereby limiting the
information available to the program.

Faulty programs

Program bugs pose two different kinds of security threats – an attacker may deliberately exploit
them or they may accidentally cause harm directly. The security advisories recorded by CERT
[CERT99a] are rife with examples of buggy programs leading to exploitable security
vulnerabilities. Of the 71 advisories posted between January 1996 and May 1999, 60 are directly
attributable to specific program bugs (of these, 13 are the direct result of buffer overflows). A
particularly vulnerable program is sendmail. Attackers have exploited various bugs in sendmail
to gain root access [CERT96a, CERT96b], execute programs with group permissions of another
user [CERT96c], and to execute arbitrary commands with root privileges [CERT97].

Other program bugs cause harm unintentionally. One notorious example is the Therac-25, a
device for administering radiation to cancer patients [Leveson93]. Because of software bugs, it
would occasionally administer a lethal dose of radiation and several patients died as a result.
Although the system software had ad hoc safety checks, they were obviously not sufficient.3
Because they were ad hoc, operators and doctors could not examine them and decide if the device
was trustworthy.

The best way to obtain protection from exploitable or harmful program bugs would be to produce
bug-free programs. Despite progress in software development and validation techniques, it is

3 The Therac-25 disaster was the result of numerous factors ranging from flawed hardware design to poor
regulation procedures. Although code safety mechanisms could be part of the solution, designing safety-
critical systems involves far more than just code safety.

 13

inconceivable that this will be accomplished in the foreseeable future. Since programs will
inevitably contain bugs, code safety systems should be used to limit the damage resulting from
buggy programs.

As with Trojan horses, the expected behavior of the program is known so it is reasonable to
enforce a precise policy that limits what it can do. The difference is that the software vendor
should be an ally in protecting the user from bugs, unlike a malicious attack. Security-conscious
software vendors could include policies with their software distributions or even distribute their
software with an integrated safety policy enforced. Reputable vendors should be motivated to
protect their users from damaging bugs and might be expected to devote some effort towards
producing a suitable policy. By separating the policy enforcement mechanisms from the
application, they can have more confidence that the policy is enforced correctly. In addition,
publishing an application’s safety policy in a standard, easily understood format would give
potential customers a chance to decide if the application is trustworthy.

User mistakes

Perhaps the most common way programs cause harm is unintentional mistakes by users. Because
of poor interfaces or ignorance, users may inadvertently destroy valuable data or unknowingly
transmit private information. One example is when an unsuspecting user issues the command
tar cf * to create a new directory archive. This command will replace the contents of the first file
in the directory with an archive of all other files, destroying whatever happened to be the first file.
Although the program is behaving correctly according to its documentation, this is probably not
the behavior the user indented. A well-designed interface lessens the risk of harmful user
mistakes, but combining this with a user-selected and independently enforced policy is a more
robust solution.

1.2 Background

Researchers have been working on limiting what programs can do since the early days of
computing. Early work on computer security focused on multi-user operating systems built
around a privileged kernel. The kernel is the only part of the system that manipulates resources
directly. User programs must call functions in the operating system kernel to manipulate
resources. The operating system limits what user programs can do to system resources by
exposing a narrow interface and putting checks in the system calls to disallow unsafe resource
use. Each application process runs in a separate address space, enforced by hardware support for
virtual memory. A process cannot see or modify memory used by another process since it is not
part of its virtual address space.

The problem with using separate processes to protect memory is that the cost of creating and
maintaining a process is high, as is the cost of communicating and sharing data between
processes. Switching between different processes involves a context switch, which is usually
expensive. Several systems have attempted to provide the isolation offered by separate processes
within a single process by using software mechanisms. We use low-level code safety to refer to
security designed to isolate programs and require that all resource manipulations go through well-
defined interfaces. It includes the control flow safety, memory safety, and stack safety needed to
prevent programs from accessing arbitrary memory segments [Kozen98]. There are several ways
to provide low-level code safety. Approaches such as the Java byte code verifier and proof-
carrying code techniques statically verify that the necessary properties are satisfied. Software
fault isolation provides the necessary guarantees by inserting masking or checking instructions to

 14

limit the targets of jumps and memory instructions. Section 7.1 describes work in low-level code
safety.

Although Naccio depends on low-level code safety for the integrity of its policy enforcement
mechanisms, the focus of this thesis is on policy-directed code safety. Policy-directed code safety
seeks to enforce different policies on different executions. This can be done either by statically
verifying the desired properties always hold, or by enforcing properties using run-time checking.
Since it is infeasible to verify most interesting properties on arbitrary programs, most work has
focused on run-time enforcement.

Most run-time constraint mechanisms, including Naccio, can be viewed as reference monitors
[Lampson71, Anderson72]. A reference monitor is a system component that enforces constraints
on access and manipulation of a resource. It should be invoked whenever the monitored resource
manipulation occurs, and it should be protected from program code in a way that prevents
bypassing or tampering. Reference monitor systems differ in how the monitors are invoked.
They could be called explicitly by the operating system kernel, called by a separate watchdog
process, or integrated directly into program code. Naccio integrates reference monitors directly
into code, but takes advantage of system library interfaces to limit the code that must be altered.

Reference monitors also differ in how checking code is defined. Some possibilities include
access matrices, finite automata, or general code. In a reference monitor security system, policies
are limited by where reference monitor calls can be placed and what system state they may
observe. There is usually a tradeoff between supporting a large class of policies and the
performance and complexity of the system. Naccio security is based on reference monitors that
can be flexibly introduced into programs at different points. This allows for a large class of
policies to be enforced, but avoids the overhead necessary to support many reference monitors
when a simple policy is enforced.

One example of a reference monitor is the SecurityManager used for high-level code safety in the
Java virtual machine. API functions limit what programs can do by using the SecurityManager
class. It acts as a reference monitor, enforcing a particular security policy by controlling access to
system calls. The Java approach limits the policies that can be enforced since the only places
reference monitors can be invoked are those defined as check methods in the SecurityManager.
Developers can write a SecurityManager subclass that performs the desired checking for the
given check methods, but cannot change the places where the API routines call check methods.
For instance, the constructor for FileOutputStream calls the SecurityManager.checkWrite method
before opening a file, but the write method that writes bytes to an open file does not check any
SecurityManager method. Hence, one can implement an arbitrary security policy on what files
may be written by writing code for the checkWrite method, but can place no constraints on the
amount of data that may be written to a file once it has been opened. Other reference monitor
systems are described in Section 7.3.

1.3 Design Goals

Naccio is intended to be a code safety system suitable for users in low and medium security
environments. Although its mechanisms should be reliable enough for use in a high security
environment, users in high-security environments should avoid untrustworthy code and rely on
redundant mechanisms to avoid disasters. Further, high security users are willing to accept more
obtrusive code safety mechanisms than would be acceptable in a less security-critical
environment. Naccio could be useful as one of the pieces in a security system for a high-security
environment, but would not be sufficient on its own.

 15

We consider a low security user to be someone who is unsophisticated in security matters and
who uses the Internet for web browsing and email. Low security users occasionally conduct
transactions using the Internet and send and receive business-related email, but are not using their
computer as a critical part of a business. The vast majority of current Internet users fit into this
category. Medium security users are somewhat more sophisticated regarding security and have
more to lose if there is a security breach. This category includes people running servers for small
businesses and those with a substantial stake in their on-line reputation.

Some contexts where Naccio should be useful include:

• Executing remote code such as Java applets or ActiveX controls in a web browser. Typical
low-security users allow their browser to run ActiveX controls with no constraints and Java
applets with default constraints on what files may be read and written and what network
connections may be made. This is reasonably acceptable today, since the damage an attacker
could inflict on a typical user is low. This is changing though, and will continue to worsen as
even typical users increasingly have a substantial stake in their on-line identity and store
financial and personal information on their computer. Most medium-security users today
configure their browser to disable ActiveX controls and either disable Java applets or allow
them to run but worry that existing security measures are inadequate. While disabling remote
code addresses the security issues, it sacrifices some of the richness of the web. More precise
policies that can constrain a greater range of behavior should allow medium-security users to
comfortably run remote code with assurances that it will not exhibit harmful behavior.

• Executing code in mail attachments. Most modern email programs support attachments that
may be data files containing executable code (such as a Microsoft Word document) or a plain
executable file. Two well-publicized recent attacks propagated using email attachments – the
Melissa macro virus [Pethia99] propagates using a Word document attached to an email
message and the Worm.ExploreZip virus [Cnet99a] propagates by attaching an executable
file to an email message. Until these scares were widely publicized, typical low-security
users would run mail attachments without reservations. Today, most are at least aware of the
risks and will be reluctant to run attachments in messages coming from untrusted sources.
Since the viruses mentioned above appear to be sent by people the user knows, however, this
is not sufficient protection. A code safety system could solve the problem by allowing
attachments to run, but enforce a policy that places constraints on their behavior.

• Uploadable code. Consider an auction site operator who wants to support programs
submitted by clients that can access the server database, do some computation, place bids on
behalf of its owner, and send messages to its owner. The site operator needs to limit the
behavior of the client program including what files it can access and what network
connections it may open, as well as place bounds on the server resources it may consume
such as network bandwidth and database connections. Support for uploadable code is one of
the largely unsatisfied promises of the web. The security concerns of site operators is part of
the reason so few sites support uploadable code.

• Stand-alone applications. Today a user installing a stand-alone application (usually
distributed on CD-ROMs or as Internet download) either chooses to trust the application
completely or chooses not to install the application. Security conscious users decide whether
an application is trustworthy enough to be installed and executed based on the reputation of
its provider. Large companies are more likely to be trustworthy than individuals or small
companies. Today, most applications are shipped in forms (e.g., Windows executables) that
are not supported by most code safety systems. Efforts to convince program vendors to ship
programs in a form that is more amenable to current code safety systems (e.g., source code or
Java byte codes) are unlikely to be successful. Instead, we need code safety systems that can

 16

efficiently and conveniently enforce policies on applications as they are commonly
distributed.

• Constraining security-critical programs. A system administrator installing security-critical
programs such as a remote login shell, an ftp server, a mail server, or a web server should be
able to enforce specific constraints on their behavior. Although many of these programs do
provide security configuration options (for example, a web server can be configured to allow
access only to certain types of files), it would be useful to have an independent system that
enforces these constraints as well as additional constraints. Using a separate code safety tool
would have the advantage that the system administrator can use the same system to configure
security constraints on different programs and to configure global constraints that apply to all
programs. In addition, a code safety system independent of an application is not vulnerable
to application bugs. There may be bugs in the code safety system, but if it is simple and
extensively used, it is likely to have fewer security vulnerabilities than an application-specific
mechanism.

In order to be useful in these contexts, Naccio implementations should securely enforce safety
policies, and should be versatile enough to support a wide range of precise policies encompassing
useful constraints on program behavior. Those policies should be defined in a way that makes
them easy to define, understand and modify. It should be possible to produce Naccio
implementations with a reasonable amount of effort. Finally, Naccio must be efficient enough so
that even users without critical security needs will be willing to use it. These goals are often
conflicting. Naccio seeks to expand the scope and precision of policies that can be enforced, as
well as improve the policy-definition mechanisms, without substantially compromising security
or efficiency and convenience.

1.3.1 Security

Security is an essential property of any code safety system. A secure code safety system correctly
enforces the selected policy, even in the presence of motivated and knowledgeable attackers.
Every system has vulnerabilities, but security systems should strive to eliminate known
vulnerabilities and reduce the likelihood that attackers can find and exploit unknown
vulnerabilities.

While proving a system is secure is generally infeasible for any non-trivial system, there are
design approaches that are more likely to lead to secure systems. A simple design is more likely
to be secure than a complex one, since flaws in a simple design are more likely to be detected and
corrected. Further, it is more likely that a simple design can be implemented correctly than a
complex design. A corollary to the simplicity goal is to have a small trusted computing base. If
the security-critical part of the system can be isolated and kept small, it may be possible to verify
its correctness or at least to carefully review the code.

1.3.2 Versatility

To be useful, a code safety system must be able to enforce useful policies. The ideal policy
would prevent every behavior the user considers harmful but never issue a violation for behavior
the user considers desirable. No such universal policy exists since it is impossible to perfectly
distinguish harmful and desirable behavior. Indeed, behavior that is desirable for one program
(such as rm deleting a file) would be considered harmful for other programs.

 17

Supporting a wide range of policies means that policies can be defined to constrain many
different program behaviors. For example, a system that does not provide any way to constrain
thread creation cannot prevent denial-of-service attacks that create a huge number of threads.4 A
system that allows constraints on what files may be opened for reading or writing, but does not
support any way of constraining what may be done with those files after they are opened must
either prohibit writing entirely or allow attacks that fill up the local disk.

The other aspect of policy precision is the generality of the policy definition mechanisms. Some
systems support policy checking based on setting a fixed set of parameters such as a list of
readable and writeable files or an upper bound on network usage. This excludes a wide class of
useful policies where the constraints are more dynamic or depend on other factors. For example,
a useful policy might constrain what files may be written based on the command line or the
history of user interactions; another policy might make the network usage bound a function of the
number of keystrokes pressed by the user.

A completely general system would support policy checking using a universal programming
language and with access to the entire state and history of the program execution. Such
generality leads to complication in both policy definition and enforcement, and is probably not
necessary for most practical policies. Instead, successful systems will make compromises based
on providing sufficient generality to define most useful policies but enough limitations to make
efficient and reliable enforcement feasible.

1.3.3 Ease of Use

A code safety system is useful only if it can enforce policies that place useful constraints on
program behavior. In addition, there must be a way to define those policies. If it is too difficult
or cumbersome to define policies, only predefined policies will be available to typical users.
Only the most sophisticated experts will be able to create new policies, and obtaining a
customized policy will be an expensive and time-consuming proposition.

Defining a policy requires good understanding of security requirements, but should not require
extensive understanding of the execution platform. A policy definition mechanism that defines
policies in terms of system calls on a particular platform can only be used by an elite group of
platform experts. It is easy for even experts to forget about obscure system calls that can be used
to manipulate resources leading to exploitable vulnerabilities. Naccio seeks to simplify policy
definition by expressing policies in terms of manipulations of abstract resources that are not tied
to a particular platform implementation, but correspond to things users understand like files and
network connections.

1.3.4 Ease of Implementation

Since we hope that many implementations of Naccio will be developed, it is important that a
Naccio implementation for a new platform can be produced with a reasonable amount of effort.
Although some work will inevitably be required to support a new platform, Naccio’s design
should maximize reusability across platforms. It should also be clear what needs to be done to
produce a Naccio implementation for a new platform, once the relevant properties of that
platform are understood.

4 One such attack that has been used to crash Windows 95/98 systems [Cnet99b].

 18

1.3.5 Efficiency

The normal behavior of a code safety system is to do nothing noticeable to the user. A code
safety system should be apparent only in the unusual situation where a program is about to violate
the policy. This means the time and effort required to prepare a program to run with a selected
policy enforced should be minimal. Most users will not even select the policy themselves, but
rely on predefined policy settings established by their operating system or system administrator.

A code safety mechanism should also be transparent when a program runs, unless the policy is
violated. It should not unduly affect the performance of the execution. The costs of enforcing a
policy should be directly related to the complexity and ubiquity of the policy. It is reasonable that
there be a significant overhead associated with enforcing a policy that monitors every byte written
to files, but unreasonable for there to be any noticeable overhead for a policy that limits what
directories can be read. Typical access control policies should be enforced with negligible
overhead.

1.4 Contributions

This thesis presents a novel solution to the problem of constraining the behavior of program
executions. We focus on addressing the limited class of policies supported by traditional code
safety systems and the inadequate mechanisms they provide for defining policies.

Several other recent research projects have also attempted to expand the class of policies that a
code safety system can enforce, most notably Ariel [Pandey98] and SASI [Erlingsson99]. Like
Naccio, Ariel and SASI enforce policies by transforming programs. Naccio, Ariel and SASI can
all enforce similar classes of policies. The key differences between Naccio and these and other
projects are:

• Naccio is the first code safety system that defines safety policies in terms of abstract
resource manipulations. This makes safety policies easier to write and understand, and
means the same policy can be enforced on different platforms.

• Naccio is the first code safety system to use a two-stage process where policy
compilation is separate from program transformation. This allows time-consuming
optimizations that improve execution performance to be performed at policy compilation
time, while allowing a policy to be enforced on an execution of a new program with low
overhead.

Section 7.3 describes Ariel and SASI in more detail and clarifies the subtle differences in the
classes of policies they can define.

Much was learned by building two Naccio prototype implementations and using them to define
policies and enforce them on executions. Some specific contributions resulting from this
experience include:

• We showed that it is possible to obtain the benefits of a large class of enforceable policies
without sacrificing run-time performance when simple policies are enforced.

• We devised a specialization of dead code elimination that can be used to eliminate
unnecessary checking code in code safety systems. This helps achieve our goal of only
paying overhead for security checking when useful checking is being done.

• We gained an understanding of the tradeoffs involved in enforcing policies at different
levels (for example, at the level of system calls or the level of machine instructions). The

 19

Naccio architecture provides a clear framework for understanding what is lost or gained
by selecting a particular level where policies are enforced.

• We clarified what properties must be guaranteed to ensure the integrity of wrapper-based
checking mechanisms and designed mechanisms that provide these guarantees on the
JavaVM and Win32 platforms.

• We introduced language features for creating groups of related resource operations.
These groups can be used to define safety policies more easily and robustly.

• We introduced new mechanisms for combining safety properties based on intersection
and weakening. These mechanisms are sufficiently powerful to enable easy expression
of a wide class of policies, but simple enough to be readily understood and efficiently
implemented.

• We developed a framework that can be reused to produce Naccio implementations for
additional platforms with reduced effort.

Although the policy enforcement architecture is designed with the policy definition mechanisms
in mind, they are separable. It would be reasonable to use different enforcement mechanisms to
enforce policies defined using Naccio’s definition mechanisms. Conversely, Naccio’s
enforcement architecture could be used to enforce policies defined in some other way.

1.5 Overview of Thesis

Chapter 2 introduces the Naccio architecture, describes its components and presents an example
that shows how a policy is defined, compiled and enforced on a program execution. Chapter 3
describes how safety policies are defined. Chapter 4 describes how a platform is described in
terms of its resource manipulations and how the platform interface can be altered to expand the
class of policies that can be defined.

The next two chapters describe issues relating to enforcing policies in general as well as
implementation issues involved in the two prototype implementations. Chapter 5 discusses what
is done to compile a policy irrespective of the target application. Chapter 6 explains what is done
to enforce a policy on a particular program execution.

Chapter 7 describes related work in code safety and program transformation. Chapter 8 evaluates
Naccio’s potential and examines vulnerabilities in the architecture generally, and in the prototype
implementations specifically. Chapter 9 suggests future work and Chapter 10 summarizes the
thesis and draws conclusions.

 21

This Software is not designed or intended for use in on-line control of aircraft,

air traffic, aircraft navigation or aircraft communications; or in the design,
construction, operation or maintenance of any nuclear facility. Licensee

warrants that it will not use or redistribute the Software for such purposes.

Sun JDK Noncommercial Use License

Chapter 2
Naccio Architecture5

Naccio is a system architecture for defining safety policies and enforcing those policies on
executions. Conceptually, Naccio takes a program and a description of a safety policy, and
produces a new program that behaves like the original program except that it is constrained by the
safety policy. The Naccio architecture includes platform-independent languages for describing
resources, general languages for specifying a safety policy in terms of constraints on those
resources, and a family of platform-dependent languages for describing system calls in terms of
how they manipulate resources. It also provides a framework for implementing policy
enforcement mechanisms by transforming programs. This chapter provides an overview of the
architecture. Chapters 3 and 4 describe how safety policies are defined. Chapters 5 and 6
describe issues involved in implementing the architecture and relate experience from building the
two prototype implementations.

2.1 Overview

Suppose we wish to enforce a policy that limits the total number of bytes an execution may write
to files. An implementation will need to maintain a state variable that keeps track of the total
number of bytes written so far. Before every operation that writes to a file, we need to check that
the limit will not be exceeded. One way to enforce such a property would be to rewrite the
system libraries to maintain the necessary state and do the required checking. This would require
access to the source code of the system libraries, and we would need to rewrite them each time
we wanted to enforce a different policy. If the operating system were upgraded, the policy would
need to be rewritten.

Instead, we could write wrapper functions that perform the necessary checks and then call the
original system functions. To enforce the policy, we would modify target programs to call the
wrapper functions instead of the protected system calls. Though wrappers are a reasonable
implementation technique, they are not an appropriate way to describe safety policies since
creating or understanding them requires intimate knowledge of the underlying system. To
implement a policy that places a limit on the total number of bytes that may be written to files,
one would need to identify and understand every system call that may write to a file. For even a

5 Parts of this chapter are based on [Evans99].

 22

supposedly simple platform like the Java API, this involves dozens of different routines.
Changing the policy would require editing the wrappers, and there would be no way to use the
same policy on other platforms.

Naccio’s solution is to express safety policies at a more abstract level and to provide a tool that
compiles these policies into the wrappers needed to enforce a policy on a particular platform.
Safety policies are defined by associating checking code with abstract resource manipulations. A
platform is characterized by how its system calls manipulate resources.

Figure 1 shows the Naccio system architecture. It is divided into a policy compiler and a
program transformer. The policy compiler is run once per policy-platform pair. The policy
compiler takes a definition of a resource use policy and a platform interface that describe an
execution platform and produces a policy-enforcing platform library and a policy description file
that encodes the transformations the program transformed must do to produce a program altered
to enforce the policy. Since policy compilation is a relatively infrequent task, we trade off
execution time of the policy compiler to make program transformation fast and to reduce the run-
time overhead associated with safety checks. Once a policy has been compiled, the resulting
policy-enforcing platform library and policy description file can be reused for each application on
which we want to enforce the policy. Section 2.2 discusses the inputs and outputs of the policy
compiler, and Chapter 5 provides details on how the policy compiler works.

The program transformer is run for each application-policy pair. It reads the policy description
file produced by the policy compiler to determine what transformations need to be done to
enforce the policy on an execution, and rewrites the program accordingly. The transformations
typically include replacing calls to a platform library with calls to a policy-enforcing platform
library produced by the policy compiler. In addition, the program transformer must ensure the
necessary low-level code safety properties to prevent malicious programs from being able to
tamper with the safety checking. Once the transformed program has been produced, it can be run
normally and the policy will be enforced on the resulting execution. Section 2.3 discusses what
the program transformer must do to enforce a policy, and Chapter 6 provides details on how this
is done.

Policy
description file

Program
Transformer

Program

Version of program that:
• Uses policy-enforcing platform library
• Satisfies low-level code safety

Per application/policy/platform

Policy
Compiler

Resource Use Policy

Policy-enforcing
platform library

Per policy/platform pair

Resource Descriptions

Platform Interface

Platform Library

Figure 1. Naccio Architecture.

The left side of the figure depicts what a policy author does to generate a new
policy. The right side shows what happens the first time a user elects to execute a
given program enforcing that policy. The program transformer is run with an
argument that identifies the policy description file to use.

 23

An implementation of Naccio is characterized by the kind of program it transforms; the format
and content of the platform libraries it uses; and the level of its platform interface, which
determines the level at which it must transform the platform libraries and programs. We have
built two Naccio prototype implementations: Naccio/JavaVM that enforces safety policies on
JavaVM classes and Naccio/Win32 that enforces safety policies on Win32 executables. Although
the design is intended to be general enough to apply to most modern platforms, the details and
results in this thesis are derived from experience with these prototype implementations.

2.2 Policy Compiler

The policy compiler takes files describing a safety policy and an execution platform, and
produces what is needed to enforce the policy. The input files consist of resource descriptions
that provide a way to refer to resource manipulations abstractly; a platform interface that
describes a particular execution platform in terms of those resource descriptions; a platform
library, the unaltered code provided by the platform implementation (for example the Java API
classes or Win32 system DLLs), and a resource use policy that specifies the constraints on
program behavior to be enforced. For most policies, the resource descriptions and platform
interface are treated as a fixed part of the implementation and the policy author writes a resource
use policy.

A resource description defines a resource object and a list of resource operations that identify
different ways of manipulating that resource object. For example, a resource description for a file
system has a resource operation corresponding to writing bytes to a file. A resource use policy
defines a safety policy by attaching checking code to these resource operations. Safety policies
can be written and understood by looking solely at the resource descriptions and resource use
policy. Naccio defines a standard set of resources that must be provided by any Naccio
implementation. Policies defined in terms of those resources are portable and can be enforced
without any extra effort on any platform for which a Naccio implementation is available. Policies
defined in terms of the standard resources are known as standard safety polices. A challenge in
designing Naccio is to choose a set of standard resource descriptions that can be used to define
most typical safety policies, but that correspond precisely to the way actual resources are
manipulated on different platforms. Chapter 3 describes how safety policies are defined,
summarizes the contents of the standard resource library, and discusses the range of policies that
may be expressed as standard safety policies.

A platform interface provides an operation specification of an execution platform in terms of a set
of resource descriptions. The platform interface is a collection of wrappers that map concrete
operations in a particular platform to the abstract resource manipulations described by the
resource descriptions. The platform interface hides platform details from a policy author who
need only look at the resource descriptions. A platform interface may be defined at different
levels ranging from hardware traps to machine instructions to the system API to an application-
specific library. For the most part, we focus on platform interfaces at the level of the system API
since it is usually a well-defined interface and it provides a convenient place to interpose
checking code. Platform interfaces at lower levels would be necessary to support policies that
involve resource manipulations that are not visible through API calls. Platform interfaces at
higher levels may be useful if we wish to support policies that apply to library or application level
resources. If a policy author wishes to express a policy that cannot be defined in terms of the
available resource descriptions, new resource operations can be defined by altering the platform
interface. Chapter 4 describes the platform interface, and illustrates how the platform interface
can be altered to define safety policies that cannot be expressed using the standard resource
descriptions.

 24

The policy compiler analyzes the resource use policy, resource descriptions and platform
interface and produces a policy-enforcing platform library. If the platform interface is at the level
of a system API, the policy compiler may also read and analyze the platform library object code,
such as the Win32 API DLLs or the Java API classes. This is used to produce a new version of
the platform library that includes checking code necessary to enforce the policy but otherwise
behaves identically to the original platform library.

The policy-enforcing platform library makes calls to resource implementations, routines that
correspond to the resource operations. The resource implementations do checking as directed by
the resource use policy. The resource use policy defines checking code associated with resource
operations. The policy compiler translates the code from the resource use policy and turns these
resource operations into routines that can be called by the policy-enforcing platform library.
Much of the work of the policy compiler is platform-independent. It parses the resource
descriptions and resource use policy into intermediate languages and weaves the checking code
into the appropriate resource operations. The resource operations are then implemented using a
platform-specific back end that translates the intermediate language into executable code that
performs the necessary checking.

The platform interface specifies how system calls need to be wrapped to call the appropriate
resource operations. If run-time performance were not a concern, Naccio could generate the
platform interface wrappers once and switch which resource implementations are used to enforce
different policies. However, this would mean the overhead of going through a wrapper for a
system call that manipulates constrainable resources would always be required regardless of
whether or not the policy in effect constrains those resource manipulations. Instead, the policy
compiler generates a new wrapped platform library for every policy. This means wrappers need
only be generated for system calls that manipulate constrained resources. Generating a policy-
specific version of the platform interface wrappers also allows for other optimizations to be
performed, as described in Section 5.5.

The other output of the policy compiler is a policy description file that contains a compact
representation of the transformations the program transformer must carry out to enforce the
policy. The policy description file identifies the location of the policy-enforcing platform library
so the application transformer can make the necessary changes. In addition, it may include rules
to rename routines to call wrappers in place of system calls. This may be necessary in certain
cases (such as wrapping native methods in Java) where the policy compiler cannot replace the
routine in the policy-enforcing library. Other rules list resource operations that must be called at
the beginning of execution (initializers) and resource operations must be called immediately
before execution completes (terminators).

2.3 Program Transformer

The program transformer is run when a user elects to enforce a particular policy on an application
for the first time. In a typical deployment, a web browser or application installer would run it
transparently before a new program is executed based on a user’s security settings.

The program transformer reads a policy description file and a target program and performs the
directed transformations to produce a version of the program that is guaranteed to satisfy the
safety policy. For each program and selected policy, we need to run the program transformer
once. Afterwards, the resulting program can be executed normally. The type of program
transformed depends on the particular Naccio implementation. It could be source code or object
code, although implementations of Naccio that support object code are more likely to be useful

 25

since many vendors are unwilling to ship source code. The prototype implementations handle
programs that are JavaVM classes and Win32 executables.

The program transformer makes two main changes to the program: it replaces the standard
platform library with the policy-enforcing platform library produced by the policy compiler, and
it modifies the program to ensure that the resulting program satisfies the low-level code safety
properties necessary to prevent malicious programs from circumventing or altering the policy
checking mechanisms. Both changes are platform-dependent, and as a result not much of the
program transformer can be reused across different Naccio implementations. In addition, if the
policy requires calls to initializers or terminators, the program transformer inserts these calls.

Switching the library is usually fairly simple on most modern platforms in which the platform
library is linked dynamically. For Naccio/JavaVM it involves changing the CLASSPATH or
replacing class names; for Naccio/Win32 it involves replacing file names in the import table.
Guaranteeing the integrity of policy checks is more complicated. Naccio implementations must
prevent programs from writing to storage or code used in safety checking or manipulating
resources without going through the policy-enforcing platform library. Useful techniques for
doing this include statically verifying that the necessary properties hold, performing low-level
transformations on the application code to guarantee the necessary properties, and using platform
interface wrappers so that the necessary properties are enforced by all policies. Section 6.2
discusses what must be protected and how this is done in Naccio implementations.

Figure 2 shows a sample wrapped system call sequence in a transformed program. Instead of
calling the system call in the platform library directly, the transformed program calls the wrapped
version of the system call in the policy-enforcing platform library that was produced by the policy
compiler. This routine calls resource operations as directed by the platform interface. It may also
need to do some bookkeeping to determine the correct arguments to pass to the resource
operations. For the example, the wrapper for WriteFile must convert the file handle into an
abstract resource object that identifies the corresponding file. The resource operations implement
the checking specified by the resource use policy. If the policy would be violated by the system
call, the resource implementation calls a Naccio library routine that reports the policy violation
and gives the user the option to terminate or alter the execution. If not, the original system call in

WriteFile (fHandle, bytes)

Original Program

WriteFile (fHandle, bytes)

Policy-Enforcing Platform Library

Transformed Program

Platform Library

Resource
Implementations

Disk

Platform Library

Disk

RFileSystem.write
(rfile, nbytes)

violation

Figure 2. Wrapped system call sequence.

 26

the platform library is called and the execution continues normally. Additional resource
operations may be called after the system call returns. Depending on the Naccio implementation,
the wrapper code may be embedded directly in the policy-enforcing platform library or kept as a
separate library.

2.4 Walkthrough Example

This section walks through all the steps necessary to define and enforce a policy. It is not
intended to be comprehensive, but to give the reader an idea of how all the pieces fit together.
Chapters 3 through 6 describe each step in more detail. For this example, we consider using
Naccio/JavaVM to enforce the LimitBytesWritten policy, which sets a limit of one million on the
number of bytes that may be written to the file system on an execution of an application
comprised of a set of Java class files. These steps would be substantially similar for
Naccio/Win32 and implementations of Naccio for other platforms, but for simplicity this example
is limited to Naccio/JavaVM.

This policy is expressed formally using Naccio’s policy definition languages. We maintain a
state variable that keeps track of the number of bytes written to the file system. We do this by
declaring a new field named bytes_written that is associated with the RFileSystem resource object
that represents the file system. This resource object is global over an execution, so the value of
RFileSystem.bytes_written is maintained across the execution. This value needs to be
incremented every time bytes are written to the file systems. The RFileSystem.postWrite
resource operation corresponds to the point immediately after bytes were written to the file
system, and we can maintain the value by attaching code that increments bytes_written to this
resource operation. The bytes_written field declaration and updating code are encapsulated in a
state block that can be reused by other safety policies.

To enforce the limit, we need to check that the limit will not be exceeded before allowing a write
to proceed. We do this by attaching checking code to the RFileSystem.preWrite resource
operation that corresponds to the point immediately before bytes will be written to the file system.
This checking code compares the sum of the number of bytes already written (as recorded in the
RFileSystem.bytes_written state variable) and the number of bytes about to be written to the limit
enforced by the policy. If the limit would be exceeded, it issues a violation and gives the user an
opportunity to terminate the execution. The code used to define this policy is shown in Figure 6
in Section 3.2.

The policy must be compiled before it can be enforced on an application execution. To compile a
policy, we need an operation specification of the execution platform known as a platform
interface. The platform interface describes concrete events in terms of the abstract resource
descriptions used to define the policy. Naccio/JavaVM uses a platform interface at the level of
the Java API (the java. classes). The Java API platform interface describes each method in the
Java API by calling resource operations at the execution points defined by the resource
descriptions. For example, the description of the RFileSystem.preWrite operation documents that
it should be called before every write to the file system with a parameter that gives an upper
bound on the number of bytes about to be written. The platform interface wrapper for the
java.io.FileOutputStream.write(byte[]) method indicates that RFileSystem.preWrite should be
called before the write method is called, and RFileSystem.postWrite should be called after the
write method returns. The policy compiler produces a new version of the
java.io.FileOutputStream class that replaces the write method with a wrapper that calls the
resource operations as described by the platform interface around the original method. The

 27

Naccio/JavaVM platform interface wrapper for the java.io.FileOutputStream class is shown in
Figure 11 and discussed in Section 4.2.

The policy compiler also generates implementations corresponding to the abstract resource
operations that are called by the generated wrapper classes. Naccio/JavaVM implements each
resource using a Java class with a method that corresponds to each resource operation. Code
from the resource use policy is woven into the resource implementations and translated to Java
code. Section 5.3 explains how the policy compiler generates a resource implementation class.

A policy author or system administrator runs the policy compiler, and its output can be used to
enforce the policy on any JavaVM program. The generated wrapper classes and resource
implementations are stored in a protected directory and the policy compiler generates a policy
description file that encodes the transformations needed to enforce the policy on an execution.
When a user elects to enforce the policy on a program execution, the application classes are
transformed according to the rules in the policy description file. For Naccio/JavaVM, this can
involve simply setting the CLASSPATH so that the generated wrapper classes are found before
the standard Java API classes. After this has been done, the application can be executed normally
with the safety policy enforced on its execution. Chapter 6 describes the program transformer.

Figure 3 shows what happens at run-time to enforce the LimitBytesWritten policy on an
application that creates a java.io.FileOutputStream and writes an array of bytes to it. The original
FileOutputStream class is replaced with a policy-enforcing wrapper version of the class, shown in
the figure as lbw.FileOutputStream. The constructor for this class constructs an RFile object that
is an abstract resource corresponding to the file associated with this output stream. This object is
stored in an instance variable of the lbw.FileOutputStream object, and will be passed to resource
operations like RFileSystem.preWrite. After constructing this object, the original constructor
executes normally and stores the RFile object in a new instance variable. Unlike the RFile object,
the RFileSystem is a global resource so there is only one RFileSystem object for the entire
execution. When the execution calls java.io.FileOutputStream.write(byte[]), the wrapper for this
method will call the resource operation RFileSystem.preWrite, passing in the RFile object
associated with this FileOutputStream and the size of the array. The RFileSystem.preWrite
implementation contains the checking code from the policy, and will issue a violation if the
policy would be violated by the write method call. Otherwise, it returns and the original write
method is executed. After it completes, RFileSystem.postWrite is called. This method contains
the code that increments bytes_written.

anAppMain aFileOutputStream

new

write(byte[])

anAppMain albw.FileOutputStream

new

write(byte[])

Original Execution Transformed Execution

anRFile anRFileSystem

new

preWrite

postWrite

o_write

orig new

Figure 3. Interaction diagram for enforcing LimitBytesWritten.

For an explanation of the interaction diagram notation see [Gamma95]. The gray objects are
classes modified by Naccio. The black objects are classes generated by Naccio.

 29

Chapter 3
Defining Safety Policies

This chapter describes how Naccio is used to define safety policies. For standard policies, we
consider the resource descriptions and platform interface to be a fixed part of the system and
express a policy only in terms of resource use constraints. Standard polices are portable across
Naccio implementation platforms. The standard resources are chosen so that many useful safety
policies can be defined as standard safety policies. This includes policies that place access
constraints on system resources such as reading and writing files and opening network
connections, and policies that place limits on consumption such as the number of files that may
be touched or the number of bytes that may be written to the file system. This chapter discusses
resource descriptions, specifying safety policies that constraint resource manipulations, the
contents of the standard resource library and the limits on expressiveness for standard safety
policies. In the next chapter, we discuss how a platform interface is used to specify a platform in
terms of how it manipulates resources and consider policies that can be expressed by changing
the platform interface.

