Cabernet: Vehicular Content Delivery Using WiFi

Jakob Eriksson, Hari Balakrishnan, Samuel Madden
MIT Computer Science and Artificial Intelligence Laboratory

ABSTRACT

Cabernet is a system for delivering data to and from moving vehicles
using open 802.11 (WiFi) access points encountered opportunis-
tically during travel. Using open WiFi access from the road can
be challenging. Network connectivity in Cabernet is both fleeting
(access points are typically within range for a few seconds) and
intermittent (because the access points do not provide continuous
coverage), and suffers from high packet loss rates over the wireless
channel. On the positive side, WiFi data transfers, when available,
can occur at broadband speeds.

In this paper, we introduce two new components for improving
open WiFi data delivery to moving vehicles: The first, QuickWiFi, is
a streamlined client-side process to establish end-to-end connectivity,
reducing mean connection time to less than 400 ms, from over 10
seconds when using standard wireless networking software. The
second part, CTP, is a transport protocol that distinguishes conges-
tion on the wired portion of the path from losses over the wireless
link, resulting in a 2x throughput improvement over TCP. To char-
acterize the amount of open WiFi capacity available to vehicular
users, we deployed Cabernet on a fleet of 10 taxis in the Boston area.
The long-term average transfer rate achieved was approximately 38
Mbytes/hour per car (86 kbit/s), making Cabernet a viable system
for a number of non-interactive applications.

Categories and Subject Descriptors
C.2.1 - Wireless communication

General Terms
Design, Experimentation, Measurement

Keywords
Vehicular networks, vehicle-to-infrastructure, open WiFi access

1 Introduction

This paper describes the design, implementation, and experimental
evaluation of Cabernet, a content delivery network for vehicles
moving in and around cities. Cabernet delivers data to and from
cars using open 802.11b/g (WiFi) access points (APs) that the cars
connect to opportunistically while they travel. Cabernet is well-
suited for applications that deliver messages (e.g., traffic updates,
parking information, event and store information, email) and files

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Mobicom 08, September 14-19, 2008, San Francisco, California, USA.
Copyright 2008 ACM 978-1-60558-096-8/08/09 . .. $5.00.

(e.g., maps, software updates, documents, web objects, songs, movie
clips, etc.) to users in cars, as well as for applications that deliver
messages and data from devices and sensors on cars to Internet
hosts [16, 22]. These applications do not require interactive end-to-
end connectivity between a sender and receiver.

When a car connects via a WiFi AP, it can potentially transfer
data at the same rates as static clients connected to the same network.
However, as cars move, their connectivity is both fleeting, usually
lasting only a few seconds at urban speeds, and intermittent, with
gaps from dozens of seconds up to several minutes before the next
time they obtain connectivity. In addition, we observe that packet
loss rates over the wireless channel are both high (often 20%) and
vary over the duration of a single AP association. The primary goal
of Cabernet is to develop techniques that allow moving cars to obtain
high data transfer throughput, despite these adverse conditions.

Stock implementations of wireless networking protocols are not
well suited to vehicular applications for three reasons. First, current
client implementations take too long—several seconds—to scan and
associate with an AP, acquire an IP address, and establish end-to-end
connectivity in the face of the high packet loss rates in this envi-
ronment. Second, current end-to-end data transfer and congestion
control protocols do not work well when connectivity is only a few
seconds long and intermittent, and wireless loss rates are high (as is
the case for moving cars). Third, default wireless bit-rate selection
algorithms are tuned to non-moving users, resulting in suboptimal
performance in vehicular applications.

Cabernet incorporates three techniques to mitigate these problems:

1. To reduce the time between when the wireless channel to an
AP is usable and when Internet connectivity through the AP is
actually achieved, we have developed QuickWiFi, a streamlined
process that combines all the different protocols involved in
obtaining connectivity (across all layers) into a single process,
including a new optimal channel scanning policy.

2. To improve end-to-end throughput over lossy wireless links,
we have developed the Cabernet Transport Protocol (CTP),
which outperforms TCP over opportunistic WiFi networks by
not confusing WiFi losses for network congestion. Unlike most
previous work on efficient wireless transport protocols, CTP
does not require modifications to APs (which are not under
our control); instead, it uses a lightweight probing scheme to
determine the loss rate from Internet hosts to an AP.

3. To improve link rates, we study the impact of bit-rate selection
in vehicular WiFi. Based on our results, we adopt a static 11
Mbit/s WiFi bit-rate for transfers from the car. This optimization
could not be applied for downloads from Internet hosts, as the
AP controls the bit-rate in this direction.

The Cabernet design and protocols presented in this paper have
been fully implemented. The system is currently deployed in 10
taxis running in the Boston area. The results reported in this paper
are from the real-world operation of this testbed, with the in-car
nodes running QuickWiFi and the system running CTP. Our key
experimental findings are as follows:

Many short connections (Section 4): QuickWiFi enables the
use of many brief connection opportunities, resulting in a relatively
short mean connection time of 10 seconds (median 4 seconds) com-
pared to previous work []. Correspondingly, the mean time between
successful encounters is also lower (e.g., 120 seconds, vs. 260
seconds [8], also obtained in the Boston area).

Fast connection establishment (Section 5): QuickWiFi reduces
the time to associate with a wireless network from a previously
reported average of 12-13 seconds [8, 15] to 366 ms. We find that
70% of connection opportunities last less than 10 seconds. Given the
large number of brief connection opportunities, QuickWiFi provides
a four-fold increase in the number of connections that transfer data
during drives, compared to a system without QuickWiFi.

Improved transport performance (Section 6): By not reacting
to non-congestion losses over the wireless link, CTP improves data
delivery rate by a factor of two over TCP.

Fixed bit-rate works best (Section 7): Experiments over 2300
connections showed minor differences in loss rates between 1 Mbit/s
and 11 Mbit/s rates, and a dramatic increase in losses when using
802.11g (OFDM) rates.

End-to-end performance attained (Section 8): Each car in our
testbed was able to download 38 MByte per hour (86 kbit/s) while
moving, averaged over periods with and without connectivity. Re-
sponse times can be high, due to intermittent, bursty connectivity.
For example, the observed mean time from request to receiving a 1
MByte response was 9 minutes. These results suggest that Cabernet
is well suited to a large class of non-interactive applications.

Of course, there are non-technical issues surrounding both the
large-scale use and deployment of open access points. We address
these issues briefly in Section 10.

2 Related Work

Cellular networks. Today, delivery of information to moving cars
is done mainly using wide-area cellular data networks such as GPRS,
3G, EVDO, etc. In general, these services cost tens of dollars per
month. We envision Cabernet as an alternative for “lower end” and
embedded mobile information services, which do not justify the cost
of a cellular data plan subscription. For example, in our testbed the
price of an EVDO cellular data plan is approximately $720/year per
car, making it prohibitively expensive for many users and services.
It is likely, however, that many users will eventually have cellular
data service available on their cell phones. Such connectivity could
conceivably be shared with embedded devices in the car, given that
these could be properly authenticated. Compared to such solutions,
Cabernet makes no assumptions about drivers’ other data services,
and requires no prior configuration.

With the proliferation of municipal and public WiFi initiatives,
in addition to major commercial initiatives, Cabernet is likely to be
sufficient for many applications. Even if the cost were not an issue,
the fundamental capacity of Cabernet is much higher than current
cellular networks: given enough access points, the high link speed
and intense spatial reuse of WiFi is unlikely to be matched by any
cellular system. Because Cabernet does not provide continuous con-
nectivity, however, our goal is to complement cellular data services,
not to replace them.

