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ABSTRACT
We present a replication-based approach to fault-tolerant
distributed stream processing in the face of node failures,
network failures, and network partitions. Our approach aims
to reduce the degree of inconsistency in the system while
guaranteeing that available inputs capable of being pro-
cessed are processed within a specified time threshold. This
threshold allows a user to trade availability for consistency: a
larger time threshold decreases availability but limits incon-
sistency, while a smaller threshold increases availability but
produces more inconsistent results based on partial data. In
addition, when failures heal, our scheme corrects previously
produced results, ensuring eventual consistency.

Our scheme uses a data-serializing operator to ensure that
all replicas process data in the same order, and thus remain
consistent in the absence of failures. To regain consistency
after a failure heals, we experimentally compare approaches
based on checkpoint/redo and undo/redo techniques and il-
lustrate the performance trade-offs between these schemes.

1. INTRODUCTION
In recent years, a new class of data-intensive applica-

tions requiring near real-time processing of large volumes
of streaming data has emerged. These stream processing ap-
plications arise in several different domains, including com-
puter networks (e.g., intrusion detection), financial services
(e.g., market feed processing), medical information systems
(e.g., sensor-based patient monitoring), civil engineering
(e.g., highway monitoring, pipeline health monitoring), and
military systems (e.g., platoon tracking, target detection).

In all these domains, stream processing entails the com-
position of a relatively small set of operators (e.g., filters,
aggregates, and correlations) that perform their computa-
tions on windows of data that move with time. Most stream
processing applications require results to be continually pro-
duced at low latency, even in the face of high and variable
input data rates. As has been widely noted [1, 9, 14], tra-
ditional data base management systems (DBMSs) based on
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the “store-then-process” model are inadequate for such high-
rate, low-latency stream processing.

Stream processing engines (SPEs) (also known as data
stream managers [1, 30] or continuous query processors [14])
are a class of software systems that handle the data process-
ing requirements mentioned above. Much work has been
done on data models and operators [1, 6, 16, 28, 41], effi-
cient processing [7, 8, 12, 30], and resource management [13,
17, 30, 35, 38] for SPEs. Stream processing applications
are inherently distributed, both because input streams of-
ten arrive from geographically distributed data sources, and
because running SPEs on multiple processing nodes enables
better performance under high load [15, 35]. In a distributed
SPE, each node produces result streams that are either sent
to applications or to other nodes for additional processing.
When a stream goes from one node to another, the nodes
are called upstream and downstream neighbors.

In this paper, we add to the body of work on SPEs by ad-
dressing fault-tolerant stream processing, presenting a fault-
tolerance protocol, implementation details, and experiments.
Our approach enables a distributed SPE to cope with a va-
riety of network and system failures. It differs from previous
work on high availability in streaming systems by offering a
configurable trade-off between availability and consistency.
Previous schemes either do not address network failures [25]
or strictly favor consistency over availability, by requiring
at least one fully connected copy of the query network to
exist to continue processing at any time [35]. As such, our
scheme is particularly well-suited for applications where it is
possible to make significant progress even when some of the
inputs are unavailable.

As in most previous work on masking software failures,
we use replication [22], running multiple copies of the same
query network on distinct processing nodes. In our ap-
proach, when a node stops receiving data (or “heartbeat”
messages signifying liveness) from one of its upstream neigh-
bors, it requests the missing input streams from a replica of
that neighbor (if it can find one). For a node to be able to
correctly continue processing after such a switch, all replicas
of the same processing node must be consistent with each
other. They must process their inputs in the same order,
progress at roughly the same pace, and their internal com-
putational state must be the same. To ensure replica con-
sistency, we define a simple data-serializing operator, called
SUnion, that takes multiple streams as input and produces
one output stream with deterministically ordered tuples.

At the same time, if a node is unable to find a new up-
stream neighbor for an input stream, it must decide whether
to continue processing with the remaining (partial) inputs,



or block until the failure heals. If it chooses to continue, a
number of possibly incorrect results will be produced, while
blocking makes the system unavailable.

Our approach gives the user explicit control of trade-offs
between consistency and availability in the face of network
failures [11, 22]. We also ensure eventual consistency: i.e.,
clients eventually see the complete correct results. We in-
troduce an enhanced streaming data model in which results
based on partial inputs are marked as tentative, with the
understanding that they may subsequently be modified; all
other results are considered stable and immutable.

To provide high availability, each SPE processes input
data and forwards results within a user-specified time thresh-
old of arrival, even if other inputs are currently unavailable.
At the same time, to prevent downstream nodes from un-
necessarily having to react to tentative data, an SPE tries
to avoid or limit the number of tentative tuples it produces.

When a failure heals, each SPE that processed tentative
data reconciles its state by re-running its computation on the
correct input streams. While correcting its internal state,
the replica also stabilizes its output by replacing the pre-
viously tentative output with stable data tuples, allowing
downstream neighbors to reconcile in turn. We argue that
traditional approaches to record reconciliation [27, 42] are ill-
suited for streaming systems, and adapt two approaches sim-
ilar to known checkpoint/redo and undo/redo schemes [18,
23, 22, 29, 39] to allow SPEs to reconcile their states.