3.1 Resource Descriptions

A program runs by executing a sequence of instructions. Those instructions modify the state of
the processor and may affect devices attached to the machine such as its hard drive, network
connection and display. We can view everything a program can manipulate as a resource. A
safety policy imposes constraints on how a program manipulates resources. In order to define a
safety policy, we need a precise way of referring to resource manipulations.

Resource descriptions provide a way to identify resources and describe ways they are
manipulated. Examples of resources include files, network connections, threads and displays;
examples of manipulations are writing ten bytes to a file, opening a network connection to port 80
on naccio.lcs.mit.edu, increasing the priority of a thread, or opening a window. Resource
descriptions are written in a platform-independent language, but they may describe platform-
specific resources such as the Windows registry. Naccio includes a set of standard resource
descriptions that encompass the resource manipulations that are common on nearly all platforms
and are relevant for many security policies.

We describe resources by listing their operations. Typical resource descriptions have no state or
implementation. They are merely hooks for use in defining safety policies. Resource
descriptions may use primitive types including int, float and immutable Strings. These types are
defined by Naccio to have the expected semantics. The meaning of a resource operation is
indicated by informal documentation. This documentation should be clear and precise to the
policy author, but is not sufficiently formal to be processed by a machine.

 30

Policy authors read resource descriptions, but do not need to modify them for typical policies. A
policy is expressed by associating checking code with resource operations. The essential promise
is that a transformed program will invoke the related resource operation with the correct
arguments whenever a particular event occurs. It is up to the policy compiler and platform
interface to ensure that this is the case.

Figure 4 shows two resource descriptions related to the file system. It declares the RFileSystem
resource object that represents to the file system as a whole, and the RFile resource object that
identifies a single file or directory. The RFileSystem resource has operations that correspond to
manipulating files and directories. The RFile resource only contains a constructor for creating a
resource object that identifies a particular file. The global modifier indicates that only one
RFileSystem instance exists for an execution6. Resources declared without a global modifier are
associated with a particular run-time object. Most of the RFileSystem operations take an RFile
parameter to identify a particular file. Dividing a resource into a global resource for the actual
manipulations and instance resources for identifying resources is a common paradigm. This
division makes it easy to write policies that constrain system-wide resource use (for example, the
total number of files that are opened), but provides an abstract way to identify specific objects
such as files.

3.1.1 Resource Operations

The body of a resource description is a list of operations and groups. Each operation corresponds
to a particular way of manipulating a resource. For example, the openRead operation
corresponds to opening a particular file for reading. Its documentation prescribes that openRead
is called before a file is opened for reading. It takes a parameter of type RFile that represents the
file being opened.

The documentation associated with each resource operation must be precise enough so that policy
authors can write policies that behave as expected. However, it should not be over specified in
ways that prevent it from being applicable on different platforms. For example, what it means to
open a file is a platform-specific notion. The essence of the open operations is given by the
documentation for the read and write operations that indicate the relevant open operation must be
called first. Platform-specific documentation may be necessary in some cases to clarify what
resource operations mean. Given reasonable choices, however, policies can be reused across
platforms with their intended meaning.

Resource manipulations may be split into more than one resource operation. For example,
reading is split into the preRead and postRead operations. This division allows more precise
safety policies to be expressed. Pre-operations allow necessary safety checks to be performed
before the action takes place, while post-operations can be used to maintain state and perform
additional checks after the action has been completed and more information is available. For this
example, the actual number of bytes read may not be known until after the system call that does
the read has completed.

6 For now, we consider an execution to be all activity within a process, so that all applets running within a
Java virtual machine are treated as part of the same execution by global resources. Section 9.3 discusses
how deployments might define the scope of a resource differently.

 31

global resource RFileSystem
 operations
 initialize () Called when execution starts.
 terminate () Called immediately before execution ends.

 openRead (file: RFile) Called before file is opened for reading.
 openAppend (file: RFile) Called before file is opened for appending.
 openCreate (file: RFile) Called before file is created for writing. At this point in the
 execution, file must not exist..
 openOverwrite (file: RFile) Called before file is opened for writing. At this point in the
 execution, file exists.
 close (file: RFile) Called before file is closed.

 preDelete (file: RFile) Called before file is deleted.
 postDelete (file: RFile) Called after file is deleted.

 renameNew (file: RFile, newfile: RFile) Called before file is renamed to new file newfile. At this
 point in the exection, newfile must not exist.
 renameReplace (file: RFile, newfile: RFile) Called before file is renamed to existing file newfile.

 makeDirectory (file: RFile) Called before creating new directory file.

 preWrite (file: RFile, n: int) Called before up to n bytes are written to file; file must have
 previously been passed to openCreate, openOverwrite
 or openAppend.
 postWrite (file: RFile, n: int) Called after exactly n bytes were written to file.

 preRead (file: RFile, n: int) Called before up to n bytes are read from file; file must
 have previously been passed to openRead.
 postRead (file: RFile, n: int) Called after exactly n bytes were read from file.

 observeExists (file: RFile) Called before revealing if file exists.
 observeWriteable (file: RFile) Called before revealing if file is writeable.
 observeCreationTime (file: RFile) Called before revealing creation time of file.
 observeList (file: RFile) Called before revealing files in directory file.
 … // other similar observe<X> operations elided

 setCreationTime (file: RFile) Called before changing creation time of file.
 … // other similar set<X> operations elided

 group modifyExistingFile (file: RFile) Called before contents of any existing file are modified.
 openOverwrite, openAppend, preDelete,
 renameNew (file: RFile, newfile: RFile): modifyExistingFile (file),
 renameReplace (file: RFile, newfile: RFile): modifyExistingFile (file),
 renameReplace (file: RFile, newfile: RFile): modifyExistingFile (newfile);

 group modifyFile (file: RFile) Called before any file is altered or created.
 modifyExistingFile, openCreate,
 renameNew (file: RFile, newfile: RFile): modifyFile (newfile);

 group observeProperty (file: RFile) Called before any property of file is revealed.
 observeExists, observeWriteable, observeCreationTime, …;

 … // Other groups elided.

resource RFile
 operations
 RFile (pathname: String) Constructs object corresponding to pathname. Pathname
 is a canonical string that identifies a file.

Figure 4. File System Resources.

 32

The RFile resource has only one operation, a constructor. It takes a string parameter that
identifies a file in some platform-dependent way. The RFile resource objects have no state or
operations provided to obtain information about what actual file a particular RFile object
represents. Policies can add the necessary state and operations to determine properties of an
RFile. Section 3.2.1 illustrates how this is done.

Two special resource operations are not associated with resource manipulations but represent the
beginning and ending of executions. The initialize operation is called at the beginning of
execution, before any program-directed file manipulation is done (file manipulations done by
system initialization code may occur before initialize is called). The terminate operation is called
after all program-directed file manipulations have completed. Most global resources provide
initialize and terminate operations. They provide useful places to attach checking code or to
initialize state associated with checking.

3.1.2 Resource Groups

Resource operations may also be grouped to make it easier to write safety policies. A resource
group is a set of resource operations and other resource groups that correspond to similar
manipulations. Grouping operations makes it easier to define policies that do not depend on
specific manipulations. For example, the observeProperty group encompasses all resource
operations that correspond to observing properties of a file. It includes the observeExists
operation that is called before revealing if the given file exists and several other operations
associated with observing properties of a file. Since some policies need to distinguish between
observing whether a file exists and observing the size of a file, the RFileSystem resource
description should have separate operations corresponding to each manipulation. Since many
policies do not need to distinguish between the different ways of observing file properties, it is
also useful to define a group that encompasses all the file observation operations.

A resource group is defined by listing the operations and groups it contains. All members in a
resource group must map to the parameters of the group. The mapping is given by a function-call
like syntax that calls the group name. Conceptually, the resource operation calls the group in the
way given by the function call. For example, in the modifyExistingFile group list we use

 renameNew (file: RFile, newfile: RFile) : modifyExistingFile (file),

to map rename, which takes two parameters, into the modifyExistingFile group, which takes a
single RFile parameter. Since the only existing file modified by renameNew is the file
corresponding to its first parameter, the group mapping passes this parameter to
modifyExistingFile. For renameReplace, both the file and newfile already exist so two existing
files are modified by the corresponding resource manipulation. The group definition for
modifyExistingFile lists renameReplace twice with different mappings corresponding to each file
modification.

If the group parameters and the member parameters match exactly, listing the operation name
assumes the implicit mapping where the parameters correspond directly. For example, the
observeExists resource operation and observeFile resource group both take one parameter of type
RFile, so listing observeExists is sufficient.

 33

3.2 Safety Properties

A safety property attaches checking code to resource operations or groups. The simplest safety
property specifies that a particular resource manipulation is not permitted. For example,

property NoDeleting {
 check RFileSystem.preDelete (file: RFile) {
 violation (“File deletion prohibited.”);
 }
}

defines a property that issues a violation before an application would delete a file. The
documentation given in the RFileSystem resource description shown in Figure 4 indicates that the
preDelete operation is called before a file is deleted. The body of the check clause calls the
violation function provided by the Naccio library. It will display a dialog box containing the text
of the violation and information on the safety property that is about to be violated. The user is
presented with the option to terminate the execution, or to ignore the violation and allow
execution to continue.

As it is defined, the NoDeleting property is probably not satisfactory. It prevents explicit deletion
of existing files, but does not prevent deleting a file by overwriting its contents or renaming
another file to its name. A more comprehensive property that prevents any modification of
existing files could be defined as:

property NoBashingFiles {
 check RFileSystem.openOverwrite (file: RFile),
 RFileSystem.openAppend (file: RFile),
 RFileSystem.preDelete (file: RFile),
 RFileSystem.renameNew (file: RFile, newfile: RFile),

 RFileSystem.renameReplace (file: RFile, newfile: RFile) {
 violation (“Destructive file manipulation prohibited.”);
 }

}

A simpler definition would use the modifyExistingFile group that groups all resource operations
that alter the contents of existing files:

property NoBashingFiles {
 check RFileSystem.modifyExistingFile (file: RFile) {
 violation (“Destructive file manipulation prohibited.”)
 }
}

Using resource groups makes the property more concise and easier to understand. It also means
the property will not need to be changed if new resource operations are added as long as the
modifyExistingFile group is appropriately amended.

3.2.1 Adding State

One problem with these properties is that the violation text provides no useful information about
what file is being manipulated. The user cannot tell the difference between an execution that is
about to alter a junk file and one that is about to alter an important file. As is, it is impossible to
do this by modifying only the check action since the RFile object passed to the resource
operations does not contain any information about the file it corresponds to.

 34

In order to track this information, state must be added to the RFile resource. Naccio supports this
using a state block:

stateblock FileNames augments RFile {
 addfield name: String;

 precode RFile (pathname: String) {
 name = pathname;
 }

 helper getName () returns String {
 return name;
 }
}

This augments the RFile object with name, a String field representing the name of the file. The
precode block associated with the RFile constructor sets name to the value of its parameter, a
String that canonically identifies a particular file. This constructor is called to create an RFile
object before any operation that requires it is called. Since all RFile objects are created using this
constructor, the name is available wherever an RFile object is used. Safety properties can refer to
the name of an RFile object rfile, using rfile.name or by calling the helper method getName. It is
useful to keep the state maintenance and safety property checking code separate, since many
safety properties use the same state.

Figure 5 shows the NoBashingFiles property modified to use the file name information to produce
a more helpful violation message. The requires clause identifies the state block that defined
RFile.getName. The state block is defined in a separate file that is found using a naming
convention. Properties can include multiple state blocks as long as multiple state blocks do not
use the same field or helper routine name.

property NoBashingFiles {
 requires FileNames;
 check RFileSystem.modifyExistingFile (file: RFile) {
 violation (“Destructive manipulation of file:” + file.getName ());
 }
}

Figure 5. NoBashingFiles property.

3.2.2 Use Limits
State can be also be used to make policies more precise. For example, a property based on
NoBashingFiles could do a test on the file name to allow modification of files in the /tmp/
directory but prohibit all other modifications of existing files. State can also be used to define
policies that place limits on the amount of a resource that may be used over the course of an
execution. For example, the LimitBytesWritten property shown in Figure 6 places a limit on the
total number of bytes that may be written to the file system.

To enforce a limit on the number of bytes that may be written, the property must keep track of the
total number of bytes written. The TrackBytesWritten state block does this by adding a field to
the RFileSystem resource and defining a postcode action for the write operation. The body of the
postcode action will happen after all checking code associated with the resource operation.
Hence, when bytes_written is used in the check action of LimitBytesWritten, its value is the total
number of bytes written already not including the upcoming call. After all the checking code has
executed, the value is updated to account for the upcoming write.

 35

stateblock TrackBytesWritten augments RFileSystem {
 addfield bytes_written: int = 0;
 postcode postWrite (file: RFile, n: int) {
 bytes_written += n;
 }
}

property LimitBytesWritten (limit: int) {
 requires TrackBytesWritten, FileNames;
 check RFileSystem.preWrite (file: RFile, n: int) {
 if (bytes_written + n > limit)
 violation ("Attempt to write more than " + limit + " bytes. Already written " +
 bytes_written + " bytes, writing up to " + n + " more to " + file.getName () + ".");
 }
}

Figure 6. LimitBytesWritten Safety Property.

3.2.3 Composing Properties

This simplest way to combine properties is to intersect them using the & operator. The
intersection of two safety policies allows an execution only if both policies allow the execution.
That is to say, the intersection of one or more safety properties issues a violation whenever any of
the individual properties would issue a violation. If more than one of the properties would issue a
violation for the same resource operation, the violation reported by the first property appears first.
Intersecting safety properties is equivalent to merging all the check clauses into one property in
the same order they were intersected.

Another way to combine two safety properties is to weaken a property with permissions that
override violations. All the previous properties have been expressed negatively, in terms of
issuing violations before a prohibited manipulation is about to happen and implicitly allowing
everything else. An alternative way of defining properties is to assume nothing is allowed unless
it is explicitly permitted. This has the advantage that is it less likely for a policy author to
accidentally allow something dangerous. Conversely, it is more likely that a policy author will
forget to allow something that is needed by a harmless program. To avoid arguments about
which approach is preferable, Naccio supports both and provides rich enough property
combination mechanisms to allow both positive and negative properties to be used.

A permission uses allow to indicate that the given resource manipulation is permitted. For
example,

permission AllowModifyDir (path: String) {
 requires FileNames;
 check RFileSystem.modifyExistingFile (file: RFile) {
 if (NCheck.inDirectory (file.getName (), path)) allow ();
 }
}

allows files in the directory identified by path to be modified. The inDirectory library function
does a comparison to determine if the file is contained within the directory identified by path. A
property cannot use both allow and violation.

By default, Naccio policies assume everything is allowed. Hence, a permission only makes sense
when it is combined with a negative property. The universal negative policy would associate a
check clause with every resource operation that simply issues a violation (this is what the

 36

DisallowAll policy used in Section 8.4 does). Defining policies in terms of permissions that
override the universal negative policy would satisfy the principle of fail safety that recommends
disallowing all security-relevant behavior that is not explicitly allowed [Saltzer75]. This
approach makes sense when there is a small, fixed set of security-relevant behavior, but becomes
cumbersome when the class of behavior considered to be security-relevant is large and flexible.
It would be undesirable if all policies had to be rewritten when a new resource is added. Since
this is expected to be fairly common with Naccio, Naccio’s default is to allow everything that is
not explicitly prohibited.

Hence, permissions are only useful in a context where some manipulations are already prohibited.
When a property is weakened by a permission, violations in the property are overridden by
allowances in the permission. For example,

property NoBashingExceptTmp {
 (NoBashingFiles weaken AllowModifyDir (“/tmp/”)) weaken AllowModifyDir (“/u/evs/tmp/”)
}

defines a property that issues a violation whenever a file not in the /tmp/ or /u/evs/tmp/ directories
is modified. The allowances in a positive property override violations in a negative property. If
the weakening property calls allow on a particular invocation of a resource operation, no
violations will be issued from that resource operation. Another way to express the same property
would be to compose the positive properties first:

property NoBashingExceptTmp {
 NoBashingFiles weaken (AllowModifyDir (“/tmp/”) & AllowModifyDir (“/u/evs/tmp/”))
}

Weakening is useful for combining new policies with standard policies that describe commonly
allowed behavior. For example, JDKFilePermissions is a standard set of permissions that allow
files loaded by the JDK initializations and AWT to be read. A new safety policy that prevents
reading files except those loaded by the JDK initializations can be expressed easily by writing a
no reading property that disallows all file reading and weakening it with JDKFilePermissions.

In order to enforce a policy on an execution, all parameters must be bound to real values. This is
done by instantiating all parameterized properties with parameters. We call a property in which
all parameters are bound a resource use policy. All parameters must be manifest constants.
Figure 7 shows the LimitWrite resource use policy that disallows modification of any existing file
or writing more than one million bytes to the file system. Properties that have no parameters can
also be used directly as resource use policies.

policy LimitWrite {
 NoBashingFiles & LimitBytesWritten (1000000)
}

Figure 7. LimitWrite resource use policy.

3.3 Standard Resource Library

The standard resource library is a set of resource descriptions that correspond to the security-
relevant resource manipulations that are common to most modern platforms. The standard
resource library does not attempt to exhaustively cover all possible ways of manipulating
resources, but instead is designed to include the manipulations commonly used in security
policies that are universal enough to apply to most platforms. Since all Naccio implementations
provide the same standard resource library, policies written in terms of these resources are
portable across different platforms.

 37

The standard resource library includes the RFile and RFileSystem resources introduced in Section
3.1, as well as resources corresponding to the network, the display, system threads, audio devices,
and the system environment. It contains a total of 122 resource operations in thirteen resource
descriptions. Additional resources may be needed as new devices are attached to the system. For
example, if a camera is used a corresponding resource should provide operations that correspond
to taking and transmitting pictures. There may also be resources that are unique to a particular
platform. For example, Naccio/Win32 includes a resource representing the Windows registry.

Network

In most modern operating systems, the network can be used in three distinct ways: a persistent
connection can be created to a remote host, and data sent and received through it; a server socket
can be created to listen for incoming connections; and individual datagram packets may be sent or
received without a persistent connection. Since policies should be able to distinguish between
each type of network use, we provide different resource objects for identifying them. Conversely,
the network operations should make it easy to write network use policies that place restrictions on
the remote hosts that may be contacted and limits on the number of bytes transmitted. To support
easy definition of both kinds of policies, the network resources provide operations corresponding
to the different types of network connections, but also groups operations so policies that do not
depend on the type of network connection can be defined concisely.

The network resources are shown in Figure 8. Unlike the file system resources, the
RNetConnection resource maintains some state and provides an observer. An observer is a
routine that reveals some information about a resource but does not modify anything. The
RNetConnection stores the local and remote addresses of the connection in state variables when
an RNetConnection is constructed. The observers make these values available through a function
call.

The observers can be used in resource group member lists to map members to the group
operation. This is done in the definition of the connectRemoteAddress resource group that takes
an RNetAddress parameter representing the remote address. To make the preOpenConnection
resource operation match the parameter types of the connectionRemoteAddress group, we need
to convert its RNetConnection parameter into the appropriate RNetAddress object corresponding
to the remote address. We do this by calling the getRemoteAddress observer defined by the
RNetConnection resource.

Display

The display is represented by the RDisplay global resource, and RWindow resource objects
identify individual windows. The main security threats involving the display are denial of service
annoyance attacks that take over the screen with superfluous windows. A more serious threat is
attacks that create rogue windows that appear to be part of a legitimate application and trick the
user into providing trusted information (such as a password) to a malicious program. This threat
can be mitigated by a policy that requires that all windows created from untrusted programs have
a distinctive appearance that distinguishes them from trustworthy windows.

The RDisplay resource includes operations for creating new windows and for setting properties of
windows or manipulating existing windows. It also contains operations that correspond to
enabling a window to receive events from the mouse or keyboard and receiving those events.
These could instead be treated as separate resources, but since events are usually directed at a
window it is convenient to include them with the display. By using a state block to track user
input events, policies can determine if a resource manipulation is permitted based on the history
of user activity. Since windowing systems are likely to vary more across platforms than other

 38

global resource RNetwork
 operations
 initialize () Called at the beginning of an execution.

 terminate () Called immediately before execution terminates.

 preOpenConnection (connection: RNetConnection) Called before opening connection.
 postOpenConnection (connection: RNetConnection) Called after opening connection.
 closeConnection (connection: RNetConnection) Called after closing connection.

 preOpenListener (listener: RNetListener) Called before opening listener for server connections.
 postOpenListener (listener: RNetListener) Called after opening listener for server connections.
 preAccept (listener: RNetListener) Called before accepting a connection using listener.
 postAccept (listener: RNetListener, connection: RNetConnection)
 Called after accepting connection using listener.
 closeListener (listener: RNetListener) Called after closing listener.

 openDatagramPort (port: RNetListener) Called before opening port for datagrams.
 closeDatagramPort (port: RNetListener) Called before closing port.

 preSendDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int)
 Called before up to nbytes are sent from local to remote using a datagram.
 preSendConnection (connection: RNetConnection, nbytes: int)
 Called before up to nbytes are sent through connection.

 preReceiveDatagram (local: RNetAddress, nbytes: int)
 Called before a datagram may be received at local.
 postReceiveDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int)
 Called after nbytes are received from remote to local.

 ... // other operations for postSend, preReceive and postReceive for datagrams and connections elided

 group connectRemoteAddress (address: RNetAddress) Called before any contact with address.
 preOpenConnection (connection: RNetConnection)
 : connectRemoteAddress (connection.getRemoteAddress ()),
 postAccept (listener: RNetListener, connection: RNetConnection)
 : connectRemoteAddress (connection.getRemoteAddress ()),
 preSendDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int)
 : connectRemoteAddress (remote),
 postReceiveDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int)
 : connectRemoteAddress (remote); // can’t know remote before receive, must check after

 group preSend (remote: RNetAddress, nbytes: int)
 preSendDatagram (local: RNetAddress, remote: RNetAddress, nbytes: int)
 : preSend (remote, nbytes),
 preSendConnection (connection: RNetConnection, nbytes: int)
 : preSend (connection.getRemoteAddress (), nbytes);

 … // similar groups for postSend, preReceive and postReceive elided
 … // operations related to multicasting and revealing hostnames elided.

resource RNetConnection
 state local, remote: RNetAddress; // Identfy the local and remote addresses for this connection.
 operations
 RNetConnection (l: RNetAddress, r: RNetAddress)

Constructs an RNetConnection object for communication between l and r.
 { local = l; remote = r; }
 observers
 getLocalAddress () returns RNetAddress { return local; }
 getRemoteAddress () returns RNetAddress { return remote; }

// RNetAddress and RNetListener not shown.

Figure 8. Network Resources.

 39

resources, it is likely that Naccio implementations will add additional operations to the RDisplay
resource to include platform-specific operations that provide more precise ways of constraining
display use.

Threads

The RSystemThreads global resource provides operations corresponding to manipulating threads.
It includes operations for creating new threads or thread groups, starting and destroying threads,
suspending and resuming threads, changing the priority of a thread, and revealing information
about a thread or thread group. The RThread and RThreadGroup resources are used to identify
threads and groups of related threads.

Audio

The speaker can be used in an annoyance attack. To support policies that constrain its use, the
RAudio global resource contains operations corresponding to ringing the system bell and playing
audio files.

System Environment

The RSystem resource is used to collect operations that do not correspond well to a conceptual
resource. It includes operations for observing and setting environment variables, and is often
extended with platform-specific system operations.

The RSystem resource also includes special initialize and terminate operations that are called at
the beginning of an execution. The RSystem initializer is called before any other global resource
initializers. The RSystem terminator is called after every other global resource terminator. The
RSystem initializer is also unique in that it has an argument that passes in the command-line
arguments. A policy can use a state block that attaches checking code to RSystem.initialize to
record these values, and then use the value of the command-line arguments to determine if a
resource manipulation is permitted.

3.4 Policy Expressiveness

In standard safety policies, the effects of checking code are limited to raising violations,
modifying internal state, and doing computations that are invisible to the user. The policy has no
noticeable effect on an execution (other than a performance penalty) unless a violation is
detected. We can view a Naccio standard safety policy as a predicate on an execution – it is true
if no violation is issued, and false if a violation is issued.

Schneider defines Class EM, a class of enforcement mechanisms that work by monitoring a target
system and terminating any execution that is about to violate the policy [Schneider98]. Security
kernels, reference monitors, and nearly all run-time based enforcement mechanisms are in Class
EM. The set of policies that can be enforced by mechanisms in Class EM is defined as those
policies that can be expressed as predicates on execution prefixes.

A security policy is defined as a predicate on a set of executions. A program satisfies a security
policy if the predicate is satisfied by the set of all possible executions it can produce. Policies
like information flow require knowledge of more than one execution, since it is not clear whether
a particular execution of a program reveals information without knowing what other executions
do. Hence, these policies cannot be enforced by mechanisms in Class EM. Enforcing these
policies requires static analysis of the program text.

 40

Those security policies that can be defined as a predicate on a single execution are known as
security properties. Not all security properties, however, are in Class EM, since they may depend
on knowing the future. For example, liveness properties depend on knowing something must
happen at some future point in an execution. Class EM mechanisms cannot enforce liveness
properties since they can only probe what has already happened.

The subset of security properties that can be defined by looking only at the past and present are
defined to be safety properties. A safety property is a predicate on an execution prefix. If it is
false at some point in an execution, it is false for all following execution points.

The policies that can be enforced using an enforcement mechanism in Class EM are a subset of
safety properties. The subset is defined by how much information the enforcement mechanism
can probe. An enforcement mechanism that can probe all system information after every
instruction could enforce all safety properties.

To satisfy the requirements of class EM, the probe should have no effect on the system and
should be completely unnoticeable by the executing program. This is not possible if the probe is
implemented in software running on the same machine as the program it is probing. At a
minimum, it uses CPU cycles that would otherwise be available to the execution. In some cases,
it may need to manipulate resource also. For example, to enforce the NoBashingFiles property
introduced in Section 3.2 using Naccio/JavaVM, it may be necessary to examine the file system
to determine if a file already exists (Section 4.2.2 shows how the platform interface is written to
do this). We consider resource manipulations done by the checking code to be separate from the
behavior of the program. These manipulations are done without any checking enforced. This
means policy authors must be wary that an attacker cannot exploit code introduced to do
checking.

Aside from the side effects introduced by probing, Naccio standard safety policies are in Class
EM. They observe the behavior of an execution through resource operations and issue a violation
to terminate execution when a policy violation is about to occur. The subset of safety properties
that can be defined as Naccio standard safety properties is defined by the resource operations
defined by the standard resource library. Naccio can detect violations and observe and modify
state only at execution points corresponding to resource operations, and can only observe system
information available through parameters to resource operations (as well as some global system
information that can be observed through calls to Naccio library functions).

Certain safety properties cannot be defined using the standard resources. For example, since
RFileSystem.preWrite takes an integer parameter revealing the number of bytes to be written but
does not have a parameter corresponding to the actual data written, we cannot write a policy that
constrains the actual values of bytes that may be written. In the next chapter, we describe how
resource operations are given meaning using a platform interface and how new resource
operations and safety policies can be defined by altering the platform interface. In addition, by
removing some of the restrictions placed on standard safety policies, Naccio can be used to define
and enforce policies that alter program behavior. Because these policies do not simply probe
system information and decide to terminate an execution, they do not fit Schneider’s definition of
a security policy. As a result, Naccio is not strictly in Class EM.

 41

Chapter 4
Describing Platforms

The previous chapter showed how a safety policy is defined in terms of resource descriptions. To
have meaning, there must be a way of viewing the way a particular platform manipulates actual
resources in terms of those abstract resource descriptions. This is done using a platform interface,
an operational specification of a platform in terms of its resource manipulations. Naccio
implementations include a platform interface that describes the platform in terms of the standard
resource library. Changing the platform interface allows new resource operations to be defined
and more safety policies to be described and enforced. We call policies that are defined by
altering the platform interface extended safety policies.

4.1 Platform Interfaces

In order to enforce a policy defined in terms of abstract resources, we need a way to model an
execution in terms of those resources. The platform interface provides an operational
specification of a concrete execution platform in terms of a set of resource descriptions. A
different platform interface is needed for each execution platform and each set of resource
descriptions. The platform interface provides a way to map events during a program execution to
abstract resource manipulations. Since the specification is operational, it is easy for the policy
compiler to convert it to code that calls the resource operations in the appropriate way.

We can view the platform interface as a probe that can see certain system events. Based on those
events, it can execute bookkeeping code and call abstract resource operations that perform the
checking necessary to enforce a policy. A Naccio implementation determines what events are
visible to the probe, and where in the execution chain it sees them. The events visible determine
what resource operations can be defined and this limits the class of policies that can be expressed
and enforced. For example, if the platform interface can only see manipulations of the file system
then resource operations relating to manipulating the network cannot be defined. If the platform
interface can see the entire state of the machine before and after every instruction, then all
policies in class EM can be enforced. Policies defined using a platform interface that can see all
system events, however, are likely to be cumbersome and expensive to enforce. Instead, the
platform interface is defined at a level that allows only certain events to be seen. For example, a
platform interface might be defined in terms of calls in the system API. This would make the
platform interface easier to create and understand, and would simplify the work of the policy
compiler and program transformer. It would not support the definition or enforcement of policies
that constrain resources that can be manipulated without going through system API calls, such as
referencing a memory location.

A Naccio implementation must also determine where in the execution chain the platform
interface probe is done. This level determines the trust boundary between what is described by
the platform interface and what is considered part of the program. Operations below the level

 42

described by the platform interface execute without safety checking and are assumed to
manipulate resources in the way specified by the platform interface. Operations above the level
described by the platform interface are transformed to perform the safety checking defined by the
resource use policy. The lowest conceivable place for the platform interface is at the level of
physical hardware devices. For example, a disk drive controller could be designed to call a
resource operation before writing a bit to the disk or a firewall could monitor network traffic and
call appropriate resource operations. This would require hardware support not readily available
today. If it were available, however, this would allow safety policies to be enforced without
trusting anything other than the hardware controllers. The difficulty would be mapping these
events to resource operations. The disk controller can provide information about which segment
on the disk is being written, but probably cannot convert that to a meaningful pathname. This
requires operating system support, and would expand the trusted computing base to include the
relevant system code. Another difficulty with a hardware-level platform interface is the problem
of associating a particular manipulation with the program that caused it. Again, the hardware
traps will need to rely on operating system level code to map requested actions to the program
instigating them and the appropriate safety policy. This would require substantial run-time
overhead. Since the effective policy is not known until the application is determined, the
overhead is required even for simple policies or unconstrained executions. For most situations,
hardware-level safety checking is not practical or appropriate. There are situations, however,
where safety is crucial enough that it is desirable to place the safety checking at as low a level as
possible so that bugs in the system library do not lead to policy violations. For example, it would
be appropriate for medical devices (such as the Therac-25 mentioned in Section 1.1) with custom
hardware and control software.

The next level to consider for the platform interface is at the level of machine instructions. A
platform interface at this level would allow any instruction to be mapped to resource operations.
Trust would be confined to the behavior of individual machine instructions, although as with the
hardware-level checking, it is likely that some information provided by the operating system
would be necessary in mapping instructions to meaningful objects. The main problem with
defining a platform interface at the level of machine instructions is that it would be hard to
produce and understand. Recognizing all sequences of instructions that represent a function call,
and defining a platform interface in terms of those instruction sequences is likely to be a
cumbersome and error-prone task.

Above the individual machine instructions, we can consider a platform interface at the level of the
system API. Typical modern operating systems have a protected kernel, and allow programs to
manipulate most resources only through calls to routines provided by that kernel. The system
API provides a convenient place for the platform interface since it is usually well documented
and structured to provide an abstract way to manipulate resources. Placing the platform interface
at this level has other advantages in implementing the policy enforcement mechanisms. Unlike
lower-level platform interfaces that would require correspondingly low-level transformations of
both the program code and system API code to enforce a policy, a policy defined at the level of
the system API can be enforced by interposing checking code at system call boundaries. This
requires that the execution platform provides a clear distinction between the system API and
application code, and that this interface be maintained securely. One disadvantage of placing the
platform interface at this level are that certain resource manipulations, such as allocating or
referencing memory, may not be visible through calls to the system API. Another problem is that
we must trust to system API implementation to manipulate resources in the way described by the
platform interface. This makes the system API part of the trusted computing base and means
attackers can exploit bugs in the system API to circumvent the safety policy. The other issue with
a platform interface at the level of the system API is that it is necessary to ensure that programs
cannot manipulate constrained resources without using the standard system API. Despite these

 43

disadvantages, the system API seems to be the best place for the platform interface for most
Naccio implementations. Both of our prototype implementations use platform interfaces at the
level of a system API. Naccio/JavaVM uses a platform interface that describes the Java API
(classes in the java. packages) and Naccio/Win32 uses a platform interface at the level of the
Win32 API. Sections 4.2 and 4.3 describe these platform interfaces.

We can also consider platform interfaces at a higher level. A platform interface could describe a
commonly used library such as Microsoft Foundation Classes (MFC) that is implemented using
the Win32 API. This would support more higher-level distinctions (and hence, more precise
policies) than could be written with a platform interface at a lower level. For example, we could
use a platform interface at the level of MFC to define different resource operations corresponding
to opening a file selected by the user using a standard dialog box and opening a file without user
prompting. Providing a similar distinction at a lower level would be possible, but very awkward.
It would be necessary to examine the properties of the window to see if it looks like a standard
file request dialog and the input from the user to determine what file was selected. Another
option would be to write a platform interface that describes application level events. This would
allow policies to be defined in terms of objects that are meaningful at the application level but not
at the system such as application data structures. The problem with higher-level platform
interfaces is that they only work for a subset of programs that use those higher-level libraries.
Programs that manipulate constrained resources in other ways must be disallowed. This could be
done by a static analysis that the code never uses system API calls directly. It would summarily
reject many harmless programs, however, simply because they were not written using the higher-
level library.

4.2 Java API Platform Interface

Naccio/JavaVM enforces safety policies on executions of Java programs that are collections of
JavaVM classes. To enforce Naccio policies on Java classes, we need a platform interface that
maps a Java execution to a sequence of abstract resource operations.

4.2.1 Platform Interface Level

Naccio/JavaVM uses a platform interface at the level of the Java API. Another reasonable option
would be to put the platform interface at the level of individual byte code instructions. This
would allow for resources to be described that correspond to manipulations done below the level
of the Java API, such as memory references. All high-level system resources including the file
system, network, and display are accessible to Java programs only through native methods. If an
untrusted program is not permitted to install its own native methods or call native methods
installed by other programs, the only way it can manipulate these resources is through calls to the
Java API. Placing the platform interface at the level of the Java API allows nearly all security-
relevant manipulations to be constrained and allows the platform interface to be described at a
well-documented and well-defined level. Further, a platform interface at the level of the Java
API provides a convenient place to introduce wrappers.

To define the platform interface, we could examine the API specification and write a wrapper for
each API routine that describes its resource usage. This would involve substantial work, and
depend on the API specification being correct and describing resource usage of all routines in
sufficient detail. We can simplify the task of writing a Java API platform interface, however, by
noting that all relevant resource manipulations must eventually be done by native methods. This
means a platform interface for the Java API could describe the resource manipulations done by
native methods explicitly, and determine the resource manipulations done by other routines based
on their code (either statically or at run-time). This would limit the amount of work necessary to

 44

write the platform interface to describing the native methods in a particular Java API library
implementation.7

A problem with this approach is that it ties the platform interface closely to a particular API
implementation, instead of to the specification of the Java API. Since we must describe private
native methods, the same platform interface could not be reused with a different implementation
of the Java API. The other problem with specifying the platform interface at the level of native
methods is that it may be difficult to determine enough information about the context of a call to
pass appropriate information to the resource operations.

Instead, the Naccio/JavaVM platform interface describes only the specified parts of the Java API.
It does not describe any private API methods since the Java API does not specify these. It does,
however, support a pass-through semantics so that not every API routine needs to be described
explicitly. For routines that are not explicitly described, the routines they call are checked as if
they were called directly by the untrusted program. We can use implicit specifications only for
routines that do not directly or indirectly call any native methods whose behavior is not explicitly
described. Hence, the platform interface must explicitly describe any API routine that has a
native implementation, that calls a private native method directly, or that calls a private native
method indirectly through calls to other routines that are not explicitly specified (these routines
must be private, otherwise they would have be explicitly specified). Other API routines may be
described implicitly by passing checking through to the routines they call. This limits the size of
the platform interface since most routines can be described implicitly. It does, unfortunately, tie
our platform interface to a particular implementation of the API. It should be easy to adapt it to a
different implementation, however. All that is required is to write wrappers for any routines that
are specified implicitly in the old implementation but implemented using native methods or
indirect calls to unspecified native methods in the new implementation. This is preferable to
requiring that the platform interface explicitly describe every routine of the Java API.