Vehicular networks. The Drive-Through Internet [25], and In-
fostations [13, 20, 17, 27] projects propose architectures similar to
Cabernet. The main difference is that Cabernet uses existing, un-
modified APs, and has been evaluated extensively under real-world
conditions on a taxi-based testbed. Several projects have studied

the problem of intermittently connecting from cars or other mobile
devices to the Internet. Our previous work in the CarTel project inves-
tigated general architectures for vehicular sensor networks [16], and
characterized the extent to which wireless access points deployed
in cities can be used as an uplink network for moving cars [8]. This
work did not address network performance issues, such as optimized
association, scanning, data transport protocols or rate selection.

The UMass DieselNet is a delay-tolerant network running on
40 buses in Amherst. They have studied protocols for bus-to-bus
routing in delay tolerant networks [7] as well as measurements and
models of bus-to-bus connectivity [28]. In [4], a set of techniques
are proposed to enable web search from a bus, using only WiFi
connectivity. The authors report an average meeting duration of 55-
58 seconds, significantly higher than the 10 seconds we report. This
result is a side-effect of using QuickWifi: due to the long connection
establishment delays incurred using standard techniques, DieselNet
was likely unable to take advantage of connections shorter than 10-
15 seconds (>70% of connections in our experiments). They report
a median time of 5-8 minutes between successful connections vs. 32
seconds for Cabernet. However, due to the difference in mobility
(bus vs. car), and setting (Amherst vs. Boston), these numbers are
not directly comparable.

Hadaller et al. [15] have done a detailed study of WiFi connectiv-
ity from a vehicle by repeatedly driving past a single access point
in an isolated area without other interference or obstructions. They
find (as did Gass et al.. [11], Ott and Kutscher [25], and Bychkovsky
et al. [8]) that connection establishment times can be quite long
(12-13 seconds). They recommend not initiating connections until
cars are in a zone of “good” connectivity (approximately the middle
30 seconds of each connection). In Cabernet however, the mean
connection only lasts about 19 seconds, and many connections never
achieve “good” connectivity; we find packet loss rates in excess of
10% throughout many connections. They suggest tuning timeouts in
the wireless stack to improve performance, but do not experimen-
tally evaluate the effects of such changes. We have implemented a
number of optimizations in QuickWifi, including various timeout
optimizations. Finally, unlike in our experiments, they find that bit
rates above 11 Mbit/sec are usable and TCP losses are low. We
attribute the significant differences between our respective findings
to the fact that their experiments were conducted in a relatively
controlled and benign setting.

Mahajan et al. [23] study signal quality between two vehicles and
several base stations. They find that harsh fading occurs throughout
the duration of a vehicular WiFi connection, and that such periods of
poor connectivity can be predicted based on past history. Our results
corroborate these, and an interesting direction for future work would
be to incorporate their AP prediction algorithms into Cabernet.

Delay tolerant networks. A variety of work on delay tolerant
networks [10, 18, 19, 26, 29, 5, 21] has studied architectures, routing,
forwarding, and analysis of intermittent and high-delay networks. In
contrast, our focus is not on routing—we assume that mobile nodes
are just a single hop from well-connected, fixed infrastructure—but
on maximizing the utility of that single-hop path.

3 Experimental Setting

Before describing the components of the system in more detail, we
briefly summarize the characteristics of our experimental testbed, the
equipment used, and the data gathered. We have deployed a mobile
vehicular testbed, hosted in taxis in the Boston area. It consists of
25 nodes, each a Soekris 4801 computer, equipped with a Ubiquity

Figure 1: Cabernet architecture. Cabernet-equipped cars
briefly connect through open WiFi access points as they move.

Networks SR2 (Atheros chipset) 802.11b/g radio, a small 3 dBi omni-
directional antenna mounted inside the passenger compartment, and
a GPS receiver. We allocated 10 of the testbed nodes for use in the
Cabernet experiments.

The results reported in this paper were derived from a variety of
experiments with varying duration and overlap. In total, we have
successfully transferred data using 26000 open APs. This is out
of several hundred thousand observed APs all together, the vast
majority of which were encrypted. However, except where noted
otherwise, most results were computed using 124 hours of actual
mobility, defined as driving periods with a maximum stop of 2
minutes. Note that we had no control over vehicle mobility—these
measurements were truly gathered “in the wild”. That said, it is
likely that some of the results reported here may look different when
compared to results from private cars or public transport, both of
which may have less diverse travel patterns.

4 Design Overview and Goals

This section describes the architecture of Cabernet, illustrated in
Figure 1. As a car drives down the road, the onboard embedded
computer repeatedly scans for, and attempts to associate with, open
APs. It then attempts to establish end-to-end connectivity with a
Cabernet enabled host, to retrieve or upload data. Software running
on the embedded computer uses QuickWiFi to connect as quickly
as possible, and CTP to deliver data (instead of TCP, though TCP
could also be used). Finally, communication with legacy Internet
hosts is done using a proxy that serves two functions: first, it hides
intermittent connectivity from protocols running on fixed Internet
hosts and shields them from changing IP addresses, and second, it
translates between CTP and popular protocols like HTTP and TCP.
At a high level, Cabernet’s design can be described by the follow-
ing three objectives:
1. Establish connectivity quickly to take advantage of brief con-
nection opportunities.
2. Split congestion control between wired and wireless portions
of the path to cope with high non-congestive wireless loss rates.
3. Expose the appearance and disappearance of connectivity to
Cabernet-enabled applications on the mobile node.
We motivate and discuss each of these in turn below.

4.1 Establish Connectivity Quickly

When a vehicle is in motion, available WiFi connections are typi-
cally brief. Figure 2 shows the CDF of the duration of over 5529
encounters (defined below) with 1396 unique APs, when the cars
were in motion. This data was collected using a single WiFi radio on

0.9
0.8
0.7
0.6
0.5

oal |
0.3 /
0.2 /
0.1 /

CDF

0 10 20 30 40 50 60
Encounter Duration (s)

Figure 2: CDF of encounter duration. The median is 4 seconds,
mean is 10 seconds. 99th percentile was 250 seconds.

100 ; —
>3s duration
>10s duration -
80
X
o
& 60
12}
o0
S
o 40
Q
X
[*]
&
20
0 A A A A
0 20 40 60 80 100

Encounter time (%)

Figure 3: Packet loss rate vs. Encounter time. High losses are
experienced throughout an encounter. Error bars show stan-
dard deviation, >10s error bars omitted for readability.

each car. The radio scanned continuously for open APs until one was
found. It then associated with the AP and maintained the connection
until the access point went out of range. Only APs that provided
end-to-end connectivity are reported here. We define an encounter
as the interval between when the first beacon was heard from an
AP and the time at which the last packet was heard from the AP.
This duration is an upper bound on the time that could profitably be
spent communicating, because it does not include the time it might
take for a client to actually achieve end-to-end connectivity. In our
experiments, the median duration of an encounter is 4 seconds, with
a mean of 10 seconds and standard deviation of 0.4 seconds. 70% of
the observed encounters last less than 10 seconds.

Stock implementations of the IEEE 802.11 and Internet protocols
typically require several seconds to establish a connection (e.g.,
Bychkovsky et al. [8] report establishment takes 12.9 seconds). By
considerably shortening this time, QuickWiFi is able to exploit the
bulk of these fleeting opportunities. We discuss QuickWiFi in more
detail in Section 5.

4.2 Handle Non-Congestion WiFi Losses

Packet losses over the wireless link are common in our observed
encounters, with a mean packet loss rate in excess of 20%. Figure 3
shows how the packet loss rate varies with time from the beginning
of each encounter to the end. To collect this data, the cars spent the

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

CDF

01 oo
0

1 10 100 1000
Time between APs providing end-to-end connectivity (s)

Figure 4: CDF of time between APs providing end-to-end con-
nectivity.

duration of 850 random individual encounters sending bursts of back-
to-back packets to the AP, with link-layer retries enabled, at the 11
Mbit/s bit-rate. MAC layer ACKs were used to verify transmission
success or failure. The results were essentially identical for lower
bit-rates, as we discuss in more detail in Section 7.