Our fault-tolerance protocol addresses the problem of min-
imizing the number of tentative tuples while guaranteeing
that the results corresponding to any new tuple are sent
downstream within a specified time threshold. The abil-
ity to trade availability (via a user-specified threshold) for
consistency (measured by the number of tentative result tu-
ples, since that is often a reasonable proxy for replica in-
consistency) is useful in many streaming applications where
having perfect answers at all times is not essential (see Sec-
tion 2). Our approach also performs well in the face of the
non-uniform failure durations observed in empirical mea-
surements of system failures: most failures are short, but
most of the downtime of a system component is due to long-
duration failures [19, 23].

We have implemented our approach in Borealis [2].
Through experiments, we show that Borealis meets the re-
quired availability/consistency trade-offs for failures of vari-
able duration, even when query networks span multiple
nodes. We show that it is necessary to process new tuples
both during failure and reconciliation to meet the availabil-
ity requirement for long failures. We find that reconciliation
based on checkpoint/redo outperforms reconciliation based
on undo/redo because it incurs lower overhead and achieves
faster recovery.

2. MODEL, ASSUMPTIONS, AND GOALS
This section describes our distributed stream processing

model, failure assumptions, and design goals.

2.1 Query and Failure Model
A loop-free, directed graph of operators that process data

arriving on streams forms a query network. Figure 1 illus-
trates a query network distributed across four nodes. In
many stream processing applications, input streams arrive
from multiple sources across the network, and are processed
by a Union operator that produces a FIFO order of the in-
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Figure 1: Query network in a distributed SPE.

puts before further processing. These inputs may come di-
rectly from data sources, such as network monitors sending
synopses of connection information or other activity, or may
be the results of processing at upstream SPE nodes.

To avoid blocking in face of infinite input streams, oper-
ators perform their computations over windows of tuples.
Some operators, such as Join, still block when some of their
inputs are missing. In contrast, a Union is an example of
a non-blocking operator because it can perform meaningful
processing even when some of its input streams are missing.
In Figure 1, the failure of a data source does not prevent
the system from processing the remaining streams. Failure
of node 1 or 2 does not block node 3 but blocks node 4.

Because many stream processing applications are geared
toward monitoring tasks, when a failure occurs upstream
from a non-blocking operator and causes some (but not all)
of its input streams to be unavailable, it is often useful to
continue processing the inputs that remain available. For
example, in a network monitoring application, even if only a
subset of monitors are available, processing their data might
suffice to identify some potential attackers or other network
anomalies. In this application, low latency processing is crit-
ical to mitigate attacks. However, some events might go un-
detected because a subset of the information is missing, and
some aggregate results may be incorrect. Furthermore, the
state of replicas diverges as they process different inputs.

After a failure heals, previously unavailable data streams
are made available again. To ensure that replicas become
once again consistent with one another and that client ap-
plications eventually receive the complete correct streams, it
is important to arrange for each node to correct its internal
state and the output it produced during the failure.

2.2 Failure Assumptions
Our approach handles fail-stop failures (e.g., software

crashes) of processing nodes, network failures, and network
partitions where any subset of nodes lose connectivity to one
another. When each node has N replicas (including itself),
we tolerate up to N − 1 simultaneous node failures. We
consider long delays as network failures.

We assume that data sources and clients implement the
fault-tolerance protocols described in the next section. This
can be achieved by having clients and data sources use a
fault-tolerant library or by having them communicate with
the system through proxies (or nearby processing nodes)
that implement the required functionality. We also assume
that data sources, or proxies acting on their behalf, log in-
put tuples persistently (e.g., in a transactional queue [10])
before transmitting them to all replicas that process the cor-
responding streams. A persistent log ensures that all replicas
eventually see the same input tuples, in spite of proxy or data
source failures. The fail-stop failure of a data source, how-
ever, causes the permanent loss of input tuples that would
have otherwise been produced by the data source.



Our scheme is designed for a low level of replication and
a low failure frequency. We assume that replicas have spare
processing and bandwidth capacity and that they communi-
cate using a reliable, in-order protocol like TCP.

2.3 Design Goals
Our goal is to ensure, for each node, that any data tu-

ple on an input stream is processed within a specified time
bound, regardless of whether failures occur on other input
streams or not. Among possible ways to achieve this goal,
we seek methods that produce the fewest tentative tuples.
If Ntentative is the number of tentative tuples produced by
a node and Delaynew, the maximum delay for that node to
process an input tuple and produce a result, our goal is for
each node to minimize Ntentative, subject to Delaynew < X.

X is a measure of the maximum processing latency that
an application or user can tolerate to avoid inconsistency.
Different algorithms are possible to convert an end-to-end
latency into a per-node delay. We do not discuss this assign-
ment in this paper and assume each node is given X. The
constraint on Delaynew implies that a node cannot buffer
inputs longer than αX, where αX < X − P and P is the
normal processing delay. Alternatively, X could express an
added delay, but we use the former definition in this paper.