The code body of member wrappers is written in a simple Java-like language. This code may call
resource operations, call Naccio library routines, use and set wrapper state, and do computation
using that state, parameters, and local variables. It may use if-else statements to control flow, but
not while or for loops. When a wrapper calls a resource operation, the necessary safety checking
is performed. If the policy would be violated, the user has the opportunity to terminate execution.
The hash token (#) marks the execution point where the original routine is called. Hence,
resource operations that correspond to events that occur before the described resource
manipulation must be called before the hash mark and resource operations that correspond to
events that occur after the described resource manipulation must be called after the hash mark.
The return value of the call to the original routine is stored in a local variable named result and
may be used in the remainder of the wrapper body. For example, the wrapper for
java.io.File.delete is defined by:

 wrapper boolean delete () {
 RFileSystem.preDelete (rfile);
 #;
 if (result) { RFileSystem.postDelete (rfile); }
 }

It calls preDelete before the delete method executes. The rfile argument is an instance variable of
type RFile introduced by the platform interface. If the checking code associated with preDelete

7 In fact, Sun’s implementation of the JDK 1.1.6 API uses 567 native methods.

 45

issues a violation and the user chooses to terminate the execution, the actual delete method is
never executed. Otherwise, the delete method is executed and its boolean return value is
identified by the local variable result. If the call returned true (meaning the deletion completed
successfully), the postDelete operation is called. If this completes without issuing a violation, the
result is returned and execution continues normally after the call.

4.2.2 File Classes

Figure 9 shows the platform interface wrapper for the java.io.File class. For each visible routine
defined by java.io.File, the class wrapper either provides a wrapper that describes the behavior of
the member in terms of its effects on abstract resources, or declares the member to be a
passwrapper. The resource use of the passwrapper routines is accounted for implicitly by the
routines their implementation calls. Checking is done for these routines as though they were
called from the application directly.

The java.io.File wrapper adds a state variable, rfile, of type RFile that will be associated with each
java.io.File object. This state is used to map a java.io.File object to a resource object that
identifies the corresponding actual file. It is up to the member wrappers to maintain this state.
Hence, each constructor initializes it to an RFile object. Instead of constructing a new object
directly, RFile objects are maintained using the RFileMap helper class (shown in Figure 10). This
ensures that the same RFile object is used for all manipulations on the same concrete file even if
there are multiple java.io.File or java.io.FileDescriptor objects that refer to that file. Storing the
rfile state is not strictly necessary, since the wrappers could use the file map to obtain the
appropriate RFile object every time it is needed. Keeping the rfile in an instance variable,
however, is likely to have better performance that repeatedly looking it up in the file map.

Routines that are implemented without calling native methods are declared as passwrappers.
This avoids the need to understand the behavior of these members in detail, but means the
platform interface is tied to a particular Java API implementation (in this case, Sun’s JDK 1.1.6).
If another implementation used a native method to implement getAbsolutePath or called an
unwrapped native method in its implementation, the platform interface would need to be modified
to explicitly describe how it manipulates resources. When Naccio/JavaVM processes a platform
interface, it issues warnings if a passwrapper member relies on an unwrapped native method
(either by calling it directly, or by calling unwrapped non-native methods that indirectly call an
unwrapped native method). Since all visible native methods must have wrappers, this is only
possible if the implementation of a passwrapper member calls a private native method directly or
through calls to other unwrapped routines.

The declaration of the java.io.File wrapper uses requiredif clauses. These clauses are not
necessary for correctness but are used by the policy compiler to eliminate unnecessary wrappers
to reduce run-time checking overhead. The clause requiredif RFile, RFileSystem in the
declaration of the java.io.File wrapper indicates that the wrapper is only necessary if either the
RFile or RFileSystem resources have meaningful checking. Without this clause, the policy
compiler would not be able to determine this automatically and would generate a policy-
enforcing library that requires more run-time overhead than should be necessary. Section 5.2
describes how the policy compiler analyzes the platform interface in conjunction with the
resource use policy to determine which wrappers are necessary.

 46

wrapper java.io.File
 requiredif RFile, RFileSystem {
 requires RFileMap;
 state RFile rfile;

 wrapper File (String path) {
 #; rfile = RFileMap.lookupAdd (this);
 }

 wrapper File (String path, String name) {
 #; rfile = RFileMap.lookupAdd (this);
 }

 wrapper File (java.io.File dir, String name) {
 #; rfile = RFileMap.lookupAdd (this);
 }

 passwrapper String getAbsolutePath();
 passwrapper String getCanonicalPath();
 passwrapper String getParent();

 wrapper boolean exists () {
 RFileSystem.observeExists (rfile); #;
 }

 wrapper boolean canWrite () {
 RFileSystem.observeWriteable (rfile); #;
 }

 wrapper boolean canRead () {
 RFileSystem.observeReadable (rfile); #;
 }

 wrapper boolean isFile () {
 RFileSystem.observeIsFile (rfile); #;
 }

 wrapper boolean isDirectory () {
 RFileSystem.observeIsFile (rfile); #;
 }

wrapper long lastModified () {
 RFileSystem.observeLastModifiedTime (rfile);
 #;
}

wrapper long length () {
 RFileSystem.observeLength (rfile); #;
}

wrapper boolean mkdir () {
 RFileSystem.makeDirectory (rfile); #;
}

passwrapper boolean mkdirs ();

wrapper boolean renameTo (java.io.File dest) {
 if (dest.exists ())
 RFileSystem.renameReplace
 (rfile, dest.rfile);
 else
 RFileSystem.renameNew
 (rfile, dest.rfile);
 #;
}

wrapper String[] list() {
 RFileSystem.observeList (rfile); #;
}

passwrapper String[]
 list (java.io.FilenameFilter filter);

wrapper boolean delete () {
 RFileSystem.preDelete (rfile); #;
 if (result) RFileSystem.postDelete (rfile);
}

}

Figure 9. Platform interface wrapper for java.io.File class.

helper class RFileMap { // Mapping between java.io.File and java.io.FileDescriptor objects and RFile
 static private Hashtable fmap = new Hashtable ();

 public static RFile add (java.io.File f) {
 RFile rf = new RFile (path);
 fmap.put (f.getAbsolutePath (), rf);
 return rf;
 }

 public static void addReference (java.io.FileDescriptor d, RFile f) { fmap.put (d, f); }
 public static RFile lookup (Object f) { return (RFile) fmap.get (f); }

 public static RFile lookupAdd (Object f) {
 RFile rf = lookup (f);
 if (rf == null)
 if (f instanceof java.io.File) rf = add ((java.io.File) f);
 else if (f instanceof java.io.FileDescriptor)
 … // Treat file descriptors specially (standard streams are null).
 return rf;
 }
}

Figure 10. RFileMap helper class.

 47

wrapper java.io.FileOutputStream requiredif RFile, RFileSystem {
 requires java.io.RFileMap;
 state RFile rfile;

 helper void doOpen (java.io.File file) {
 rfile = RFileMap.lookupAdd (file);
 if (file.exists ()) RFileSystem.openOverwrite (rfile);
 else RFileSystem.openCreate (rfile);
 }

 wrapper FileOutputStream (java.io.File file) { doOpen (file); #; }
 wrapper FileOutputStream (String file) { doOpen (new java.io.File (file)); #; }

 wrapper FileOutputStream (java.io.FileDescriptor file) {
 rfile = RFileMap.lookup (file);
 if (rfile != null) RFileSystem.openOverwrite (rfile); // File must already exist since its a descriptor
 #;
 }

 wrapper FileOutputStream (String file, boolean append) {
 File tmp = new File (file);
 if (append) {
 rflile = RFileMap.lookupAdd (tmp);
 RFileSystem.openAppend (rfile);
 } else
 doOpen (tmp);
 #;
 }

 wrapper void write (int b) {
 // Although Java int’s are four bytes, write only writes the low order byte.
 if (rfile != null) RFileSystem.preWrite (rfile, 1);
 #;
 if (rfile != null) RFileSystem.postWrite (rfile, 1);
 }

 wrapper void write (byte data[]) {
 if (rfile != null) RFileSystem.preWrite (rfile, data.length);
 #;
 if (rfile != null) RFileSystem.postWrite (rfile, data.length);
 }

 wrapper void write (byte b[], int off, int len) {
 if (rfile != null) RFileSystem.preWrite (rfile, len);
 #;
 if (rfile != null) RFileSystem.postWrite (rfile, len);
 }

 wrapper void close () {
 if (rfile != null) RFileSystem.close (rfile); #;
 }

 wrapper java.io.FileDescriptor getFD () {
 #; RFileMap.addReference (result, rfile);
 }
}

Figure 11. Platform Interface wrapper for java.io.FileOutputStream class.

 48

Other Java API classes that manipulate files have wrappers that describe their behavior in terms
of the RFileSystem resource. One example is the java.io.FileOutputStream class, shown in Figure
11. As with java.io.File, the wrapper for java.io.FileOutputStream maintains an RFile object
representing the actual file corresponding to this output stream. This state can be null, if the
FileOutputStream does not correspond to a file (for example, if it is the standard output stream).

Because the RFileSystem resource provides different resource operations for overwriting an
existing file and creating a new file, the FileOutputStream constructors must distinguish between
opening existing and new files. This is done by the doOpen helper method. It calls
java.io.File.exists to determine whether to call the openOverwrite or openCreate resource
operation. Internal routine calls in platform interface wrappers always call the unwrapped
versions of routines. Hence, the call to exists bypasses the wrapper and does no safety checking.

4.2.3 Network Classes

The platform interface for the network classes is less straightforward than it was for the file
classes, since the network resource is manipulated in several different ways and socket
transmissions are done using generic input and output stream classes.

wrapper java.net.Socket {
 requires NRegulatedNetworkInputStream, NRegulatedNetworkOutputStream, SocketHelp;
 state RNetConnection rnc;

 wrapper Socket (String host, int port) {
 rnc = new RNetConnection (new RNetAddress (SocketHelp.getLocalAddress (),
 new RNetAddress (SocketHelp.absoluteName (host), port));
 #;
 rnc.getLocalAddress ().setPort (getLocalPort ()); // Local port is not known until after constructor.
 RNetwork.postOpenConnection (rnc);
 }

 … // Other constructors similar.

 wrapper InputStream getInputStream()
 // Only necessary if preReceive or postReceive does checking.
 requiredif RNetwork.preReceive (RNetAddress, RNetAddress, int),
 RNetwork.preReceive (RNetConnection, int),
 RNetwork.postReceive (RNetAddress, RNetAddress, int),
 RNetwork.postReceive (RNetConnection, int) {
 #;
 result = new NCheckedNetworkInputStream (result, rnc);
 }

 wrapper OutputStream getOutputStream ()
 requiredif RNetwork.preSend (RNetAddress, RNetAddress, int),
 RNetwork.preSend (RNetConnection, int),
 RNetwork.postSend (RNetAddress, RNetAddress, int),
 RNetwork.postSend (RNetConnection, int) {
 #;
 result = new NCheckedNetworkOutputStream (result, rnc);
 }

 … // other methods elided
}

Figure 12. Platform interface for java.net.Socket.

 49

helper class NCheckedNetworkOutputStream extends java.io.FilterOutputStream {
 RNetConnection rnc;

 public NCheckedNetworkOutputStream (OutputStream os, RNetConnection r) {
 super (os);
 rnc = r;
 }

 public void write (int b) throws IOException {
 RNetwork.preSend (rnc,1);
 super.write (b);
 RNetwork.postSend (rnc, 1);
 }

 // Other write methods overrided similarly.
}

Figure 13. NCheckedNetworkOutputStream helper class.

Figure 12 shows the java.net.Socket platform interface. The getInputStream and
getOutputStream methods return stream objects used for sending and receiving data through a
socket. Since the RNetwork resource provides operations corresponding to sending or receiving
bits over the network, the platform interface must ensure that the appropriate resource operations
are invoked when these streams are used. The wrappers for the get stream methods accomplish
this by returning a subclass of InputStream or OutputStream constructed using the result of the
original method and the RNetConnection object. These subclasses call resource operations when
data is received or sent through a network connection. Figure 13 shows excerpts from the
NCheckedNetworkOutputStream helper class; NCheckedNetworkInputStream is similar.

In addition to the persistent stream used by java.net.Socket, the network may be manipulated by
sending or receiving datagram packets and by using server sockets that listen for incoming
connections. The platform interfaces for java.net.DatagramSocket and java.net.ServerSocket
describe the Java API classes corresponding to these manipulations. Other classes such as
java.net.URLConnection also provide routines that can be used to manipulate network
connections, and are described appropriately by the platform interface.

4.2.4 Extended Safety Policies

This section demonstrates how a policy that cannot be defined using the standard resources can
be defined by using an altered platform interface. First, we introduce a standard policy that
places a limit on the rate of network usage. This policy is then improved by modifying the
platform interface.

A safety property that limits the total amount of data sent or received over the network can be
written similarly to the LimitBytesWritten property introduced in Figure 6. Instead of tracking
bytes written to files, this policy would track bytes sent over the network using the RNetwork
preSend and postSend operations. Such a policy would be useful in detecting obviously bad
behavior from programs that are permitted to use the network but not expected to send or receive
a large amount of data. A more generally useful policy would allow for a limit to be placed on
the rate of network usage instead of the total amount. Writing such a policy depends on dividing
time into quanta and keeping track of the number of bytes sent during the current time quantum.
Figure 14 shows a policy that limits the rate of network transmissions by delaying sending. It

 50

prevents the application from sending more than maxBytes bytes over the network in an ms
millisecond time period.8

Although this policy constrains network bandwidth as desired, it is far from satisfactory. If the
preSend operation is called with a higher number of bytes than maxBytes, it leads to a violation
since there is no way to alter the send to conform to the rate. Further, if the number of bytes
doesn’t exceed the quantum limit but is slightly higher than the number allowed in the remaining
time quantum, it stalls until the current time quantum completes instead of sending part of the
transmission right away. Without changing the platform interface, there is no way to fix these
problems since the resource operation has no control over the system call it is constraining. By
modifying the platform interface, however, and integrating it with the policy information, we can
change the way network transmissions are done to improve the policy.

stateblock TrackSendRate (timeQuantum: int) augments RNetwork {
 addfield bytesSent: int = 0;
 addfield timeStart: int;

 helper updateTimer () {
 if (naccio.library.Time.getCurrentTime () - timeStart > timeQuantum) {
 // The current time quantum is finished, reset. Ignores numeric wrap around.
 bytesSent = 0; timeStart = naccio.library.Time.getCurrentTime ();
 }
 }

 helper waitForQuantum () {
 if (naccio.library.Time.getCurrentTime () - timeStart < timeQuantum) {
 naccio.library.Time.sleep (timeQuantum - (naccio.library.Time.getCurrentTime () - timeStart));
 }
 updateTimer ();
 assert (bytesSent == 0); // check a new quantum was started
 }

 precode postSend (connection: RNetConnection, nbytes: int) {
 updateTimer (); bytesSent += nbytes;
 }
}

property NetLimitSendRate (maxBytes: int, ms: int) {
 // Send up to maxBytes in time ms
 requires TrackSendRate (ms);
 precheck RNetwork.preSend (connection: RNetConnection, nbytes: int) {
 updateTimer ();
 if (bytesSent + nbytes > maxBytes) {
 if (nbytes <= maxBytes) waitForQuantum ();
 else
 violation ("Network send rate exceeded. Maximum of " + maxBytes + " bytes per " + ms
 + "ms. Already sent " + bytesSent + " this quantum; attempting to send "
 + nbytes + " bytes.");
 }
 }
}

Figure 14. Policy that limits network send rate by delaying transmissions.

8 To be more precise, since all the sending in one checking quantum could occur at the end, and all the
sending in the next occurs at the beginning, it is possible that there is some quantum-length time slice in
which nearly 2 * maxBytes are transmitted. More generally, for n adjacent time slices, the total number of
bytes sent is not greater than (n + 1) * maxBytes.

 51

Figure 15 shows a policy that splits and delays network sends to conform to a requested
bandwidth usage.9 The SoftSendLimit property includes an alterinterface clause that modifies the
platform interface using the alternate wrapper for java.net.Socket shown in Figure 16 (a similar
wrapper for java.net.DatagramSocket is not shown). It replaces the wrapper for getOutputStream
to construct and return an NRegulatedOutputStream object instead of the
NCheckedNetworkOutputStream returned by the standard wrapper.

Excerpts from the definition of NRegulatedOutputStream are shown in Figure 17. It loops until
the entire array of bytes is transmitted. Each iteration calls RNetwork.quantumSendAvailable
(defined by the SoftSendCounter state block) to find out how much bandwidth is remaining in the
current time quantum. Since quantumSendAvailable is defined to stall until the end of the time
quantum if no more bandwidth use is allowed, it always returns a positive value. It then calls the
RNetwork.preSend resource operation for the actual send, calls write to send the data, and then
calls the RNetwork.postSend resource operation.

stateblock SoftSendCounter (sendLimit: int, timeQuantum: int) augments RNetwork {
 requires TrackSendRate (timeQuantum);

 helper quantumSendAvailable () returns int { // Number of bytes more that can be sent this quantum
 updateTimer ();
 if (bytesSent >= sendLimit) waitForQuantum ();
 return (sendLimit - bytesSent);
 }
}

property SoftSendLimit (limit: int, tq: int) {
 requires SoftSendCounter (limit, tq);
 alterinterface java.net.Socket: RegulatedSendSocket,
 java.net.DatagramSocket: RegulatedSendDatagramSocket;

 precode RNetwork.preSend (connection: RNetConnection, nbytes: int) {
 // No checking necessary, but use assertion to make sure platform interface is doing the right thing.
 assert (nbytes + bytesSent <= sendLimit);
 }
}

Figure 15. Policy that limits bandwidth by splitting up and delaying network sends.

alter wrapper java.net.Socket {
 requires java.net.NRegulatedOutputStream;

 replace wrapper OutputStream getOutputStream () {
 #;
 result = new NRegulatedOutputStream (result, rnc);
 }
}

Figure 16. RegulatedSendSocket wrapper modification code.

9 We assume the application does not depend on how sends are packaged. This is not necessarily true, and
some applications will fail if network sends are split.

 52

helper class NRegulatedOutputStream extends java.io.FilterOutputStream {
 RNetConnection rnc;

 public void write (byte b[]) throws IOException {
 long offset = 0;

 do {
 long avail = RNetwork.quantumSendAvailable ();
 if (avail + offset > b.length) avail = b.length - offset; // Can send the rest

 // Assumes no other threads send since call to quantumSendAvailable.
 RNetwork.preSend (rnc, avail);
 out.write (b, offset, avail);
 RNetwork.postSend (rnc, avail);

 offset += avail;
 } while (offset < b.length);
 }

 … // Other methods elided.
}

Figure 17. NRegulatedOutputStream helper class (excerpted).

For simplicity, this implementation assumes there are no other program threads that may send
data over the network between the call to quantumSendAvailable and the call to postSend. If this
were to happen, two threads could attempt to use the same available bandwidth leading to a
failure of the assertion defined in the check body for RNetwork.preSend in the SoftSendLimit
property. To prevent this, an implementation could use a semaphore to lock the RNetwork
resource when quantumSendAvailable is called and release it after calling postSend. While
locked, future calls to quantumSendAvailable would stall until the lock is released.

In addition to altering existing wrappers, policy authors can replace wrappers completely, remove
existing wrappers, or add new wrappers. This can be done to provide fine control over behavior
in ways that is not possible in checking code itself. It can also be done to define new resource
operations that can be used like standard resource operations in defining safety policies.

4.3 Win32 Platform Interface10

Naccio/Win32 is intended to provide code safety on a variety of Windows operating system
platforms. The Win32 API is used by many Windows-based operating systems including
Windows 95, Windows 98, Windows NT, Windows CE and Windows 2000. Although
Naccio/Win32 is intended to support many Win32-based operating systems, this discussion
focuses on Windows NT (which is believed to be the basis for all future Windows operating
systems including Windows 2000).

Like most modern operating systems, Windows NT has a protected kernel that provides system
calls that can be used to manipulate the hardware and control basic operating system functions.
Application processes are confined to their own virtual address space but can make calls to kernel

10 For more details on the Win32 platform interface, see [Twyman99]. This section is largely based on that
document.

 53

code by executing a trap instruction. On top of the kernel, NT provides several OS environments
including Win32, Posix and MS-DOS. Each OS environment is implemented by a protected
subsystem – a user-level process that receives requests from client process using Local Procedure
Call (LPC) messages. All OS environments in Windows NT are implemented using the Win32
subsystem, which makes direct calls to the kernel. Since programming using LPC messages
would be tedious, the Win32 subsystem provides an application program interface (API) that
allows programs to access the Win32 subsystem using function calls. All Windows
implementations implement this API using a dynamic link library (DLL). DLLs are linked when
a program is loaded or during execution, but are not statically linked into an executable.

4.3.1 Platform Interface Level

There are several options for the level of the Naccio/Win32 platform interface. The lowest level
would be at the level of machine instructions for a particular machine architecture, such as Intel
x86. This would mean alternate machine architectures (such as the DEC Alpha) could not be
supported without writing a new platform interface. Further, enforcing policies at that level
would require modifying the NT kernel and involve substantial complexity. Since using a
different version of the kernel for programs that enforce different policies is not readily possible
within the Windows architecture, it would be necessary to integrate the checking hooks into the
standard kernel and determine at run-time which policy should be enforced. As a result, most of
the overhead of the most expensive safety policy needs to be incurred for even trusted programs
running with no policy constraints.

The next possible level for the platform interface is the NT kernel. The platform interface could
describe calls provided by the NT kernel and enforce policies by interposing checking code
around calls to the kernel. This would require modifying the protected subsystems. Since
Windows 95/98 does not use protected subsystems, one disadvantage of this approach is that it
would only work for Windows NT. Another problem with trying to write a platform interface at
the level of the NT kernel is that there is no definitive documentation available for the kernel
calls, and platform interface authors would need to rely on guesswork to describe their behavior
correctly.

The most appropriate choice is to put the platform interface at the level of the Win32 API. This is
the lowest level that is standardized and well documented. It is shared across Windows operating
systems and machine architectures. Selecting a platform interface at the level of the Win32 API
restricts the target programs to those written to the Win32 API, so programs written for the
Win16, MS-DOS or Posix subsystems are not supported. Importantly, though, it means that a
single platform interface can be used across all Win32 systems, and as a result, much of the
policy compiler and program transformer can be reused across all Win32 systems. Placing the
platform interface at the level of the Win32 API offers several advantages in the ease of creating
an implementation and its efficiency at both transformation and execution time. The Win32 API
is encapsulated entirely in DLLs. This provides a clear interface where the platform interface
wrappers can be interposed. A disadvantage of placing the platform interface at this level is that
Naccio/Win32 must ensure that programs cannot circumvent safety checking by manipulating
resources without using the Win32 API, for example, by making direct kernel calls. Section 6.2.2
discusses what must be done to provide the necessary assurances.

Placing the platform interface at a higher level would be likely to exclude too many programs.
One option would be writing a platform interface for the Microsoft Foundation Classes (MFC).
Many Win32 programs are written using MFC, a C++ library that provides object-oriented
abstractions of the Win32 API. A platform interface at this level would support policies that

 54

could take advantage of information that is readily available in MFC calls but harder to extract
from Win32 API calls. For example, it could treat opening a file selected by the user from a
standard dialog box differently from normal file opening. If the only platform interface available
describes MFC, it would be necessary to prevent the application from making direct calls to the
Win32 API. Another problem is that MFC may be linked either statically or dynamically. If it is
linked statically, the MFC calls cannot easily be securely detected and replaced with wrappers.
On the other hand, combining a Win32 API platform interface with an MFC platform interface
would be a viable option. This would allow polices to be enforced on programs that call the
Win32 API directly, but allow more permissive policies to allow additional resource
manipulations from programs that use MFC. The Naccio prototypes do not support multiple level
platform interfaces, although it is a clear extension of the architecture. Section 9.2 discusses
extensions to Naccio that would be necessary to support this.

4.3.2 Prototype Platform Interface

Several compromises were made to make creating the platform interface for the Naccio/Win32
prototype manageable. Because of the size and complexity of the Win32 API, the Win32
platform interface only describes a small subset of the API, focusing on the simple file
manipulation calls. Hence, only policies defined using only the RFile and RFileSystem resources
can be enforced.

The other major compromise taken to make Naccio/Win32 manageable is to express the platform
interface using stylized C code that can be compiled directly using the macro definitions
generated for the resource implementations. This eliminates the need for the policy compiler to
parse and analyze the platform interface. It also removes the possibility to optimize out
unnecessary wrappers, and means that the overhead required for simple policies is substantially
more than would be the case if some simple optimizations were done. This was viewed as
acceptable considering the proof-of-concept nature of the Naccio/Win32 prototype.

Figure 18 shows an excerpt from the Naccio/Win32 platform interface for the DeleteFileA system
call. Since the platform interface is designed to be C code that can be compiled directly, it uses a
naming convention to invoke resource operations. A resource operation is called by the resource
type name followed by an underscore and the resource operation name. The policy compiler will
define macros corresponding to these names that do the actual resource invocation. The wrapper
calls RFileMap_addRFileByName to obtain an RFile object corresponding to the pathname. Since
Win32 programs are not garbage collected, we use reference counting to manage object memory.
When the returned RFile is no longer needed, the wrapper code calls RFile_release to indicate
that the object reference is no longer needed.

BOOL wrapper__DeleteFileA (LPCTSTR pathname) {
 BOOL result;
 RFile rf = RFileMap_addRFileByName (pathname);

 RFileSystem_preDelete (rf);
 RFileSystem_observeExists (rf);
 result = DeleteFileA (pathname);

 if (result) RFileSystem_postDelete (rf);
 RFile_release (rf);

 return result;
}

Figure 18. Naccio/Win32 platform interface wrapper for DeleteFileA.

 55

4.4 Expressiveness

The platform interface defines a set of resource operations by providing an operational
specification for a system in terms of those resource operations. Altering the platform interface
allows new resource operations to be defined. Hence, the range and precision of policies that can
be defined is no longer limited by a standard set of resource descriptions. We can define new
resource operations that correspond to any manipulation visible to the platform interface. The
level of the platform interface limits what manipulations are visible, and thus the scope of policies
that can be defined.

If the platform interface is at the level of a system API, we can define resource operations that
correspond to any manipulation done through API calls. In the case of Naccio/JavaVM, the
platform interface is at the level of the Java API. This means we can define a resource operation
corresponding to any routine in the Java API. Since all manipulations of files, the network,
display, threads, and the system environment are done through calls to the Java API, this supports
a large class of policies. Some resources, however, are not manipulated through Java API
routines, and cannot be defined using a platform interface at this level. For example, memory use
is not done using the Java API. Some memory use is visible through Java API constructor calls,
but memory use resulting from allocating arrays and constructing objects without using Java API
constructors is not visible through Java API calls. If we wish to support policies defined using a
memory resource, a lower level platform interface is required. This could be done either using
callbacks from a modified virtual machine or by inserting resource operation calls that represent
memory use into the application.

The platform interface also places fewer constraints on what can be done around a constrained
event. In both the Naccio/JavaVM and Naccio/Win32 platform interface languages, there are no
restrictions on the code that may be used in a wrapper. This means the behavior of the program
may be changed in radical ways at any execution point visible to the platform interface. For
example, we could write a wrapper for the java.net.Socket constructors that opens a window that
plays Tetris and requires the user to accumulate a certain number of points before a socket is
opened. More practical policies that take advantage of the extensibility of the platform interface
might log all network transmissions to a secure audit file or make all windows created by an
untrusted program appear with a red title bar.

 57

Chapter 5
Compiling Policies

All policies that can be defined using the Naccio definition mechanisms can be enforced on
executions. Policy enforcement mechanisms are divided into two phases – policy compilation
prepares what is needed to enforce a policy on any program, and program transformation prepares
a modified version of a target program that is constrained by a policy. This chapter discusses the
policy compilation phase.

The policy compiler takes a policy description consisting of resource descriptions, a platform
interface, and a resource use policy, and produces a policy description file that compactly
specifies what transformations are needed to enforce the policy, as well as supplementary files
used in those transformations. Those supplementary files include implementations of the
resource operations that perform the checking specified by the policy. For platform interfaces at
the level of a system API, they also include a modified system library that calls the relevant
resource operations as directed by the platform interface.

Policy compilation is divided into three steps:

1. Processing the resource use policy to weave checking code into an intermediate
representation of the resource operations (described in Section 5.1),

2. Reading the platform interface and analyzing it in conjunction with the resource
operations (described in Section 5.2), and

3. Generating output files from the intermediate representations. For platform interface at
the level of a system library, the output files comprise a policy-enforcing library that can
be used in place of the standard system library to enforce a safety policy on an execution.
The policy-enforcing library consists of implementations of the resources that incorporate
checking code defined by the policy (described in Section 5.3), and a wrapped version of
the standard library that calls routines that correspond to the abstract resource operations
(described in Section 5.4).

Section 5.5 discusses some opportunities for optimizations involving both the resource
implementations and library wrappers. The final output of the policy compiler is a policy
description file that encodes the transformations needed to enforce the policy on a particular
program (described in Section 5.6).

5.1 Processing the Resource Use Policy

The first step in compiling a policy is to parse the resource descriptions and resource use policy
and produce an intermediate language representation of the checking code. This step is

 58

independent of the target platform and platform interface level. Hence, it can be reused by all
Naccio implementations.

For the prototype implementations, the intermediate language is an abstract syntax tree similar to
the Java programming language. This makes parsing the resource descriptions and resource use
policy straightforward, and makes it easy to generate Java implementations from the intermediate
representation. The disadvantage of using such a high level intermediate representation is that it
may be harder to do certain optimizations at this level. For an industrial implementation, it may
be better to use a lower-level intermediate representation or run an optimizer on the generated
code.

Once the resource descriptions and resource use policy have been parsed, each safety property is
instantiated with the constant arguments given in the resource use policy. These values are bound
in the code by textually replacing instances of the parameter in the code with the actual
parameter. If the same safety property is instantiated more than once in the policy with different
arguments, multiple copies of the property will exist for each with different values bound to the
parameters. Once the properties have been instantiated, the checking code associated with each
safety property and required state block is integrated into the appropriate resource operations.
State block helpers are merged into the resource class as methods. A copy of the checking code
is inserted into the code body of each resource operation or group listed in the check clause. The
code must be located in the body according to its type: all precode blocks in state blocks must be
executed before any other checking code; all check clauses in permissions must be before safety
property check classes since the allowance must overrides a violation by calling allow before the
violation is reached; and all postcode blocks in state blocks must be executed after all checking
code. To support this, the policy compiler maintains four separate code blocks for each resource
operations corresponding to code from precode blocks, code from permission check clauses, code
from safety property check clauses, and code from postcode blocks. Once all the safety
properties have been processed, the code from each of these blocks is merged into a single block.
Checking code preserves information about the property it came from. This information is used
in the code generation phase so that violation messages can be produced that include information
about the property that produced a violation.

Next, a relaxation algorithm is use to determine which resource operations, helpers and groups do
meaningful work. Since a policy may require generic state blocks, but not use all state
maintained by the block in checking, it is possible that some resource operations do not need to
be implemented. This analysis is also a useful test that the policy means what the policy author
intends as Naccio provides information on what resource operations are implemented. For
example, if a policy is designed to restrict access to files but the policy compiler reports that it
does not need to implement RFileSystem.openRead, the policy author should suspect something
is wrong with the policy definition.

The policy compiler determines which resource operations are unnecessary using a specialization
of standard compiler optimization for dead code elimination [Aho86, p. 595]. Because the
definition of useful code in a safety policy is narrow, we can eliminate more code then could be
eliminated by a generic compiler. A resource member does meaningful work if any of the
following are true:

1. It could issue a violation. This is assumed to be the case if its body calls the violation
command or calls a helper method that could issue a violation. A more involved analysis
could attempt to determine if the violation could ever in fact be issued by analyzing the
code logic more deeply. Resource operations and constructors that only call the allow

 59

command do not need to be implemented, since this is only meaningful if a violation
could be issued. Resource helpers that call the allow command need to be implemented if
they are called by a resource operation that could issue a violation.

2. It sets the value of some resource state that is meaningful. State is meaningful if its value
is used in a meaningful resource member.

3. It is contained in the group list of a meaningful resource group.

The relaxation works by first assuming all resource state and members are meaningless, and
iterating the definition of meaningful work through each resource member. The iteration
continues until no new meaningful resource members are marked. It is guaranteed to terminate
since each iteration either marks no new resource members as meaningful and leads to
termination or marks a previously meaningless resource member as meaningful. The number of
resource members is an upper bound on the number of iterations. In practice, only a few
iterations are needed for most policies.

5.2 Processing the Platform Interface

The platform interface is defined using a platform-specific variant of the platform interface
specification language. Hence, each Naccio implementation must provide a platform-specific
parser that converts the platform interface to an intermediate representation. The platform
interface intermediate representation is similar to that used for resource implementations. This
allows much of the analysis code to be reused. Each platform interface wrapper is associated
with some concrete system event and contains wrapper code for that event. For platform
interfaces at the level of a system API, each wrapper is associated with a call to a system API
routine.

A wrapper is considered to be a normal form wrapper if it always invokes the original wrapped
operation exactly once and all wrapper code is limited to calling resource operations, setting
wrapper state, doing side-effect free computation that is guaranteed to terminate, and calling
helper functions and Naccio library routines that satisfy these properties. It is likely that there are
many unnecessary platform interface wrappers, since the platform interface is written to support a
large class of policies.

As with resource operations, the policy compiler uses a specialization of the standard compiler
optimization for dead-code elimination to eliminate unnecessary normal form wrappers. A
normal form wrapper is necessary if it either:

1. Calls a meaningful resource operation (as was determined by processing the resource use
policy), or

2. Sets some meaningful wrapper state. Wrapper state is meaningful if it is read in a
necessary wrapper.

Which wrappers are necessary is determined by a relaxation analysis similar to that used to
determine which resource members are meaningful. Within a necessary wrapper, calls to
resource operations that are not meaningful are removed.

In addition to what can be determined by the analysis, the policy compiler uses requiredif clauses
to eliminate wrappers that could not otherwise be determined to be unnecessary. The policy
compiler trusts the requiredif clause, and will eliminate a wrapper that has a requiredif clause if
none of the resource operations listed do meaningful work. This also allows wrappers that are not
expressed in normal form to be eliminated. Naccio cannot eliminate wrappers that are not normal

 60

form wrappers since determining that they use no meaningful resource operation and set no
meaningful state is not sufficient. Non-normal form wrappers can also change the return value,
call routines that alter the behavior of the program, or prevent the original routine call from
occurring. Hence, wrappers that are not normal form are never eliminated except when permitted
by an explicit requiredif clause.

One example is the checked stream classes used in the Java API platform interface for
java.net.Socket. The wrapper for getOutputStream creates a new
NCheckedNetworkOutputStream object that extends the result from the original method and
overrides the write methods to perform checking code before calling the superclass method. All
this work is unnecessary unless the RNetwork.preSend or RNetwork.postSend operation does
meaningful work. Because the wrapper has a requiredif clause that indicates this, Naccio/JavaVM
can eliminate the wrapper and the helper class if the RNetwork.preSend and RNetwork.postSend
operations are not meaningful.

5.3 Generating Resource Implementations

The intermediate representations of the processed resource operations need to be converted to
implementations that perform the actual checking. A resource implementation must be produced
for every resource that contains a meaningful resource member. The code produced depends on
the target platform, but some platform-independent transformations can be done on the
intermediate representation first.

The violation and allow commands in safety policy bodies are replaced with calls to Naccio library
routines. The library routines take extra arguments giving the names of the policy and property
that issued the violation and information on where it is defined. For certain policies, the violation
and allow library routines also need an extra argument that encodes the violation status code.
This is necessary if the policy uses weaken to combine permissions and negative properties since
violation codes are used by allow command to override future violation commands. If violation
codes are necessary, a parameter of type ViolationCode is added to all resource members that call
the violation or allow command. The Naccio library defines the ViolationCode type. It encodes
whether an allow command was issued that should suppress violations detected in this resource
operation. A ViolationCode object is created in the wrapper routing and passed to resource
operations. The policy compiler adds parameters to declarations and inserts them at call sites as
necessary. The ViolationCode object is passed to the allow and violation library methods. The
allow method sets it to record a permission, and the violation method uses it to suppress violations
that have been overridden by permissions.