As one might expect, the beginning and end of an encounter
experience high loss rates, but even the middle of an encounter
is prone to losses. Most of these losses are unlikely to be due to
congestion and are instead caused by a combination of marginal
links and mobility.

Given these packet loss rates, a congestion control mechanism
such as TCP’s that treats all end-to-end packet losses as congestion
is sub-optimal. Unlike in much previous work on improving wireless
transport performance, our environment has legacy APs that aren’t
under our control. We solve this problem in CTP by implementing
a lightweight probing protocol to independently detect congestive
losses on the (wired) path to the AP. In addition, we investigate wire-
less bit-rate selection in the Cabernet setting to improve throughput.
We discuss CTP in more detail in Section 6 and bit-rate selection in
Section 7.

4.3 Managing Intermittent Connectivity

The distribution of times between encounters depends on the density
of open APs in the area and the speed of travel. Figure 4 shows the
CDF of the time between AP encounters that provided end-to-end
connectivity, based on experiments spanning 124 hours of driving.
The observed median time between successful encounters was 32
seconds and the mean was 126 seconds, heavily skewed by a small
number of longer intervals. With 90% probability, a successful
encounter will happen within just five minutes after the end of the
last encounter.

Given the short encounter durations, most encounters will not
be long enough to complete a requested transfer. Because most
current applications and protocols do not tolerate intermittency, we
either need new delay-tolerant applications, or we need proxies that
hide intermittent connectivity. Cabernet provides support for both
types of use. For new applications, the CTP API provides prompt
feedback (through OS signals) whenever end-to-end connectivity
disappears and reappears. These notifications allow applications to
begin transfers when connectivity appears and avoid having to im-
plement complex application-specific timeouts or connection polling
techniques to determine if connectivity is available.

' t

SCANNING CONNECTED

T T
found accless point recv ping reply
1

AUTH REQ PING THROUGH
auth:resp recv ar;p reply

ASSOC REQ ARP QUERY
assoc: resp dhcp‘aok

dh
DHCP DISC } s { DHCP REQ

Figure 5: Steps involved in connection establishment. Establish-
ing a connection requires a minimum of 13 frames.

Legacy applications, which do not implement CTP or which
may not be well suited to conditions of intermittent connectivity,
are supported by a combination of client-side and Internet-based
proxies, as proposed by Ott and Kutscher [25].

5 [Establishing Connectivity

Establishing an Internet connection over a wireless AP involves sev-
eral steps which, using stock implementations of various protocols,
can take significant time to complete. The situation is exacerbated
in vehicular environments because of the high packet loss rates and
short encounter durations.

Figure 5 illustrates the connection establishment process. In
general, each step involves a request, followed by a response. If
no response is received within some specified time, the request is
retransmitted. In our case, an additional “ping-through” step is used
to verify that an end-to-end connection is available.

5.1 Problems with Stock Implementations

Below, we list several reasons why it can be difficult to use stock
tools for connection establishment in a vehicular setting, all of which
are addressed by QuickWiFi.

Suboptimal scanning. Scanning by stock implementations
typically assumes that the channels are occupied by APs with equal
probability, and that APs, once discovered, are unlikely to disappear
in the next several seconds.

Inappropriate timeouts. At high packet loss rates it is crucial
to appropriately tune retry and timeout values: 13 frames need to
be received over the wireless channel before a verified end-to-end
connection is available.

Sequential, yet asynchronous. The steps required in establish-
ing a connection are sequentially executed, but usually by separate
processes. There is often no explicit notification between processes,
causing extra delays, and lost opportunities for parallelism.

Manual intervention required. Stock implementations typi-
cally rely on users to choose what APs to connect to, or when to
give up and try connecting to a different AP.

Always-on connection model. Current client stacks are not
designed for the on-again, off-again connectivity available through
moving vehicles. While Mobile IP could be used to handle session
migration, applications need to be explicitly notified when connec-
tivity is available, in order to make full use of it.

5.2 QuickWiFi Operation

QuickWiFi incorporates fully automatic scanning, AP selection, as-
sociation, DHCP negotiation, address resolution, and verification
of end-to-end connectivity, as well as detection of the loss of con-
nectivity. It is implemented as a single state machine, running in
one process. The result is a tight integration between steps: each
step is executed immediately after the previous step has completed,
and parallelism is exploited whenever possible. We now describe
some of the optimizations incorporated in QuickWiFi. The opti-
mized channel scanning technique used in QuickWiFi is described
separately in Section 5.3.

In the current implementation, QuickWiFi attempts to associate
with the first open access point it encounters as it scans through
the wireless channels. After a connection is complete, it resumes
scanning at the point where it left off. In practice, this policy results
in a quick way to select a random AP, since any AP beacon may be
the first one heard when a scan begins. As future work, it would be
interesting to explore schemes that cache historical AP connectivity
information so that APs with better connectivity are selected with
higher probability. Such schemes are tricky to implement as they
require waiting for a scan to complete (decreasing usable connection
times) and can also decrease the chances that new APs are discovered
and used.

Tuned for vehicular WiFi. Authentication, association, DHCP,
and ARP all include timeout/retry protocols. Retries are very likely,
particularly in DHCP discovery and ARP request phases when broad-
cast messages (without link-layer ACKs) are used. By reducing
timeouts to hundreds of milliseconds (which is far longer than the
typical wireless channel round trip time), rather than seconds (as in
most stock implementations), we can dramatically reduce the mean
connection establishment time. In QuickWiFi, the timeout period in
each phase is set to 100 ms, after which the request is sent again, up
to 5 times. If the Sth request fails as well, the process starts over with
the scanning phase. The choice of 100 ms here is somewhat arbi-
trary. Further improvements may be possible by tuning the timeout
interval depending on the message type.

Back-to-back authentication/association. Even open APs re-
quire clients to authenticate, but this step is always successful. Thus,
there is no need to wait for the response to our authentication request
before sending the association request. Should the authentication
request be lost in the meantime, the subsequent association request
will fail, and QuickWiFi will automatically restart the process.

QuickWiFi includes two additional functions to monitor and re-
port the status of an end-to-end connection.

Ping-through. Many seemingly open access points do not pro-
vide end-to-end Internet connectivity (because, for example, they
require the user to register before granting end-to-end connectivity).
QuickWiFi uses a quick request-response exchange with a central
server to verify end-to-end connectivity. Upon success, QuickWiFi
explicitly notifies applications that Internet connectivity is available,
through an OS signal. Should the end-to-end connectivity test fail,
the connection is torn down, and scanning is resumed.

Connection loss monitoring. We need to quickly discover when
a connection is lost, and return to scanning for new APs. In a
vehicular scenario, if we have not seen any transmissions (including
beacon frames) for 500 milliseconds, it is likely that the car has
moved out of the range of the AP. In this case, scanning is resumed
and running applications are notified.

Finally, we have implemented an optimized scanning strategy, as
described in the following section.

45%

40%
@ 35%
5 30%
@ 25%
4]

20%
15% +
10% +

5% -
0% -

CcC

©

% of

o

1 2 3 4 5 6 7 8 9 10 11
Channel

Figure 6: Distribution of APs across channels.

5.3 Optimal Scanning Strategy

In IEEE 802.11b as specified for the U.S., there are 11 (partially
overlapping) channels. Scanning can be done either passively or
actively. Typically, a passive client scans by tuning to each of the
available channels and lingering for at least 100 ms on each channel
to listen for beacons from nearby access points. With 11 channels,
this approach results in a mean delay of 600 ms between entering
the coverage range of an access point and discovering it. An active
client transmits a broadcast probe request, which APs optionally
respond to. In order to discover APs that do not respond to such
probes, a linger time in excess of 100 ms is needed. Scanning type
is a configuration option in QuickWiFi, and for the experiments
reported here, we used passive scanning.