Reducing Ntentative reduces the amount of resources con-
sumed by downstream nodes in processing tentative tuples.
Ntentative may also be thought of as a (crude) substitute for
the degree of divergence between replicas when the set of
input streams is not the same at the replicas.

Our approach ensures that as long as some path of non-
blocking operators is available between one or more data
sources and a client application, the client receives results.
Furthermore, our approach favors stable results over tenta-
tive results when both are available. Once failures heal, we
ensure that clients receive stable versions of all results, and
that all replicas converge to a consistent state. We handle
single failures and multiple overlapping (in time) failures.

3. APPROACH
This section describes our replication scheme and un-

derlying algorithms. Each node implements the state ma-
chine shown in Figure 2 that has three states: STABLE, UP-

STREAM FAILURE (UP FAILURE), and STABILIZATION.
As long as all upstream neighbors of a node are producing

stable tuples, the node is in the STABLE state. In this state,
it processes tuples as they arrive and passes stable results
to downstream neighbors. To maintain consistency between
replicas that may receive inputs in different orders, we define
a data-serializing operator, SUnion. Section 3.2 discusses
the STABLE state and the SUnion operator.

If one input stream becomes unavailable or starts carry-
ing tentative tuples, a node goes into the UP FAILURE state,
where it tries to find another stable source for the input
stream. If no such source is available, the node has three
choices to process the remaining available input tuples:

1. Suspend processing until the failure heals and the failed
upstream neighbors start producing stable data again.

2. Delay new tuples for a short period of time before pro-
cessing.

3. Process each new tuple without any delay.
The first option favors consistency. It does not produce

any tentative tuples and may be used only for short failures
given our goal to process new tuples with bounded delay.
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Figure 2: The Borealis state machine.

The latter two options both produce result tuples that are
marked “tentative;” the difference between the options is in
the latency of results and the number of tentative tuples
produced. Section 3.3 discusses the UP FAILURE state.

A failure heals when a previously unavailable upstream
neighbor starts producing stable tuples again or when a node
finds another replica of the upstream neighbor that can pro-
vide the stable version of the stream. Once a node receives
the stable versions of all previously missing or tentative in-
put tuples, it transitions into the STABILIZATION state. In
this state, if the node processed any tentative tuples during
UP FAILURE it must now reconcile its state and stabilize its
outputs. We explore two approaches for state reconciliation:
a checkpoint/redo scheme and an undo/redo scheme. While
reconciling, new input tuples are likely to continue to arrive.
The node has the same three options mentioned above for
processing these tuples: suspend, delay, or process without
delay. Our approach enables a node to reconcile its state
and correct its outputs, while ensuring that new tuples con-
tinue to be processed. We discuss the STABILIZATION state
in Section 3.4.

Once stabilization completes, the node transitions to the
STABLE state if there are no other current failures, or back
to the UP FAILURE state otherwise.

3.1 Data Model
With our approach, nodes and applications must distin-

guish between stable and tentative results. Stable tuples
produced after stabilization may override previous tentative
ones, requiring a node to correctly process these amend-
ments. Traditionally, a stream is an append-only sequence
of tuples of the form: (t, a1, . . . , am), where t is a timestamp
value and a1, . . . , am are attribute values [1]. To accom-
modate our new tuple semantics, we adopt and extend the
Borealis data model [3]. In Borealis, tuples take the form:

(tuple type, tuple id, tuple time, a1, . . . , am)

1. tuple type indicates the type of the tuple.
2. tuple id uniquely identifies the tuple in the stream.
3. tuple time is the tuple timestamp. We discuss these

timestamps further in Section 3.2.
Traditionally, all tuples are immutable stable insertions.

We introduce two new types of tuples: TENTATIVE and
UNDO. A tentative tuple is one that results from processing
a subset of inputs and may subsequently be amended with a
stable version. An undo tuple indicates that a suffix of tu-
ples on a stream should be deleted and the associated state
of any operators rolled back. As illustrated in Figure 3, the
undo tuple indicates the suffix with the tuple id of the last
tuple not to be undone. Stable tuples that follow an undo re-
place the undone tentative tuples. Applications that do not
tolerate inconsistency may thus simply drop tentative and
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Figure 3: Example of using tentative and undo tuples.

U2 indicates that all tuples following tuple with tuple id 2

(S2 in this case) should be undone.

Tuple type Description
Data streams
STABLE Regular tuple
TENTATIVE Tuple that results from processing a subset

of inputs and may be corrected later
UNDO Suffix of tuples should be rolled back
BOUNDARY All following tuples will have a timestamp

equal or greater to the one indicated
UNDO START Control message from runtime to SUnion to

trigger undo-based recovery
REC DONE Tuple that indicates the end of reconciliation
Control streams Signals from SUnion
UP FAILURE Entering inconsistent state
REC REQUEST Input was corrected, can reconcile state

Table 1: Types of tuples

undo tuples. We use a few additional tuples types in our
approach but they do not fundamentally change the data
model. Table 1 summarizes the new tuple types.