The other preparation step is to handle resource groups. For each resource group, there are two
implementation options: we can implement it as a method helper and add calls from the group
members, or we can inline the checking code directly into group members. We must pay
attention, however, to the appropriate ordering of checking code. In the worst case, this means a
resource group implementation is divided into four separate helper routines corresponding to the
precode actions, the permission (allow) bodies, the negative check bodies, and the postcode
actions. Group members must call each of these at the corresponding point in their own check
body. Fortunately, for most resource groups only one or two of the routines are necessary.
Implementing resource groups as methods saves code duplication, but involves the overhead of
up to four additional method calls for each group member. The group member list gives the
arguments necessary to call the resource group. This is converted into the intermediate
representation of the equivalent method call. An alternative is to inline the group code directly
into the member bodies. For simplicity, this is only done for resource members that match the

 61

group parameters exactly. It could be done for other members, but this would require binding the
group parameters to new local variables.

A further improvement is possible if the individual group member has no checking code other
than that given by the resource group. For group members that have no checking code other than
that done by the resource group, we can directly replace the member with the group and avoid the
overhead of either extra implementation or method calls. We simply implement the resource
group as if it were an operation, and replace calls to the resource operation in the platform
interface with calls to the group.

Finally, a platform-specific implementation of the resources is generated. The actual
implementation depends on the particular target platform, but generating resource
implementations from the intermediate representation should be relatively straightforward for
most platforms. The next two subsections discuss how each prototype implementation generates
resource implementations.

5.3.1 Naccio/JavaVM

Naccio/JavaVM generates a Java class corresponding to each resource. Java source code is
produced and compiled using a standard Java compiler. Since the intermediate representation is
similar to Java source code, producing source code for the corresponding Java class is
straightforward.

Figure 19 shows the resource class for the RFileSystem resource description from Figure 4 that
was generated by Naccio/JavaVM to enforce the LimitWrite policy introduced in Figure 7. This
file is placed in a newly created output directory corresponding to a new package holding all the
resource implementations for this policy. Because RFileSystem is declared as a global resource,
all class variables and routines are static. The bytes_written field introduced by
TrackBytesWritten is implemented by adding a class variable to RFileSystem.11

The modifyExistingFile method corresponds to the group with the same name and contains code
from the NoBashingFiles property. The violation command has been converted to a call to the
NCheck.policyViolation library method, and additional arguments are passed so a helpful error
message can be produced. Since none of the members of the modifyExistingFile group have their
own checking code, modifyExistingFile can be implemented as a method if calls to group
members in the platform interface are replaced in the generated platform interface wrappers with
calls to modifyExistingFile. The preWrite and postWrite methods contain code from the
LimitBytesWritten safety property. The limit parameter of LimitBytesWritten has been bound to the
value of 1000000 passed in by the LimitWrite property.

The implementation shown does not pass violation codes since the policy did not use
permissions. If violation codes were necessary, each resource routine would have an additional
parameter of type naccio.library.ViolationCode and would pass this parameter on to the
policyViolation library method and a similar method corresponding to allow.

11 The type of bytes_written is long. Strictly, it should be a Naccio library type with the semantics for the
int type defined for use in safety properties. For simplicity, the Naccio/JavaVM implementation ignores
issues of precise number semantics (such as integer overflow), and assumes using a long to represent
unbounded integers is sufficient.

 62

package lw; // Note: actually a longer, unique package name is used. For readability we shorten it here.
import naccio.library.*;

public class RFileSystem {
 static long bytes_written = 0; // from TrackBytesWritten
 final public static void modifyExistingFile (lw.RFile file) {
 naccio.library.NCheck.policyViolation (“LimitWrite”, "NoBashingFiles",
 "Destructive manipulation of file: “ + file.getName ());
 }

 final public static void preWrite (lw.RFile file, long n) {
 if (bytes_written + n > 1000000)
 naccio.library.NCheck.policyViolation (“LimitWrite”, "LimitBytesWritten",
 "Attempt to write more than " + 1000000 + " bytes. Already written " + bytes_written +
 " bytes, writing " + n + " more to " + file.getName () + ".");
 }

 final public static void postWrite (lw.RFile file, long n) {
 bytes_written += n;
 }
}

Figure 19. Resource class generated by Naccio/JavaVM.

The generated Java source files are compiled by running a standard Java compiler. The resulting
class files are then transformed to replace calls to wrapped API routines with calls to the
corresponding unwrapped API routines. This is done using the same transformation engine and
similar transformations as is used to produce the platform interface (see Section 5.4). The calls to
wrapped API routines are rewritten so that checking is not done for API calls made in the
resource implementations.

5.3.2 Naccio/Win3212

Naccio/Win32 generates resource operations as ANSI C source code that is compiled into a DLL.
ANSI C is chosen as the implementation language instead of C++ because of portability issues
and simplicity, and over other languages because of efficiency and the ease with which a DLL
can be produced from C source code. Since C is not object-oriented, a naming convention is used
to group routines associated with a particular resource and the associated resource object is
passed explicitly. Macros are used to hide these implementation details from the platform
interface.

Naccio/Win32 produces both a header file and source file containing all the resource
implementations. The header file contains type definitions, variable and function declarations,
and macro definitions that are used in the platform interface implementation. Both the resource
source file and the platform interface implementation source file include this header file.

The resource header generated by Naccio/Win32 for the LimitWrite policy is shown in Figure 20.
The types for RFileSystem and RFile are defined as pointers to structures containing fields that
correspond to the resource state. Since RFileSystem is a global resource, the resource header file
also declares the variable RFileSystem_state of type RFileSystem to represent the global
RFileSystem object. This simplifies the implementation of resource operations, since it allows

12 This section is based on [Twyman99], which contains additional information on how resource
implementations are generated by Naccio/Win32.

 63

global and non-global resource operations to be implemented identically except the global state
object is passed instead of the this object. For an industrial implementation, it would make more
sense to put the state associated with global resources in stand-alone variables instead of structure
types would save the overhead of passing an extra pointer and performing an extra indirection.

The header file defines empty macros for the resource operations that do no useful work. Since
macros are expanded at compilation time, this means the resource calls can be left in the platform
interface with no run-time overhead. The header file also defines macros for the
modifyExistingFile group member operations that call RFileSystem_modifyExistingFile with the
appropriate argument. For resource operations that do useful work, the resource header file
includes macro definitions that automatically pass the global state to the actual resource operation
implementation.

#ifndef _INSIDE_RESOURCE_DLL_
#define NACCIO_RESOURCE DLLIMPORT
#else
#define NACCIO_RESOURCE DLLEXPORT
#endif

typedef struct _RFileSystem { long bytes_written;} *RFileSystem;
typedef struct _RFile { String name; } *RFile;

NACCIO_RESOURCE extern RFileSystem RFileSystem_state;
NACCIO_RESOURCE RFileSystem RFileSystem_new();

#define RFileSystem_initialize() /* empty macro body */
#define RFileSystem_terminate() /* empty macro body */
#define RFileSystem_openRead(p_a0) /* empty macro body */
… /* Similar no-op’s for other resource operations elided */

#define RFileSystem_openOverwrite(p_a0) RFileSystem_modifyExistingFile (p_a0)
#define RFileSystem_openAppend(p_a0) RFileSystem_modifyExistingFile (p_a0)
#define RFileSystem_preDelete(p_a0) RFileSystem_modifyExistingFile (p_a0)
#define RFileSystem_rename(p_a0,p_a1) RFileSystem_modifyExistingFile (p_a0)

NACCIO_RESOURCE void RFileSystem_op_preWrite(RFileSystem p_this, RFile p_file, long p_n);
#define RFileSystem_preWrite(p_a0,p_a1) \
 RFileSystem_op_preWrite (RFileSystem_state, p_a0, p_a1)

NACCIO_RESOURCE void RFileSystem_op_postWrite(RFileSystem p_this, RFile p_file, long p_n);
#define RFileSystem_postWrite(p_a0,p_a1) \
 RFileSystem_op_postWrite (RFileSystem_state, p_a0, p_a1)

NACCIO_RESOURCE void RFileSystem_op_modifyExistingFile(RFileSystem p_this, RFile p_file);
#define RFileSystem_modifyExistingFile(p_a0) \
 RFileSystem_op_modifyExistingFile (RFileSystem_state, p_a0)

NACCIO_RESOURCE RFile RFile_new(String p_pathname);
NACCIO_RESOURCE void RFile_delete(RFile p_this);
NACCIO_RESOURCE String RFile_getName(RFile p_this);

Figure 20. Resource headers file generated by Naccio/Win32.

 64

#include <naccplat.h>
#define _INSIDE_RESOURCE_DLL_
#include "resource.h"

NACCIO_RESOURCE RFileSystem RFileSystem_state;

NACCIO_RESOURCE RFileSystem RFileSystem_new () {
 RFileSystem p_this = nAlloc (sizeof (struct _RFileSystem));
 p_this->bytes_written = 0;
 return (p_this);
}

NACCIO_RESOURCE void RFileSystem_op_modifyExistingFile (RFileSystem p_this, RFile file) {
 String tempstr_0 = NULL, tempstr_1 = NULL, tempstr_2 = NULL, tempstr_3 = NULL;
 Check_policyViolation (String_fromlit (&tempstr_0, "LimitWrite"),
 String_fromlit (&tempstr_1, "NoBashingFiles"),
 String_concat (String_concat (String_empty (&tempstr_2),
 String_fromlit (&tempstr_3, "Destructive manipulation of file:")),
 RFile_getName(file)));
 String_delete(tempstr_0); String_delete(tempstr_1); String_delete(tempstr_2); String_delete(tempstr_3);
}

NACCIO_RESOURCE void RFileSystem_op_preWrite (RFileSystem p_this, RFile file, long n) {
 if (RFileSystem_state->bytes_written + n > 1000000) {
 Check_policyViolation (…); // Lots of ugly string manipulation code elided
 }
}

NACCIO_RESOURCE void RFileSystem_op_postWrite (RFileSystem p_this, RFile file, long n) {
 RFileSystem_state->bytes_written += n;
}

… // Construction and destruction functions for RFile elided.

BOOL APIENTRY DllMain (HANDLE hMod, DWORD ul_reason_for_call, LPVOID lpRes) {
 switch (ul_reason_for_call) {
 case DLL_PROCESS_ATTACH: RFileSystem_state = RFileSystem_new ();
 RFileSystem_initialize (); break;
 case DLL_PROCESS_DETACH: RFileSystem_terminate (); break;
 }
 return (TRUE);
}

Figure 21. Implementation resource.c generated by Naccio/Win32 for LimitWrite.

The policy compiler produces implementations in a source file, resource.c, shown in Figure 21.
This file includes the resource.h header file. Implementations of resource operations are
generated from the intermediate representations. The main complication is dealing with the
library String type, since C does not provide a useful string datatype. The generated code
declares temporary string variables for use in concatenating strings. The strings must be passed
to String_delete before the function returns to reclaim memory used by the string.

This file also defines the DllMain function, which is called when the DLL is attached or detached
from a process. Since the resource DLL is implicitly linked by the API wrapper DLL, this
function will be called at the beginning of execution. When the DLL is attached, it initializes
RFileSystem_state to a new RFileSystem object and calls the RFileSystem_initialize operation.
When the program shuts down, it calls detach for each implicitly linked DLL. This will call the
terminators in the DLL_PROCESS_DETACH case of DllMain.

 65

5.4 Generating Platform Interface Wrappers

In addition to the resource implementations, the policy compiler must produce an implementation
of the platform interface. What is involved depends on the level of the platform interface. For a
hardware-level platform interface, it would involve building traps into the hardware device’s
system software and writing support code necessary to obtain enough information to call the
appropriate resource operation. For a platform-interface at the level of machine instructions it
involves performing low-level transformations on the object files to introduce platform interface
wrapper code where appropriate. A different approach would be to write an interpreter that
executes the program and runs the relevant wrapper before interpreting a wrapped instruction.
Our focus is on platform interfaces at the level of a system API, and for the remainder of this
section we assume the platform interface is at that level.

Most of the platform interface generation is platform specific, but some work is done processing
the intermediate representation first. If the policy needs violation codes, the intermediate
representations are modified to introduce them. A single ViolationCode object should be
maintained throughout the wrapper body and passed to each resource operation. A local variable
declaration is inserted at the beginning of the wrapper to store this object, and it is assigned to the
result of a library creation routine. This object is inserted at the beginning of the parameter list
for calls to resource operations. Between resource operations, its value is reset since allowances
do not carry over resource operations. At the end of the wrapper routine, the library
ViolationCode.release routine is called. This supports the possibility for handling ViolationCode
objects on a platform that does not support garbage collection, such as Naccio/Win32. It is also
useful since in conjunction with the creation routines it allows ViolationCode objects to be reused
and avoids the costs associated with creating many objects with short lifetimes.

Once the intermediate representations of the wrappers have been produced the next step is to
convert them to a form that can be easily integrated into a program to enforce the policy. There
are two approaches: modifying the system API itself or interposing wrapper code between the
program and the system API. The first approach offers more flexibility in controlling the
interactions between wrapper and system code but requires lower-level manipulations of object
files. Naccio/JavaVM modifies system API code while Naccio/Win32 uses an interposition layer
that performs the necessary checking.

5.4.1 Naccio/JavaVM

Platform interface wrappers for Naccio/JavaVM are implemented by rewriting Java API class
files. For each policy, Naccio/JavaVM creates a (possibly partial) copy of the Java API classes
that are altered to implement the platform interface wrappers. The transformation engine is based
on JOIE, a toolkit for manipulating Java class files [Cohen98]. Information on JOIE and other
transformation engines is found in Section 7.4.

Java binary compatibility

Rewriting classes depends on being able to run the original program with modified library classes
without recompiling. The Java Language Specification [Gosling96, Chapter 13] describes
changes that can be made to class files without breaking link compatibility in conforming Java
virtual machines. Compatible changes include adding new fields, methods or constructors to an
existing class or interface and changing the implementation of existing methods, constructors and
initializers. All the class modifications done by Naccio/JavaVM are designed to preserve binary
compatibility.

 66

 Java binary compatibility is not guaranteed in the presence of native methods and Java
implementations are expected to describe binary compatibility of native methods.13 This poses a
problem for Naccio/JavaVM, since it may need to modify classes used by native methods and
does not necessarily have access to the source code for the native method. As a result, supporting
binary compatibility across native methods depends on a particular JavaVM implementation. The
prototype Naccio/JavaVM implementation assumes that binary compatibility holds for inserting
fields, methods and constructors and replacing routine implementations even in the presence of
native methods. This is in fact not the case for Sun’s JDK 1.1 Java implementations, since adding
new fields can interfere with field referencing.14 It is believed that JDK 1.2 and future
implementations will not have this problem, although no formal claims about binary
compatibility across native methods are made by the JDK 1.2 documentation [Kramer99].

Wrapping classes

To produce a wrapped version of an API class, the policy compiler alters the class byte codes to
reflect the state and wrappers defined by the platform interface. State defined in the platform
interface wrapper is implemented by adding fields to the class. These fields are declared private,
since they may only be used in the platform interface wrappers.

To wrap a method, the wrapper code from the platform interface is translated from the
intermediate representation into Java byte codes and inserted into the class file in place of the
original method. The original method is renamed by adding a prefix (o_) to the method name.
Since no methods in the Java API start with o_, this always produces a unique name. Renaming
the original method implementation allows the wrapped version of the method and other routines
in the class library to call the original method.

The hash marker in the platform interface wrapper is replaced with a call to the original method.
If it has a return value, the result is stored in a new frame location that corresponds to the result
local variable in the platform interface wrapper. At exit points of the wrapper, this result is
returned. Note that exceptions produced in the original method call will propagate directly
through the wrapper code. This means the checking code after the hash marker will not execute if
the original method call throws an exception. For most of the Java API, this is probably the
correct semantics since the resource manipulation does not occur if the API method throws an
exception. In some cases, some API methods will do partial resource manipulations before
throwing an exception. Platform interface authors can use a catch statement around the hash
mark to implement appropriate resource calls after the exception, and then re-throw the
exception.

Constructors and native methods introduce a few complications. Since the class determines the
names of constructors, we cannot rename them. Instead, we add an extra argument to distinguish
the original constructor from any other constructors. This means when Naccio transforms
wrapped routines to call the unwrapped version of a wrapped constructor, it must push an extra

13 According to the Java language specification, “The impact of changes to Java types on preexisting native
methods that are not recompiled is beyond the scope of this specification and should be provided with the
description of an implementation of Java. Implementations are encouraged, but not required, to implement
native methods in a way that limits such impact.”

14 This was discovered through experimentation and code analysis. There is in fact no documentation that
describes the binary compatibility rules for Sun’s JDK implementations.

 67

argument on the stack and change the type descriptor of the constructor it calls. Adding the extra
argument to distinguish the original constructor simplifies the work that will be needed to
transform an application to call the wrapped constructors. The type of the extra argument is
chosen so that the new constructor does not conflict with any existing constructor. Since
application code always calls the wrapped constructor, there is no need for the program
transformer to alter constructor calls in application classes.

For native methods, we cannot change the method name since the JavaVM will not be able to find
the corresponding native method implementation. Instead, we introduce a new method (named
w_method) that implements the wrapper and calls the original native method. This means the
program transformer will need to replace calls to wrapped native methods in the application with
calls to the corresponding w_method. An alternative would be to rename the native method and
modify the VM so that it can still map the new name to the correct native method. This would
eliminate the need to change wrapped native method names in application classes, but would not
be portable across different VM implementations. Using a new name for wrappers for native
methods means we need to replace calls to the native method in application and unwrapped
library code with calls to the new wrapped method instead. We could handle all methods this
way and rename non-native methods also. This would make the policy compilation and
transformation process simpler and more consistent. This is not done, however, since it would
involve extra work at transformation time since applications must be modified to call the
w_methods instead of the unwrapped methods. Since program transformation is done much more
frequently than policy compilation, we prefer to add a little complexity to the policy compiler to
reduce the time required to transform an application.

Pass-through checking

The tricky part of rewriting the library classes is supporting the pass-through semantics correctly.
The semantics required by the Naccio/JavaVM platform interface are:

• Calls to Java API routines in the bodies of pass-through routines should call the wrapped
versions of those routines.

• Calls to Java API routines in the bodies of regular wrapped routines should call the
unwrapped versions of those routines.

Wrappers must pass through recursively – if a wrapped routine calls an API routine that has no
explicit platform interface wrapper, but that calls a wrapped API routine we must ensure that it
calls the unwrapped version.

Consider the simple dependency graph shown in Figure 22a. The body of method M1 calls
method M2 and the body of M2 calls M3. Figure 22b depicts the situation where M1 has a regular
wrapper. Naccio/JavaVM produces a copy of M1 named o_M1 that is the original
implementation of M1 and replaces M1 with a new M1 method that implements the wrapper code
and calls o_M1.

Figure 22c shows the scenario where M2 has a wrapper also. As before, Naccio/JavaVM
produces o_M2 as the unwrapped version of M2. Since the regular wrapper for M1 is intended to
account for all meaningful resource manipulations done by M1, it should call the unwrapped
version of M2. After wrapper generation, the transformation engine replaces the call to M2 in the
body of o_M1 with a call to o_M2.

 68

 M1 M1 M1 M1
 o_M1 o_M1 o_M1

 M2 M2 M2 M2
 o_M2 o_M2

 M3 M3 M3 M3
 o_M3

 a) No wrappers b) M1 wrapped c) M1 and M2 wrapped d) M1 and M3 wrapped

Figure 22. Pass-through semantics.

Wrapped methods are shown in italics, original methods are renamed o_M.

In Figure 22d, M1 and M3 have wrappers but M2 does not. We need to ensure that the indirect
call to M3 from the wrapped M1 calls the unwrapped o_M3 instead of the wrapped M3.
Otherwise, the wrapper checking code associated with M3 would be executed when o_M1 calls
M2, which then calls M3. To provide the necessary semantics, an internal version of M2, o_M2, is
introduced for M2. It contains a copy of the M2 code, but calls to M3 are replaced with calls to
o_M3. This allows implementations of wrapped routines to call the unwrapped versions of nested
routines. An internal version of a routine is necessary if it calls a wrapped routine and it is called
by a wrapped routine. Direct calls to M2 pass through checking normally, since it calls the
wrapped M3 method normally.

Superclass methods

Another situation Naccio/JavaVM must deal with is where a platform interface wrapper is
provided for a subclass method that overrides a (possibly abstract) method in a superclass. For
example, consider the situation if there is a wrapper for java.io.FileOutputStream.write. The class
FileOutputStream is a subclass of OutputStream, and OutputStream declares write as an abstract
method. We must ensure that application calls to OutputStream.write on objects that are
FileOutputStream types call the wrapped version of write, but calls on objects that are not of type
FileOutputStream call the appropriate unwrapped write method. Since FileOutputStream.write is
a native method, the wrapper method w_write is added to FileOutputStream. We need to provide
a w_write method for OutputStream also, so application classes can be rewritten to call w_write
on OutputStream objects that are not necessarily FileOutputStream objects. The policy compiler
inserts the w_write method into OutputStream. Its body simply calls write with the same
arguments. If the w_write is called on a FileOutputStream object, it will dispatch to the subclass
method that is the wrapped version of write. If it is called on an OutputStream object of a type
that does not wrap write, the w_write method added to OutputStream will call the regular write
method.

Similarly, if a non-native subclass method overrides an unwrapped method and renames the
original method o_method, Naccio/JavaVM adds an o_method to the superclass. Its
implementation calls method with the original arguments. This allows calls in wrapped API
methods that should call the unwrapped version of the method, to call o_method regardless of the
subtype.

Renaming classes

There are two different ways to generate the policy-enforcing wrapper classes. The simplest way
is to write the modified class files in a new directory and use the Java CLASSPATH to select the

 69

policy-enforcing library when an application constrained by the policy runs. If we wish to
support multiple policies in the same Java VM, we need a way to identify the API classes of each
policy-enforcing library at run-time. This is done by globally renaming all classes in the policy-
enforcing version of the API to include a unique package name so that they can be identified
(e.g., java.io.File becomes policy_lw.java.io.File). To rename classes consistently, all classes in
the API must be renamed. All references to the API classes are replaced with the policy-
enforcing class names.

Stripping SecurityManager calls

In addition to inserting the Naccio checking calls, the policy compiler can be used to remove calls
to the JDK SecurityManager. Note that this is done only because the JDK security mechanisms
are built into the Java API. To remove the run-time overhead associated with them to enable the
performance analysis in Section 8.4 the policy compiler can be directed to strip these calls from
the API classes. In the Sun JDK 1.1 implementation, all security manager calls involve either
calling System.getSecurityManager method to obtain the security manager or using the private
security instance variable in the java.lang.System class. This is followed by a comparison to null
with a branch that calls a security manager check method. The policy compiler can recognize the
sequence and remove the code associated with obtaining a security manager, testing if it is null,
and calling a check method.

Example

Figure 23 shows the policy-enforcing library class generated for java.io.FileOutputStream by
Naccio/JavaVM to enforce the LimitWrite policy. The actual contents of the class files are
simplified for readability, but are essentially what is shown here.

The top of each class file shows the visible declarations in the class. The policy-enforcing
version contains an extra field declaration corresponding to the rfile state defined in the platform
interface for java.io.FileOutputStream (see Figure 11). The rewritten class defines several
methods and constructors not defined in the original class. Because the LimitWrite policy attaches
checking code to the resource operation associated with overwriting an existing file, and every
constructor in FileOutputStream may open a file for overwriting, every constructor needs a
wrapper. Hence, for every constructor there is a new constructor declaration with a dummy
argument added to distinguish it from the original. This argument can be any type that does not
lead to a conflict with an existing constructor. In this case, none of the constructors have
arguments of type short and Naccio/JavaVM uses short for the type of the dummy argument.

The code for the constructor taking a java.io.File object is shown. In the original class, it calls the
constructor taking a String, passing in the absolute path of the file object. In the rewritten class,
there are two versions of the constructor. The unwrapped version takes an extra parameter of
type short to distinguish it from the wrapper version. Its body is copied from the body of the
original constructor, except that the call to the String constructor is replaced with a call to its
unwrapped version by adding a dummy argument. Otherwise, the wrapper would call the
wrapped version of the constructor and execute inappropriate checking code. The wrapped
version of the constructor incorporates the code from the platform interface. It calls the doOpen
helper method, then calls the unwrapped version of the constructor, and finally stores the RFile
object in the rfile instance variable. The implementation of doOpen is based on its code in the
platform interface. The call to RFileSystem.openOverwrite has been replaced with a call to the
resource group method RFileSystem.modifyExistingFile. This can be done since openOverwrite
has no checking associated with it except for what is done by the modifyExistingFile group. The

 70

public class FileOutputStream
 extends OutputStream {

 public FileOutputStream(String);

 public FileOutputStream (String,boolean);

 public FileOutputStream(File);

 public FileOutputStream(FileDescriptor);

 public native void write(int);

 public void write(byte[]);

 public void write(byte[], int, int);

 public native void close();
 public final FileDescriptor getFD();

 protected void finalize();
}

Method FileOutputStream(File)
 FileOutputStream(getPath <arg 1>)

Method void write(byte[])
 writeBytes (<arg 1>, 0, <arg1>.length)

// no code for native void write (int);

public class FileOutputStream
 extends OutputStream {
 private lw.RFile rfile;
 public FileOutputStream(String);
 public FileOutputStream(String,short);
 public FileOutputStream(String,boolean);
 public FileOutputStream(String,boolean,short);
 public FileOutputStream(File);
 public FileOutputStream(File,short);
 public FileOutputStream(FileDescriptor);
 public FileOutputStream(FileDescriptor,short);
 public native void write(int);
 public void w_write(int);
 public void write(byte[]);
 public void o_write(byte[]);
 public void write(byte[], int, int);
 public void o_write(byte[], int, int);
 public native void close();
 public FileDescriptor getFD();
 public final FileDescriptor o_getFD();
 protected void finalize();
 public static lw.RFile doOpen(File);
}

Method FileOutputStream(File,short)
 FileOutputStream (getPath <arg 1>, 0)

static Method lw.RFile doOpen(File)
 <local 1> := lw.RFileMap.lookupAdd (<arg 1>)
 if o_exists(<arg 1>)
 lw.RFileSystem.modifyExistingFile (<local 1>)
 areturn <local 1>

Method FileOutputStream(File)
 <local 1> := doOpen(<arg 1>)
 FileOutputStream(<arg 1>, 0)
 rfile := <local 1>

Method void o_write(byte[])
 writeBytes (<arg 1>, 0, <arg1>.length)

Method void write(byte[])
 if rfile != null
 lw.RFileSystem.preWrite (rfile, <arg 1>.length)
 o_write (<arg 1>)
 if rfile != null
 lw.RFileSystem.postWrite (rfile, <arg 1>.length)

Method void w_write(int)
 if rfile != null
 lw.RFileSystem.preWrite (rfile, 1)
 write(<arg 1>)
 if rfile != null
 lw.RFileSystem.postWrite (rfile, 1)

Figure 23. Generated policy-enforcing library class for java.io.FileOutputStream.

Left side shows the original API class. Right side shows the rewritten class file using the
LimitWrite safety policy. Classes are simplified and excerpted for clarity. Renamed
original routine declarations are shown in italics, wrappers are shown in bold.

 71

call to RFileSystem.openCreate in the branch for creating a new file has been removed since
there is no checking associated with the openCreate operation for the LimitWrite policy.

The figure also shows two write methods, one that writes an array of bytes and one that writes a
single byte. The array of bytes method illustrates what is done for a normal wrapper. The
rewritten class contains a method o_write(byte[]) that contains the original method body. The
wrapped version uses the unmodified name and contains a body compiled from the platform
interface. Its body calls o_write where the original method call marker was. Since the write(int)
method is a native method, the original class contains no implementation for it. Renaming native
methods is not possible, so the wrapper for write is named w_write. It body calls the unwrapped
native write method. Application classes will be modified to call w_write(int) instead of write(int).

5.4.2 Naccio/Win32

Generating the platform interface wrappers for Naccio/Win32 is simpler than for Naccio/JavaVM
since pass-through semantics are not supported. Further, the Win32 platform interface is written
as a stylized C file that can be compiled directly. Once the resource header file has been
generated, all that is necessary it to compile the platform interface file in a directory containing
this header file. The compiler is run with the appropriate linker directives to forward references
to null wrappers to the system DLL. The resulting DLL is renamed with a different extension so
it can be distinguished from the system DLL by the loader.

In addition to compiling the platform interface file, Naccio/Win32 must generate a definition
(.DEF) file that lists every function exported by the wrapper DLL. For a wrapped function, the
export table contains an entry that maps the original function name to the name of the wrapper.
For the wrapper for DeleteFileA shown in Figure 18, the corresponding export table entry is:
DeleteFileA=wrapper__DeleteFileA. This makes calls to DeleteFileA in programs linked with the
wrapper DLL call the wrapper__DeleteFileA function defined by the platform interface wrapper
instead. Functions in the original DLL that are not wrapped can be listed as indirections in the
import table. These will be replaced with calls to the original DLL at load time. Section 6.1.2
explains how the program transformer modifies an application to use the generated wrapper DLL.

5.5 Integrated Optimizations

All the optimizations discussed so far are done independently on either the resource
implementations or platform interface wrappers. Information about which resource operations
are meaningful is used to remove unnecessary resource operation calls from the platform
interface, but otherwise all optimizations are done independently. Breaking the barrier between
resources and platform interface wrappers offers the potential for additional optimizations. The
prototype implementations do not perform any of the integrated optimizations discussed here,
however they could be done by an industrial implementation that is concerned with the run-time
performance of the transformed code.

Without integrated optimizations, users suffer the run-time overhead associated with policies
being expressed at an abstract level. This includes the overhead associated with creating abstract
resource objects and carrying out extra routine calls. The solution is to inline both routines and
state. Inlining routines is a standard compiler optimization and can be done straightforwardly.
Code from the resource operation can be moved into the wrapper. Since the resource code is
usually small and most resource operations are only called a few times in the platform interface,
inlining resource operations is almost always worth doing.

 72

Inlining state is less traditional, since it depends on the limited semantics supported by the
resource use policy. In certain situations that are quite common in typical platform interfaces, we
can move resource state into the platform interface. This eliminates the need for resource objects
and saves the overhead required to create, store and garbage collect resource objects as well as
the overhead necessary to reference object fields. Inlining state can be done only if the identity of
resource objects is irrelevant. If the resource objects are shared or compared as objects, inlining
state would change the meaning of the platform interface. As it happens, most state fields in
resource objects are immutable objects used only to store values. These fields can be safely
inlined into the platform interface class that uses the resource object. Inlining resource objects
would involve removing the resource objects and moving their instance variables directly into the
associated application level object.

Further opportunities for integrated optimizations are possible if the application is analyzed also.
Since this is likely to take a long time, it only makes sense for performance-critical applications
that will be run frequently. Static analysis of the program text in conjunction with the safety
policy analyses can be used to remove safety checking that is determined to never lead to a
violation. For example, if the policy prohibits network connections except to hosts in a particular
trusted domain, a static analysis could attempt to determine the remote address of all network
connections opened by the program. If all addresses can be determined statically, and all are in
the trusted domain, the checking code associated with opening network connections can be
removed. After this is done, the relaxation analysis of the resource operations should be repeated
since removing the checking code may have rendered more resource operations and state
unnecessary.

The other optimization that can be done through static analysis of the program text is batching
checking. For example, if there is checking code associated with the RNetwork.preSend
operation and the program contains a loop that sends one byte at a time, then each send requires
the overhead of calling a wrapper routine, calling the preSend operation, and executing its body
code which does some checking and increments a state value. If the number of loop executions
can be determined, the checking code can be moved out of the loop and preSend called once with
a parameter that accounts for all network sends that will be done in the loop. If this call issues no
violations, the entire loop can be executed without checking the send calls. This kind of
optimization depends on knowing that calling preSend (connection, n1) and preSend
(connection, n2) is the same as calling preSend (connection, n1 + n2). This depends on the
policy code associated with preSend. While it is unlikely that the policy compiler could
determine this automatically, if Naccio were extended to support descriptive annotations a policy
author could add annotations to document that this is the case and thereby enable the
optimization.

It is expected that in most situations the run-time benefits of application-integrated policy
optimization would not outweigh the substantial analysis time necessary to analyze an application
and perform application-integrated policy optimizations. These optimizations are also complex
and the potential for flaws in the analyses introduces new vulnerabilities. They may be more
useful in conjunction with a proof-carrying code system (see Section 7.1) where the code
distributor does the optimizations. The distributor would ship an optimized version of the
program constrained by a published policy along with a condensed proof that the distributed
program satisfies the policy, and the receiver would use a (hopefully) small and simple system to
verify that the policy is satisfied. This only works if the receiver agrees to a standard policy used
by the distributor, although the receiver could enforce additional properties on the code.

 73

5.6 Policy Description File

The final output of the policy generator is the policy description file. This file contains
transformation rules that compactly describe the changes the program transformer must perform.
It contains a rule that identifies the location of the policy-enforcing library. Rules may also direct
the program transformer to rename specific system calls (for example, Naccio/JavaVM must
rename wrapped native methods), and to modify the application to call resource initializers before
execution begins and to call terminators before execution terminates. The format of the policy
description file is platform-independent, although its contents are likely to be highly dependent on
the particular platform and Naccio implementation.

 75

Chapter 6
Transforming Programs

The program transformer takes a policy description file and a program and produces a new
program that behaves like the original program except it is guaranteed to satisfy the safety policy
used to produce the policy description file. The level of the platform interface establishes the
extent of the program that is handled by the program transformer. The policy compiler is
responsible for parts of the program described by the platform interface; the program transformer
handles everything that is not described by the platform interface. For this chapter, we assume
the platform interface is at the level of a system API.

In the modified program, calls to system API functions are replaced by calls to the appropriate
policy-enforcing wrappers. For platforms where the system API is linked dynamically, it is often
possible to do this by making some simple changes to the program executable or by setting
parameters to the execution environment. Section 6.1 describes how Naccio/JavaVM and
Naccio/Win32 replace system calls with calls to policy-enforcing wrappers.

In addition, the program transformer must ensure the integrity of the checking code either by
modifying the program or by verifying that the necessary properties are satisfied. What actually
must be done depends on the execution platform and on how the platform interface wrappers and
resource implementations are implemented. At a minimum, the program transformer must ensure
that hostile programs cannot circumvent safety checking by manipulating resources without going
through the appropriate platform interface wrapper or by modifying checking code or data.
Section 6.2 discusses what is necessary to guarantee the integrity of the checking for the JavaVM
and Win32 platforms.

6.1 Replacing System Calls

Replacing system calls involves determining what code is part of the application program and
altering the system calls it makes so the policy-enforcing wrappers are called instead. This can be
done by renaming libraries, classes or routines, or by changing the execution environment. Since
the system API is accessed differently depending on the execution platform, the solutions for
Naccio/JavaVM and Naccio/Win32 are different. Both involve switching which API
implementations are linked with the program.

6.1.1 Naccio/JavaVM

Naccio/JavaVM provides two different alternatives for replacing Java API classes. One option is
to leave the application unchanged and set the CLASSPATH so that the modified classes are
found before the standard Java API. An application request for an API class will transparently
load the policy-enforcing version of that class. This approach works only if all applications
running in a VM are using the same policy.

 76

If multiple policies must be enforced, we need a way of distinguishing between versions of the
API that enforce different policies. Naccio/JavaVM does this by statically renaming classes. The
Java class file format makes renaming classes simple and efficient. All class names are given in
the constant table found at the beginning of the class file. We replace class names of library files
with the corresponding policy-enforcing library class name. The Naccio/JavaVM program
transformer examines an application class to determine which classes it uses, and recursively
examines those classes to determine all class dependencies. Classes that are not part of the Java
API (that is, they are not described by the platform interface) are added to the classes to be
transformed. The transformed classes are renamed and written into a new directory, preserving
the original classes.

An alternative approach would be to select the API library classes at run-time. Wallach et al.
describe how the Java ClassLoader could be modified to use namespace management to hide
system classes or interpose implementations with extra security checking [Wallach97]. A similar
approach could be used to select the appropriate policy-enforcing API class. The class loader
would need to be written so that a request to load an API class would return a different policy-
enforcing version of that class depending on the application calling the loader. This information
is available by examining the class loader associated with the calling context. The static class
renaming approach used by Naccio/JavaVM has the advantage that once the application has been
modified it can be run repeatedly without further modification. Also, it means we are not tied to a
particular Java environment. If applications that enforce different policies share objects that are
instances of API classes, a type error will result. The problem of sharing objects between
applications enforcing different policies is a complex one and is not addressed by the current
design. Section 9.2 suggests some possible ways to support sharing objects across policies.