Only three channels in IEEE 802.11b/g are considered “orthogo-
nal” (free of co-channel interference): 1, 6 and 11. Users (or perhaps
device manufacturers) take this information into account in practice;
Figure 6 shows that the distribution of AP channels in our data set
is non-uniform and biased toward these channels. 83% of unique
access points observed are assigned to one of the three orthogonal
channels; 38.5% use channel 6.

Given this information, our goal is to find a scanning strategy that
minimizes the time it takes to find a channel with an open AP present.
Let N be the number of channels, and Az, 1 <k < N,Y A, = 1 be the
probability that an arbitrary access point is assigned to channel k.

We are interested in obtaining an optimal scanning strategy for a
moving car that is continually scanning for a usable AP, where the
APs are configured independently at random to channels according
to the A probability distribution. We seek a scanning strategy that
scans channel k at a rate f; i.e., given a large number of total scans
S scans, channel k gets scanned at regular intervals a total of Sf}
times, and Y fr = 1.

Consider any strategy that scans each channel k at a rate pro-
portional to f; (e.g., weighted round-robin scheduling). Here, the
expected number of scans before a given channel £ is scanned is
proportional to 1/f;. A fixed schedule of this sort is preferable to
simply randomly sampling channels and selecting channel k£ with
probability f; because random sampling (with replacement) may
result in it occasionally taking a very long time to scan a channel
with low f;. Assuming the car is able to complete a scan before it
moves out of range of any access point, it is preferable to scan such
rare channels before re-scanning a channel that has already been
scanned. Using a fixed scanning strategy, the expected number of
scans before the car successfully finds a single point on a random

channel is therefore proportional to Y, %

Our goal is to find an assignment to f;Vk that will minimize this
quantity, subject to Y fr = 1. We now show that this quantity is
minimized when f; o< /. Using a Lagrange multiplier, u, define

h:ZT—u =LA

k

Taking the partial derivative with respect to f; and setting to 0 yields

o
— +p=0,
of 2 BT

and thus fj o< \/)Tk . Applying the constraint Y f = 1, we obtain

=V Li VA

Using packetized processor sharing, we can now generate
a feasible scanning schedule, giving a weight to each chan-
nel k equal to \/Tk The scan order is determined by the
schedule produced. For example, with A; as in Figure 6,
the following schedule achieves an expected number of scans
of 3.64: 6,11,9,2,6,1,11,10,6,3,1,11,6,4,9,11,6,1,5,10,6,11,7,1,8,
about 40% better than the naive scanning approach.

5.4 Open AP Co-occurrence and AP Selection

It is common for a node to receive beacons from more than one open
AP. For intervals of 1 second, multiple open APs were observed in
50% of cases. QuickWiFi does not explicitly address this scenario.
Instead, it immediately initiates an association attempt as soon as
an open AP is observed. Assuming that APs send beacon frames
at similar rates, this strategy results in a random selection between
the available APs, weighted by the packet delivery probability from
each AP to the car.

More carefully selecting which AP to associate with may improve
performance. However, several issues make this a nontrivial task.
For example, many seemingly open APs do not actually provide end-
to-end connectivity. If, in some areas, such APs have consistently
higher signal strength, any signal-strength based strategy would
likely degrade performance. Similarly, focusing on APs with a good
track-record may unnecessarily avoid recently added APs, or recently
reconfigured ones. Finally, a trade-off exists between spending time
scanning for the “ideal” AP, and aggressively associating as soon as
an opportunity arises. We leave this opportunity to future work.

5.5 QuickWiFi Performance

We now turn to the performance of the connection establishment
process. For each successful connection, we measure the time be-
tween when the car discovered an open access point, and when
QuickWiFi reported a successful connection to the application. Fig-
ure 7 shows the CDF of connection establishment times, based on
a total of 16800 connections to 2700 unique APs. With a mean
connection establishment time of 366 ms, and a median of 287 ms,
QuickWiFi achieves about a 35-45x speedup over the previously
reported median time of 12-13 seconds [8, 15].

Dissecting QuickWifi latency. QuickWiFi spends 366 ms on
establishing a connection, but how is this time spent? Figure 8
shows the mean time spent in each of the phases, for all connections
that eventually succeeded. DHCP dominates the delay incurred, with
a total of 197 ms spent on the two DHCP phases. Part of the the
reason for this delay is that both the DHCP discover and the DHCP
request packets are sent to the broadcast address. Such packets do
not benefit from link-layer ACKs and retransmissions, which means

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

CDF

0 100 200 300 400 500 600 700 800
Time between recd beacon & ping-through (ms)

Figure 7: QuickWiFi speeds up connection establishment. CDF
of connection delay when using QuickWiFi. Median = 287 ms,
mean = 366 ms. 95th percentile = 920 ms, 99th percentile 1230
ms.

140
120
100

[¢]
o

Delay incurred (ms)
N D O
o O O

0+

Figure 8: Mean time (s) spent in the various phases of connec-
tion establishment.

that this stage takes a long time to complete. Another reason is
that most (85% in our experiments) DHCP servers send an ARP
request prior to responding to a DHCP Discovery message, in order
to ensure that the IP address to be sent in the DHCP Response is not
already in use. This appears as part of the DHCP Discovery time.
An overheard ARP request from the DHCP server can be used to
accelerate the DHCP address acquisition process, as described in
[12]. QuickWiFi supports this option, but it is turned off by default
out of caution: using an IP address before it is granted by the DHCP
server may disrupt a client already using the address.

ARP queries from the client are also sent to the broadcast address.
We believe, however, that the shorter time spent on ARP queries
can be explained by survivorship bias: once both DHCP phases
have completed, the connection quality is significantly improved
given success in the two DHCP phases. In addition, ARP queries
are short compared to DHCP packets (< 30 bytes of payload and no
IP header, compared to 200 bytes), resulting in a lower probability
of packet loss. The relatively short time taken for ping-through (40
ms) is consistent with the round-trip time to our server at MIT from
locations in the Boston area.

How do connection attempts fail? The shorter timeouts used
in QuickWiFi lead to faster connection establishment times. How-
ever, several attempts fail at different stages. Figure 9 shows the
distribution of connection failures, for all access points that allowed

Percentage of failures
=N W A WU
LI I 2 22
S & & & & &
.

Figure 9: Connection failures (percent) in QuickWiFi. Bars
indicate percentage of connection failures at various phases.

QuickWiFi to associate. CONNLOSS indicates those connections
that were successfully established, and subsequently failed as the
car moved out of range of the AP.

We note that the vast majority of failures happen in the DHCP
phases. There are several possible contributing factors to this. Poor
channel quality is in all likelihood the biggest culprit. Due to the
broadcast nature of DHCP messages, there are no MAC layer retries,
with a corresponding increase in packet losses. However, some
DHCP servers may be unable to respond before QuickWiFi times
out and restarts the process. An increased number of retry attempts
for DHCP discovery would help address this. In the balance lies
wasted opportunities to attempt association with other APs. Every
second spent trying to get a DHCP response from an AP that doesn’t
produce one is potentially a second of connectivity wasted. Addi-
tional experimentation with varying DHCP timeouts and retries in
the DHCP steps may offer further performance gains.

6 Cabernet Transport Protocol

As discussed in Section 4, Cabernet uses a proxy to mediate between
unmodified Internet hosts (e.g., servers) and the node in the car. This
proxy shields the car’s intermittent connectivity and changing IP
address from legacy hosts. In our initial deployment and experi-
ments, the proxy used TCP to communicate with the in-car nodes.
Despite the widespread use of 802.11°s link-layer acknowledgment
and retransmissions, we found that the IP-layer loss rates were quite
high, and that TCP performance was disappointing.