3.2 Stable State
An operator is deterministic if its results do not depend on

the times at which its inputs arrive (e.g., the operator does
not use timeouts); of course, the results will usually depend
on the input data order. If all operators are deterministic,
we only need to ensure that replicas of the same operator
process data in the same order to maintain consistency; oth-
erwise, the replicas will diverge even without failures.

Since nodes communicate with TCP, tuples never get re-
ordered within a stream and the problem affects only op-
erators with more than one input stream (e.g., Union and
Join). We thus need a way to order tuples deterministically
across multiple input streams that feed the same operator.
The challenge is that tuples on streams may not be sorted on
any attribute and they may arrive at significantly-different
rates. To compute an order without the overhead of inter-
replica communication, we propose a simple data-serializing
operator, SUnion. SUnion takes multiple streams as input
and applies a deterministic sort function on buckets of tuples.

SUnion uses tuple time values to place tuples in buckets
of statically defined sizes. The sort function later typically
orders tuples by increasing tuple time values, but other func-
tions are possible. To distinguish between failures and lack
of data, data sources send periodic heartbeats in the form
of boundary tuples. These tuples have tuple type = BOUND-

ARY and each data source guarantees that no tuples with
tuple time smaller than the boundary’s tuple time will be sent
after the boundary1. Boundary tuples are similar to punc-
tuation tuples [41] or heartbeats [36].

Figure 4 illustrates the serialization of three streams. Tu-
ples in bucket i can be sorted and forwarded as stable be-
cause boundary tuples with timestamps greater than the
bucket boundary have arrived (in bucket i+1). These bound-

1If a data source cannot set these values, the first processing
node to see the data can act as a proxy for the data source,
setting tuple headers and producing boundary tuples.
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Figure 4: Example of serialization of streams s1, s2,
and s3 with boundary interval d. The t’s denote ten-
tative inserts and b’s denote boundary tuples.

ary tuples make the bucket stable as they guarantee that no
tuples are missing from the bucket. Neither of the other
buckets can be processed, since both buckets are missing
boundary tuples and bucket i + 2 contains tentative tuples.

SUnion operators may appear at any location in a query
network. Operators must thus set tuple time values on their
output tuples deterministically as these values will affect
tuple order at downstream SUnions. Operators must also
produce periodic boundary tuples and tuple time values in
boundary tuples must be monotonically increasing. If out-
put tuples are not ordered on tuple time values, boundary
tuples must propagate through the query network to enable
downstream operators to produce correct boundary tuples.

SUnion is similar to the Input Manager in STREAM [36],
which sorts tuples by increasing timestamp order and
deduces heartbeats if applications do not provide them.
SUnion, in contrast, ensures that replicas process tuples in
the same order, distinguishes failures from delays, offers a
flexible availability/consistency trade-off (as we discuss in
the next section), and corrects input streams after failures
heal. The Input Manager does not make such distinctions.
It assumes that delays are bounded.

A natural choice for tuple time is to use wall clock time. By
synchronizing clocks at the data sources, tuples will get pro-
cessed approximately in the order they are produced. The
NTP (Network Time Protocol) [40] is standard today and
implemented on most computers and essentially all servers.
NTP synchronizes clocks to within 10 ms. Wall-clock time
is not the only possible choice, though. In Borealis, any in-
teger attribute can serve to define the windows that delimit
operator computations. When this is the case, operators
also assume that input tuples are sorted on that attribute
and tolerate only limited re-ordering [1]. Hence, using the
same attribute for tuple time as for windows helps enforce the
ordering requirement.

SUnion operators delay tuples because they buffer and sort
them. This delay depends on three properties of boundary
tuples. First, the interval between boundary tuples with in-
creasing tuple time values as well as the bucket size determine
the average buffering delay. Second, the buffering delay fur-
ther increases with disorder. The increase is bounded above
by the maximum delay between a tuple with a tuple time,
t, and a boundary tuple with a tuple time > t. Third, a
bucket is stable only when boundary tuples with sufficiently
high tuple time values appear on all streams input to the
same SUnion. The maximum differences in tuple time values
across these streams bounds the added delay. Because the
query network typically assumes tuples are ordered on the
attribute selected for tuple time, we can expect serialization
delays to be small in practice. In particular, these delays
should be significantly smaller than the maximum process-
ing delay, X.
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3.3 Upstream Failure
Each node monitors the availability and consistency of

its input streams by periodically requesting heartbeat re-
sponses from each replica of each upstream neighbor. These
responses not only indicate if a replica is reachable but in-
clude the states (STABLE, UP FAILURE, or STABILIZATION) of
its output streams. Even though a node is in UP FAILURE,
a subset of its outputs may be unaffected by the failure and
may remain in the STABLE state. Additionally, a node mon-
itors the data it receives, namely the identifiers of the last
stable and tentative input tuples on each input stream.