The other transformations that may be required in a policy description file are renaming native
methods and inserting calls to initializers and terminators. For wrapped native methods,
Naccio/JavaVM must replace the name of the method call with the wrapper name (e.g., w_write
replaces write). JavaVM classes call methods by using a constant pool entry of type MethodRef
that contains a reference to the class (an index to a ClassRef constant) and a reference to the
name and type of the method (an index to a NameAndType constant). The NameAndType
constant contains references to a name constant and a type descriptor, both represented by plain
strings. To replace all calls to the method java.io.FileOutputStream.write with calls to
java.io.FileOutputStream.w_write, the application transformer finds the constant pool entry that
references this method and replaces its NameAndType constant with a new NameAndType
constant that has the same type descriptor as the original but whose name identifies a (possibly
new) string constant with value w_write. We cannot just replace the name in the old
NameAndType constant, since constants that reference methods with the same name in other
classes may reuse this constant. If there are no other references to the old NameAndType
constant, it should be removed from the constant pool.

A special situation arises when an application class extends an API class with a wrapped native
method. The situation is analogous to what is done for superclasses in the API by the policy
compiler (as described in Section 5.4.1). If the subclass overrides the method, calls to the method
for objects of the subclass type should call the subclass method. However, if those calls were
rewritten to call the wrapped method (named w_method), then they call the superclass method
instead and the incorrect behavior results. To ensure the correct behavior, the subclass must
override w_method also. The application transformer inserts a new method named w_method
into the subclass. Its implementation calls method with the original arguments.

 77

If the policy requires initializers or terminators, the application transformer must modify the static
main method of the class that will be used to start execution to call them. Java executions begin
by calling the main method of the application class. This method should call each initializer at
the beginning of execution, and each terminator before execution completes. This involves
inserting instructions into the code body of the main method. If the policy requires violation
codes, Naccio/JavaVM adds a new local variable of type naccio.library.ViolationCode and assigns
it to the result of the newViolationCode static method. If the RSystem initializer is required, a
call to it (passing the command line arguments as an array of strings) is inserted. After this, calls
to the other initializers are appended. The violation code value is reset between each initializer
call. Calling terminators is similar except it must be done immediately before each exit point.
Exit points are the end of the code body and any return statements in the code body. The other
way execution can terminate is by calling the java.lang.System.exit method. The policy compiler
inserts calls to the necessary terminators in the wrapper for this method.

The other complication is that the main method may be called directly by the application. We
must insure that the initializers and terminators are only called in the top-level main call. This is
done by adding a static field named in_inner_call to the application class of type boolean that is
initialized to false. Code inserted at the beginning of main assigns a new local variable to the
value of in_inner_call and then sets in_inner_call to true. Code around the initializer and
terminator calls tests this variable and skips the calls if it is true.

Java applets do not use a main method to control execution, but override the start and stop
methods of the java.applet.Applet class. The start method is called to begin executing the applet,
and the stop method is called when the applet should stop executing.15 When an applet is
transformed, the transformer treats the start and stop methods similarly to the main method of an
application class. Initializers are called at the beginning of start and terminators are called before
return points in stop.

If the policy requires no initializers or terminators, no wrapped native methods, and the
CLASSPATH is used to select the policy-enforcing library classes, then there are no changes
necessary to the application classes. It is not necessary to read or rewrite the application classes
to enforce such policies. This means there is no load time cost associated with enforcing the
policy other than setting the CLASSPATH appropriately. Many typical policies, including any
policy that can be enforced using a JDK security manager, have this property.

6.1.2 Naccio/Win32

For Naccio/Win32, we need to alter the application executable so calls to API functions go to the
appropriate wrapper DLL instead of the standard Windows DLL. There are two different ways a
DLL can be attached to a process: listing the DLL in the import address table (IAT) in the
executable image (called implicit linking), or calling the LoadLibrary API function to load the
DLL at run-time (called explicit linking).

For implicitly linked DLLs, Naccio/Win32 can simply replace the DLL names in the IAT with
those of the corresponding policy-enforcing DLL. Since the policy-enforcing DLL names differ

15 It is up to the browser to decide the appropriate times to call these methods. Most browsers call start for
an applet when the page containing it is visited, and call stop when the browser leaves the page containing
the browser.

 78

only in their three-letter extension, this replacement can be done by replacing bits in the IAT and
does not require any code relocation. After the changes are made, the rewritten file must be
rebound to ensure that function entry point addresses are updated to point to the policy-enforcing
DLL. This can be done using the BindImage Win32 API function.

A wrapper for the LoadLibrary routine can be used to replace explicitly linked DLLs. Based on
the name of the requested DLL, the LoadLibrary wrapper either loads the policy-enforcing version
of the DLL or transforms the application DLL according to the policy. The policy description file
includes a list of files used by the application transformer to determine how to handle a particular
explicitly linked DLL.

6.1.3 Other Platforms

Although our experience is limited to the two prototype platforms, there are some general
properties of the target platform and platform interface level that make it easy to interpose
checking code. The system calls described by the platform interface must be easily distinguished
from user code. In cases where they are linked dynamically, it should be fairly easy to change the
library that is linked to interpose checking code. The approach used by Naccio/Win32 would
work on any platform where the system API is linked dynamically and there is a way to replace
which file is linked. Many modern platforms use some form of dynamic linking for system code.
Some platforms, provide even better facilities for interposing checking code. For example,
Solaris supports tracing of system calls using a user-defined function in a separate process. Janus
(see Section 7.3.2) takes advantage of these features to interpose checking code on Solaris
applications, and Naccio could readily be implemented on Solaris using a similar approach.

6.2 Guaranteeing Integrity

In a non-hostile environment, replacing the system libraries might be enough to enforce a safety
policy on an execution. It is unlikely that a program would accidentally do something that
circumvents or alters the checking done by the policy-enforcing library. Hostile attackers,
however, may be motivated to take advantage of low-level manipulations to alter or avoid the
policy checking. To guarantee the integrity of policy checking in these situations, Naccio
implementations must ensure that it is not possible for hostile attackers to circumvent or alter the
safety policy. They must ensure malicious applications cannot:

1. Manipulate resources in ways specified by the resource descriptions without going
through a platform interface wrapper, for example, by jumping directly to API calls or
using kernel traps.

2. Modify any checking code in resource implementations or platform interface wrappers.
If the attacker can modify checking code, violations or resource operation calls can be
removed to eliminate policy checking.

3. Modify the value of resource state or platform interface wrapper state. For example, if a
malicious attacker could change the value of RFileSystem.bytes_written the
LimitBytesWritten property could be circumvented. Being able to read this state is not
considered a serious threat. Although clever attackers may be able to get some benefit
from reading this information, it is not likely to be dangerous unless it is used in
conjunction with some other vulnerability. Implementations that can prevent reading this
state easily should do so, but it is not considered essential.

The measures taken to guarantee these properties lead to new properties that must be guaranteed.
For instance, if any of the guarantees depend on static analysis or modification of the application

 79

code, Naccio must also ensure that the application cannot modify its own code during its
execution.

What must be done to provide the necessary guarantees depends on the platform. Providing the
necessary guarantees for Win32 is more challenging than for JavaVM, a simpler environment
where security was considered in the design. In some cases, it may be necessary to disallow
some harmless programs to provide the necessary guarantees. For instance, it is probably not
feasible to distinguish between self-modifying code that circumvents safety checking and
harmless self-modifying code so providing the necessary guarantees will involve disallowing
programs that legitimately modify their own code.

6.2.1 Naccio/JavaVM

Naccio/JavaVM can take advantage of the properties ensured by the Java byte code verifier to
limit the additional work that must be done. The Java byte code verifier [Yellin95] is designed to
verify the low-level code safety properties required by Java. Before loading a class, the verifier
performs data-flow analysis on the class implementation to verify that it is type safe, stack safe
and that all control-flow instructions jump to valid locations. The class loader rejects classes that
cannot be verified. All Java source code programs satisfy the low-level code safety properties,
and it is up to compilers to generate code that can be verified by byte code verifiers.
Naccio/JavaVM runs the byte code verifier before transforming a class to ensure it satisfies the
standard low-level code safety properties.16

Hiding unwrapped methods

The Java byte code verifier is sufficient to guarantee that all jumps are either within a method, or
method calls and returns, but not enough to guarantee that malicious programs cannot bypass
checking code or manipulate state associated with a safety policy. We also need to ensure that
the program cannot call the unwrapped versions of methods. The modified API class contains the
o_methods that are copies of the original method as well as originally named methods that are
unwrapped versions of native methods. The Java byte code verifier ensures the unwrapped
o_methods are not called directly, since the application classes are verified using the original
Java API libraries that do not define these methods. The program transformer replaces names of
unwrapped versions of wrapped native methods with the name of the corresponding wrapped
method (w_method) to ensure that unwrapped versions of native methods cannot be accessed
directly by the application.

A malicious application could, however, attempt to access unwrapped versions of methods using
the Java reflection classes. The class java.lang.Class provides methods that return the methods
and constructors declared by a class. These can be used on any loaded classes, including the
modified API classes. The methods are returned as objects of type java.lang.reflect.Method. The
invoke method of this class can be used to call the returned method with chosen arguments. The
implementation of invoke will throw an exception if the called method violates Java access rules,
so reflection cannot be used to access private or protected methods inappropriately. Unwrapped
routines, however, are declared with the same access modifier as the original routine since other
API classes must be able to call them. If no efforts are taken to prevent it, an attacker could use

16 In the prototype implementation, the verifier is run again on the transformed class. Security does not
depend on this, but it is an easy way to detect bugs.

 80

reflection to call the unwrapped version of a routine directly and thereby bypass all policy
checking.

There are several feasible ways to prevent attackers from using reflection to call unwrapped
routines. All involve using platform interface wrappers to restrict or alter the behavior of the
relevant reflection methods. The simplest approach would be to disallow all the java.lang.Class
methods that return method or constructor reflection objects. This would involve writing
platform interface wrappers that issue violations for getMethods and the seven other similar
methods that return method and constructor reflection objects. This would be an easy way to
eliminate the threat, but it would also disallow useful programs that use reflection in a way that
does not circumvent safety checking. A variation would instead use wrappers for the
java.lang.reflect.Method.invoke and java.lang.reflect.Constructor.newInstance methods that issue
violations before the method would be called. This would allow programs to view the unwrapped
routines, but not allow any reflection object to be invoked. This provides the necessary
protection but prevents less harmless programs that disallowing the reflection methods.

The next option is to write more complicated wrappers for the java.lang.Class methods that return
method or constructor reflection objects. Instead of disallowing these methods completely, they
would call the original method and examine the result. For non-API classes, the result should be
returned. For API classes, the wrapper code checks if the result contains any unwrapped versions
of wrapped routines (identifiable by their name starting with o_, by their name matching the
name of another method starting with w_ for wrapped native methods, or by the dummy
parameters added to constructors), these reflection objects would be removed from the result
array before it is returned. This would allow programs to use reflection but prevent access to
routines that would allow it to be used to circumvent safety checking. The risk is that the added
complexity leads to more opportunities for bugs in the wrapper code that can be exploited by a
dedicated attacker.

Naccio/JavaVM uses the first approach, using platform interface wrappers to disallow calls to the
class reflection methods that reveal the methods and constructors. We believe that not enough
Java programs use reflection non-maliciously to be worth the added risk of the more complicated
solutions. Since reflection is a relatively new language feature, it remains to be seen if this
solution would be adequate in an industrial implementation.

Hiding checking code and state

In addition to hiding the unwrapped versions of routines, Naccio/JavaVM must ensure that
malicious attackers cannot manipulate state introduced by platform interface wrappers. State is
implemented using instance and class fields added to the wrapped API classes, so
Naccio/JavaVM must ensure programs cannot modify these fields. Since the state fields are
declared private, application classes are not able to access these fields.

A similar situation arises with the generated resource classes. Programs must be prevented from
either modifying resource state or calling resource methods. The most reasonable way to do this
is to prevent application code from ever getting access to a resource object or class. As before,
the Java byte code verifier prevents any explicit use of resource classes since they are not visible
in the standard environment seen by the byte code verifier. The reflection methods can be
wrapped to prevent access to resource implementation fields and routines. Another approach
would be to use a platform interface wrapper to prevent java.lang.Class objects corresponding to
resource classes from being created.

 81

Dynamic class loading

The final thing Naccio/JavaVM must prevent applications from doing is dynamically loading
classes that have not been transformed. If the application could load versions of the Java API
classes that were not transformed to enforce the policy, routines from these classes could be
called to manipulate resources without policy checking. Further, if the application could load
classes from outside the Java API that were not transformed according to the policy, those classes
could call API routines that manipulate resources without policy checking.

To prevent this, Naccio/JavaVM uses platform interface wrappers on the API routines
(java.lang.Class.forName and several methods in java.lang.ClassLoader) that can be used to load
a class dynamically. The simplest thing to do would be to prevent dynamic class loading
completely by issuing a violation when these methods are called. This is likely to prevent too
many harmless applications. Instead, the wrapper can load the appropriate transformed class
instead. If the class to be loaded is a Java API class, the wrapper loads the renamed version of the
class that enforces the policy. Otherwise, it needs to either locate a transformed version of the
class or run the program transformer to create one. The other method that can be used to create a
new class object is java.lang.ClassLoader.defineClass. This method creates a class object from
an array of bytes representing the class file. Naccio/JavaVM could analyze the bytes to check if
they enforce a policy, or transform the bytes directly. This was viewed as too complicated and
risky to be worth supporting in the prototype implementation, and instead the wrapper for
defineClass issues a violation for all calls.

6.2.2 Naccio/Win3217

Providing the necessary guarantees for Naccio/Win32 involves substantially more work than for
JavaVM since Win32 provides none of the low-level code safety guarantees provided by the Java
byte code verifier. Naccio/Win32 must perform protective transformations to provide the
necessary guarantees. The prototype implementation does not implement these protective
transformations. As a result, it could not be relied upon to provide code safety in a hostile
environment. This section presents design ideas that could be used in an industrial
implementation to provide the necessary low-level code safety guarantees. The program
behaviors that must be constrained can be grouped into the three categories introduced earlier in
this section: manipulating resources without going through platform interface wrappers,
modifying code associated with policy checking, and modifying state associated with checking.

Protecting resource manipulations

There are several possible ways an attacker could attempt to circumvent platform interface
wrappers. One vulnerability is that applications could manipulate resources without using Win32
API calls either by making direct kernel calls or by sending LPC messages to the Win32
subsystem. If the application can do either of these, it can manipulate constrained resources
without any policy checking code being invoked. To prevent this, a static analysis detects all
kernel and LPC calls in the program. Kernel calls are easily detected since they use special
instructions to make a trap to the system kernel. LPC calls are more difficult to detect, but can be
detected statically. Some calls can be determined to not manipulate a constrained resource. All
other LPC calls are replaced with instructions that produce a violation. This leads to violations
for some harmless programs, but it is uncommon for programs to use these techniques

17 This section is based on [Twyman99, Chapter 5].

 82

legitimately. Hence, it seems acceptable for Naccio/Win32 to disallow suspicious kernel traps
and LPC calls completely. An ambitious implementation could attempt to write a platform
interface for the kernel and LPC calls and insert calls to the necessary resource operations around
the call. This would require substantial effort both in writing a platform interface at a lower level
and transforming a program to insert the necessary code.

Another way an attacker could circumvent wrapper code is to jump to the unmodified DLL code
directly. Since the policy-enforcing DLLs need to call the original API functions, the original
DLLs must be loaded into the application’s address space. Since Win32 binaries can use
arbitrary values as addresses and jump to them, Naccio/Win32 must ensure that it is not possible
to jump to an address that is in the original DLL or in the middle of the wrapper code. One
technique for limiting the targets of jump instructions is software-based fault isolation (SFI)
[Wahbe93]. SFI constrains the target address of jump instructions by inserting masking or
checking instructions before the jump. The Naccio/Win32 design uses a variant of SFI to ensure
that jumps in the application code can only jump within the application’s code segment. In order
to be able to make external calls to the wrapped DLL routines, stubs that make those jumps in a
controlled way are added to the application code segment. Although SFI is well understood,
actually implementing SFI on a Win32 platform involves a fair bit of complexity. Issues
involved in adapting SFI to Naccio/Win32 are discussed in [Twyman99]. The prototype
implementation does not implement SFI, so it unsuitable for use in adversarial situations.

Preventing code modifications

Naccio/Win32 must ensure that a malicious application cannot modify the checking code. Since
we also depend on the static analysis and SFI transformations to prevent application code from
making kernel or LPC calls or circumventing the wrapper code, the application must not be able
to modify its own code or create new code. One approach would be to use SFI to prevent writes
to the code segment to disallow any code modifications. The problem with this approach is doing
SFI on every write is expensive and cumbersome.

Instead, we can take advantage of the virtual memory protection features provided by Windows
NT and the Naccio wrapper mechanisms. The Win32 API provides functions for making regions
of memory read-only or read/write. At the beginning of the initialization code, the code segments
are marked read-only. This alone would offer no protection, since the application could call the
Win32 API function to make the region read/write. However, we can use a platform interface
wrapper to prevent this. The wrapper for the API function checks if the region that is being set to
read/write is in the code segment. If it is, a violation is issued.

Protecting checking state

Naccio/Win32 must also protect state associated with checking. This includes state associated
with resources and platform interface wrappers. We can protect this state from modification by
application code by keeping it in a region of memory that is marked as read-only using the same
technique as was use to prevent code modifications. The difference is the checking code may
need to write to this state. To allow this, Naccio/Win32 must insert calls to the API routines to
make the region writeable before the checking code and return it to the read-only state before
returning to application code.

This works fine for single-threaded applications, but presents a vulnerability if the application has
multiple threads. While the memory region is writeable to allow trusted checking code to modify
the state, another thread that may be running malicious application code can modify the state
without any violation being detected. This could happen either because the program is running

 83

on a multiprocessor machine, or because the operating system switches threads while the region
is writeable.

In addition to the checking state, multiple threads also pose a threat to the local stack data for
other threads. In particular, the local stack of a thread running checking code may contain
temporary values that will be used in checking such as the absolute pathname corresponding to
the file about to be opened. If a malicious thread is able to alter that stack data, it can disrupt the
checking and prevent policy violations from being detected.

Protecting memory in the context of multiple threads is a difficult problem and no completely
satisfactory solution is known. Twyman suggests some possible solutions [Twyman99]. Perhaps
the most likely solution is to use SFI to protect memory writes. Since we can control where
checking state is stored, using SFI to prevent writes in application code from modifying this state
should be straightforward. Protecting local storage associated with checking code is more
difficult since the regions that must be protected change throughout the execution. One solution
would be to have a table in protected storage that records the regions that currently contain local
checking storage. Checking code would write addresses into this table at the beginning of a
routine, and remove them at the end. The inserted SFI instructions would need to check the write
address against the regions in this table before allowing the write to proceed.

 85

Chapter 7
Related Work

This chapter surveys work related to Naccio. The first three sections describe related work in
code safety – Section 7.1 describes work in low-level code safety, Section 7.2 describes work in
language-based code safety systems, and Section 7.3 describes work involving reference
monitors. Section 7.4 describes other work involving program transformations. While most of
this work was not directed towards security, the mechanisms used are similar enough to Naccio’s
to be worth including.

7.1 Low-Level Code Safety

Low-level code safety comprises the universal code safety required to isolate programs. It is
primarily intended to protect memory references by prohibiting programs from reading, writing
or jumping to certain segments in memory.

Early operating systems provided the necessary isolation using processes and virtual memory.
The Multics operating system pioneered the use of virtual memory [Saltzer75, Denning80].
Virtual memory prevents processes from interfering with one another or the kernel by giving each
process a separate view of the memory system. Instead of directly accessing physical addresses,
a process uses virtual addresses that are mapped to physical addresses by a page table. The page
table is in protected space and can only be modified by the kernel and the mapping is done by
hardware on each memory reference, so there is no possibility of it being circumvented by a
malicious program. The operating-system kernel is the only process that can see all of physical
memory.

The problem with using processes for low-level code safety is that processes are expensive. A
context-switch that may require substantial processor time is needed to switch between processes.
Further, sharing data between different processes involves special mechanisms. As a result,
researchers have sought to provide the same protections offered by hardware-level virtual
memory by using software protections within a single process.

Verification systems

One way to provide code safety is to prove that the necessary properties are true about a program
before it is allowed to run. One advantage of static verification is that after the properties have
been verified, the code can run normally without any run-time overhead. The disadvantage is the
properties that can be proved are limited by theorem proving technology and proving non-trivial
properties typically involves substantial computation time. In theory, verification can be used to

 86

prove general code safety properties. In practice, it has been most successfully used to verify
low-level code safety.

Java uses a byte-code verifier [Yellin95] to provide low-level security. Before loading a new
class, the verifier performs data-flow analysis on the class implementation to verify that it is type
safe and that all control-flow instructions jump to valid locations. Naccio/JavaVM relies on the
Java byte-code verifier to guarantee low-level code safety. Although the verifications done are
relatively simple, the byte-code verifier is still complex enough to contain bugs and the bugs are
likely to be security vulnerabilities.

Proof-Carrying Code (PCC) [Necula96] is a more ambitions verification effort. PCC combines a
program with a proof that the program satisfies certain properties. Before installing the program,
a certifier verifies the proof. Proof generation may be complex and time-consuming, but
verification is simple and efficient.

In theory, proof-carrying code techniques can be used to verify arbitrary properties about code.
In practice, they are limited by automatic proof-generation technology, and only simple properties
have been verified to date. [Necula98] presents a certifying compiler that takes source code in a
type safe subset of C and generates optimized assembly language along with a proof that verifies
its memory and type safety. Since all programs in the input language are guaranteed to have the
desired properties, constructing the proof requires only that information present in the source
code is not lost when it is compiled. Typed assembly language is used in a proof-carrying code
system to verify type safety [Morrisett98]. A compiler can automatically generate type safety
proofs for arbitrary programs in System F, a language supporting polymorphic types and first-
class functions. Efficient Code Certification [Kozen98] seeks to verify low-level code safety
using more compact and simpler certificates than those used in typed assembly language.

Proof-carrying code systems are limited since the producer of the code chooses the policy. The
proof contains information needed to verify particular properties of the program, but provides no
easy way to verify a different property. They may be useful for situations like operating system
extensions when all that is required is memory and type safety, but are not able to offer sufficient
flexibility to be useful in enforcing high-level safety policies. Another concern with proof-
carrying code systems is the load-time overhead associated with verifying the proof.

The possibilities for combining verification with transformation-based run-time security are
encouraging. Future hybrid systems will prove what they can about the original program, and
then alter the program to make proving the additional properties easier.

Software Fault Isolation

Software Fault Isolation (SFI) [Wahbe93, TLLW96] enables a distrusted application to run in a
shared address space without the possibility that it will interfere with memory outside its data
segment. It works by altering memory access operations and jump addresses with bit masks to
ensure that only the correct memory range is accessed. SFI was explained in more detail, along
with the SFI-based mechanisms used by Naccio/Win32 in Section 6.2.2.

7.2 Language-Based Code Safety Systems

Static language-based approaches to code safety attempt to limit the damage a program may do
by requiring that only programs written in a specific language be executed, and designing that
language to have limited expressiveness. This can be done either by designing a new safe

 87

programming language or adding static checking to an existing language. The (unattainable) ideal
safe programming language would be able to express all interesting safe programs and no unsafe
programs. Actual safe programming languages either permit some unsafe programs to be
expressed or prevent interesting safe programs from being expressed; most do both.

This work is relevant to Naccio, in that it presents an alternative way to safely execute code from
untrustworthy sources. While language-based approaches has some appealing properties, the
restrictions or demands they place on programmers limit their practical usefulness.

Type safety

A type safe programming language restricts a program’s ability to convert values between
different types. Providing type safety at compile time makes programs easier to understand and
debug. Several type safe programming languages have been designed including Algol60
[Nauer63], CLU [Liskov81], ML [Milner90], Modula-3 [Nelson91] and Java [Sun96]. Type
safety is generally a good trade off between increased reliability of programs and decreased
language expressiveness, but it does limit the programs that can be written.18

Type safety can be used to provide the low-level code safety necessary to isolate programs by
preventing programs from referencing invalid memory addresses. A language can provide this by
checking types statically, preventing conversions between incompatible types, and limiting how
particular types may be used. Combining this with forced initialization, automatic storage
management and array bounds checking prevents a program from referencing arbitrary memory
addresses and from manipulating memory in a way that does not correspond to its type. Type
safe languages also limit what instructions a program may execute; all control flow is through
language control structures and calls to well-defined procedure interfaces.

Restrictive programming languages

Other programming languages have been designed that provide more severe restrictions on
programs. These languages are usually geared to a special purpose, and some are not Turing
complete.

This approach was used in [Mogul87] to provide a safe way of allowing user code to implement
packet filters that run in the kernel. A simple stack-based assembly language is used to encode a
packet filter, and this is interpreted in the kernel. Since the packet filter language lacks any
control flow operations, all programs are guaranteed to terminate.

PLAN [Hicks97] is a restrictive programming language designed for expressing programs that
execute at the nodes of an active network. PLAN provides strong safety guarantees. PLAN
programs are guaranteed to use a bounded amount of memory, processor and network bandwidth.
PLAN does not support recursive function calls or unbounded iteration, hence, programs are
guaranteed to terminate.

Both the packet filter language and PLAN place severe constraints on the programs that may be
expressed. While they may be well suited for the particular application for which they were

18 Here, by limiting the programs that can be written, we really mean limiting the possible implementations.
Since all the type safe languages are Turing complete, any function that can be written in a non-type safe
language can be written in all of the type safe languages. However, it may be more difficult to implement a
particular program efficiently without the additional expressive power of a non-type safe language.

 88

designed, they are not Turing complete languages and are not capable of expressing most useful
programs.

Static checking

Another way to create a safer programming language is to add more static checking to an existing
language. The most ambitious system using this approach to date is ESC [Detlefs96]. ESC
attempts to prove at compile-time that certain errors (such as derefencing a null value, indexing
an array out of bounds, or race conditions) will not occur. While ESC shows much promise as a
debugging tool, it is unlikely that it could be used to enforce the kinds of high-level safety
properties we are addressing. Many of these properties could not be checked statically since they
depend on values that are not known at compile time (for example, a user enters a file name).
Further, proving a property such as a constraint on the maximum number of bytes that may be
written to a file is well beyond current and foreseeable automatic proving techniques.

Execution environment

Once a safe programming language is designed, a system can provide security only if the
execution environment has some way of verifying that the program was created using the safe
language.

The simplest solution is to use the source code in the safe programming language directly in the
execution environment (PLAN uses this approach). The code can then be run in an interpreter, or
compiled and executed. This approach has two main flaws:

• Performance – there is some performance penalty incurred by either having to interpret code
or compile it every time it is executed. Just-in-time compilers offer some potential to reduce
this performance cost.

• Code disclosure – most commercial software vendors view proprietary source code as the
cornerstone or their business, and would be unwilling to develop programs for a platform that
requires them to reveal their source code.

An alternative is to supply object code to the execution environment, but have some way for the
execution environment to validate the object code. This can be done either by verifying that the
object code was generated from a program in the safe language by a trusted compiler, or by
verifying that the object code satisfies the safety properties of the safe programming language.
SPIN and Java illustrate the two possibilities.

SPIN [Bershad95] uses extensions written in Modula-3 as a safe way of extending an operating
system kernel. They suggest having a trusted compiler cryptographically sign the object files it
produces. The execution environment validates an object file’s signature before loading the code,
to ensure that only unaltered code written in the safe programming language and compiled using
the trusted compiler may be loaded. This approach depends on expensive cryptographic
techniques, and prevents innovation or competition in producing compilers, since only the trusted
compiler is able to sign code.

The other approach is for the execution environment to verify that the object code satisfies the
safety properties guaranteed by the source language. In order to make the verification easier, it
may be helpful for the compiler to include extra information in the object file. However, it is
important that the verifier does not trust this information. The Java byte-code verifier and PCC
(see Section 7.1) use this approach.

 89

7.3 Reference Monitors

This section looks at other systems that use reference monitors to enforce security policies. The
concept of a reference monitor originated in the early 1970s [Lampson71, Anderson72], and is
described in Section 1.2. Here we look at a few reference monitor systems that are most closely
related to Naccio. The diversity of systems represented illustrates the usefulness of reference
monitors.

7.3.1 Java Security Manager

The only way a Java program may manipulate system resources is by calling provided Java API
library functions or by calling native methods. Untrusted code is prevented from installing native
methods, so security can be provided by placing limits on how the Java API routines are called.
The API is implemented so that before an unsafe system call is executed, the relevant
SecurityManager method is called. In theory, this guarantees that the reference monitor for a
particular manipulation is always called before the manipulation is allowed. If the security policy
disallows the call, a security exception is raised before the unsafe system call can be executed.

The SecurityManager is a Java class, so flexible security policies may be implemented. The
scope and precision of policies, however, is limited by where the system libraries call
SecurityManager check methods. The check methods are fixed by the API specification, and
cannot be extended without changing the API specification and implementation.

A common paradigm in Java security policies is to use information on the call stack to determine
what policy should be enforced. Every class and object at run-time has an associated class loader
(a subclass of the java.lang.ClassLoader type) and the class loader reveals the source of the class.
A typical SecurityManager policy uses this information to determine if the class was loaded
locally or remotely, and enforces different constraints on different classes. The JDK 1.0 security
model supported two types of code. Local code would run with no restrictions, and all remote
code would run with severe restrictions imposed by a single SecurityManager implementation.
JDK 1.1 extended this model to support signed applets that are treated as local code, but
otherwise did not change the security model. To distinguish between types of code, authors of
SecurityManagers must explicitly examine the ClassLoader stack.

JDK 1.2 (also marketed as Java 2 SDK) introduced a new security architecture that addressed
many of the limitations of the earlier JDK versions [Gong97]. Unlike earlier JDK versions,
where code was either trusted or untrusted, using JDK1.2 different code can run with different
permissions. A system security policy defines a mapping between a protection domain and a set
of access permissions granted to the code. Particular code is mapped to a protection domain
based on its origin (URL location) and cryptographic signers.

JDK 1.2 also introduced mechanisms to make it easier to define a security policy in terms of
setting permissions (as opposed to earlier releases where it was necessary to subclass the
SecurityManager to change the policy). Permissions are defined as subclasses of the root
java.securityPermission class. Typical permissions contain a target and an action. For example,
the java.io.FilePermission class controls file system access. The target is a pathname (which may
contain wildcards), and the action is one or more of read, write, execute and delete. Permission
classes define a method implies that takes a Permission object and returns true if this permission
implies the argument permission. Programmers can define new permissions associated with their
application by creating a Permission subclass. When the permission should be checked, the code
explicitly calls the security manager with a Permission object that represents the new permission.

 90

This is useful extensibility, but it is up to the application programmers to define new permissions
not the users or independent parties.

Instead of calling specific SecurityManager check methods, the JDK 1.2 uses the more general
AccessController.checkPermission method that takes a Permission object. It will throw a
security exception unless all classes on the call stack belong to protection domains that have been
granted the requested permission. The normal semantics is that the permissions granted at a
particular execution point are the intersection of the permissions granted by all protection
domains in the call chain.

In exceptional cases, privileged code can call the AccessController.beginPrivileged to explicitly
enable (and endPrivileged to disable) a particular privilege regardless of the protection domain of
its callers. This is necessary to allow system API routines to manipulate resources even when
they are called from an untrusted protection domain. Between the call to beginPrivileged and
endPrivileged, all permission checks will ignore the permissions of callers further up the call
stack and allow all permissions of the protection domain of the code that enabled privileges.

The method AccessController.checkPermission checks whether a particular permission is enabled
checking. It can be implemented either by eagerly constructing the intersection of permissions
when a code from a different protection domain is called, or by lazily looking up the execution
stack when a permission needs to be checked. Sun’s JDK 1.2 implementation uses the lazy
evaluation approach [Gong98]. The other approach is used by the security-passing style
[Wallach98]. Instead of searching the stack for protection domains, the stack information is
encoded into a security context parameter that is passed as a parameter. This requires modifying
Java classes to add and pass the extra parameter. The security-passing style has some advantages
over the JDK 1.2 implementation since it is not tied to a particular JavaVM implementation and
does not prevent certain compiler optimizations (such as inlining) that are not permitted using the
stack searching approach. For typical programs, it is likely to perform worse than the lazy
evaluation technique since passing explicit security contexts is more expensive then searching
stacks when a permission needs to be checked [Wallach99].

Naccio avoids many of the complications associated with protection domains by making policy
decisions at transformation time. There is no need to examine the execution stack to determine
the protection domain of particular code, since that code has already been transformed to reflect
the policy that applies to it. This eliminates the complexity and run-time overhead associated
with stack inspection. It means, however, that certain policies that can be easily enforced using
the JDK 1.2 mechanisms cannot be reasonably defined using Naccio. The relative expressiveness
of Naccio in comparison to different code safety systems is discussed in Section 8.1.

7.3.2 Interposition Systems

Several systems have provided security by interposing checking code directly into the operating
system. This can be done either by modifying the kernel or taking advantage of operating system
features such as a tracing facility that support.

Although Naccio enforces policies at the application level, much of the work could also be
applied to an interposition approach. The difference is that instead of modifying applications to
use different policy-enforcing libraries the operating system library would be modified to call all
standard resource operations. The resource operations would dispatch based on the policy in
effect, which the operating system kernel can determine from the application running and a
secure process-policy mapping. This has the advantage of eliminating the need to rely on low-

 91

level code safety of the application, assuming the operating system kernel is protected, as is the
case in most modern operating systems. The other advantage is that no modification or analysis
of applications is necessary; all that is required to enforce a policy on an execution is to select the
desired policy. There are however, two substantial drawbacks to this approach. First, it requires
access to the operating system kernel. Modifying an operating system kernel is usually a
cumbersome and risky undertaking. Much of the modification, though, could be done
automatically by the existing Naccio mechanisms. The other problem is performance. For every
system call that can be constrained, it is necessary to check what policy is in effect and determine
what if any checking code should be executed. This means that even unconstrained programs that
are trusted completely will suffer substantial checking overhead.

Program-specific access controls

Several projects have sought to extend traditional operating systems with access controls that
depend on the program executing. [Wichers90] suggests protecting a system from malicious
programs by associating an access control list with each file that explicitly specifies which
programs can modify the file. The access controls can be implemented through an extension to
the UNIX kernel.

Cybermedia’s Guard Dog [Cyber97a, Cyber97b] is a commercial product incorporating a similar
idea to protect critical files in Windows. It includes a File Guardian that uses operating system
hooks to monitor all access to critical files, and warns the user if a program not permitted to
access the file does so. The user decides what programs are allowed to access particular files or
communicate using the network.

TRON [Berman95] is a process-specific file protection system for the UNIX operating system.
TRON allows users to create shells with specific access permissions that apply to all processes
executed in the shell. A modified UNIX kernel enforces the permissions by placing wrappers
around system calls.

Program-specific access controls have the advantage that safety checking is placed inside the
operating system. This makes it harder for programs to circumvent the safety checking since the
checking is conceptually close to the resource.19 These systems have significant performance
advantages over run-time approaches using a virtual machine, since untrusted programs are
executed directly. The main disadvantage is lack of flexibility – checking is limited to a fixed set
of predefined system calls. We could imagine support for checking a large number of system
calls, but this has detrimental performance consequences. For each system call that is checked,
all programs (both trusted and untrusted) incur the additional overhead of the safety check
(although on some systems dynamically linking with a specialized library can minimize this cost).
We have found no data that quantifies this performance cost well, but since it applies to trusted
programs even a small penalty may be unacceptable to many users.

Janus

Janus is a system designed to limit the damage caused by untrusted helper applications used to
process remote data [Goldberg96]. Non-malicious helper applications such as the PostScript
viewer ghostview are complex enough that they are likely to have bugs that can be exploited by

19 I suspect, however, that the program-specific systems (as opposed to process-specific systems
like TRON) are vulnerable to attacks where a rogue program makes itself appear to have the
identity of a trusted program.