At first blush, the large amount of research done on wireless
TCP improvements would seem to be directly useful in our con-
text [3, 2, 1, 6, 9]. Unfortunately, most of these schemes involve
modifications to the access point (or to a host very close to it). In
Cabernet, because we don’t control the APs, we need an end-to-end
solution that can run at only the proxy and in-car node. Although
the number of previous protocols that operate under this constraint
is small, two are potentially applicable: TCP with Explicit Loss
Notification (e.g., E2E-ELN and E2E-ELN-RXMT from [3]), and
TCP Westwood/Westwood+ [24, 14]. We consider each in turn here.

TCP with ELN may be used end-to-end if the receiver’s link
layer is modified to deliver erroneous frames to the TCP receiver,
so that the receiver can send ELN messages to the sender. For
this scheme to work, the TCP header must be separately protected
with an error detection code, since otherwise an ELN could end up
being sent to the wrong connection and possibly disrupt the state of

that connection (e.g., imagine the sequence or port number fields
being corrupted). More importantly, because many non-congestive
losses corrupt the preamble, those link-layer frames would never
get decoded by the receiver, implying that many such losses would
never trigger an ELN. The resulting throughput would not be good.
In [2], this problem was dealt with by having the nodes at the ends of
the wireless link maintain state to detect holes in the TCP sequence
space, but such modifications require changes to APs.

A TCP Westwood/Westwood+ sender does not cut its congestion
window by half on a loss, but instead sets the congestion window to
the product of the “bandwidth estimate” and the minimum round-
trip time (RTT) for the connection, divided by the segment size.
The bandwidth estimate depends on the rate at which acknowledg-
ments arrive, with Westwood+ implementing a method to avoid
over-estimating when ACK compression occurs. On a timeout, the
congestion window is set to 1 segment.

We didn’t use Westwood+ because our measurements showed
loss rates of 20% or more, much higher than the random loss rates at
which the Westwood papers showed benefit (5% or less). Because
Westwood+ does not actually try to distinguish between wired and
wireless losses, but is only less conservative about setting the conges-
tion window and slow start thresholds, it is unlikely to perform well
over links with high and bursty losses, as in our system. Therefore,
we developed a new protocol.!

CTP is an end-to-end, reliable, stream-oriented transport protocol
that aims to achieve reasonable throughout for data transfers over a
series of short and loss-prone wireless connections. It hides network
mobility (changing addresses and underlying connections) from the
application. It incorporates a different congestion control mechanism
from the many previously proposed TCP variants to perform better
over networks with high non-congestive loss rates and it does so
while running over legacy wireless APs.

6.1 Reliability and Mobility

CTP exposes a reliable socket API to the application. From the
application’s point of view, the main difference between CTP and a
normal TCP socket is that a CTP session does not break when the
underlying IP address changes or path disappears. Instead, CTP end
hosts carry unique network-independent identifiers, allowing CTP
sessions to migrate seamlessly across changing IP addresses and
APs.

On an address change, the client reconnects to the other end (as-
sumed to be a permanently connected, CTP-aware Internet host) and
securely identies itself using its unique identifier. CTP delivers data
reliably in both directions using large send and receive buffers that
can hide outages that could last several minutes. An outgoing mes-
sage is divided into packet-sized chunks, each of which is assigned
a chunk sequence number. In order to reduce wireless contention,
ACKSs are aggregated and sent at a moderate rate (once every 100
ms). Each ACK contains a bitmap indicating what chunks are still
missing. The CTP sender retransmits chunks if they show up as
missing more than a threshold number of times in the bitmap or after
a timeout.

6.2 CTP congestion control

From an end-to-end perspective, non-congestive wireless losses are
indistinguishable from congestion, so protocols like TCP react by

!'That said, comparing CTP with Westwood and TCP-ELN would be an interesting
area for future work.

reducing their windows and increasing the likelihood of a timeout.
CTP improves throughput by reacting only to congestive losses,
which are assumed to occur only on the path from the Internet
sender to the AP.

We believe this assumption is likely to be valid in the case where
the car is downloading from the Internet. Here, concurrent trans-
missions are handled by the 802.11 MAC protocol running on the
AP. In the case of a concurrent upload (e.g., another wireless client
sending to the Internet while the car is downloading), there are no
hidden terminals with respect to the AP, and thus sharing should be
adequately handled by the MAC protocol. In the case of concur-
rent downloads (sending from the Internet to other wireless clients),
sharing the wireless medium is not an issue, as the AP is doing the
majority of the sending.

For the case when we are sending from cars to the Internet, which
is not the focus of this paper, hidden terminals may be an issue
under some conditions, as the sender may not be able to detect other
concurrent transmissions.

For transfers from a car to an Internet host, the CTP sender has an
easy task: it receives immediate feedback from the absence of link-
layer ACKs; propagating this information to the CTP layer allows the
sender to retransmit data without reducing the CTP transmission rate.
Our main focus in this section, however, is on the more difficult case
of transfers from an Internet host to a car. The challenge is to detect
congestion on the wired part of the path without getting confused
by wireless losses. To achieve this goal, the CTP sender transmits
probe packets periodically to the AP in question. A lack of response
to such probe packets is interpreted as a sign of congestion. This
information is combined with the end-to-end RTT and end-to-end
packet loss rate to calculate the transmission rate.

6.2.1 Probing Strategy

Because the APs aren’t under our control, the choice of a suitable
probe packet depends on its ability to elicit responses from the AP.
A good scheme must have low overhead and work in the presence
of NATs and common firewall configurations. Below, we describe
the three methods used by CTP, in order of preference, and named
according to the expected response from the AP:

1. TCP RST. Send a large (1400-1500 bytes) packet that looks
like a TCP segment to a randomly selected, high-numbered
port on the AP. Because the AP does not have a record of a
corresponding TCP session, it will respond with a small TCP
RST message.

2. ICMP TIMXCEED. Send a packet that is identical to a regular
payload packet belonging to the on-going CTP connection, but
with the IP header’s time-to-live (TTL) field set to one less than
the number of hops to the car. The CTP receiver continuously
updates the sender’s TTL estimate through a field in the ACK.
Assuming the TTL estimate is correct, the packet will expire
when it reaches the AP, which will respond with a small ICMP
TIMXCEED message.

3. ICMP ECHO. Send a 1500-byte ICMP ECHO (ping) packet
to the AP as the probe. If the AP is ICMP-enabled, it will
respond with a 1500-byte ICMP response. This scheme is
somewhat wasteful of uplink capacity, but acceptable given
that probe packets make up a small fraction of the overall data
transfer.

In all cases, it is necessary to send a large probe packet, in order to

accurately measure congestion losses for large payload packets. Out
of the three methods listed, TCP RST is preferred because APs that

do provide a TCP RST response tend to do so without rate limitation.
ICMP probes, however, tend to be rate limited to 1-2 per second.
Unfortunately, most APs (more than 80%) do not provide TCP RST
responses.

If none of these techniques produces a response from the AP, CTP
relies on observed end-to-end packet losses for rate control, and
adjusts the rate on each end-to-end ACK, essentially reverting to
TCP behavior.

6.2.2 Rate adjustment

Using the feedback provided by end-to-end ACKs and periodic
probe packets, CTP continuously adjusts the transmission rate for the
connection. The objective of the rate control algorithm is to emulate
the throughput that a bulk TCP transfer would achieve if it went over
a path that had the same RTT as the end-to-end CTP connection,
but the loss rate of the path from the sender to the AP. Such a rate
control scheme would interact reasonably well with other TCP traffic
on the same path, but achieve higher throughput than a connection
that used the end-to-end loss rate (which in general would include a
large non-congestive component). After some experimentation, we
arrived at the following rate adaptation rules.