With the above information, if an upstream neighbor is
no longer in the STABLE state or is unreachable, the node
can switch to another STABLE replica of that neighbor and
continue receiving data from the correct point in the stream.
If no STABLE replica is reachable, the node will try to con-
tinue from a replica in the UP FAILURE state to ensure the
required availability. The result of these switches is that any
replica can forward data streams to any downstream replica
or client and the outputs of some replicas may not be used,
as illustrated in Figure 5. We further discuss switching be-
tween upstream neighbors in various consistency states in
Section 3.5.

To enable such switches, every node buffers its output tu-
ples. We assume that these buffers can hold more tuples
than the maximum number that can be delivered during a
single failure and recovery; we further discuss buffer man-
agement in Section 5.4.

If a node fails to find a STABLE replica to replace an up-
stream neighbor it can either block or continue processing
the available tentative tuples or even continue with a missing
input stream. Blocking avoids inconsistency and is thus the
best approach for failures shorter than αX. For longer fail-
ures, the node must eventually stop blocking new tuples to
ensure the required availability. When this occurs, SUnions
serialize the available tuples, labelling them as tentative,
and buffering them in preparation for future reconciliation
(SUnions monitor all input streams). In the example from
Figure 4 if the boundary for stream s2 does not arrive within
αX of the time the first tuple entered bucket i+1 or bucket
i + 2 still contains tentative tuples αX time units after the
first tuple entered that bucket, SUnion will store and forward
the remaining tuples as tentative.

As a node processes tentative tuples, its state may start to
diverge. The node can do one of two things: delay new tuples
as much as possible or process them without delay. Contin-
uously delaying new tuples reduces the number of tentative
tuples produced during failure but it constrains what the
node can do during stabilization, as we discuss next.

3.4 Stabilization
A node determines that a failure healed when it is able to

communicate with a stable upstream neighbor and receives

corrections to previously-tentative tuples (or a replay of pre-
viously missing inputs). To ensure eventual consistency, the
node must then reconcile its state and stabilize its outputs.
This means that the node replaces previously tentative result
tuples with stable ones, thus allowing downstream neighbors
to reconcile their states in turn. To avoid correcting tenta-
tive tuples with other tentative ones, a node reconciles its
state only after correcting all its input streams. We present
state reconciliation and output stabilization techniques in
this section. We also present a technique that enables each
node to maintain availability (meet the Delaynew < X re-
quirement) while reconciling its state.

3.4.1 State Reconciliation
Because no replica may have the correct state after a fail-

ure and because the state of a node depends on the ex-
act sequence of tuples it processed, we propose that a node
reconcile its state by reverting it to a pre-failure state and
reprocessing all input tuples since then. To revert to an ear-
lier state, we explore two approaches: reverting to a check-
pointed state or undoing the effects of tentative tuples. Both
approaches require that the node suspends processing new
input tuples while reconciling its state.

Checkpoint/redo reconciliation. In this approach, a
node periodically checkpoints the state of its query network
when it is in STABLE state. SUnions on input streams buffer
input tuples between checkpoints and they continue to do
so during UP FAILURE. These input tuples must be buffered
because they will be replayed if the node restarts from the
checkpoint. When a checkpoint occurs, however, SUnion
operators truncate all buckets that were processed before
that checkpoint.

To perform a checkpoint, a node suspends all processing
and iterates through operators and intermediate queues to
make a copy of their states. Checkpoints could be optimized
to copy only differences in states since the last checkpoint.
We do not investigate this optimization and show, in Sec-
tion 5.3, that it is actually not needed. To reconcile its
state, a node re-initializes operator and queue states from
the checkpoint and reprocesses all buffered input tuples. To
enable this approach, operators must thus be modified to
include a method to take a snapshot of their state or re-
initialize their state from a snapshot.

Undo/redo reconciliation. To avoid the CPU over-
head of checkpointing and to recover at a finer granularity
by rolling back only the state on paths affected by the failure,
another approach is to reconcile by undoing the processing
of tentative tuples and redoing that of their stable counter-
parts. With undo/redo, SUnions on input streams only need
to buffer tentative buckets, truncating stable ones as soon
as they process them.

To support such an approach, all operators should imple-
ment an “undo” method, where they remove a tuple from
their state and, if necessary, bring some tuples previously
evicted from the state back into the current window. Sup-
porting undo in operators may not be straightforward—for
example, suppose an input tuple, p, caused an aggregate op-
erator to close a window and output a value. To undo p, the
aggregate must undo its output but must also bring back all
the evicted tuples and reopen the window.