 92

data files constructed by malicious attackers. Janus limits what these helper applications can do
by restricting their access to the operating system. Janus takes advantage of debugging features
of the Solaris operating system that support tracing the system calls performed by an application.
The tracing mechanism can be set to call a user-defined function in a separate process whenever a
particular system call is issued. Since the checking code is in a separate process and the kernel
provides the debugging features, no low-level code safety guarantees are needed to prevent the
helper application from tampering with the checking code or data. This approach works well for
Solaris, but could not be used on other operating systems that do not provide a similar tracing
mechanism.

A policy is defined by a list of policy modules in a configuration file. A fixed set of policy
modules is provided by the system. The configuration file controls the behavior of a policy
module. For example, it can set parameters to the path module that control what directories can
be read and written. Each module may return allow, deny or no comment on a particular system
call. When different modules return conflicting responses, the later modules override earlier ones
and no comment responses are ignored. If the last module that returns a response other than no
comment returns deny, the system call is disallowed.

The module composition mechanism is similar to, but more general than, the policy composition
mechanisms supported by Naccio. Where Naccio allows a property to be weakened by a
permission using allow commands to override violations, Janus allows an unlimited number of
modules to be combined with allow and deny responses overriding each other based on ordering.
It is unclear whether the expressiveness advantages of this approach outweigh the added
likelihood that a policy author will be confused and accidentally define the wrong policy.

Generic Software Wrappers

Generic Software Wrappers (GSW) is a technique designed to make off-the-shelf software more
suitable for use in secure systems [Fraser99]. Prototype implementations have been developed
for two Unix-based operating systems: Solaris 2.6 and FreeBSD 2.2. A wrapper support
subsystem is implemented as a dynamic loadable kernel module, a feature provided by most
UNIX systems. Wrappers run in kernel space so they are protected from application code and
require no context-switch overhead.

GSW defines a policy by writing wrapper code in a C superset extended with some primitives
useful in security checking. Wrappers are associated with system calls or system call groups
introduced by annotations in the characterized system call interface. The characterized system
call interface describes the system API. It is much less general and expressive than Naccio’s
platform interface, but motivated by the same desire to hide platform differences and allow safety
policies to be expressed in a platform-independent manner. System calls are characterized by
adding annotations to their return values, function names, and parameters. The annotations can
be used to categorize functions, but not to precisely describe their behavior. For example, the
annotations on the FreeBSD open system call indicate that it is a file operation that manipulates
file descriptions, its return value is a file descriptor, and its first parameter is a null-terminated
string representing a pathname. The library characterizations allow a wrapper to be attached to
all system calls that deal with file descriptors. Within the code for that wrapper, however, it is
not possible to determine how a file descriptor is being manipulated.

A Windows NT prototype implementation of GSW is currently under development [Spector99].
Since Windows NT does not provide support for dynamic loadable kernel modules, the standard
architecture cannot be used. Instead, they use mechanisms similar to those used by
Naccio/Win32. As with Naccio/Win32, it must enforce the necessary low-level code safety and

 93

they are attempting to do this by performing SFI transformations on running code [Feldman99].
If a Windows NT implementation of GSW were developed successfully, it would provide a
useful platform to implement the low-level code safety necessary for Naccio/Win32.

7.3.3 Transformation-based Systems

A few systems have used program transformation approaches to code safety. These systems are
similar to Naccio in their enforcement mechanisms, but differ in how policies are defined. In
particular, all define policies at the level of concrete operating system calls or machine
instructions.

SASI

Security Automata SFI Implementation (SASI) [Erlingsson99] is a generalization of SFI that can
enforce a wide class of safety policies. SASI prototypes have been implemented for x86
assembly language output from the GNU gcc compiler and JavaVM code.

A policy is defined using a security automaton, similar to a finite state automaton. It consists of
state and transitions where the input alphabet corresponds to events that a reference monitor
would see. The input symbols correspond to program instructions – for the JavaVM version they
are Java byte code instructions; for the x86 version they are x86 assembly instructions. This
provides for unlimited precision, but makes it difficult to express even simple policies.

SASI converts a security automaton into code that is added to the program. New variables are
added to represent the automaton states and code implementing the automaton is inserted between
each program instruction. Unnecessary code is removed, and the necessary code is converted into
machine code and inserted into the program executable. Unlike Naccio, the entire program must
be analyzed and transformed instead of just replacing routine calls. This is necessary because
policies are expressed at the level of individual instructions. In essence, an implementation of the
security automaton defining the policy must be inserted before every instruction (fortunately,
much of this can be optimized out for many instructions and policies).

Ariel

The Ariel project describes policies using a declarative language and enforces policies by
inserting code in Java classes [Pandey98]. The transformations done by Ariel to enforce a policy
are similar to those done by Naccio/JavaVM. Policies are described as access constraints that
prevent the creation of objects or invocation of routines based on a predicate. Because of the
declarative nature of policy descriptions, Ariel is unable to describe behavior-modifying policies
that can be described using Naccio’s mechanisms (such as the SoftSendLimit property described
in Section 4.2.4). This, however, could be changed fairly easily by extending the policy
language. Policies are described at the level of the Java API so they are not portable across
platforms, and writing a policy that constrains writing would require placing constraints on all
routines that may write to a file.

JRes

JRes is a resource management interface for JavaVM programs [Czajkowsik98]. It supports per-
thread accounting for heap memory, CPU time and network usage. Limits can be placed on the
amount of a particular resource a thread may consume, and callbacks are invoked when a limit is
exceeded. In JRes, policies are described by application calls to methods that set fixed value
limits on a predefined set of resources. Many policies that Naccio can enforce could not be
defined using JRes because they depend on resource manipulations not constrained by JRes or

 94

they place more complex constraints on resource usage than a fixed limit (e.g., a rate or a function
of other resource usage).

JRes is implemented by rewriting Java application classes to keep track of thread and resource
information. To account for memory usage, JRes inserts code before every object or array
allocation that calculates the size of the allocation and invokes a method that accounts for this
memory usage. Accounting for CPU usage requires native code and a new thread that queries the
operating system for CPU consumption.

The mechanisms used by JRes could be incorporated into Naccio/JavaVM with minor modifica-
tions. This would allow resources corresponding to CPU and heap memory usage to be defined,
and policies to be defined and enforced that constrain these resources. Unfortunately, this would
tie us to a particular JavaVM since JRes uses native methods and operating system calls to
monitor CPU consumption.

7.4 Code Transformation Engines

Naccio depends on modifying program binaries to enforce a safety policy. Naccio/JavaVM uses
an augmented version of the Java Object Instrumentation Environment (JOIE) toolkit to do the
necessary transformations. The Naccio/Win32 prototype uses custom code to make simple
binary transformations, but an industrial implementation would need a more substantial
transformation engine to perform the transformations necessary to ensure low-level code safety.

The earliest known work on automatic program transformation for monitoring was the Informer
measurement tool done at UC Berkeley in 1969 [Deutsch71]. Informer was developed to
measure a time-sharing system by allowing user-written programs to be dynamically inserted as
measurement routines. It would patch the operating system object code to call a measurement
routine before an arbitrary selected execution point. More recent work has focused on providing
tools that allow for more general program transformations, make the desired transformations
easier to define, and support a range of complex platforms.

7.4.1 Java Transformation Tools

The Java byte code format is a popular target for code transformation engines since it is widely
used, portable, well specified and far easier to deal with than most binary formats. Further, Java
binary compatibility rules mean class files can be transformed in certain ways without breaking
applications. Several tools for transforming Java class files have been produced including JOIE,
Binary Component Adaptation, the Bytecode Instrumenting Tool, and Compaq JTrek. None of
these tools were produced with security in mind, but rather improving performance and
reusability of Java classes. Although any of these could have been used (with some modification)
as the transformation engine for Naccio/JavaVM, we choose to use JOIE because at the time this
work began it was the most mature and stable tool available, its source code was available, and it
provided general enough interfaces to support most of the transformations needed by
Naccio/JavaVM.

JOIE [Cohen98] is a toolkit for transforming Java classes. It is intended to be used to do load-
time transformations by using a custom class loader that calls user-defined transformers.
Naccio/JavaVM does not use the JOIE class loader, but uses classes in the JOIE toolkit to
transform and rewrite classes independently from them being loaded into a JavaVM.

 95

Binary Component Adaptation (BCA) [Keller98] is a tool for rewriting JavaVM code at load-
time, designed to improve the reusability of Java components. Adaptations are expressed as
changes that should be made to a class such as adding, renaming or replacing a method. A
compiler converts the requested changes into a set of modification rules. When the class loader
loads a class, it is modified according to the modification rules

The Bytecode Instrumenting Tool (BIT) [Lee97] is a tool for instrumenting JavaVM code,
primarily directed at performance analysis. BIT supports insertion of code at key locations in a
program (for example, method calls and basic blocks). BIT is not as general a transformation
engine as BCA or JOIE, since transformations are limited to inserting code at points determined
only by control flow.

Compaq JTrek [Compaq99] contains a class library that can be used to analyze and modify Java
class files. It supports byte code transformations, intended to instrument classes with monitoring
code. JTrek provides hooks for user-defined methods that are called when a routine is invoked or
field is referenced and modifies Java classes to call those methods at the appropriate times.

7.4.2 Win32 Transformation Tools

Transformation tools for Win32 binaries are less readily available since there is substantial
complexity involved in dealing with the Win32 binary format [Pietrek94]. One of the challenges
in binary editing for Win32 platforms is code discovery. Unlike Java classes where the location
of code and data is defined by the class format, distinguishing code and data in Win32
executables is complicated. Another problem is code relocation. If the length of code changes
because of the program modifications, jump instructions and memory references must be adjusted
to point to the modified location. This is particularly problematic for indirect jumps where the
address is calculated and not known statically. Most binary editors rely on symbolic information
that is part of the executable such as a debugging table identifying procedure entry points and
data regions. Naccio/Win32 cannot depend on this information unless it is verified. There is no
way to prevent an attacker from altering the symbolic information in a way that circumvents
safety checking. All of these problems make transforming Win32 executables for security a
challenging problem. Although it is believed to be possible, it would involve substantial effort
and resources beyond what was available for the Naccio/Win32 prototype. The predominant
Win32 architecture, Intel x86, poses additional problems because of the complexity of its
instruction set. Supporting Alpha NT would be easier because of the simpler RISC instruction
set, however a tiny fraction of Win32 users are using Alpha NT.

Several tools are available that would be a helpful starting point for an industrial implementation.
OM [Srivastava92] is a tool for performing link-time modifications on Alpha binaries. It
translates the program to a register transfer language and performs modifications on that
representation before rewriting it as a binary. OM makes use of supplemental relocation
information provided by the compiler in the binary. If it were used for code safety, this
information would need to be verified or ignored. ATOM [Srivastava94] is a tool built on top of
OM to simplify program instrumentation. It provides a set of APIs for instrumenting programs
but does not support arbitrary modifications such as deleting instructions. ATOM has been used
on the OSF/1, Digital UNIX and Windows NT operating systems. The Windows NT version of
ATOM, Spike [Cohn97] provides binary instrumentation for Alpha Windows NT executables. In
addition, it intercepts system calls using replacement DLLs to transparently substitute
instrumented DLLs for their unmodified versions. A similar technique could be used by
Naccio/Win32 to introduce wrapper code.

 96

A few binary editing tools for x86 Win32 executables have been developed. Etch [Romer97] is a
tool for rewriting x86 Win32 binaries. Etch analyses a Win32 binary to discover the code
segments, and then cycles through each basic block instrumenting instructions. A (now-defunct)
company, TracePoint, used OM technology to build tools that instrument Win32 binaries to do
profiling and test coverage analysis [TracePoint97]. This work is believed to be continuing at
Microsoft under the code name Vulcan [Srivastava98]. Neither Etch nor Vulcan is currently
available for research purposes.

In addition to the single platform binary editing tools, a few projects have attempted to build
general frameworks that can be used to edit binaries on different platforms. Executable Editing
Library (EEL) [Larus95] is a C++ library for editing executables. EEL translates executables into
a platform-independent register transfer language, allows transformations to be performed on the
intermediate representation, and translates it back to a platform-dependent executable. EEL is
intended to be portable across a wide range of instruction sets and binary formats, but so far has
only been used with SPARC executables running under SunOS and Solaris and a partial
implementation for RS/6000 AIX executables. It remains to be seen if this approach could work
for a CISC architecture like x86.

 97

The security system was adequate, but it did not foresee an armed robbery.

 Italian Minister of Culture Walter Veltroni, explaining the theft of

two van Goghs and a Cézanne from Rome’s National Gallery.

Chapter 8
Evaluation

This chapter evaluates the Naccio architecture and prototype implementations. We analyze how
well the goals of security, versatility, ease of use, ease of implementation and efficiency set forth
in Section 1.3 have been met by the Naccio design in general and our prototype implementations
in particular.

8.1 Security

The most essential property of any security-related system is that it satisfies desired security
requirements. For Naccio, this means that a specified policy is enforced correctly. There is no
clear way to prove this in the positive, but any successful attack proves the negative. A formal
analysis of the soundness of the Naccio design would increase our confidence, but is beyond the
scope of this thesis. Instead, this section speculates on the security of the design and discusses
likely vulnerabilities in the prototype implementations.

The smaller the part of the system security depends on, the more likely it can be implemented
correctly or validated. Although Naccio’s design is conceptually simple, the trusted computing
base for Naccio is far larger than is desirable. In general, it comprises the program transformer,
policy compiler, platform interface, and all system code below the level of the platform interface.
For the Naccio/JavaVM prototype implementation, the trusted computing base comprises:

• The policy compiler. It must correctly parse the resource descriptions, resource use policy
and platform interface. It must weave the checking code from the resource use policy into the
resource descriptions. If optimizations are done to remove resource operations and platform
interface wrappers, these optimizations must correctly determine that the removed modules
do not do any useful checking. The code generated for the resource implementations must
correctly implement the checking described by the resource use policy. Since a Java
compiler is used to compile these resource implementations, that Java compiler is part of the
trusted computing base also. The policy-enforcing library must correctly reflect the contents
of the platform interface. This is perhaps the most complicated part of policy generation, and
it is exceedingly unlikely that the prototype policy compiler does not have some bugs in the
generation of wrappers. Further, it depends on the JOIE toolkit used as the transformation
engine. Finally, the produced policy description file must accurately describe the
transformations that must be done to enforce the policy on an application.

 98

• The program transformer must correctly perform the transformations described in the policy
description file. Naccio/JavaVM also relies on the Java byte code verifier to ensure low-level
code safety properties. In addition, we rely on the wrappers for Java reflection and dynamic
class loading correctly prohibiting applications from bypassing or tampering with the
checking code. The prototype implementation keeps these wrappers simple (at the expense
of disallowing some harmless programs) to increase the likelihood that they are correct.

• The platform interface must correctly describe the Java API in terms of the resource
operations. The task is simplified somewhat by support for pass-through wrappers, but the
platform interface must still correctly specify the behavior of several hundred API routines.

• The Java API implementation must not manipulate resources in ways different from those
described in its documentation. Since the platform interface is written according the API
documentation, if the Java API implementation produces different resource manipulations
than described in its specification, an attacker will be able to exploit them to violate the safety
policy without detection.

This is a very large trusted computing base, and it compares unfavorably with most other code
safety systems. The trusted computing base for the JDK 1.1 security mechanisms comprises the
byte code verifier, the Java API correctly calling SecurityManager check methods, and the
SecurityManager correctly implementing that checking. It also depends on the Java compiler to
correctly compile the API and SecurityManager, and the Java run-time to correctly distinguish
between trusted (local or signed) and remote code and the ClassLoader only loading verified
classes. This is certainly a larger trusted computing base than is desirable, and too large to be
feasible to verify, but smaller than the Naccio/JavaVM trusted computing base. Systems like
SASI [Erlingsson99] and proof-carrying code [Necula98] have smaller trusted computing bases
than the JDK. Because they describe policies at the level of machine instructions, there is less
processing needed (and hence, a smaller trusted computing base), to enforce or verify a policy.

The story for Naccio/Win32 is similar. Its security depends heavily on correct implementation of
the protective transformations necessary for low-level code safety. Implementing SFI is
notoriously difficult for a platform as complex as Intel x86 and no satisfactory implementation
that deals with arbitrary Intel x86 executables is known. Further, the Win32 API is large and
complex. The prototype implementation only defines a partial platform interface; correctly
defining a complete one would constitute a major undertaking.

One way to deal with a large trusted computing base is to identify and verify the most vulnerable
pieces. The platform interface is the most likely candidate for verification. Section 9.1 discusses
some possible ways of increasing confidence that various parts of a Naccio implementation are
correct. The other way is to change the design or implementation to shrink the trusted computing
base. One way to do this would be to move more of the checking into the operating system. On
platforms that support extensible kernel modules (such as Solaris and FreeBSD), this could be
done without any need to modify the kernel. This would eliminate any reliance on low-level code
safety, other than trusting the operating system mechanisms that protect the kernel. The trusted
computing base would then only be the policy compiler that generates the checking code from the
policy and the platform interface that describes the kernel calls. One way to simplify and reduce
the size of this code would be to remove all the optimizations. This would incur a significant
performance penalty, but would be acceptable in situations where greater security assurance is
more important. If Naccio/JavaVM enforced policies at the level of native methods instead of the
Java API, it would eliminate much of the trusted computing base since it would only rely on
hooks into the native methods and the generated checking code itself. It would remove reliance
on the Java API implementation, other than the implementation of native methods. The platform

 99

interface would be smaller and simpler, since it describes only security-relevant native methods.
The drawback is it would tie Naccio/JavaVM closely to a single execution platform. It would
also be more difficult to write extended safety policies, since the platform interface must be
expressed at the level of machine instructions.

Naccio’s large trusted computing base is one of the prices we pay for abstract policy definition
mechanisms. The further away the policy definition is from the execution platform, the more
work that must be done to enforce the policy. While the tradeoff between increased trusted
computing base size (and the resulting reduction of confidence in the security mechanisms) and
the ability to efficiently enforce a wide class of useful policies may be acceptable for low and
medium security environments, it is not acceptable in security-critical environments. For
security-critical environments, Naccio may be usefully combined with simpler enforcement
mechanisms with better assurance that enforce the most important properties in such situations.

In addition to the sheer size of the trusted computing base, some aspects of the prototype
implementations are of particular concern. Naccio/JavaVM supports pass-through wrappers to
make writing the platform interface easier. This greatly reduces the size of the platform interface
needed for the Java API. On the other hand, it increases the complexity of the policy compiler.
Handling pass-through wrapper semantics is the most unwieldy part of the policy compiler
implementation and the most likely part to contain bugs that are manifest as security
vulnerabilities. Nevertheless, we believe the benefits of supporting pass-through wrappers in
reducing the size of the platform interface outweigh these risks. Another possible vulnerability of
the prototype Naccio implementations results from the optimizations done by the policy compiler
to remove unnecessary resource operations and platform interface wrappers. Bugs in these
optimizations can lead to wrappers that do meaningful checking being incorrectly removed and as
a result produce a policy-enforcing library that does not detect violations of the policy. We
believe the analysis is simple enough to implement correctly so that the run-time performance
benefits obtained by removing unnecessary wrapper more than outweigh the added risks
associated with bugs in the optimizer code.

The Win32 platform presents some additional vulnerabilities not faced on the JavaVM platform.
Ensuring low-level code safety is much more difficult, and is not attempted by the prototype
implementation. We believe it is possible to implement SFI correctly on Win32 Intel x86
executables, although it remains to be seen if this is true. Multiple threads pose another problem,
and there is some doubt as to whether or not a satisfactory solution to protecting wrappers and
resource state in the presence of multiple threads can be found.

Even if a Naccio implementation is correct, attackers can still exploit poor policy choices. Since
all constraints imposed by Naccio are discretionary, it is up to users and system administrators to
determine a suitable policy for their environment. Actually deciding what is an appropriate
policy for different environments is beyond the scope of this thesis, but it is important that precise
enough policies can be expressed and that it is easy enough to define and understand policies that
it is likely a policy really means what its author intended. We believe Naccio offers some
advantages over the alternatives because of the way policies are described in terms of abstract
resource manipulations. The next two sections discuss this.

8.2 Versatility

This section considers how well Naccio encompasses the range of useful safety policies. We
consider the issue in general, and then specifically for the standard policies and extended policies
supported by the prototype implementations.

 100

8.2.1 Theoretical Limitations

The policies Naccio can enforce encompass all safety properties that can be expressed in terms of
manipulations visible at the platform interface level. With a suitable platform interface, all
resource manipulations are visible and Naccio can define and enforce all policies in Class EM
(see Section 3.3). Naccio cannot enforce liveness properties or policies that depend on
knowledge of all possible executions.

Liveness properties depend on knowing something will happen in the future. For example, a
policy that requires that all open files must eventually be closed is a liveness property. Although
Naccio cannot strictly enforce liveness properties, most useful liveness properties can be
approximated. For example, we could modify the file close policy to require that all open files
must be closed before the application terminates. Naccio could define this policy by adding a
state block that maintains a set of the currently open files. Code associated with the open file
resource operations would add files to the open set, and calls to the close operation would remove
them. Checking code associated with the file system terminator could either issue a violation if
the open files set were non-empty before execution is about to terminate. Approximations of
liveness properties may be slightly awkward to express, but Naccio can approximate many of the
liveness properties that are useful for security.

Policies that depend on knowledge of all possible executions cannot be enforced without static
analysis of the program text. Most properties in this category deal with information flow.
Knowing whether a particular execution reveals information about some object requires
determining if the visible output of this execution is distinguishable from other executions where
the value of the object is different. Since runtime monitors on a single execution cannot reveal if
this is the case, Naccio cannot be used to enforce fine-grain information flow. Naccio can be
used to enforce coarse information flow policies that prohibit any remotely visible behavior after
a sensitive object is touched. For example, a policy could be defined that prohibits all network
use after any sensitive file has been read. In situations where fine grain information flow policies
are essential, it would be necessary to combine Naccio with a static analysis tool that enforces the
fine grain information flow policy.

8.2.2 Policy Expressiveness

Although in theory a platform interface can be created that makes all resource manipulations
visible to the policy author, in practice it is not usually practical to do so. Both prototype
implementations use platform interfaces at the level of a system API. This limits the policies that
can be enforced to those expressible in terms of events visible through system API calls.

First, we consider the class of standard policies since those policies that can be defined using the
standard resources represent the class of policies that can be easily defined. In addition, standard
policies are portable across Naccio implementations. Porting an extended policy requires altering
the platform interface on each new platform. Hence, it is important that most common policies
can be expressed as standard safety policies. Standard policies can be used to express access
control policies on any of the standard resources including files, network connections, windows,
and threads. In addition to the standard static access control policies, policies that constrain
access control dynamically based on the history of all resource accesses made by the execution
can be written by using state blocks. This covers most traditional access control security policies.

With extended policies, the class of expressible policies expands to include constraining and
modifying all behavior visible at the level of the platform interface. For the prototype

 101

implementations with platform interfaces at the level of the system API, this means all resource
manipulation done through the system API can be constrained. By using state blocks, Naccio can
define any policy that depends on the history of all system calls made by the execution. This is a
large class of policies, but there are still limitations on what policies can be expressed. In
addition to the theoretical limitations discussed earlier, the expressible policies are limited by
what is visible to the platform interface. Some resources are manipulated without using system
calls, in particular memory and the CPU. Naccio implementations cannot place any constraints
on manipulating resources that are not visible at the level of the platform interface.

Other resources are visible at the application level, but do not correspond to any system resource.
For example, a library may maintain a database in local storage and provide routines for
manipulating that database. Since these routines are not part of the system API calls, there is no
way to use Naccio to enforce a policy that constrains how the database may be manipulated.
Eventually, the database manipulations may lead to a file modification or network transmission
that can be constrained by Naccio. However, it is likely to be difficult to define a database access
policy in terms of file operations, since the mapping between file segments and database entries is
often complex and dynamic. It is possible, however, to extend the platform interface to include
the database classes and to define new resources that correspond to manipulating the database.

Comparison to JDK

Naccio/JavaVM can mimic any JDK policy since we can write a Naccio policy that makes the
same calls to the security manager check methods at the same execution points and with the same
parameters as the Java API does (the MimicJDK policy introduced in Section 8.5.1 does this).
Although this clearly duplicates a JDK policy, it is not entirely satisfying since it depends on
hooks that allow policies to call Java methods. The policy is not portable because it relies on the
Java SecurityManager code.

To define a portable version of a JDK policy, the checking code needs to be moved directly into
the safety properties and translated into the generic property language. One problem that needs to
be addressed is how to deal with JDK code that distinguishes between privileged and
unprivileged code. The JDK 1.1 security manager often depends on examining the ClassLoader
to determine if code is part of the system and should be considered privileged. JDK 1.2 uses
stack inspection to provide a more general way to enable privileges through a call sequence.

Duplicating stack inspection requires access to more run-time state than is visible in a Naccio
policy. The stack is not visible from a safety policy, so there is no way to define a policy that
treats resource manipulations differently depending on what is on the call stack when they occur.
Naccio can, however, mimic most of the useful aspects of stack inspection. Further, we argue
that many policies defined in terms of different privileges supported by stack inspection are better
expressed as more precise policies not depending on different privileges.

In JDK 1.1 and earlier, stack inspection was limited to distinguishing system and application code
based on the ClassLoader. Naccio makes the same distinction at the platform interface boundary.
Code within the Java API that is described by the platform interface is trusted. The wrapper
describes its behavior and the implementation code runs with no additional safety checking. To
define a policy that allows system code to manipulate resources in ways not permitted by
application code, all that is necessary is to write a wrapper for the relevant API routine that does
not call the resource operations corresponding to its actual manipulations.

JDK 1.2 supports a richer model where stack inspection distinguishes arbitrary classes of code.
This is primarily motivated by the desire to support multi-layered applications where different

 102

classes have different trust levels and capabilities. Given that Naccio cannot duplicate stack
inspection behavior exactly, we need to consider what is lost in terms of expressiveness as a
result. Stack inspection was motivated by the desire to allow trusted code to perform actions that
untrusted code is not permitted to, even when that system code is called by the untrusted code. A
common example is the font loading code in the AWT. This needs to open and read a file, but is
viewed differently from an application attempting to open and read a file directly. An example
that takes advantage of JDK 1.2 capabilities would be an untrusted application that calls a third-
party library that calls system code. The system code is privileged, and the third-party library has
some privileges not afforded to the application but does not have all the privileges available to the
system code.

This allows certain policies not expressible using Naccio to be defined, but it is questionable
whether or not these kinds of policies are desirable. Policies expressed in terms of varying
privileges do not correspond well to anything a user understands. Users have no notion of stack
frames and make no distinction between system code and application code. It is awkward to
describe to a typical user a policy that allows system code to access the file system but does not
allow application code to do so. This policy might be useful if we want to allow the AWT font
loading code to read a local file but prevent application code from directly accessing the any files.
The assumption is that it is okay for system code to do this, since the system code is trusted and
only limited information about files is made available to the untrusted code as a result. This
seems contrary to the user’s understanding of the policy. It would be better to define a more
precise policy that constrains only the behavior of the program but make no distinction between
what code is directly causing that behavior. For example, a better policy would disallow access
to files except allow reading a limited number of files in the system fonts directory. This policy
could be easily defined using Naccio by weakening a no writing policy with the standard JDK
allowances that permit reading the font files. We believe most useful policies that depend on
varying privileges can be better defined as precise policies defined in terms of program behavior.

There is a wide class of policies enforceable by Naccio but not enforceable by the JDK security
mechanisms. This includes policies that depend on resource manipulations that do not
correspond to security manager checks and are not visible to JDK policies. In order to enforce
these types of policies using JDK mechanisms, additional check methods would need to be added
to the SecurityManager and API implementations would need to be altered to call those check
methods at the appropriate execution points. For example, current JDK mechanisms cannot
support policies that constrain file activity once a file has been opened. This means both that
there is no way to revoke read and write access once it has been granted by the original open call,
and that there is no way to constrain the amount or content of data read from or written to an open
file. To extend the JDK to support this class of policies, one would need to add new security
manager check methods that correspond to reading and writing to files. All the Java API classes
that read from or write to files would need to be modified to call the new check methods at the
appropriate time. Even supposing one did have access to change the Java API in this way, the
overhead of calling the new check methods is suffered for every Java program that runs with a
policy enforced, even if that policy places no constraints on reading and writing to files. This
would be unacceptable in many environments, since the overhead associated with security
checking for a commonly called routine like writing a byte to a file would be substantial. Naccio
avoids this problem by inserting the platform interface wrappers only when they do useful work.
Hence, there is no overhead suffered unless the policy constrains a particular resource
manipulation.

 103

Examples

One way to get a better handle on whether Naccio can successfully express useful policies is to
consider whether policies that protect against particular kinds of hostile applets can be written.
One well-known collection of hostile applets is Mark D. LaDue’s collection of hostile applets
[LaDue96, LaDue99]. Here we consider how effective Naccio would be in protecting against
each of these applets. The effectiveness of Naccio’s policy definition mechanisms is judged on
the basis of whether a policy can be written to prohibit the attack, how easy it is to write the
policy, and how precisely it excludes the hostile behavior.

• The NoisyBear applet displays a clock and makes an annoying sound. Even after you leave
the page, the sound continues. This behavior could easily result from an accidental
programming error, and takes advantage of browsers allowing applet threads to continue even
after the browser has left the page containing the applet. The simplest policy that would
prevent this particular attack would be to always disallow playing audio files. This would
disallow some potentially useful applets, however.

The more general problem revealed by this applet, however, is that threads are allowed to
continue after the applet stop method has been called. The browser calls the applet stop
method when it leaves the page containing the applet, but there are no requirements that the
applet stop method actually terminates all applet threads. Using Naccio, we can impose a
policy that requires that no applet threads are running at the end of the stop method. The
program transformer modifies the applet to call terminators (including RSystem.terminate) at
return points of the applet stop method. A useful policy would keep track of all threads
created by the applet using a state block, and then check that all threads have been stopped
when RSystem.terminate is called. Occasionally, a useful applet may need to keep threads
running after the containing page has been left by the browser. It seems reasonable to require
user approval before allowing this.20 The JDK approach could not be used to enforce such a
policy, since there is no check method associated with stopping an applet.

The best general solution to these kinds of attacks, however, is at the browser level. A
security-conscious browser should allow the user to see what applet threads are running and
which URL was responsible for their creation, and to selectively kill annoying or suspicious
threads.

• The Consume, Wasteful, HostileThreads and TripleThreat applets are all denial-of-service
attacks that consume most available CPU and memory. They work by creating a new thread,
setting its priority to MAX_PRIORITY, and doing lot of useless processing. A policy that
disallows increasing a thread’s priority would solve part of the problem since a normal
priority thread will not prevent other threads from acquiring the CPU. This policy can be
easily defined using Naccio by issuing a violation in the standard resource operation
associated with setting a thread’s priority if the requested priority is too high. A less
obtrusive policy would not issue a violation, but instead skip the system call that sets the
priority. Defining this policy requires changing the platform interface so the original system
call can be skipped.

20 Supporting this well would require changing the terminators, so that different resource operations
correspond to stopping the applet and termination of the last thread associated with the applet. This could
be done by transforming applet code so each thread checks if it is the last thread running before completion,
but would perhaps be better done by the containing application.

 104

This would lessen the effects of the denial-of-service attacks, but would not prevent the
eventual consumption of resources. To do this we need a policy that restricts the actual
resource use. Attack applets use different kinds of resources in different ways. Some create
a large number of threads or windows. Naccio policies can easily place limits on the number
of threads or windows created, and it seems sensible to import such a policy on untrusted
applets. If the resource use is done through processing and memory allocation, however,
Naccio/JavaVM is not able to constrain the resource consumption. The limits on thread
creation and setting thread priorities, would significantly reduce the amount of the CPU
resource that could be consumed, but Naccio/JavaVM cannot enforce a policy that places
limits on memory and CPU usage. Since using memory and the CPU does not correspond to
a system call, these are not visible to the platform interface so we cannot write a policy that
constrains them using Naccio/JavaVM. Although it is possible to extend Naccio/JavaVM to
support these resources (see Section 9.2), it is more practical to constrain memory and CPU
usage in the run-time environment.

• AppletKiller is a hostile applet that shuts down all other applet threads. It recursively loops
through threads in a thread group, and their parents. Naccio policies can easily place
restrictions on killing threads by writing a resource use policy that attaches checking code to
the RSystemThreads resource operations. Perhaps the most reasonable thing to do would be
to disallow any access to the applet’s parent thread. A Naccio policy can do this by attaching
checking code to the resource operation associated with getting a thread or thread group’s
parent. The difficulty is determining if the requested thread is the original applet thread (in
which case the call reveals information about threads outside the applet), or a thread created
by the applet (in which case the call should be allowed). To do this, we need a state block
that keeps track of how a thread was created.

• Forger sends forged email by opening a network connection back to the originating host that
uses the send mail port (25). A simple policy that would prevent this would prohibit all
connections to port 25, or more generally prohibit explicit connections to any questionable
port. This policy could also be written easily using a JDK security manager. The problem is
with the default settings and policy interface on most browsers, not the available JDK
security mechanisms.

To summarize, all of the applets in the hostile applets collection can be mitigated using standard
safety policies. Only the denial-of-service applets that consume memory and the CPU but not
some constrainable resource cannot be prohibited by a reasonable policy. The policies can be
expressed precisely enough that the hostile behavior can be prevented without also preventing
many non-hostile applets.

It is not clear how well the hostile applets collection corresponds to the real attacks browsers are
likely to face. In fact, there have been few reports of malicious attacks exploiting Java21. Nearly
all the media reports of Java vulnerabilities result from academic research rather than discovery
of an actual malicious attack. Despite Java’s security vulnerabilities, it is far easier for a
malicious hacker to cause damage in other ways and most attacks exploit Windows executables
or (more recently) macros for Word and similar programs. Fortunately, a Windows
implementation of Naccio could be used to prevent many of these attacks. Java may become a
more popular target for attackers as users become more security conscious and resist running

21 Symantec’s database of about 40,000 viruses and Trojan horses [Synamtec99] contains only two Java
viruses (strangebrew and beanhive). Both depend on running in an environment where file access is not
constrained. Trojan horses should be more common, but there are none reported in Symantec’s database.

 105

untrusted programs without code safety. However, for the near future, it is likely that buggy
programs are a more serious threat to users with Java-enabled browsers than are malicious
attacks.

8.3 Ease of Use

A main goal of Naccio is to make it easier to write, modify and understand policies than it is with
other systems. This is a subjective question, but can be considered by looking at how much
knowledge and code is required for different kinds of policies. Our experience with actual users
is limited to that of the author and Andrew Twyman’s experience developing policies the
constrain network use before he began to develop Naccio/Win32. He was able to write new
policies after looking at a few examples and had no problems defining the desired policies using
Naccio.

Many policies can be written by combining and setting parameters of predefined properties.
Users can construct these properties without any knowledge of resource descriptions or how
policies are defined. If a sufficiently comprehensive property library is included with a Naccio
implementation, it should be possible for most users and system administrators to construct many
of the policies they need using predefined properties.

More sophistication is required to write a new safety property. We hope that moderately
sophisticated computer users without substantial programming experience will be able to
understand and write standard safety policies. To do so requires being able to understand the
concept that program manipulations are characterized by resource operations, and that attaching
checking code to resource operations constrains those manipulations.

The simplest policies are expressed as checking code that attaches a violation to a resource
operation. For example, consider what must be done to write a policy that prohibits altering or
creating files but allows reading. To define this policy using Naccio, a policy author must
determine that file writing corresponds to the RFileSystem resource, examine the RFileSystem
resource description to deduce that the modifyFile group corresponds to altering or creating files.
The policy can be defined by attaching a violation to RFileSystem.modifyFile. Writing the same
policy as a JDK SecurityManager involves creating a new SecurityManager subclass and
overriding the checkWrite and checkDelete methods to throw an exception.22 In fact, the default
SecurityManager disallows everything, so the policy author either needs to subclass a different
SecurityManager, or needs to override every other check method with an empty body. This
involves a fair bit more programming knowledge than writing the Naccio policy (understanding
subclassing and exceptions), but perhaps less effort for someone who already knows Java. Most
Java-enabled browsers do not support user-written security managers, but instead provide a
graphical interface for setting security parameters. The policy configuration dialog boxes for
Internet Explorer 5.0 cannot be used to define a no writing policy. The only choice is to either
enable or disable access (both reading and writing) to all files or to require a user prompt to
approve all file access. While the interface for selecting policies is simple enough for naïve users
to understand, it places severe limits on the range and precision of policies that can be defined.

22 The java.io.File.rename method calls checkWrite on both its arguments; java.io.File.delete calls
checkDelete.

 106

The next level of complexity in writing policies is writing policies that maintain state, such as
LimitBytesWritten shown in Figure 6. Writing state-based policies involves more programming,
but Naccio’s mechanisms make it easier to write these policies than the alternatives. In addition,
a library of common state blocks covers the state needed for many policies. It will often be
possible to express a new policy using pre-defined state.