Rate increase rule. The CTP sender considers increasing its rate
each time it gets an ACK. If the CTP ACK indicates that no payload
packets were lost during the ack_interval period, the new rate for a
long-running CTP connection is computed as

ack_interval

rate rate
et e

ey

This increase rule is similar to TCP’s additive increase, where
TCP increases the window by 1 packet per RTT (actually, 0.5 packets
with delayed acks but we ignore that here). Therefore, in one RTT
(measured in seconds), TCP’s rate increases from W/RTT packets/s
to (W + 1)/RTT packets/s, where W is the window size in packets.
The increment in rate is 1/RTT packets/s, which is made every RTT
seconds. Hence, in ack_interval seconds, the rate should increase
by the amount shown above.

Rate decrease rule. CTP considers reducing its rate every time
a new probe packet is sent. If the previous probe packet got no
response, the new rate is computed as

rate — max(rate- (1 —c¢- Pioss), Fmin), 2)

where py, is an exponentially weighted moving average of the loss
probability, computed from the ACKs, and c is a tunable constant.

This decrease rule is a heuristic that has to reconcile some real-
world problems. The feedback received from probe packets is not
frequent enough to accurately estimate congestion loss rates. Instead,
we use it as a binary signal to determine whether or not to reduce
the rate. To estimate the amount of reduction that is needed, we still
fall back on the end-to-end delivery rate.

Given the high rate of wireless losses in Cabernet, however, simply
reducing the rate by half for every dropped payload packet would be
a poor strategy. Instead, given the congestion signal received from
probing, we conservatively use the end-to-end loss rate estimate as
an upper bound on the congestion loss rate. Thus, given a packet
loss probability p;,s, We need to at least reduce our rate by at least
this much. However, this rate reduction does not make any provision
for fairness. In order to allow TCP sessions to successfully contend
for link capacity, we reduce the rate by an additional constant factor
¢. We empirically determined that TCP competes effectively with
CTP when ¢ =2, as we report in Section 6.4.

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2
0.1 ’J:’"‘/

0 / L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Throughput (Kbit/s)

CDF

Figure 10: CDF of encounter-averaged throughput achieved us-
ing CTP and TCP respectively.

0.9
0.8
0.7 - -
0.6

0.5
0.4
03
0.2 ‘/"
0.1 B

CDF

0 02 04 06 08 1 1.2 14
Total Downloaded MBytes

Figure 11: CDF of downloaded bytes per access point en-
counter.

6.3 CTP vs TCP Performance

To determine the utility of CTP’s rate control measures, we compare
the throughput achieved by CTP to TCP for downloads to cars. Run-
ning CTP and TCP simultaneously on the same AP does not produce
the desired result. Instead, we designed our experiment to alternate
between CTP and TCP for every established connection. The TCP
implementation used was the default settings in Linux 2.6.17.13,
with SACK enabled. Figure 10 shows the CDF of the encounter-
averaged throughput achieved with CTP and TCP. We note that the
measured median throughput achieved by CTP is approximately 2 x
that of TCP. The mean CTP throughput of 760 kbit/s was somewhat
less than 2 the TCP throughput of 408 kbit/s.

The total number of bytes downloaded in an encounter is a func-
tion of the throughput as well as the duration of the encounter. Thus,
throughput and bytes downloaded need not have a one-to-one cor-
respondence. Figure 11 shows the CDF of the number of bytes
downloaded per encounter. We note that the median CTP download
is approximately 2 x the median TCP download. However, the mean
CTP download of 2438 kbytes is only 35% higher than the mean
TCP download of 1860 kbytes.

The explanation for this phenomenon is simple: long-duration
encounters have significantly lower packet loss rates than short-
duration encounters. Figure 12 plots the average packet loss rate
vs. encounter duration. It is clear that the majority of the very high

50 60
|

40
|

Percentage Packet Loss (%)
20 30
1

10
|

U

05 1 16 32 64

Connection Duration (s, and up)

Figure 12: Avg. packet losses vs. encounter duration. Longer
encounters on average exhibit lower packet drop rates.

600 1

500 T
@
3 434.32
2 400
<
5 |
2 300 292.72 I
S 248.04
3
<
£ 200
£
o
&
= 100 E—
0
TCP alone TCP/ CTP TCP / TCP

Figure 13: Mean throughput achieved by TCP in three scenar-
ios: alone, competing with a CTP flow, and competing with an-
other TCP flow. Error bars indicate standard deviation.

loss rates are contributed by relatively short-lived connections, with
relatively low (5%) loss rates for encounters 32 seconds and longer.
Thus, on long duration encounters, TCP is able to achieve nearly
the same throughput as CTP. This combination of long duration and
high throughput explains the disparity between the mean throughput
and download values.

6.4 Interacting with TCP

To evaluate the “TCP friendliness” of the CTP rate adaptation al-
gorithm, we ran a set of experiments from inside a home. Wireless
packet losses were minimized by placing the node near the AP. We
then measured the downstream throughput of one TCP flow, under
three different conditions: (a) the measured TCP flow was the only
active flow on the local network; (b) the measured TCP flow was
competing with a downstream CTP flow; (c) the measured TCP flow
was competing with a second downstream TCP flow.

In all cases, the measured TCP flow was established 20 times, each
performing a 10 MB download. In cases (b) and (c), the competing
flows were established before the start of the first measured TCP
flow, and ended after the end of the last TCP flow. In case (b), we
manually verified that the CTP flow was saturating the link before
the start of the first TCP flow.

Figure 13 illustrates the result of these experiments. We note that
the measured TCP flow achieves somewhat higher throughput when
competing with CTP than when it is competing with another TCP

Bit Rate vs. Success Rate

0.9 4 M Pr(Succ)

0.8 4 [Pr(Succ | Prev Fail)
0.7 4 OPr(Succ | Prev Succ)

0.6 -
0.5 A
0.4
0.3 A

Probability of Success

0.2 1
0.1 A

0 ! L1 L1 L1 -
1 2 55 11 18 24 36 48 54

Bit Rate (Mbit/sec)

Figure 14: Probability of a successful packet transmission, for
varying transmission rates.

flow. In addition, the standard deviation is lower when the measured
TCP flow is competing with CTP than when it is competing with
another TCP flow. A more extensive study of CTP interactions with
TCP is a subject for future work.

7 Vehicular WiFi Rate Selection

In IEEE 802.11 networks, the sender may choose a bit rate from
amongst a list of rates supported by both sender and receiver. Hence,
when downloading data to cars in Cabernet, the AP controls the rate.
Unfortunately, the bit-rate adaptation protocols used by most APs
are optimized for stationary users, and even the best current rate
adaptation schemes require multiple seconds to settle on the optimal
rate, which makes them unsuitable for Cabernet.

Since we cannot control the rate selection scheme used for down-
loads, we ran a series of experiments to measure the effect of bit-rate
selection on uploads. We believe that these results would apply to
downloads as well if APs had support for vehicular clients. Specifi-
cally, our experiments measure the loss rate of uploads from moving
vehicles transmitting at different bit rates. 802.11b supports 4 wire-
less transmission rates, 1, 2, 5.5 and 11 Mbit/s, and 802.11g (OFDM)
adds several more rates, ranging from 6 through 54 Mbit/s.

During an encounter, we periodically sent bursts of 10 1000-byte
frames to the AP, and recorded whether an acknowledgment was
received, and after how many retries. Each frame was sent at a rate
chosen uniformly at random from the supported rates advertised by
the access point. The experiment was run on 10 vehicles, over the
course of 2338 encounters with 531 unique access points. After
initial experimentation showed that they performed significantly
worse than the 11 Mbit/s rate, we did not include the 802.11g rates
6,9 and 12 Mbit/s.