Instead, we propose that operators buffer their input tu-
ples and undo by rebuilding the state that existed right before
they processed the tuple that must now be undone. To de-



termine how far back in history to restart processing from,
operators maintain a set of stream markers for each input
tuple. The stream markers for a tuple p in operator u are
identifiers of the oldest tuples on each input stream that
still contribute to the operator’s state when u processes p.
To undo the effects of processing all tuples following p, u
looks up the stream markers for p, scans its input buffer un-
til it finds that bound, and reprocesses its input buffer since
then, stopping right after processing p. A stream marker is
typically the beginning of the window of tuples to which p
belongs. Stream markers do not hold any state. They are
pointers to some location in the input buffer. To produce
the appropriate undo tuple, operators must store the last
tuple they produced with each set of stream markers.

Operators that keep their state in aggregate form must
explicitly remember the first tuple on each input stream
that begins the current aggregate computation(s). In the
worst case, determining the stream markers may require a
linear scan of all tuples in the operator’s state. To reduce
the runtime overhead, rather than compute stream markers
for every tuple, operators may set stream markers period-
ically. This will increase reconciliation time, however, as
re-processing will restart from an inexact marker.

3.4.2 Stabilizing Output Streams
Independently of the approach chosen to reconcile the

state, a node stabilizes each output stream by deleting a suf-
fix of the stream (normally all tentative tuples) with a single
undo tuple and forwarding corrections in the form of stable
tuples. When it receives an undo tuple, an SUnion at a
downstream node stabilizes the corresponding input stream
by replacing, in its buffer, undone tuples with their stable
counterparts. Once all input streams are corrected, SUnions
trigger a state reconciliation.

With undo/redo, operators process and produce undo tu-
ples, which simply propagate to downstream nodes. To gen-
erate an undo tuple with checkpoint/redo, we introduce a
new operator, SOutput, that we place on each output stream
that crosses node boundary. At runtime, SOutput acts as
a pass-through filter that also remembers the last stable tu-
ple it produced. During checkpoint recovery, SOutput drops
duplicate stable tuples and produces the undo tuple.

Stabilization completes when one of two situations oc-
curs. The node re-processes all previously tentative input
tuples and catches up with normal execution (i.e., it clears its
queues) or another failure occurs and the node goes back into
UP FAILURE. Once stabilization completes, a node transmits
a REC DONE tuple to its downstream neighbors. SOutput
operators generate and forward the REC DONE tuples.

3.4.3 Processing New Tuples During Reconciliation
After long failures, the reconciliation itself may take longer

than X. A node then cannot suspend new tuples while rec-
onciling. It must produce both corrected stable tuples and
new tentative tuples. We propose to achieve this by us-
ing two replicas of a query network: one replica remains in
UP FAILURE state and continues processing new input tuples
while the other replica performs the reconciliation. A node
could run both versions locally but because we already use
replication, we propose that replicas use each other as the
two versions, when possible. By doing so, we never create
new replicas in the system. Hence, to ensure availability,
before reconciling its state, a node must find another replica

and request that it postpone its own reconciliation.
It is up to each downstream node to detect when any one

of its upstream neighbors goes into the STABILIZATION state
and stops producing recent tuples in order to produce correc-
tions. The downstream node then remains connected to that
replica to correct its input stream while at the same time,
connecting to another replica that is still in UP FAILURE state
(if possible). The downstream node processes both streams in
parallel, until it receives a REC DONE tuple on the corrected
stream. At this point, it enters the STABILIZATION state,
in turn. SUnion considers that tentative tuples between an
UNDO and a REC DONE correspond to the old failure while
tentative tuples that appear after the REC DONE correspond
to a new failure. We discuss how a node produces the cor-
rect REC DONE tuple in spite of failures during its recovery
in Section 3.5.

Once again, we have a trade-off between availability and
consistency. Suspending new tuples during reconciliation
reduces the number of tentative tuples but may eventually
break the availability requirement. Processing new tuples
during reconciliation increases the number of tentative tu-
ples but a node may still attempt to reduce their number by
delaying new tuples as long as possible. We compare these
alternatives in Section 5.1.

3.4.4 Failed Node Recovery
A failed node restarts from an empty state and refuses new

clients until it processes sufficiently many tuples to reach a
consistent state. This approach is possible when operators
are convergent capable [25]: i.e., they keep a finite state that
is also updated in a manner that always converges back to
a consistent state. Our schemes could be extended to other
types of operators by recovering using a combination of per-
sistent checkpoints and logging.

3.5 Analysis
We now discuss the main properties of our approach. To

help us state these properties, we start with a few definitions.
A data source contributes to a stream, s, if it produces a

stream that becomes s after traversing some sequence of op-
erators, called a path. The union of paths that connect a set
of sources to a destination (a client or an operator), forms a
tree. A tree is valid if paths that traverse the same operator
also traverse the same replica of that operator. A valid tree
is stable if it contains all data sources that contribute to the
stream received by the destination. A stable tree produces
stable tuples during execution. If any of the missing sources
from a tree would connect to it through non-blocking oper-
ators, the tree is tentative. Otherwise, the tree is blocking.
Figure 6 illustrates each type of tree.