The fact that defining a Naccio policy requires writing code makes it inaccessible to the majority
of computer users. The subset of users who might be willing to consider writing a safety policy is
probably similar to the class of users who write their own spreadsheet or Word macros. To make
Naccio accessible to a wider class of users would require a graphical, parameter-based interface
to policies. Such an interface tool could be created, but it is beyond the scope of this thesis.

8.4 Ease of Implementation

This section considers the amount of effort required to produce a new Naccio implementation by
examining the effort required to produce the two prototype implementations. We report on how
much work was required to produce Naccio/JavaVM, the first Naccio implementation; and how
much additional work was needed to produce an implementation of Naccio for another platform,
in this case, Naccio/Win32. Many of the lessons learned from these efforts would reduce the
amount of time needed to produce a new Naccio implementation. Further, because of the design
of the Naccio architecture, much of the code from the policy compiler can be reused on
implementations of Naccio for different platforms.

Implementation of the Naccio/JavaVM prototype began in May 1998. Before this a preliminary
prototype had been produced that transformed ANSI C source code according to fixed rules as a
proof-of-concept23, and the Naccio architecture had been designed and described in a thesis
proposal. It took about four weeks to build a basic Naccio/JavaVM system that could be used to
enforce simple policies on test programs. The main difference between the original prototype and
the implementation described in this thesis is that instead of modifying the Java API class files to
produce the policy-enforcing wrapper classes, the original implementation generated subclasses
as Java source code and ran the Java compiler to produce a class file. The program transformer
replaced calls to constructors for wrapped classes with calls to the corresponding constructor in
the generated subclass. Generating Java source code subclasses is much easier than rewriting
byte codes as is done by the final implementation, but had some significant drawbacks. It made it
awkward to constrain final methods since they could not be overridden in the subclass. We could
work around this problem using a similar technique as is done to handle wrapped native methods
in the current implementation – rename the wrapped final methods and replace names in program
transformation. Dealing with constructors posed another problem, since Java compilers require
the call to the superclass construction be the first statement in the constructor body. This meant
checking code could not be inserted before the original constructor call. More fundamentally, the
subclassing approach suffered a non-negligible run-time overhead associated with the additional
virtual method calls that would be suffered even for methods not constrained by the safety policy.

As a result, the implementation was changed to rewrite the Java class files directly.
Implementing the class modifying code took a few weeks. Much of this time was spent learning
the intricacies of the Java byte code format and understanding and modifying JOIE (see Section

23 This was done because the author had access to and familiarity with a tool that deals with ANSI C code
[Evans96], from which a simple program transformer could be constructed with little effort.

 107

7.4.1) to support the necessary changes. The Naccio/JavaVM prototype including the policy
compiler and program transformer as described in this thesis is implemented in about 40,000 lines
of Java code, some of which were generated automatically by a parser generator. Most of the
code is for the policy compiler (although the actual division is not obvious since they share
objects and code) and is reusable for Naccio implementations for other platforms. The core of the
program transformer is about 1500 lines.

The Java API platform interface was developed in conjunction with the Naccio/JavaVM
implementation and test policies. Although pass-through wrappers were not part of the original
design, the need for them became apparent early in the process of developing the platform
interface. Support for pass-through wrappers greatly reduced the amount of work needed to write
the Java API platform interface.

The second Naccio implementation was Naccio/Win32, built by Andrew Twyman starting in
January 1999. Building Naccio/Win32 involved changing the policy compiler back end to
produce C code for resource implementations instead of Java classes, and creating new tools that
produced the platform interface linker file and modify the executables import table. Except for
developing a new back-end, the rest of the policy compiler was reused without any changes.
Converting the back end to produce C code instead of Java took a little over a week, and did not
require a deep understanding of the rest of the policy compiler. Since the Naccio/Win32
prototype did not implement the protective transformations necessary for low-level code safety,
the amount of work needed to implement the program transformer was limited to replacing DLL
names in the import table. This was accomplished in a few days; almost all the effort was in
understanding the Windows executable format. In addition, we did not produce a complete
platform interface for Win32. Because of the size and complexity of the Win32 API,
construction of a complete platform interface would likely take a skilled developer several
months. The prototype platform interface used by Naccio/Win32 that only covered a subset of
file manipulation calls took about two weeks to write and debug.

Producing the next Naccio implementation should involve less work that was necessary to
produce the first two. The Java and C back-ends to the policy compiler should provide a good
starting point for producing resource implementations on most platforms. For example, either
back-end could be fairly easily adapted to produce resource implementations suitable for a Linux
implementation of Naccio. There are two approaches to generating the policy-enforcing library
exhibited by the prototype implementations – Naccio/JavaVM modifies the object code directly,
while Naccio/Win32 generates separate wrapper code that performs the policy checking and then
calls the original routine. The Naccio/JavaVM approach does not transfer easily to a new
platform since modifying object code is likely to be highly platform-specific. The Naccio/Win32
approach is likely to be reusable on other platforms. To implement similar wrappers for a Linux
implementation, it would be necessary to write a suitable platform interface and produce the
appropriate linking information, but otherwise most of the Naccio/Win32 implementation could
be reused.

The standard resource library evolved during the course of developing Naccio/JavaVM and
Naccio/Win32. Some changes to the resource descriptions were a direct result of experience
building Naccio/Win32. For example, the operations dealing with file observations were
inadequate to precisely reflect all the different file properties that may be observed using the
Win32 API. New operations were added to the RFileSystem resource corresponding to
operations like observing the creation time of a file. It is likely that the standard resource library
would change slightly as a result of producing a Naccio implementation for another platform. We

 108

expect it would converge fairly quickly, though, and after one or two more platforms there would
be no need to change the standard resource library to support a new platform.

Finally, we consider what would be necessary to produce industrial quality implementations of
Naccio. Naccio/JavaVM is close to what an industrial implementation would be, except for
lacking the validation necessary to provide good security assurances. The amount of effort
required to do this is substantial, but similar to what would be required for any code safety
system. Producing an industrial version of Naccio/Win32 would involve implementing the
protective transformations necessary for low-level code safety. While the work required is
substantial because of the difficulties in implementing software fault isolation on the x86
platform, almost all of it is the same as would be required for any code safety system that runs
x86 executables directly. If a satisfactory implementation of software fault isolation were
available, it could be adapted to support Naccio with only minor changes necessary to protect the
state associated with safety checking. The other major task necessary to produce an industrial
quality Naccio/Win32 implementation is producing a platform interface for the Win32 API. This
would involve substantial effort because of the size and complexity of the Win32 API.

8.5 Efficiency

The performance of a code safety system is important since a system that incurs a significant
performance penalty will not be acceptable except in a security-critical environment. With
Naccio, the costs of enforcing a policy are divided into three phases. First, the policy compiler is
run to compile the policy. This is done once per policy and platform pair, and not experienced by
the end user. While it is important that the time required to compile a policy is not excessive,
performance is not a great concern since policy compilation is done infrequently. Next, the
application transformer prepares a particular application to enforce a policy. This is done once
for each application, policy and platform combination. Users experience this time every time
they install a new application to run with a policy. If Naccio were integrated into a web browser,
it would be experienced for each new applet or control encountered. Hence, it is important that
the application preparation time is low enough that it is not noticeable to the user. Finally, there
is the performance overhead when the transformed program is running. This is necessary
whenever the program is running with a policy enforced. The overhead should be commensurate
with the complexity of the policy. It is unacceptable to have high overhead when enforcing a
simple policy, but reasonable for the overhead required to enforce a complex and ubiquitous
policy to be high. The rest of this section introduces some policies for testing and discusses the
performance properties of Naccio in each of these phases.

8.5.1 Test Policies

For the experiments, the following policies are used:

Null is an empty policy that does no checking. This is a baseline to measure the overhead
required for no checking.

NoBashingFiles is defined in Figure 5. It disallows any destructive manipulation of existing
files are reports file names in error message.

NoBashingExceptTmp is the property combination from Section 3.2.3. It weakens the
NoBashingFiles property to allow modification of existing files in the /tmp/ and /u/evs/tmp/
directories.

LimitWrite is defined in Figure 7. It disallows modifying existing files and places a limit on the
number of bytes that may be written.

 109

NetLimit is a policy that uses the NetLimitSendRate property from Figure 14 to limit the network
send rate by delaying transmissions. For testing purposes, it sets the limit parameters high
enough that it is never exceeded.

SoftSendLimit uses the SoftSendLimit property from Figure 15 to limit the network send rate by
splitting up and delaying transmissions using an altered platform interface. For testing purposes,
it sets the limit parameters high enough that it is never exceeded.

DisallowAll issues a violation for every resource manipulation.

DisallowAllExcept weakens DisallowAll with permissions that allow common system properties
to be observed.

MimicJDK mimics a JDK SecurityManager policy by calling the same check methods as the Java
API does. Naccio can be used to mimic any JDK policy using the MimicJDK policy simply by
setting the appropriate SecurityManager when the policy is initialized. For our experiments, we
use a SecurityManager that performs no checking. Although it reports no violations, it performs
differently from the Null policy since Naccio cannot optimize out unnecessary wrappers and
resource calls for the MimicJDK policy. Naccio does not analyze the security manager (which can
be installed dynamically), so there is no opportunity to optimize out unnecessary checking code.

JavaApplet duplicates the policy HotJava 1.1 enforces on untrusted applets. Rather than using
MimicJDK, the JavaApplet policy implements the HotJava policy directly by moving the checking
code from AppletSecurity security manager into the safety policy and making the few changes
necessary to convert Java code into safety policy actions. This produces a more portable policy,
and allows Naccio to eliminate unnecessary work. The JavaApplet policy disallows reading,
writing and observing files except as permitted by access lists in the user’s configuration file. It
only allows network connections to the originating host. Since we run our experiments are
applications from the command line, we set the originating host using a command-line definition.

Paranoid is a comprehensive policy that would be suitable for untrusted programs. It includes
the NoBashing and LimitBytesWritten properties, as well as properties that limit the number of
new files that may be created, limit how many files may be observed, limit the total number of
bytes that may be read, restrict the directories that may be read from, prohibit network use, and
constrain the creation of windows and manipulation of threads.

TarCustom is a policy designed specifically for the tar archive utility. It instantiates several
properties specifically targeted to the tar application, as well as some general properties, such as
the NoNetwork property that disallows all network use. It includes a property that allows one file
with a name ending in .tar to be overwritten if the c flag is used to create an archive, but allows
no other files to be overwritten. TarCustom also limits the number of bytes written at all
execution points to a function of the number of bytes read, and restricts files that may be read
during the execution to those listed on the command line. In addition to offering protection from
malicious or buggy implementations, the TarCustom policy provides protection from user
mistakes. For example, executing tar cf * with TarCustom enforced on tar results in a policy
violation. With the original application it would replace the first file in the directory with an
archive of all other files.

8.5.2 Policy Compilation

The time to compile a policy depends on the size and complexity of the policy, the size of the
platform library that must be analyzed and rewritten, and the optimizations done by the policy
compiler. This section considers the costs associated with compiling each of the test policies
using Naccio/JavaVM. To produce these results, we set options to the policy compiler to turn on
all checking optimizations and to produce a policy-enforcing library without renaming classes.

 110

This is the normal case, except in deployments where multiple policies need to be supported
simultaneously.

The results for Naccio/Win32 are similar but less relevant. Since Naccio/Win32 does not include
a complete Win32 API platform interface, only the policies that deal exclusively with the file
system could be compiled correctly. The compilation times for Naccio/Win32 are lower that for
Naccio/JavaVM, since it does not need to alter the library classes but only produces the resource
implementations and headers and compiles the platform interface file.

Table 1 reports the number of resource operations that need to be implemented to enforce the
policy (that is, how many resource operations were determined to do meaningful checking); how
many API routines are wrapped; the size of the policy-enforcing library (both the altered API
classes and the resource implementations); and the time required to compile the policy. As
expected, the Null policy requires no resource operations since there is no checking required. The
NoBashing and NoBashingExceptTmp policies both require eleven resource operations – one for
the RFile constructor to track file names according to the FileNames state block, and ten
corresponding to the members of the RFileSystem.modifyExistingFile resource group. The
DisallowAll and DisallowAllExpect policies issue violations for every resource operation in the
standard resources. Both policies implement all 122 resource operations provided by the standard
resource library. For DisallowAllExcept, a larger policy-enforcing library is produced because of
the violation codes needed to track permissions as well as the extra checking code in permission
actions.

The number of routines wrapped depends on the implemented resource operations, but one
resource operation may require dozens of wrappers if there are many different API routines that
manipulate the same resource. The 21 wrappers required for the Null policy comprise the
wrappers necessary to guaranteed low-level integrity of the checking. These are the wrappers
that protect dynamic class loading and reflection as described in Section 6.2.1. Although these
wrappers are not strictly necessary for the Null policy, since it places no constraints on program

Policy

Implemented
resource

operations
Wrapped
routines

Policy-enforcing
library size

(KB)

Rules in
policy

description

Compilation
time

(seconds)
Null 0 21 244 3 126
NoBashing 11 65 263 3 149
NoBashingExceptTmp 11 65 267 4 215
LimitWrite 13 80 280 6 153
NetLimit 10 40 283 4 146
SoftSendLimit 10 40 258 4 146
DisallowAll 122 182 362 26 188
DisallowAllExcept 122 182 373 27 259
MimicJDK 51 139 306 7 225
JavaApplet 43 130 310 6 241
Paranoid 59 140 383 10 234
TarCustom 26 101 316 13 192

Table 1. Policy compilation costs.

Time is the average wall-clock time over three runs. All the results use Sun’s JDK
1.1.7 with no JIT compiler on a 500 MHz Pentium III with 256MB running RedHat
Linux 5.2.

 111

behavior, they are required for any policy that imposes behavioral constraints on executions.
Naccio does not attempt to optimize out checking necessary for low-level code safety, since it is
required for any policy that places any constraints on executions. The other policies require these
wrappers, and additional wrappers depending on the resource operations. The DisallowAll policy
requires 182 wrappers. This is the highest number of wrappers possible with the standard
resources, since all resource operations are meaningful. The only way more wrappers would be
needed, is if an extended safety policy altered the platform interface to define additional resource
operations.

The size of the policy-enforcing library depends on how much of the API needs to be modified
and how many resource operations are required. In the worst case, Naccio would need to copy
the entire API. For the normal case, however, only a subset of the API classes need modifications
and Naccio need only generate those classes. For all the test policies, the size needed represents
less than 4% of the size of the Java API (about 9 megabytes for JDK 1.1.7). If the policy
compiler options were set to produce globally renamed library classes to support multiple
simultaneous policies as described in Section 5.4.1, the policy compiler would need to rewrite all
Java API classes to replace the names.

The policy description file contains the transformation rules that encode what the application
transformer must do to enforce the policy. All policies have a rule that gives the location of the
policy-enforcing library. Additional rules are needed for each wrapped native method and for
each initializer and terminator required. For the Null policy, there are three rules: one gives the
location of the policy-enforcing library, and two describe wrapped native methods (the
java.lang.Class.forName and java.lang.reflect.Method.invoke methods that must be wrapped to
protect integrity of the checking). Other policies have additional rules for wrapped native
methods, and calls to initializers and terminators. An additional rule is needed for policies that
have permissions (NoBashingExceptTmp and DisallowAllExcept) to indicate to the program
transformer that violation codes must be passed to the initializers and terminators.

The final column gives the time needed to compile each policy. The prototype implementation is
very inefficient, so it is expected that these times could be significantly improved without
substantial effort. The measurements are for Java code running completely interpreted, so a
substantial improvement is possible simply by using a native Java compiler. The policy
compilation time increases with the number of implemented resource operations and number of
routines that are wrapped. The policies that contain permissions (NoBashingExceptTmp and
DisallowAllExcept) require violation codes and involve additional processing time.

On average, about half the total time is spent generating wrapper classes and most of the
remainder is spent compiling the generated resource implementation. The time spent generating
wrappers depends on the number of wrappers required and the performance of the class
transformation engine. While the prototype implementation does a reasonably good job of only
wrapping routines that need wrappers, the performance of the transformation engine could be
significantly improved. The time spent producing the resource implementation source files is
minimal, but the time spent running a Java compiler to produce corresponding class files
represents about half the policy compilation time. One way to improve this would be to be more
selective about which resources are implemented. Naccio/JavaVM generates and compiles a
resource implementation even if a resource has no implemented operations. Another option
would be to use a faster compiler, or to directly generate class files for resource implementations
instead of producing and compiling source files. Since the intermediate representation is
available, Naccio/JavaVM should be able to produce class files directly much more quickly than
the time required producing source files and running a Java compiler.

 112

Policy compilation is slow, but not a serious concern. It is clear that it could be several times
faster in an industrial implementation. Further, policy compilation is a relatively infrequent task.
There are ways to avoid the entire compilation process when a policy is being developed. For
example, we can generate the unoptimized platform interface library once and only need to
produce new resource implementations to compile the policy.

8.5.3 Application Transformation

The time required to transform an application is important, since users experience it every time a
new program is run with a safety policy. Table 2 shows results from using Naccio/JavaVM to
transform some test applications with the LimitWrite and DisallowAllExcept test policies. The test
applications are:

• jlex – a lexical analyzer generator available from
www.cs.princeton.edu/~appel/modern/java/JLex/.

• tar – an implementation of the tar file archiving utility from www.ice.com.

• ftpmirror– an application that uses jFtpClient from www.1hostplus.com/java/ to mirror an
ftp directory by retrieving a set of files from one site, storing them in local files, and
putting them on another site.

Most of the application transformation time is spent reading and writing class files. The
application transformer’s performance could easily be improved in an industrial implementation.
In particular, we can reduce the overhead of application transformation to nearly zero by
integrating it into the byte code verifier. The actual work needed to transform an application is
limited to some simple string replacements in the constant pool at the beginning of each class file
and for some policies inserting a few calls to initializers and terminators into the main method.

The constant pool changes are necessary to handle wrapped native methods. The LimitWrite
policy wraps the native java.io.FileOutputStream.write(int) method, so references to this method
in the application class files need to be replaced with references to w_write. Since ftpmirror and
jlex do not call java.io.FileOutputStream.write(int), no changes to the constant pool are necessary.

The instructions added are only for calling initializers and terminators. Since the LimitWrite
policy has no implemented intializer or terminator resource operations, no instructions are added
to enforce it. Both tar and ftpmirror have a main method that has one exit point; hence, the
DisallowAllExcept needs to insert instructions to call each initializer and terminator once. The jlex
application has a return statement in the middle of its main method, so Naccio/JavaVM must
insert additional calls to the terminators before this return.

LimitWrite DisallowAllExcept

Program

Size of
application

classes
(KB)

Constant
pool

changes
Instructions

inserted
Time

(seconds)

Constant
pool

changes
Instructions

inserted
Time

(seconds)
jlex 86.7 0 0 1.62 37 26 1.77
tar 23.4 2 0 1.03 41 21 1.44
ftpmirror 7.1 0 0 0.77 39 21 1.08

Table 2. Program transformer results.

 113

8.5.4 Execution

Assuming the policy generation and application transformation costs are acceptable, the most
important cost of enforcing a safety policy is the run-time overhead experienced when the
program is run. This section looks at the run-time performance of executions of programs
transformed by Naccio/JavaVM to enforce the test policies. To isolate the costs of the safety
checking, we first consider some micro-benchmarks that are toy applications designed to do little
real work. Then, we report on results for more realistic benchmarks based on the test applications
used in Section 8.5.3.

Micro-benchmarks

To obtain an accurate estimate of the overhead required for safety checking, we use two micro-
benchmarks:

• setproperties runs a loop that calls System.setProperties (null) ten million times. We
use setProperties since it is the least expensive operation in the JDK that includes a
security check.

• exists creates a java.io.File object and runs a loop that calls java.io.File.exists () one
million times on that object.

These benchmarks are not intended to correspond to typical programs, but rather to provide a way
to isolate the performance overhead associated with safety checking. Hence, they do very little
real work relative to the amount of safety checking compared to typical programs.

To test the benchmarks we use policies that do not do any actual checking, but measure the
overhead that would be associated with different ways of enforcing a safety policy. These micro-
benchmarks are used to measure the overhead associated with introducing checking code, isolated
from the cost of actually doing checking. We run each benchmark imposing the following
policies:

• nochecking – This corresponds to Naccio enforcing a policy that does not constrain the
relevant resource operation (either RSystem.setProperties or
RFileSystem.observeExists). Of the test policies, Null, NoBashing,
NoBashingExceptTmp, LimitWrite, NetLimit, and SoftSendLimit are equivalent to
nochecking for the micro-benchmarks, since they place no constraints on either
RSystem.setAllProperties or RFileSystem.observeExists.

• emptycheck – Naccio enforcing a policy that has resource operations for
RSystem.setAllProperties and RFileSystem.observeExists that do no work. Normally,
Naccio would optimize out these resource operations and remove the related wrappers;
for this benchmark, we configure Naccio to prevent these optimizations so that we can
measure the overhead associated with the resource operation call.

For both policies, the policy compiler removes code associated with calling the JDK security
manager, as described in Section 5.4.1.

There results are compared to setting the JDK security manager to either null or an empty
manager:

• JDK-null – Standard Java execution with the SecurityManager set to null. This reflects
the normal execution for a Java application.

 114

• JDK-empty – Standard Java execution with a SecurityManager that does no checking.
This reflects the execution of a Java applet with a SecurityManager installed but a policy
that does no relevant checking.

Table 3 shows the time spent in the micro-benchmark loop for each Naccio policy or JDK
security manager setting. The results give an indication of the relative costs of different ways of
interposing checking code. Both Naccio policies require less overhead than is required for either
JDK security manager setting, since they do not need to obtain and test the security manager.
The traditional JDK security approach requires obtaining that security manager (either by calling
System.getSecurityManager or referencing of a local instance variable in java.lang.System
methods), and a comparison to null and a branch. The setproperties micro-benchmark runs 23%
slower using the null SecurityManager because of this code. The exists benchmark requires more
work to obtains the security manager since it needs to call System.getSecurityManager while
setproperties can reference an instance variable. Nevertheless, the relative overhead is less since
the java.io.File.exists method does substantially more work than java.lang.System.setProperties.

The results for emptycheck and JDK-empty reveal that the overhead associated with calling
security checks is lower with Naccio/JavaVM than using a JDK security manager. This is a result
of saving the overhead associated with retrieving and testing the security manager, and that the
security manager calls being virtual method invocations and the Naccio resource calls being static
method calls.

Since the micro-benchmarks isolate same security-relevant code excerpts, they should not be used
as a guide to overall program performance. They do indicate, however, that there is some non-
negligible cost associated with JDK-style checking even when the SecurityManager is null.
Further, Naccio’s approach of inserting checking code when necessary is more efficient than the
fixed checks included in the Java API. Although the relative costs will vary according to the
virtual machine used, even an ideal compiler would not be able to avoid this overhead using
standard JDK security mechanisms since the result of System.getSecurityManager is not
guaranteed to be fixed over an execution.

setproperties exists

Policy Time (s)

Time
(ratio to

nochecking) Time (s)

Time
(ratio to

nochecking)
nochecking 2.67 1.00 5.61 1.00
JDK-null 3.30 1.23 6.06 1.08
emptycheck 2.83 1.06 5.95 1.06
JDK-empty 5.77 2.16 6.44 1.15

Table 3. Micro-benchmark performance.

Time is the average time over ten trials measured on the system clock before and
after the microbenchmark loop using Sun’s JDK 1.1.7 with no JIT compiler on a
500 MHz Pentium III with 256MB RAM running RedHat Linux 5.2.

 115

Program benchmarks

The costs of enforcing a policy on an execution depend on both how much checking is done and
how expensive it is relative to the other work done by the program. Here we look at the relative
costs of enforcing the test policies on different program benchmarks using the programs
introduced in Section 8.5.3. The benchmarks are:

• jlex – running JLex on a 700-line sample file.

• tar – running tar to create an archive of a directory tree containing 1736 files and 5.2
megabytes of data.

• ftpmirror – running ftpmirror to mirror ten 1-megabyte files from an ftp server on the
local network to a different location on the same ftp server.

Table 4 shows the number of calls to resource operations and number of violations reported for
each benchmark execution. The number of calls to resource operations gives an indication of
how much checking is done for a given execution. The actual work associated with each resource
operation call varies depending on the policy, but the number of calls gives a good indication of
how comprehensive the checking is.

The Null policy requires no resource calls and issues no violations since it does no checking. The
NoBashing and NoBashingExceptTmp policies call resource operations to construct RFile objects
for each file used in the execution. For the tar benchmark, there are 1737 file objects
corresponding to the 1736 files in the directory tree being archived and the single output file. The
additional resource call is the one call to RFileSystem.openOverwrite for the output file (which
exists before the execution starts). It does the checking associated with the modifyExistingFile
group and issues a violation before the output file is overwritten. The LimitWrite policy requires
these calls and additional calls to preWrite and postWrite for the API call that writes to the output
file. The DisallowAll and DisallowAllExcept policies associate checking code with every resource
operation in the standard resource library. DisallowAll issues a violation for every operation
except the initialize and terminate operations for RSystem; as a result a large number of violations
are issued for the tar and ftpmirror benchmarks that do a lot of resource manipulations. For the
DisallowAllExcept policy, some of these violations are overridden by allow commands.

jlex tar ftpmirror

Policy resource
calls violations

resource
calls violations

resource
calls violations

Null 0 0 0 0 0 0
NoBashing 3 1 1738 1 31 10
NoBashingExceptTmp 3 1 1738 1 31 10
LimitWrite 63 1 3826 947 13021 5211
NetLimit 1 0 1 0 1093 0
SoftSendLimit 1 0 1 0 1309 0
DisallowAll 127 125 57099 57097 30819 30817
DisallowAllExcept 127 110 57099 57097 30819 30817
MimicJDK 9 0 13896 0 179 0
JavaApplet 10 2 13896 0 166 0
Paranoid 87 28 31971 30881 6223 12490
TarCustom 88 1 25792 1 6221 12520

Table 4. Benchmark checking.

 116

0.995

1.000

1.005

1.010

1.015

1.020

1.025

JD
K

-n
ul

l

JD
K

-e
m

pt
y

JD
K

-a
pp

le
t

N
ul

l

N
oB

as
hi

ng

N
oB

as
hi

ng
E

xc
ep

tT
m

p

Li
m

itW
rit

e

N
et

Li
m

it

S
of

tS
en

dL
im

it

D
is

al
lo

w
A

ll

D
is

al
lo

w
A

llE
xc

ep
t

M
im

ic
JD

K

Ja
va

A
pp

le
t

P
ar

an
oi

d

T
ar

C
us

to
m

Figure 24. Results for jlex benchmark.

Value is execution time using the policy shown, averaged over 50 trials. Times are divided by
average execution time using JDK-null for that benchmark to show the relative overhead.

For the performance measurements, we modify the policy compiler to remove the actual violation
production. Otherwise, the overhead is dominated by creating strings for violation messages.
Since in normal situations execution would be terminated after the first violation, this is a
reasonable thing to do for generating performance measurements for policies that would issue
multiple violations. For comparison, we use the JDK-null, JDK-empty and JDK-applet policies.
The JDK-null and JDK-empty policies were introduced in the previous section – JDK-null sets the
security manager to null, and JDK-empty sets the security manager to a SecurityManager that does
no checking. The JDK-applet policy sets the security manager to the AppletSecurity security
manager (version 1.76) that is used by HotJava 1.1. We modify AppletSecurity to enforce the
same policy on applications as it does on applets (by changing the return value of one function)
since all the test benchmarks are applications. To avoid any security violations, we set the
acl.read and acl.write properties to allow the necessary reading and writing, and set the
originating host to allow the network connections made by the ftpmirror benchmark. The
JavaApplet policy enforces the same policy as JDK-applet using Naccio security mechanisms.

Figures 24-26 show the execution results for each benchmark. The checking overhead for jlex
and ftpmirror is low compared to that for tar. This results from the difference in the ratio of
security-relevant operations to the amount of real work done by the different benchmarks. For
each benchmark, the overhead varies for each test policy depending on the amount of checking
work done by the policy.

For the jlex benchmark, the security overhead is virtually negligible. At most, it is just over 2%
for the JavaApplet policy. The low overhead is not surprising since jlex executes few security-
related operations compared to the amount of processing it does. The JavaApplet result compares
unfavorably to the JDK-Applet result for the same policy, although the absolute differences are

 117

very small. Both policies require the same initialization code that reads a file that contains the
access permission settings. This explains the bulk of the overhead. The rest is checking
associated with the file opens. JavaApplet has to do the additional work of maintaining abstract
resource objects associated with the files, although second order effect like caching may be
enough to explain the performance differences.

The tar benchmark requires far more security overhead than jlex. The checking overhead for the
tar benchmark ranges up to 250% for the JDK using the JavaApplet security manager; for all
other policies the overhead is below 70%. The reason the JDK-applet performs so poorly is that it
creates a new java.io.File object and calls getCanonicalPath for each security check call. Since
the SecurityManager.checkRead method takes a String parameter, it does not have access to the
corresponding java.io.File object even if it has already been created. In the checking code,
checkRead needs to convert the String to a canonical path for checking. This is done by calling,
new java.io.File (file).getCanonicalPath (). Both the file creation and the getConnonicalPath calls
are expensive. For each file that is added to the archive, tar calls java.io.File.isDirectory twice,
java.io.File.length, java.io.File.lastModified, and the java.io.FileInputStream constructor that
actually opens the file. Each of these calls the SecurityManager.checkRead function and incurs
the costs of creating a new file object, calling getCanonicalPath and scanning the access list to
determine if reading if permitted. As a result, the benchmark takes 3.5 times as long using the
JDK-JavaApplet as without security checking. Using Naccio to enforce the same policy is much
less expensive, as is evident from the results for JavaApplet. The overhead is 70%, about a
quarter of the overhead required for JDK-JavaApplet. Since the checking code uses an RFile
object, the canonical path for the file is stored in an object field using a state block the first time it

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

JD
K

-n
ul

l

JD
K

-e
m

pt
y

JD
K

-a
pp

le
t

N
ul

l

N
oB

as
hi

ng

N
oB

as
hi

ng
E

xc
ep

tT
m

p

Li
m

itW
rit

e

N
et

Li
m

it

S
of

tS
en

dL
im

it

D
is

al
lo

w
A

ll

D
is

al
lo

w
A

llE
xc

ep
t

M
im

ic
JD

K

Ja
va

A
pp

le
t

P
ar

an
oi

d

T
ar

C
us

to
m

Figure 25. Results for tar execution benchmark.

Value is execution time using the policy shown, averaged over 50 trials. Times are divided by
average execution time using JDK-null for that benchmark to show the relative overhead.

3.5

 118

0.985

0.990

0.995

1.000

1.005

1.010

1.015

JD
K

-f
ill

JD
K

-e
m

pt
y

JD
K

-a
pp

le
t

N
ul

l

N
oB

as
hi

ng

N
oB

as
hi

ng
E

xc
ep

tT
m

p

Li
m

itW
rit

e

N
et

Li
m

it

S
of

tS
en

dL
im

it

D
is

al
lo

w
A

ll

D
is

al
lo

w
A

llE
xc

ep
t

M
im

ic
JD

K

Ja
va

A
pp

le
t

P
ar

an
oi

d

T
ar

C
us

to
m

Figure 26. Results for ftpmirror execution benchmark.

Value is execution time using the policy shown, averaged over 50 trials. Times are divided by
average execution time using JDK-null for that benchmark to show the relative overhead.

is requested. Instead of doing this operation five times per file archived as is necessary for the
JDK-applet, the JavaApplet policy only does it once. It is safe to store this result, since once a
java.io.File object is created the pathname it refers to cannot change.

The results for ftpmirror are shown in Figure 26. As with jlex, the overheads are small since the
security checking work is small relative to the actual work done by ftpmirror. The execution time
is dominated by the time for actually sending or receiving data over the network, so even a
complex policy involving substantial checking such as SoftSendLimit can be enforced with less
than 1% overhead. For the tests, the limits for SoftSendLimit are set high enough that there is no
need to delay network sends, otherwise the execution would slow down noticeably because of
delays introduced in sending data over the network.

Summary

Naccio offers two performance advantages over the JDK security approach. Since the Naccio
policies are integrated into the application at transform time resource operations are called
directly from the wrapped API routines. By contrast, the JDK approach must call
java.lang.System.getSecurityManager to obtain a security manager at run time, test if it is null,
and make a virtual method call to a security manager check method. The micro benchmarks
indicate this overhead can be significant, but it is usually too small to be noticeable in a program
that does useful work. The other performance advantage is that whereas the JDK approach must
always call a security manager check method regardless of the policy in effect, Naccio only wraps
an API routine when that routine manipulates a resource in a way constrained by the policy in
effect. This difference is not clearly apparent from the benchmark results because the JDK

 119

security manager check methods are so limited. Security checking may only be associated with a
small subset of resource manipulations, most of which are expensive enough that the overhead of
a security manager check call is not significant. If the JDK supported more extensive check
methods, the advantages of eliminating unnecessary checks would be revealed in the benchmark
results.

The main performance disadvantage associated with Naccio is the need to maintain abstract
resource objects. For example, each java.io.FileOutputStream object used in a Java execution that
is enforcing a policy that constrains file manipulations maintains an extra field that stores an
RFile object. In addition to being passed to resource methods, this object has to be constructed
and garbage collected. Further, adding an extra field to the structure may result in unpredictable
second order effects because of displacement in the cache.

For the most part, the execution performance results are satisfactory. There is some overhead
associated with Naccio enforcing a policy, but it is related to the complexity of the policy and
comparable to the JDK overhead. Although Naccio does not offer a significant performance
advantage over the JDK mechanisms for most policies, it can enforce a large class of policies that
cannot be enforced by the JDK mechanisms.

 121

Chapter 9
Future Work

There are several possible directions for future work. This chapter considers work directed at
improving the reliability and performance of Naccio implementations; extending the architecture
that would allow for a larger class of policies to be defined and enforced; deploying Naccio
implementations in real environments; and exploiting Naccio’s definition and enforcement
mechanisms in areas other than code safety.

9.1 Improving Implementations

While the prototype implementations are useful for conducting experiments and validating
Naccio as a proof of concept, neither prototype implementation is good enough to be considered
ready for industrial applications. This section discusses some of the work that would be
necessary to produce an industrial quality implementation. Section 9.1.1 discusses some things
that could be done to provide better assurance that a Naccio implementation is correct. Section
9.1.2 discusses what would be necessary to make Naccio/Win32 into a complete and secure
implementation of the Naccio architecture. Section 9.1.3 suggests ways to improve the
performance of the policy compiler, program transformer and execution of the transformed
program.

9.1.1 Assurance

For a code safety system to be trustworthy, there must be some assurance that it provides the
expected security. As discussed in Section 8.1, one of the security vulnerabilities of Naccio is its
dependence on a large trusted computing base. An industrial implementation should attempt to
reduce the size of the trusted computing base and validate its most critical parts.

The critical part that is most amenable to validation is the platform interface. A malicious
program could exploit an error in the platform to manipulate resources without appropriate
checking. One approach is to attempt to prove the platform interface is equivalent to some other
model of the platform. Verifying the platform interface against the system library requires a
model of execution behavior that captures the resource manipulations described by the platform
interface. The resource descriptions provide one such model, but they are only useful for
comparison if we can describe the system in terms of those resource descriptions. This is in fact
what the platform interface does. Obviously, comparing the platform interface to itself is unlikely
to produce useful results. Instead, what is needed is a second platform interface that describes the
platform at a lower level.

For example, if we had the Naccio/Win32 platform interface that describes the Win32 API calls
in terms of the standard resource descriptions, and a second platform interface that describes
Windows kernel calls in terms of those same standard resource descriptions, we could attempt to
prove for a given Win32 API implementation both platform interfaces will produce the equivalent
sequence of resource operations. This could be done using either the source code or object code

 122

for the Win32 API. While it is likely to be more difficult to construct a proof from the object
code, using the source code means the compiler used to produce the Win32 API must also be
trusted. For most Win32 routines, statically determining what kernel calls are made can be done
without unreasonable difficulty. Then the sequence of resource calls made by those kernel calls
could be derived from the platform interface. The final step is to determine if those calls are
equivalent to the calls made by the Win32 API platform interface for the same routine. If the
sequence is exactly the same, they are obviously equivalent. It may be possible to argue that
sequences that differ are also equivalent, although this will depend on assumptions about the
kinds of checking code that may be attached to resource operations. This would provide a useful
test of the platform interface and likely uncover some bugs in both the Win32 API platform
interface and the Windows kernel platform interface.