Figure 14 shows the results of this experiment. For each rate, the
overall probability of success is shown, as well as the conditional
probability of success given that the previous attempt (at any rate)
was a success or failure. It is immediately apparent that 802.11b
transmissions were much more likely to succeed than the faster
802.11g rates. However, somewhat surprisingly, the difference in
loss rates between 802.11b bit rates was small. These measurements
suggest that using 1 Mbit/s is never a good choice in Cabernet®. The

20f course, it is possible that loss rates are not symmetric, but we do not believe that
they should be dramatically different.

time required to send a large packet at 1 Mbit/s is almost 10x the
time required at 11 Mbit/s, negating any reliability benefit that could
be had by switching to the lower rate. Moreover, looking at the
conditional success probability given a previous failure (the light
grey bar), we see that even after losing packets, reducing the rate
would not result in a performance gain. It’s unclear if 802.11g rates
are ever a good idea—though they succeed 2-3 times less often, rates
are high enough that they may still offer an overall performance
gain. However, adding the extra overhead of retransmissions, back-
off periods etc, it appears that any benefit of using the 802.11g
rates would be marginal. It is unclear to us why the OFDM rates
of 802.11g perform so much worse than the 802.11b rates in this
setting. Signal strength alone does not appear to fully explain the
phenomenon, as the 11 Mbps QPSK rate is frequently reported
with a very similar receiver sensitivity as the 18 Mbps OFDM rate.
The experiments in Section 9 show that adding an external antenna
can improve signal quality by around 10 dB. Determining whether
an external antenna would allow OFDM to operate reliably in a
vehicular setting is a topic of future work.

In summary, current rate adaptation schemes are highly useful
for stationary users, where signal quality varies slowly. However,
in the case of Cabernet, the combination of rapid mobility and
marginal channel quality means that a suitable adaptation scheme
must adapt very quickly to realize a performance gain. Because the
11 Mbit/s rate overall performed so much better than the other rates,
Cabernet currently uses only that rate. Based on these findings, we
implemented a “fixed 11 Mbit/s” rate selection strategy on our taxi
testbed. We use this modified rate selection protocol throughout the
experiments reported in this paper. The full benefits of this opti-
mization cannot be seen, however, because most of our experiments
focus on download performance from the Internet to cars, where the
(unmodified) APs control the bit rate.

8 End-to-End Performance

Having established the performance of QuickWiFi and CTP in iso-
lation, we now turn to the overall performance of the implemented
system. The experiments described below seek to answer the follow-
ing key questions and explain observed performance:
1. What is the expected time between a request for information,
and the retrieval of the desired response?
2. Given WiFi conditions in the Boston area, what is the expected
time-averaged throughput of a Cabernet-equipped vehicle?

8.1 Expected Transaction Time

For applications that react to external stimuli, such as passing a
landmark, a timer expiring, or a user action, the expected time taken
to complete a network transaction is of interest. We envision a usage
scenario where an application requests a download of a given size, at
an arbitrary time. We then compute the time it would take Cabernet
to complete the download.

Figure 15 shows the expected response time ¢,, for a varying
transaction size s. The median response time for a small (10 kbyte)
request was 2 minutes, and the mean was 5 minutes. Typical requests
of this nature may include traffic and weather updates, requesting
driving directions, polling RSS feeds, and checking for new email.
For larger transfers, such as downloading a full web page, large
emails with attachments, or a 1 minute audio clip, we consider a 1
Mbyte request. The median time for such requests was 4 minutes,
and the mean time was 9 minutes.

CDF

1 Mbyte transaction
100 kbyte transaction --
10 kbyte transaction -

0 5 10 15 20
Expected response time (min)

Figure 15: CDF of expected transaction time, given several
transaction sizes.

0.9
0.8

0.7 -
0.6 e

0.5

0.4 ,"’/”
0.3 }:"" /

0.2

CDF

0.1 | Cabernet 1
TCP + 10s delay -

0 10 20 30 40 50 60 70 80
Hour-averaged throughput (Mbyte/h)

Figure 16: CDF of the expected number of bytes downloaded,
per hour of driving, per car, with and without Cabernet.

Thus, while Cabernet is not suitable for a fast-paced browsing
session, moderately interactive usage is feasible. Moreover, Cabernet
is well suited to applications which perform periodic background
updates as often as every few minutes.

8.2 Expected long-term Throughput

For less time-sensitive applications, such as podcasts, prefetching
of web pages, or background file synchronization, the metric of
interest is total download capacity, rather than transaction time. As
we demonstrate below, Cabernet provides ample throughput for such
applications.

We divide the driving time of each car into hour-long segments,
and compute the total download throughout each time segment. Fig-
ure 16 shows the CDF of the available hour-averaged throughput
when using Cabernet. For comparison, we also show TCP through-
put after reducing (via post-processing) the total download time of
each encounter by an estimated connection establishment delay of
10 seconds, to account for the improvement in connection establish-
ment time due to QuickWiFi. In conclusion, we find that the mean
throughput for Cabernet in the Boston area was 38 Mbyte/hour (86
kbit/s).

9000

8000 - external 1
o M external 2
.02" 7000 internal 1
§ 6000 4 internal 2
—
& 5000 -
£
© 4000 -
=
S 3000 -
®
2000 -
1000 -
ol
<=-50 <=-60 <= -70 <= -80 <= -90

received signal strength (dBm)

Figure 17: Received signal strength vs. antenna choice. Often
difficult to install, an external high-gain antenna can dramati-
cally improve reception.

9 Effect of Antenna Type and Placement

In our deployment, use of antennas on the exterior of the vehicle
was not possible, and space constraints restricted the size of the
antenna inside the vehicle. Hence, to better understand how the
type and placement of the antenna affect Cabernet performance, we
performed a small set of controlled experiments, using a single car,
driving a well-defined route. The same route was driven four times,
twice with the 3 dBi antenna on the dashboard, and twice with an
additional 8 dBi antenna on the roof of the car.

All correctly received frames were recorded, and the subset of
access points that were observed during all four drives was com-
puted. Figure 17 shows the number of beacon frames received from
these access points, in 5 signal strength buckets. We observed that
the external antenna configuration consistently received a 10+ dB
stronger signal, and also received substantially more packets.

This improved signal quality also resulted in improved end-to-end
performance. For these drives, the mean time between encounters
was 35 seconds for the external antenna configuration, and 44 sec-
onds for the internal antenna configuration. Median time between
encounters were 18 and 26 seconds respectively. The median connec-
tion duration changed from 2.75 seconds to 3 seconds, not enough
to be significant. Apparently, the median connection duration did
not improve with the high-gain external antenna. This phenomenon
is explained by the fact that the external antenna configuration could
communicate with more APs overall, with the majority of the new
encounters (to more remote APs) having a short duration.

Finally, we measured the throughput achieved by CTP over the
course of these drives. Here, the both the mean and median transfer
per encounter was smaller with the external antenna than without.
However, due to the larger total number of encounters, CTP averaged
14 megabytes per drive with the external antenna, compared to
slightly less than 8 megabytes without the external antenna.

Despite the small number of drives used to collect this data, we
guardedly draw a few conclusions from these experiments. First,
an external antenna substantially improved signal quality, by about
10 dBi. The primary consequence of this improved signal quality
was that the number of potentially usable APs (open and closed)
increased by 40% (from 950 to 1330), accompanied by a correspond-
ing decrease in the time between open AP encounters. Many of these
potential new encounters are of short duration and poor quality.

10 Conclusion

This paper described Cabernet, a system for delivering data to mov-
ing vehicles. Cabernet uses WiFi access points encountered dur-
ing drives for network connectivity. This intermittent connectivity
presents several challenges, including high connection establishment
latency and high WiFi loss rates.