Property 1. In a static failure state, if there exists a sta-
ble tree, a destination receives stable tuples. If only tentative
trees exist, the destination receives tentative tuples from one
of the tentative trees. In both cases, the destination receives
results within at most a kX time-unit delay, where X is the
delay assigned to each SUnion operator and k is the number
of SUnions on the longest path in the tree. In other cases,
the destination may block.

The above property comes from the ability of downstream
nodes to monitor and switch upstream neighbors, prefer-
ring stable ones over those in UP FAILURE state and those in
UP FAILURE state over no input at all. We study the delay
properties in Section 5, where we assume that the number
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Figure 6: Example trees for a query network with
three sources, one client, a Union, and a Join.
{s1, s2, s3} contributes to the stream received by c.
Each operator has two replicas.

of SUnions is equal to the number of nodes. If this is not the
case, the delay assigned to a node must be divided among
the sequence of SUnions at the node.

Property 2. Switching between trees never causes dupli-
cate results and may only lose tentative tuples.

We discuss this property by examining each possible
neighbor-switching scenario:

1) Switching between stable upstream neighbors: Because
the downstream node indicates the identifier of the last sta-
ble tuple it received, a new stable replica can continue from
that point in the stream either by waiting to produce that
tuple or replaying its output buffer.

2) Switching from a neighbor in UP FAILURE state to a
stable upstream neighbor: In this situation, the downstream
node indicates the identifiers of the last stable and tentative
tuples it received. This allows the new upstream neighbor
to stabilize the stream and continue with stable tuples.

3) Switching to an upstream neighbor in UP FAILURE state:
Because nodes cannot undo stable tuples, the new upstream
and downstream pair may have to continue processing tu-
ples while in mutually inconsistent states, which can lead
to duplicate or missing results. We choose to avoid dupli-
cations as this leads to fewer tentative tuples. We add a
second timestamp, t max to tuples. t max of a tuple p is
the tuple time of the most recent input tuple that affected p.
The new upstream node forwards only output tuples that
have a t max greater than the highest t max that the down-
stream node previously received. These tuples necessarily
result from processing at least a partially non-overlapping
sequence of input tuples. Other techniques are possible.

4) If an upstream neighbor is in the STABILIZATION state,
a node treats the incoming stream as redundant information
that serves to correct input streams in the background.

Property 3. As long as one replica of each processing
node never fails, assuming all tuples produced during a fail-
ure are buffered, when all failures heal, the destination re-
ceives the complete stable stream.

After a failure heals, each node reconciles its state and sta-
bilizes its output, letting its downstream neighbors correct
their inputs and reconcile in turn. This process propagates
all the way to the clients.

Property 4. Stable tuples are never undone.

We show that our approach handles failures during failures
and recovery without the risk of undoing stable tuples.

Undo/redo reconciliation: As soon as an operator receives
a tentative tuple, it starts labeling its output tuples as ten-
tative. Therefore, undoing tentative tuples can never cause

a stable output to be undone. When reconciling, SUnions
produce undo tuples followed by the stable versions of tu-
ples processed during the failure. Any new tentative input
tuples will thus be processed after the undo and stable tu-
ples such that any new failure will follow the reconciliation,
without affecting it. While an undo tuple propagates on a
stream, if a different input stream becomes tentative, and
both streams merge at an operator, the operator could see
the new tentative tuples before the undo tuple. In this case,
when the operator finally processes the undo tuple, it re-
builds the state it had before the first failure and processes
all tuples that it processed during that failure before going
back to processing the new tentative tuples. The operator
thus produces an undo tuple followed by stable tuples that
correct the first failure, followed by the tentative tuples from
the new failure. Once again, the new failure appears to occur
after stabilization.

Checkpoint/redo: SOutput guarantees that stable tuples
are never undone. When restarting from a checkpoint, SOut-
put enters a “duplicate elimination” mode. It remains in
that state and continues waiting for the same last dupli-
cate tuple until it produces the undo tuple, even if another
checkpoint or recovery occurs. After producing the undo,
SOutput goes back to its normal state, where it remembers
the last stable tuple that it sees and saves the identifier of
that tuple during checkpoints.

In both cases, if a new failure occurs before the node had
time to catch up and produce a REC DONE tuple, SOutput
forces a REC DONE tuple between the last stable and first
tentative tuples that it sees.

4. IMPLEMENTATION
To implement our scheme in Borealis, in addition to in-

serting SUnion and SOutput operators into query networks,
we add a Consistency Manager and an HA (“high avail-
ability”) component to each SPE node. Figures 7 and 8 il-
lustrate these modifications (arrows indicate communication
between components).

HA monitors all the replicas of a node and those of its up-
stream neighbors. It informs the query processor of changes
in the states of their outputs. To modify the data path,
nodes send each other subscribe and unsubscribe messages.