A similar approach could be used the test the Java API platform interface. If we are testing a Java
implementation for Win32, we could use the Win32 API platform interface as the secondary
platform interface and use it to produce the sequence of resource calls made by each native
method implementation. This information could be used along with the Java API
implementation, to determine the resource operation sequence associated with every API routine.
Comparing it to the resource calls made by the Java API platform interface would reveal
inconsistencies between the two platform interfaces and the API implementation.

Another approach would be to use an independent formal model that represents a program
execution, and map both the platform interface and the API implementation onto that model.
This would make most sense if such a model already existed. A suitable model would be a
formal specification of a platform API. An advantage of this approach is that the producer of the
model does the work of describing the platform API. Having it produced independently also
increases the likelihood that whatever errors it has are different from the errors in the platform
interface, so inconsistencies are more likely to be detected. Unfortunately, no suitable
specification is believed to exist for either the Java API or Win32 API. It if did exist, validation
would require producing a mapping from the Naccio resource descriptions to the independent
model, and validating their equivalence.

9.1.2 Complete Implementations

While the Naccio/JavaVM prototype is complete enough to be used for security in a hostile
environment, the Naccio/Win32 prototype implementation does not completely implement the
Naccio design. In particular, is does not include a complete platform interface and does not
perform the protective transformations necessary to ensure the checking code is not bypassed or
tampered with. Producing a complete platform interface would be a tedious and expensive
process. There may be some ways to automate the process using the Win32 source code,
however it is unlikely that it could be done without carefully considering every Win32 API
function.

Implementing the protective transformations necessary to provide low-level code safety on
Win32 is also a major task. Although there are successful SFI implementations that operate on
x86 assembly code [Small97, Erlingsson99], there is no known implementation that works on x86
executables. Producing one requires dealing with several additional complications not present
when dealing with assembly code including code discovery and handling jumps to the middle of
variable length instructions. There is, however, reason for optimism that a suitable SFI
implementation will be available in the near future. There is at least one industrial project
directed towards this goal [Feldman99]. Further, an industrial implementation of Naccio/Win32
needs to ensure that multiple threads cannot be used to circumvent safety checking. While we

 123

believe this can be done using SFI as described in Section 6.2.2, some extensions beyond
standard SFI are necessary to provide the needed assurances.

9.1.3 Performance Improvements

The prototype implementations are designed with ease of implementation as a priority. Although
the performance results presented in Section 8.4 indicate that even the prototype performance is
acceptable in most situations, an industrial implementation could make substantial performance
improvements. This section discusses some straightforward ways to improve the performance of
the policy compiler, program transformer, and executing application.

Policy compiler

There are several aspects of the policy compiler that could be changed to improve performance.
The prototype policy compiler makes several complete passes over the parse tree. These passes
could be combined into a single pass to improve performance at the expense of increased
complexity. Optimizations are done using inefficient relaxation algorithms that reanalyze the
entire policy definition each iteration. These could be substantially improved to be more
selective about what must be reanalyzed. The relaxation could keep track of dependency
information so that only the relevant parts of the policy definition need to be reanalyzed. Another
way to dramatically improve the policy compiler would be to compile the Java code to a native
executable instead of running it as interpreted JavaVM code.

Another way to improve the performance of the policy compiler is to provide better options for
trading off compilation time and execution performance. The prototype policy compiler focuses
on producing a policy-enforcing library with good execution performance, but when a policy is
being developed and the policy compiler is run frequently, it is more important to reduce the
compilation time. We could do this by reusing an unoptimized version of the wrapped API
classes instead of regenerating the platform interface wrappers each time the policy compiler is
run. These wrapped classes would assume every resource operation does useful work. We could
compile a policy by analyzing only the resource descriptions and resource use policy, and
generating resource implementations including empty routines for any resource operation that has
no code. This policy would be inefficient to enforce because of the overhead of calling the empty
resource operations, but would be quick to produce.

Program transformer

Although the prototype program transformer is fast enough to be acceptable for many
environments, an industrial implementation could be significantly faster. Nearly all the cost of
the program transformer is spent in reading, parsing and writing the class files. The actual
modifications are limited to simple string replacements in the constant pool, except for the
application main or applet start and stop methods in the case of initializers and terminators. The
prototype implementation uses the JOIE toolkit, which reads and parses the entire class file. For
most classes, there is in fact no need to parse the entire class file since all the modifications are in
the constant pool. Since the format of the constant pool is well defined and it is always found at
the beginning of the class file, a performance critical program transformer could skip reading and
parsing the remainder of the class file entirely, and simply copy it as blocks.

The other thing that could be done if performance of the program transformer is extremely critical
would be to integrate it into the byte code verifier. Since byte code verification is already
required, replacing names in the constant pool during the verification would incur negligible
overhead.

 124

Program execution

Performance of the resulting execution is the most important consideration. The prototype
implementation is limited to doing simple optimizations that eliminate unnecessary wrappers and
resource operations based on a dependency analysis. An industrial implementation could
implement more extensive optimizations to substantially improve run-time performance. Section
5.5 describes optimizations that can be done by integrating the resource implementations and
platform interface wrappers. These could substantially reduce the performance costs associated
with checking. While doing these optimizations automatically would involve some complexity,
they could be done without any new compilation techniques. Ambitious optimizations do
increases the complexity of the policy compiler, which is part of the trusted computing base.
There is a risk that these optimizations would be implemented incorrectly and lead to new
vulnerabilities.

9.2 Extensions

Here we consider some extensions to the Naccio policy definition and enforcement mechanisms.
Some of the extensions make it easier to define policies that can be defined with the current
mechanisms. Other extensions support classes of policies that cannot be defined or enforced with
the current design.

Persistence

Naccio does not provide any mechanisms to support policies that depend on more than one
execution. It would be useful to define policies that can be applied to multiple executions of the
same program or executions of different programs. Naccio provides no mechanisms for
persistent policies, although policy authors could write checking code that manually stores and
loads persistent data in a secure database. It would be more satisfactory if mechanisms that
support persistence were integrated into the Naccio design. One approach to this that could be
adopted by Naccio is used by Deeds [Edjlali98].

Deeds uses history-based access control to constrain the behavior of Java executions. Policies are
defined using handlers attached to security events. Security events are limited to check methods
defined by the SecurityManager. An access-control policy is defined by defining a Java class that
provides methods corresponding to event handlers and uses instance variables to maintaining an
event history. History is persistent across multiple executions of the same program. Persistence
is achieved by using a customized class loader that requires that the entire program be loaded
statically (it scans for and rejects programs that use dynamic class loading), and creates a secure
one-way hash of the program that is stored in the class loader. This history is saved in persistent
storage and loaded using the hash value when execution starts. While history-based policies
prevent certain attacks that are not detectable on a single execution, it remains to be seen if they
are generally useful. Edjlali et al. suggest extending Deeds by using code transformation to
support user-defined security events [Edjlali98], and introducing persistence mechanisms in
Naccio by using the approach used in Deeds should be fairly straightforward.

Multi-level platform interfaces

It may be useful to combine more than one platform interface to increase the scope or precision of
policies that can be defined. It may be useful to use a partial lower-level platform interface to
define resource operations that correspond to manipulations that are not visible at the higher-
level. It may also be useful to introduce a partial higher-level platform interface to enable
policies that refer to higher-level abstractions. In both cases, there are issues to resolve about
how checking is done in the presence of multiple platform interfaces. Here, we consider what

 125

might be done to use a lower-level platform interface to constrain resources such as memory use
and the CPU, and how a higher-level platform interface could be supported to allow policies to
depend on abstractions that are not visible to the regular platform interface.

Certain resources are not visible at the level of the platform interface. For example, the
Naccio/JavaVM platform interface cannot see memory allocation and CPU usage. To extend
Naccio to support policies defined in terms of resources not visible to the platform interface,
mechanisms for introducing either a lower-level platform interface or special transformations are
necessary. For Java, this could mean supporting a main platform interface at the level of the Java
API and a secondary platform interface at the level of individual byte code instructions. A
resource corresponding to memory use could be defined in terms of resource operations that are
called when an allocation instruction is used. The policy compiler would insert these calls into
the policy-enforcing library and generate a rule that instructs the program transformer to insert
them into the application code.

Defining a resource corresponding to CPU use it more difficult. One approach would be to call a
processInstruction resource operation before every instruction. This would allow fine-grain
constraints on CPU usage, but would make the modified program run several times slower than
the original. Given that the goal of a CPU resource is to support policies that limit CPU
consumption, requiring so much additional CPU consumption to enforce it is probably
unacceptable. We can provide less fine-grain usage monitoring by batching the checking. It is
easy to statically determine the number of instructions that will execute in a basic block (that is, a
code fragment that contains no branches except possibly its last instruction). The individual
processInstruction resource operation calls could be replaced by a single resource operation call
at the beginning of each basic block that accounts for all the instructions in the basic block. This
supports less precise policies, since CPU consumption for an entire basic block is accounted for
before it starts. An alternative would be to modify the execution environment to call a resource
operation for every quantity of CPU use by a particular thread. Information about thread resource
consumption should be available to the virtual machine, and it could call resource operations
every time a relevant threshold is crossed. It would require modifying a virtual machine, but
avoids much of the performance overhead and low-level modification necessary to do this
checking directly. JRes [Czajkowsik98] illustrates one way of doing this (see Section 7.3.3).

Support for multiple platform interfaces would also be useful in supporting higher-level platform
interfaces. For example, suppose we have a platform interface for MFC in addition to the Win32
API platform interface. It would be useful if a policy could be written that would enforce the
necessary constraints on all Win32 programs regardless of whether or not they use MFC, but
could do more precise checking for programs that use MFC to allow some behavior that would
trigger a violation if all the checking were done at the Win32 API level. One way to produce
such a system would be to share resources and policies, but add additional resource operations
that are called from the MFC platform interface. These resource operations would encode
information that is not available to the standard resource operations, such as that a file for
opening was selected by the user using a standard dialog box. They give the policy author a
chance to express a policy in terms of those resource operations. Another way would be to have
separate policies associated with each platform interface, each described in terms of their own
(possible different) resource sets. The policies could be combined so that the policy associated
with the higher-level platform interface would override the policy associated with the lower-level
platform interface. This could be done using a violation code that has a wider scope that the one
currently used to support permissions.

 126

Policy interactions

Naccio doesn’t support sharing objects amongst code enforcing different policies. In
Naccio/JavaVM, different safety policies use different classes for the Java API objects. For
example, if a class enforcing one policy passes a FileOutputStream object from a wrapped class
to a class enforcing a different policy, a type error results. Although the types were identical in
the original classes, the program transformer replaced the names of wrapped classes in the
transformed applications with different policy prefixes. Hence, there is a type mismatch when the
wrapped object is passed. This would be detected as an error by the byte code verifier running on
the second transformed class when it is loaded. The situation for Naccio/Win32 is different, but
no better. If an application transformed with one policy passes a pointer to a routine in a DLL
that was transformed to enforce a different policy, each will use a different version of the system
DLLs. The called DLL will use its policy-enforcing system DLLs, but will not have information
about the passed pointer that is stored in the application’s policy-enforcing system DLLs. For
example, consider the situation where an application executable opens a file and passes the
associated file descriptor to a DLL that enforces a different policy. When the DLL calls the write
routine in its policy-enforcing system DLL, the mapping between the file descriptor and the
actual file is not available and neither policy is enforced correctly.

The current Naccio design does not readily support modifications that would support combining
code enforcing different policies. There are three sensible options for what it means to pass
objects between different security domains. One option would be for the policy enforced on the
original application to be enforced on the objects it passes to other security domains. To
implement these semantics with Naccio/JavaVM, it would be necessary to create copies of
routines that accept objects enforcing different policies that have type names altered to conform
to the policy of the caller. This transformation would need to be done when the second class is
loaded. The other options are to enforce the intersection of both policies or to only enforce the
second policy. Neither of these options can be easily implemented using the current Naccio
design. Naccio assumes that policies are known statically when a program is transformed. This
model cannot be readily extended to support introducing new policies during an execution.

9.3 Deployment

This thesis does not address issues involved in deploying a Naccio implementation in a real
environment. The prototype implementations are run from the command line, and it is up to the
user to manually select the policy to enforce. Several issues must be addressed before Naccio can
be usefully deployed as part of a web browser or operating system.

Dealing with violations

The prototype implementation deals with violations in one of three ways depending on a
command line flag used in program transformation:

1. It pops up a dialog box that reports the violation and offers the user the choice of
terminating that execution or continuing normally.

2. It prints a violation message to the standard error stream and terminates execution.

3. It prints a violation message to the standard error stream and continues execution.

The first option is closest to being satisfactory for a typical interactive deployment environment,
while the second option is useful for a non-interactive program (such as a server daemon) and the
third option is useful for testing policies.

 127

For an industrial deployment, it would be useful to also offer facilities to dynamically alter the
policy to avoid future violations. For example, when the first violation of a property that limits
the number of bytes written to the file system is reported, it would be useful to allow the user to
select to suppress future violations issues by this property, or to change the limit that must be
exceeded before the next violation is reported. Otherwise, each write will lead to another
violation and require the user to decide to allow the execution to continue. It is possible to write a
Naccio policy that only reports the first write violation by keeping a stateblock that tracks how
many violations have been reported, however, it would be useful if there were mechanisms that
supported this more generally and allowed users to dynamically choose to suppress categories of
violations. Adding this support to Naccio is simply a matter of modifying the policyViolation
library method. It can maintain a data structure for each property for which a violation is
reported, and record user selections on whether or not future violations of the property should be
suppressed.

Another useful option would allow the user to choose to continue the execution, but skip the
resource manipulation that produced the violation. This existing violation code mechanism could
be extended to encode an option to skip the system call. The policy compiler would generate
additional code in platform interface wrappers that checks the violation code, and skips the
system call if the user selected this option. For system calls that return values, the wrapper would
need to generate a suitable replacement value to return. Often, a null object is the best choice;
however, it may be useful to extend the platform interface language so alternate return values can
be selected.

Dynamically changing policies is more difficult. Since it is not possible to swap the API classes
during an execution, support for swapping policies at run-time is complicated and likely to be
error-prone. Instead, supporting policies that can be parameterized seems more reasonable. All
that is needed is some way to dynamically pass parameter values to the policies. We could do
this using a library class that keeps a database of parameters values and provides routines policies
can use to access those values. Then a policy author would write a policy to explicitly retrieve
parameter values and use them in checking accordingly.

Global resource scope

The current Naccio implementations associate global resources with an entire execution. In the
case of Naccio/JavaVM, this means a single global resource applies to all applets running in the
virtual machine. As a result, a policy like LimitWrite places a limit on the total number of bytes
written by all applets not on the bytes written by a single applet or collection of applets. In a web
browser deployment, it may be more appropriate to have separate global resources apply to the
applets loaded from different web sites.

We could do this by changing the policy compiler to produce implementations of global resources
that are like regular resource objects. Instead of using static methods and class variables, they
would use regular methods and instance variables. The generated platform interface wrappers
would need to replace calls to global resource methods with calls to a static method that obtains
the appropriate resource object for this thread and then invokes a method on this object. The
container would need to keep a mapping between threads and global resource objects to return the
correct resource object. This would require some additional execution overhead, but would not
require substantial changes to a Naccio implementation.

Splitting up global resource accounting, however, would make a deployment susceptible to new
kinds of attacks where an attacker has control over applets that the browser assigned to different

 128

global resource scopes. There is no easy way to determine which applets can be attributed to the
same producer, so assigning different global resources to different applets is risky.

Policy manager

Naccio does not address the issue of deciding what policy should be used on what code.
Requiring a user to manually select a policy for each applet encountered or program installed
would be too intrusive for most users. Instead, it should be possible to configure a policy
manager to automatically select the appropriate policy based on the source of the program. A
straightforward policy manager could be created for Naccio similar to the policy manager in
Internet Explorer 5.0. It selects a policy based on the source of the program. Programs from
remote sites are classified according to their URL.

Policy development environment

The prototypes do not include any tools to help policy authors write, understand and test policies.
If policy authoring is meant to be accessible to non-experts, a better environment for developing
policies is essential. A policy development tool that is based on selecting parameters from
standard policies, but can be extended with user-defined policy definitions, would provide a
useful introduction to policy authoring.

Tools to support policy testing are an area for future research. It would be useful to have tools
that can automatically analyze policies and answer questions about what one policy allows that a
different policy does not, or whether a policy always disallows a certain sequence of system calls.
So far, the only way to test policies is to develop test cases that represent things the policy is
supposed to either allow or disallow. With suitable test cases, this is likely to detect simple errors
in the policy, but it is not sufficient assurance to know the policy means what its author intends.

9.4 Other Applications

Although the focus of this thesis is on code safety, there are a number of other possible
applications of Naccio. The described mechanisms provide a way to alter or monitor the behavior
of executions that could be useful in addressing many other problems. We discuss a few
possibilities here, but this is by no means a comprehensive list.

Debugging

Without any modifications, Naccio can be used to enforce policies that are useful in debugging
programs. For example, a policy could be used to confirm the number of bytes sent over the
network is a function on the number of bytes read from files, or that every file that is opened is
closed before execution terminates, or that all files created in temporary directories are deleted.
The policies used for debugging programs can be more precise than the policies enforced on
arbitrary programs since the programmer should know a great deal about the expected behavior of
the program. In addition, a policy violation is not necessarily a problem but can direct the
programmer to examine assumptions about the behavior of the code more carefully.

Naccio becomes more useful for debugging when platform interfaces are written for application-
level objects. Then, programmers could express policies in terms of the expected behavior of
application routines. They could test return values against expectations that depend on a history
of previous calls and other state. This is similar to the common practice of inserting assertions in
code, but expressing those assertions as policies and using Naccio to test them has significant
advantages. By separating assertions from the code and expressing them at a more abstract level,
Naccio makes it possible for the checking policy and code to be written separately, and allows a

 129

checking policy to be written at a high level where it can more easily be compared to the program
requirements. In addition, it allows debugging information to be portable across platforms.

Auditing

Rather than issue violations, we can write a Naccio policy that records program activity in a log
file. The only difference, is instead of violations producing an error message or dialog box, they
would record information in a log file. This log can be used for program analysis. If the logging
were done at the system level, it would be useful for intrusion detection. The monitoring could
also be done in real-time, and interface with a real-time performance monitoring or intrusion
detection system. Because of the expressiveness of Naccio’s policy definition mechanisms, a
policy can limit monitoring to a precise class of events or event sequences.

Behavior modification

Section 4.2.4 introduced a policy that modifies the behavior of a program to delay and split
network sends to conform to a specified bandwidth constraint. By altering platform interfaces, it
is possible to change program behavior in ways that are not necessarily security related. For
example, we could write a policy that saves backup versions of all files before they are
overwritten. We could do this by attaching checking code to the RFileSystem.modifyExistingFile
group that copies the file in question to a backup directory.

Behavior modification leads to a number of legal and ethical issues. While most software
licenses strictly prohibit any modification (including in some cases the binary relocation or
caching that occurs during normal executions), there are certain kinds of modification that should
be permitted and others that should be prevented. Modifications that introduce security checking
should be allowed. Modifying a program to alter author and copyright information should be
prevented. Preventing certain kinds of program modification could be done using a trusted
execution environment that only allows the unaltered, cryptographically signed program to run.
When program transformation tools become common, there will be a need for mechanisms to
limit the transformations that can be done.

 130

Defeat against Celtic was a crushing blow to Herrera's “invincible”

Inter…It was the beginning of the end for catenaccio. Celtic had proved
that the Inter defense could be breached. But Herrera refused to accept

that tactics were responsible, instead he blamed sweeper Picchi for Inter's
crash. Picchi was soon sold to a lower league club Varese, where he

claimed: “When things go right it is always Herrera's brilliant planning.
When things go wrong, it is always the players who are to blame.”

Andy Gray, Flat Back Four: The Tactical Game.

Macmillian Publishers Ltd, 1988.

 131

Chapter 10
Summary and Conclusion

This thesis demonstrates that it is possible to define a large class of safety policies in a general
and platform-independent way, and to enforce those policies on executions without an
unreasonable performance penalty.

10.1 Summary

The contributions of this thesis are in three areas – mechanisms for defining safety policies, an
architecture for enforcing those policies, and prototype implementations of that architecture.

Policy definition mechanisms

Naccio defines a safety policy by associating checking code with abstract resource manipulations.
The policy definition mechanisms are general enough to describe a large class of safety policies
that includes many useful policies. A subset of definable policies is known as standard safety
policies. These policies can be defined using a standard resource library, and are portable across
Naccio implementations for different platforms. Altering the platform interface allows additional
policies to be defined. Extended policies can be used to constrain any manipulation visible at the
level of the platform interface.

Naccio’s policy definition mechanisms have considerable advantages over other alternatives. By
describing policies in terms of abstract resource manipulations, they isolate policy authors from
platform details. It is not necessary to know a particular platform API to produce or understand a
standard safety policy. Once a standard safety policy has been developed, it can be reused on all
platforms for which Naccio implementations are available.

Policy enforcement architecture

The architecture for enforcing policies is based on transforming programs to insert checking code.
The enforcement architecture depends on replacing resource-manipulating calls with wrappers
that perform checking around those calls. Low-level code safety mechanisms prevent the
program code from tampering with or circumventing the checking code.

The enforcement architecture has two advantages over common alternatives. Because it modifies
platform library object code directly, it does not depend on availability of source code and is only
loosely tied to a particular platform implementation. Second, since it statically analyzes the
policy and only introduces wrappers that are necessary for checking, the overhead required to
enforce a policy is directly related to the amount of checking it does. If a policy does not
constrain a particular resource manipulation, there is no checking overhead associated with that
resource manipulation. The main drawback to the enforcement architecture is that it depends on a

 132

large trusted computing base. This increases the likelihood that there are vulnerabilities that can
be exploited and makes assurance difficult.

Implementations

Naccio implementations have been developed that enforce policies on JavaVM classes and
Win32 executables. Naccio/JavaVM is a complete implementation, while Naccio/Win32 does
not provide a complete platform interface or implement the protective transformations necessary
for low-level code safety. While the prototype implementations are not ready for industrial
deployment, they provide a proof-of-concept for the Naccio architecture. The performance
results indicate that it is possible to expand the class of policies that can be enforced without
sacrificing performance.

10.2 Conclusion
Naccio represents one point in the design space for code safety systems. It is well suited to
typical Internet users at small and medium size companies today and for the foreseeable future. It
supports enforcement of a large class of policies with low preparation costs and run-time
overhead that is minimal for simple policies and scales with the complexity of the policy. By
defining policies in terms of abstract resource manipulations, it makes it possible for moderately
sophisticated users to define new safety policies. The current design is not well suited to high-
security environments because its large trusted computing base makes assurance difficult.

By providing better ways to define safety policies along with efficient and convenient
mechanisms for enforcing policies, we hope the situations in which code safety policies are used
will be expanded. Currently, code safety is usually considered only for untrusted mobile code. A
satisfactory code safety system would be useful in protecting users from bugs in applications
from trustworthy sources as well. As the precision of safety policies increases and the costs of
enforcement are reduced, policies can be enforced in more situations with more pervasive
benefits.

 133

Correction fluid and correcting paper may not be used. If mistakes

cannot be corrected through recopying or reprinting the problem page,
cross out the mistake and/or insert the new material using a typewriter.

Massachusetts Institute of Technology Specifications for Thesis

Perparation 1999-2000.

References

[Aho86] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, 1986.

[Anderson72] Anderson, J.P. Computer Security Technology Planning Study, ESD-TR-73-51,
Vol. I, AD-758 206. ESC/AFSC, Hanscom AFB, Beford, MA. October 1972.

[Berman95] Andrew Berman, Virgil Bourassa and Erik Selberg. TRON: Process-Specific File
Protection for the UNIX Operating System. Winter USENIX, 1995.

[Bershad95] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, David Becker,
Marc Fiuczynski, Craig Chambers, Susan Eggers. Extensibility, Safety and Performance in
the SPIN Operating System. In Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP-15), 1995.

[CERT96a] CERT Advisory CA-96.20. Sendmail Vulnerabilities.
http://www.cert.org/advisories/CA-96.20.sendmail_vul.html

[CERT96b] CERT Advisory CA-96.24. Sendmail Daemon Mode Vulnerability.
http://www.cert.org/advisories/CA-96.24.sendmail.daemon.mode.html.

[CERT96c] CERT Advisory CA-96.25. Sendmail Group Permissions Vulnerability. December
10, 1996. http://www.cert.org/advisories/CA-96.25.sendmail_groups.html.

[CERT97] CERT Advisory CA-97.05. MIME Conversion Buffer Overflow in Sendmail Versions
8.8.3 and 8.8.4. January 28, 1997. http://www.cert.org/advisories/CA-97.05.sendmail.html.

[CERT99a] CERT Advisories. http://www.cert.org/advisories/.

[CERT99b] CERT Advisory CA-99-02-Trojan-Horses. February 5, 1999.
http://www.cert.org/advisories/CA-99-02-Trojan-Horses.html.

[Cnet99a] Data virus forces email shutdowns. Cnet News, June 10, 1999.
http://www.news.com/News/Item/0,4,37658,00.html.

[Cnet99b] Java program crashes Windows 95, 98. http://www.news.com/News/Item/0,4,0-
35760,00.html.

[Cohen98] Geoff Cohen, Jeff Chase, and David Kaminsky. Automatic Program Transformation
with JOIE. 1998 USENIX Annual Technical Symposium.

 134

[Cohn97] Robert Cohn, David Goodwin, P. Geoffrey Lowney and Norman Rubin. Spike: An
Optimizer for Alpha/NT Executables. In USENIX Windows NT Workshop, August 1997.

[Compaq99] Compaq Corporation. Compaq JTrek: Product Information.
http://www.digital.com/java/download/jtrek/index.html. July 1999.

[Cyber97a] CyberMedia. Internet Privacy and Security: A White Paper. 1997.
http://www.cybermedia.com/products/guarddog/gdwhite.html.

[Cyber97b] CyberMedia. CyberMedia Announces Immediate Availability of Guard Dog Deluxe.
Press Release, October 8, 1997. http://www.cybermedia.com/company/pr/gddeluxe.html.

[Czajkowsik98] Grzegorz Czajkowsik and Thorsten von Eicken. JRes: A Resource Accounting
Interface for Java. ACM OOPSLA Conference, Oct 1998.

[Denning80] Denning, P. J. Working Sets Past and Present. IEEE Transactions on Software
Engineering, SE-6, 1980.

[Detlefs96] David L. Detlefs. An overview of the Extended Static Checking system. In
Proceedings of The First Workshop on Formal Methods in Software Practice, pages 1-9.
ACM (SIGSOFT), January 1996. http://www.research.digital.com/SRC/esc/Esc.html

[Deutsch71] P. Deutsch and C. A. Grant. A Flexible Measurement Tool for Software Systems.
In Information Processing 1971: Proceedings of the IFIP Congress). Ljubljana, Yugoslavia,
1971.

[Edjlali98] G. Edjlali, A. Acharya and V. Chaudhary. History-based Access Control for Mobile
Code. In Proceedings of the 5th Conference on Computer and Communications Security,
May 1998.

[Erlingsson99] Úlfar Erlingsson and Fred B. Schneider. SASI Enforcement of Security Policies:
A Retrospective. In Proceedings of the New Security Paradigms Workshop, 1999.

[Evans96] David Evans. Static Detection of Dynamic Memory Errors. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation, May 1996.

[Evans99] David Evans and Andrew Twyman. Flexible Policy-Directed Code Safety. IEEE
Symposium on Security and Privacy, May 1999.

[Feldman99] Mark S. Feldman. Using Software Fault Isolation to Enforce Non-Bypassability.
Unpublished presentation at IEEE Symposium on Security and Privacy, May 1999.

[Fraser99] Timothy Fraser, Lee Badger and Mark Feldman. Hardening COTS Software with
Generic Software Wrappers. IEEE Symposium on Security and Privacy, May 1999.

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[Goldberg96] Ian Goldberg, David Wagner, Randi Thomas and Eric A. Brewer. A Secure
Environment for Untrusted Helper Applications: Confining the Wily Hacker. In Proceedings
of the 1996 USENIX Security Symposium, 1996.

[Gong97] Li Gong, Marianne Mueller, Hemma Prafullchandra and Roland Schemers. Going
Beyond the Sandbox: An Overview of the New Security Architecture in the Java Development
Kit 1.2. In Proceedings of the USENIX Symposium on Internet Technologies and Systems,
Monterey, California, December 1997.

[Gong98] Li Gong and Roland Schemers. Implementing protection domains in the Java
Development Kit 1.2. In The Internet Society Symposium on Network and Distributed System
Security, Internet Society, San Diego, CA.

 135

[Gosling96] James Gosling, Bill Joy, Guy L. Steele, Jr. The Java Language Specification.
Addison-Wesley Publishing Co., September 1996.

[Hicks97] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and Scott Nettles.
PLAN: A Programming Language for Active Networks. November 1997.
http://www.cis.upenn.edu/~switchware/PLAN/.

[Keller98] Ralph Keller and Urs Hölzle. Binary Component Adaptation. European Conference
on Object Oriented Programming (ECOOP ’98). Springer Verlang Lecture Notes on
Computer Science. July 1998.

[Kozen98] Dexter Kozen. Efficient Code Certification. Cornell University Tech. Report 98-
1661. January 1998.

[Kramer99] Doug Kramer. Personal email communication.

[LaDue96] Mark LaDue. Hostile Applets on the Horizon. http://metro.to/mladue/hostile-
applets/HostileArticle.html.

[LaDue99] Mark LaDue. A Collection of Increasingly Hostile Applets.
http://metro.to/mladue/hostile-applets/.

[Lampson71] Butler Lampson. Protection. Proceedings of the Fifth Princeton Symposium on
Information Sciences and Systems, March 1971. Reprinted in Operating Systems Review,
8(1): 18-24, January 1974.

[Larus95] James R. Larus and Eric Schnarr. EEL: Machine-Independent Executable Editing.
Proceedings of the 1995 ACM SIGPLAN Conference on Programming Languages Design
and Implementation (PLDI), June 1995.

[Lee97] Han Bok Lee and Benjamin G. Zorn. BIT: A Tool for Instrumenting Java Bytecodes.
USENIX Symposium on Internet Technologies and Systems. December 1997.

[Leveson93] Nancy G. Leveson and Clark S. Turner. An Investigation of the Therac-25
Accidents. IEEE Computer, July 1993.

[Liskov81] Barbara Liskov, R. Atkinson, T. Boom, E. Moss, J. Schaffert, R. Scheifler, and A.
Snyder. CLU Reference Manual, 1981.

[McAfee99] McAfee Corporation Home Page, http://www.mcafee.com.

[Milner90] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997 (originally published in 1990).

[Mogul87] Jeffrey Mogul, Richard Rashid, and Michael Accetta. The Packet Filter: An Efficient
Mechanism for User-level Network Code. DEC WRL Research Report 87-2. (Also in
Proceedings of the 11th Symposium on Operating Systems Principles, 1987).

[Morrisett98] Greg Morrisett, David Walker, Karl Crary and Neal Glew. From System F to
Typed Assembly Language. Symposium on Principles of Programming Languages, 1998.

[Nauer63] P. Nauer, editor. Report on the Algorithmic Language Algol 60. Communications of
the ACM, Volume 6, Number 1, 1963.

[Necula96] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking.
Second Symposium on Operating Systems Design and Implementation (OSDI), October
1996.

 136

[Necula98] George C. Necula and Peter Lee. The Design and Implementation of a Certifying
Compiler. Proceedings of the 1998 ACM SIGPLAN Conference on Programming Languages
Design and Implementation (PLDI), June 1998.

[Nelson91] Greg Nelson. Systems Programming with Modula-3. Prentice Hall Series in
Innovative Technology, ISBN 0-13-590464-1, L.C. QA76.66.S87, 1991.

[NYTimes99a] Virus Disables Hundreds of Thousands of PC’s. New York Times, April 28,
1999.

[NYTimes99b] New Fast-Spreading Virus Takes the Internet by Storm. New York Times, March
28, 1999.

[NYTimes99c] New Infection Kills Software Through E-Mail. New York Times, June 11, 1999.

[Pandey98] Raju Pandey and Brant Hashii. Providing Fine-Grained Access Control For Mobile
Programs Through Binary Editing. UC Davis Technical Report TR98-08. August 1998.

[Pethia99] Richard Pethia. The Melissa Virus: Innoculating Our Information Technology from
Emerging Threats. Testimony of Richard Pethia, Director, Survivable Systems Initiative and
CERT® Coordination Center, before the Subcommittee on Technology, Committee on
Science, U.S. House of Representatives. April 15, 1999.
http://www.house.gov/science/pethia_041599.htm.

[Pietrek94] Matt Pietrek. Peering Inside PE: A Tour of the Win32 Portable Executable Format,
Microsoft Systems Journal, Volume 9, No. 3, March 1994.

[Risks95] RISKS Digest. Warning on Using Win95 message from Paul Saffo. Volume 17,
Number 21. June 1995. http://catless.ncl.ac.uk/Risks/17.21.html

[Romer97] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
and Brian Bershad. Instrumentation and Optimization of Win32/Intel Executables Using
Etch. USENIX NT 97 http://etch.cs.washington.edu/etch/etch-usenixnt/etch-usenixnt.html

[Saltzer75] Jerome H. Saltzer and Michael Schroeder. The Protection of Information in
Computer Systems. Proceedings of the IEEE, Vol 63, No 9. September 1975.
http://www.mediacity.com/~norm/CapTheory/ProtInf/

[Schneider98] Fred B. Schneider. Enforceable Security Policies. Cornell University Technical
Report TR98-1664. Jan 1998.

[Small97] Chris Small. MiSFIT: A Tool for Constructing Safe Extensible C++ Systems. Third
Conference on Object-Oriented Technologies and Systems, 1997.

[Spector99] Larry Spector and Lee Badger. Porting Wrappers from UNIX to Windows NT:
Lessons Learned. Unpublished presentation at IEEE Symposium on Security and Privacy,
May 1999.

[Srivastava92] Amitabh Srivastava and Alan Eustace. A Practical System for Intermodule Code
Optimization at Link-Time. Digital Western Research Laboratory Technical Report 92/6.
December 1992.

[Srivastava94] Amitabh Srivastava and Alan Eustace. ATOM: A System for Building Customized
Program Analysis Tools. Proceedings of the SIGPLAN '94 Conference on Programming
Language Design and Implementation. June 1994.

[Srivastava98] Amitabh Srivastava. Personal email, September 1998.

[Sun96] Sun Microsystems. The Java Language: An Overview.
http://java.sun.com/docs/overviews/java/java-overview-1.html

 137

[Symantec98] Symantec Corporation, http://www.symantec.com.

[Symantec99] Understanding Heuristics: Symantec’s Bloodhound Technology. Symantec White
Paper Series. Volume XXXIV. http://www.symantec.com/avcenter/reference/heuristc.pdf

[TLLW96] Ali-Reza Adl-Tabatabai, Geoff Langdale, Steven Lucco, and Robert Wahbe. Efficient
and Language-Independent Mobile Programs, PLDI ’96.

[TracePoint97] TracePoint Technology. Binary Code Instrumentation for Advanced Software
Performance Tools, 1997. http://www.tracepoint.com/lib/binarycode/white_paper/

[Twyman99] Andrew R. Twyman. Flexible Code Safety for Win32. SM Thesis, MIT. May
1999.

[Wahbe93] Robert Wahbe, Steven Lucco, Thomas E. Anderson and Susan L. Graham. Efficient
Software-Based Fault Isolation. SOSP ’93.

[Wallach97] Dan S. Wallach, Dirk Balfanz, Drew Dean and Edward W. Felten. Extensible
Security Architectures for Java. SOSP ’97.

[Wallach98] Dan S. Wallach and Edward W. Felten. Understanding Java Stack Inspection.
Proceedings of the 1998 IEEE Symposium on Security and Privacy, Oakland, California.
May 1998.

[Wallach99] Dan S. Wallach. A New Approach to Mobile Code Security. PhD Thesis, Princeton
University. January 1999.

[Wichers90] D.R. Wichers, D.M. Cook, R.A. Olsson, J. Crossley, P. Kerchen, K. Levitt, R. Lo.
PACL’s: An Access Control List Approach to Anti-viral Security. Proceedings of the 13th
National Computer Security Conference. Washington, DC. October 1990.

[Yellin95] Frank Yellin. Low-level Security in Java. WWW4 Conference, December 1995.
http://www.javasoft.com/sfaq/verifier.html.