We designed Cabernet to address these issues, evaluating our
system on a real-world taxi testbed in the Boston area. To reduce
connection establishment time, we built QuickWiFi, an optimized
and integrated collection of tools for establishing connections with
wireless access points. It is able to connect in just 366 ms on
average, improving significantly on previous work. It also notifies
applications when connectivity appears or disappears, simplifying
application design. To improve throughput, we developed CTP, a
transport protocol that handles high non-congestive wireless loss
rates by running a lightweight probing protocol between a sender
and the access point to isolate congestion events on the Internet path
from last-hop losses. CTP is able to achieve double the throughput
of TCP over paths with high non-congestion losses, with a mean
throughput of 800 kbit/s when connectivity is present. Finally, in an
end-to-end performance evaluation, we find that Cabernet is able to
achieve an end-to-end throughput of 38 megabytes/hour (86 kbit/s)
per car during its drives—ample throughput for a large class of
non-interactive vehicular applications.

These performance results are encouraging, but what of wider
deployment? Using open APs without the owners’ explicit consent
can be sensitive, no matter how short the duration of a connection.
For wider use, incentives for access point owners to “open up” and
opt-in are needed. A recent promising model is Fon’s, where users
open their access point to all Fon users that also open theirs. This
model is becoming popular, and is now supported by established
ISPs such as British Telecom, Time Warner, and Neuf>. In addition
to privately operated access points, emerging wireless mesh networks
as well as large-scale WiFi networks such as those operated by T-
Mobile and others offer good coverage in many parts of the world.
Cabernet provides a beneficial way to use these WiFi networks from
moving vehicles.

Acknowledgments

We thank Brad Karp for carefully reading and critiquing multiple
drafts of this paper, and the anonymous reviewers for their com-
ments. We thank PlanetTran for their on-going support of our ve-
hicular testbed. This work was supported by the National Science
Foundation under grants CNS-0205445 and CNS-0520032, and the
T-Party Project, a joint research program between MIT and Quanta
Computer Inc., Taiwan.

3http://www.techcrunch.com/2007/10/04/

fon-inks-deal-with-british-telecom/ and http://blog.wired.

com/business/2007/10/fon-partners-wi.html

References

(1]

[2

3

[4

(5]
(6]

[7

(8]

9

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

A. Bakre and B. R. Badrinath. Handoff and System Support for Indirect TCP/IP.
In Proc. Second Usenix Symp. on Mobile and Location-Independent Computing,
Apr. 1995.

H. Balakrishnan and R. Katz. Explicit Loss Notification and Wireless Web
Performance. In Proc. 3rd Global Internet Mini-Conference in conjunction with
IEEE Globecom, Nov. 1998.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. Katz. A Comparison of
Mechanisms for Improving TCP Performance over Wireless Links. IEEE/ACM
Transactions on Networking, 5(6), Dec. 1997.

A. Balasubramanian, Y. Zhou, W. B. Croft, B. N. Levine, and A. Venkataramani.
Web search from a bus. In CHANTS '07: Proceedings of the second workshop on
Challenged networks, CHANTS. ACM, 2007.

N. Bansal and Z. Liu. Capacity, delay and mobility in wireless ad-hoc networks.
In INFOCOM, 2003.

K. Brown and S. Singh. M-TCP: TCP for Mobile Cellular Networks. ACM
Computer Communications Review, 27(5), Oct. 1997.

J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. MaxProp: Routing for
Vehicle-Based Disruption-Tolerant Networks. In INFOCOM, 2006.

V. Bychkovsky, B. Hull, A. K. Miu, H. Balakrishnan, and S. Madden. A
Measurement Study of Vehicular Internet Access Using In Situ Wi-Fi Networks.
In 712th ACM MOBICOM Conf., September 2006.

R. Caceres and L. Iftode. Improving the Performance of Reliable Transport
Protocols in Mobile Computing Environments. IEEE Journal on Selected Areas
in Communications (J-SAC), 13(5), June 1995.

K. Fall. A delay-tolerant network architecture for challenged internets. In Proc.
ACM SIGCOMM, pages 27-34, 2003.

R. Gass, J. Scott, and C. Diot. Measurements of In-Motion 802.11 Networking.
In Proc. WMCSA, Apr. 2006.

S. Giordano, D. Lenzarini, A. Puiatti, and S. Vanini. Enhanced DHCP client. In
CHANTS. ACM, 2007.

D. Goodman, J. Borras, N. Mandayam, and R. Yates. Infostations: A new system
model for data and messaging services. In Proc. IEEE Vehicular Technology
Conference, pages 969-973, May 1997.

L. A. Grieco and S. Mascolo. Performance evaluation and comparison of
Westwood+, New Reno and Vegas TCP congestion control. ACM CCR, 34(2),
Apr. 2004.

D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal. Vehicular Opportunistic
Communication Under the Microscope. In ACM MobiSys, June 2007. To appear.
B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, E. Shih,

H. Balakrishnan, and S. Madden. CarTel: A Distributed Mobile Sensor
Computing System. In Proc. ACM SenSys, Nov. 2006.

A. Tacono and C. Rose. Bounds on file delivery delay in an infostations system.
In Vehicular Technology Conference, 2000.

S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network. In ACM
SIGCOMM, 2004.

P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: Design tradeoffs and early
experiences with zebranet. In Proc. Architectural Support for Programming
Languages and Operating Systems, October 2002.

U. Kubach and K. Rothermel. Exploiting location information for
infostation-based hoarding. In MOBICOM, pages 15-27, 2001.

J. Lebrun, C.-N. Chuah, D. Ghosal, and M. Zhang. Knowledge-based
opportunistic forwarding in vehicular wireless ad hoc networks. In IEEE
Vehicular Tech. Conf., pages 2289-2293, 2005.

U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and A. Corradi.
Mobeyes: smart mobs for urban monitoring with a vehicular sensor network.
IEEE Wireless Communications, 13(5), Oct. 2006.

R. Mahajan, J. Zahorjan, and B. Zill. Understanding WiFi-based connectivity
from moving vehicles. In IMC, 2007.

S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP Westwood:
Bandwidth Estimation for Enhanced Transport over Wireless Links. In Proc.
ACM Mobicom, July 2001.

J. Ott and D. Kutscher. A Disconnection-Tolerant Transport for Drive-thru
Internet Environments. In INFOCOM, 2005.

A. Seth, P. Darragh, S. Liang, Y. Lin, and S. Keshav. An Architecture for
Tetherless Communication. In DTN Workshop, 2005.

T. Small and Z. J. Haas. The shared wireless infostation model: A new ad hoc
networking paradigm (or where there is a whale, there is a way). In MOBIHOC,
pages 233-244, 2003.

X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang. Study of a
Bus-Based Disruption Tolerant Network: Mobility Modeling and Impact on
Routing. In Proc. ACM Mobicom, pages 195-206, September 2007.

W. Zhao, M. H. Ammar, and E. W. Zegura. A message ferrying approach for data
delivery in sparse mobile ad hoc networks. In MobiHoc, pages 187-198, 2004.

http://www.techcrunch.com/2007/10/04/fon-inks-deal-with-british-telecom/
http://www.techcrunch.com/2007/10/04/fon-inks-deal-with-british-telecom/
http://blog.wired.com/business/2007/10/fon-partners-wi.html
http://blog.wired.com/business/2007/10/fon-partners-wi.html

	Introduction
	Related Work
	Experimental Setting
	Design Overview and Goals
	Establish Connectivity Quickly
	Handle Non-Congestion WiFi Losses
	Managing Intermittent Connectivity

	Establishing Connectivity
	Problems with Stock Implementations
	QuickWiFi Operation
	Optimal Scanning Strategy
	Open AP Co-occurrence and AP Selection
	QuickWiFi Performance

	Cabernet Transport Protocol
	Reliability and Mobility
	CTP congestion control
	Probing Strategy
	Rate adjustment

	CTP vs TCP Performance
	Interacting with TCP

	Vehicular WiFi Rate Selection
	End-to-End Performance
	Expected Transaction Time
	Expected long-term Throughput

	Effect of Antenna Type and Placement
	Conclusion

