Modeling TTL-based Internet Caches

Jaeyeon Jung, Arthur W. Berger, Hari Balakrishnan

MIT LCS

April 2003

{yjyung, awberger, hari}@lcs.mit.edu
Time-To-Live-based Caches

- Scales well: no need to maintain per requestor states
- DNS and Web caches
- Hit rate = $f(TTL, \text{query statistics})$

Slide 1
DNS cache hit rate rapidly increases as a function of TTL, exceeding 80% for 900 second TTL [JSBM02]
How does the cache hit rate depend on the statistics of data accesses and the choice of TTL?
Itinerary

✔ Model hit rate as a function of query arrival times and TTL of data items
 – Assumption: cache / query process
 – Formula for hit rates

✔ Evaluate the model using real traces
 – Numerical calculation of hit rates
 – Analytic models of inter-query times
 – Comparison of hit rates
Cache Assumption

- ✔ TTL-based consistency control
- ✔ No capacity miss
- ✔ TTL value is always the same for a given data item
Let X_i be the time interval between the start time of the i^{th} query and the $(i - 1)^{th}$ query to a given data item.

$X_0 = 0$ and X_i are proper, non-negative, independent and identically distributed (i.i.d.) random variables, X_i may have an infinite mean (renewal assumption).
Let $N(t)$ equal the number of queries for the given data item in the interval $(0, t]$.

$N(t)$ is called the renewal counting process.
Key Observation

$N(t)|_{t=T}$ models the number of cache hits per cache miss for a given TTL, T.

$F(t) \equiv \Pr[X_i \leq t]$

\[
\Pr[N(t) \geq n] = \Pr[S_n \leq t] = \Pr[X_1 + X_2 + \cdots + X_n \leq t] = F^{(n)}(t)
\]
Formula for Hit Rates

- Hit rate $\equiv \# \text{ of hits} / \# \text{ of queries}$
- $H(u : T) \equiv \text{hit rate over the interval } (0, u] \text{ given the TTL}=T$
- $H(T) \equiv \lim_{u \to \infty} H(u : T)$

Theorem 1 If the inter-query times X_i’s to a given data item are proper, non-negative, independent and identically distributed random variables, whose mean may be infinite, then

$$H(T) = \frac{E[N(T)]}{E[N(T)] + 1} \text{ with probability one.}$$
Calculation of Hit Rates

✔ Renewal equation:
\[
E[N(t)] = F(t) + \int_0^t E[N(t - x)]dF(x)
\]

✔ Discretization yields a numerically convenient iteration of the renewal equation, and thus \(H(T) \)

\[
H(T) = \frac{E[N(T)]}{E[N(T)] + 1}
\]

✔ \(H_{emp} \): renewal assumption with empirical \(F(t) \)

✔ \(H_{ana} \): renewal assumption with analytic \(F(t) \)

✔ \(H_{sim} \): trace-driven simulation
Numerical Results

✔ Use DNS as an example system, we calculate, H_{emp}, H_{ana}, and H_{sim}

✔ Use TCP connection arrivals to model DNS cache references [JSBM02]
 - H_{sim}: trace-driven simulation
 - H_{emp}: Obtain empirical $F(t)$ from the data set
 - H_{ana}: Fit empirical $F(t)$ into a number of well-known probability distributions
Hit Rate Comparison

✓ \(H_{sim} \) vs. \(H_{emp} \) : the renewal model worked surprisingly well \((\leq 2\% \text{ difference for TTL in (0,86400] sec})\)
Hit Rate Comparison

- Hsim
- Hemp
- Hana

- ✔ /C0 /CP/D2/CP

Hana is less accurate reflecting the complicated structure of the real inter-query time distribution.
Remark

✓ For a TTL $T = 900$ sec, hit rates are over 80% for all three traces

➔ High variability of inter-query times

- $H = 80\% \Rightarrow E[N(T)] = 4$ ($H(T) = \frac{E[N(T)]}{E[N(T)]+1}$)

- $E(X) = 2000$ (sec) from real trace

- If inter-query time distribution $F(t)$ were exponential

\[
E[N(T)] = \frac{900}{2000} = 0.45 \quad ; \quad H = 31\%
\]
Remark

✔ For a TTL $T = 900$ sec, hit rates are over 80% for all three traces

➔ High variability of inter-query times

 – **Burst arrivals in a short interval**: rapidly increasing hit rates up to a certain TTL

 – **Heavy-tailed $F(t)$**: diminishing marginal returns from increasing TTLs
Conclusion

✔ Formulated the cache hit rate based on a renewal assumption for the inter-query arrival times.

✔ Analyzing extensive DNS traces shows that our model predicts observed statistics remarkably well.

✔ On-going work
 – Extension to multi-level cache structure in which TTL is drawn from a certain distribution.
 – Inaccuracy of the renewal simplifying assumption.