The Consistency Manager makes all decisions related to
failure handling. In STABLE state, it periodically requests
that the SPE checkpoints the state of the query network.
When the node must reconcile its state, the Consistency
Manager asks a partner to suspend its own reconciliation and
chooses whether to use undo/redo or checkpoint/redo. For
undo/redo, the Consistency Manager injects UNDO START

tuples on input streams of affected SUnion operators. For
checkpoint/redo, the Consistency Manager requests that the
SPE performs checkpoint recovery.

In addition to their tasks described in previous sections,
SUnion and SOutput communicate with the Consistency
Manager through extra control output streams. When an
SUnion can no longer delay tuples, it informs the Con-
sistency Manager about the UP FAILURE, by producing an
UP FAILURE tuple on its control stream. Similarly, when
input streams are corrected and the node can reconcile its
state, SUnion produces a REC REQUEST tuple. Once recon-
ciliation finishes, SOutput forwards a REC DONE tuple on its
control and output streams.

We also require operators to implement a simple API. For
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checkpoint/redo, operators need the ability to take snap-
shots and recover their state ((un)packState methods). For
undo/redo, operators must be able to correctly process undo
tuples. At runtime, they must compute stream markers and
remember the last tuple they output. This functionality can
be implemented with a wrapper, requiring that the oper-
ator itself only implements two methods: clear() clears the
operator’s state and findOldestTuple(int stream id) returns the
oldest tuple from input stream, stream id, that is currently in
the operator’s state. To propagate boundary tuples, opera-
tors must implement the method findOldestTimestamp() that
returns the oldest timestamp that the operator can still pro-
duce. This value is typically the smaller of the oldest times-
tamp present in the operator’s state and the oldest times-
tamp in the boundary tuples received on all input streams.

5. EVALUATION
In this section, we evaluate the performance of our fault-

tolerance protocol through experiments with our prototype
implementation. All single-node experiments were per-
formed on a 3 GHz Pentium IV with 2 GB of memory run-
ning Linux (Fedora Core 2). Multi-node experiments were
performed by running each pair of node replicas on a differ-
ent machine. All machines were 1.8 GHz Pentium IV’s or
faster with greater than 1 GB of memory.

Our basic experimental setup is the following. We run a
query network composed of three input streams, an SUnion
that merges these streams into one, a Join that serves as
a generic query network with a 100 tuple state size, and
an SOutput. The aggregate input rate is 3000 tuples/s. We
create a failure by temporarily disconnecting one of the input
streams without stopping the data source. After the failure,
we send all missing tuples while continuing to stream new
tuples. X is 3 s. α is 0.9 (so αX is 2.7 s). Each result is an
average of at least three experiments.

We first examine the performance of a single Borealis node
in the face of temporary failures of its input streams. In
particular, we compare in terms of Delaynew and Ntentative

different strategies regarding suspending, delaying, and pro-
cessing new tuples during UP FAILURE and STABILIZATION.
As we point out, some combinations are unviable as they
break the availability requirement for sufficiently long fail-
ures. In these experiments, the node uses checkpoint/redo
to reconcile its state. Second, we examine the performance
of our approach when failures and reconciliation propagate
through a sequence of processing nodes. Third, we com-
pare the undo/redo and checkpoint/redo reconciliation tech-
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Figure 9: Delaying tuples during UP FAILURE reduces
Ntentative. Y-Axes: left Delaynew, right Ntentative. Fail-
ure duration: 5 s.

niques. We finally discuss the overhead of our approach.
In our prototype, it takes a node approximately 40 ms to

switch between upstream neighbors. Given that this value
is small compared with αX, our system masks node failures
within the required availability constraints. We thus focus
the evaluation on failures of input streams.

5.1 Single-Node Performance
The optimal approach to handling failures shorter than

αX is to delay processing new tuples until the failure heals.
This is therefore always our first line of defense. When a
failure exceeds αX, however, a node must restart processing
new tuples to satisfy the availability requirement. It can
either continuously delay new tuples by αX or catch-up and
process new tuples almost as they arrive. We call these
alternatives Delay and Process and examine their impact
on Delaynew and Ntentative.

We cause a 5 s failure, vary αX from 500 ms to 6 s, and
observe Delaynew and Ntentative until after STABILIZATION

completes. Figure 9 shows the results. From the perspective
of our optimization, Delay appears better than Process as
it leads to fewer tentative tuples. Indeed, with Process, as
soon as the initial delay is small compared with the failure
duration (αX ≤ 4 s for a 5 s failure), the node has time to
catch-up and produces a number of tentative tuples almost
proportional to the failure duration. The Ntentative graph
approximates a step function. In contrast, Delay reduces
the number of tentative tuples proportionally to αX. With
both approaches, Delaynew increases linearly with αX.

For sufficiently long failures, however, reconciliation itself
may last longer than X. To avoid breaking the availability
requirement, a node must thus continue processing new tu-
ples while reconciling. It can do so in one of several ways.
During the failure, the node can either delay new tuples (De-
lay) or process them without delay (Process). During STABI-

LIZATION the node can either suspend new tuples (Suspend),
or have a second version of the SPE continue processing
them with or without delay (Delay or Process). Our goal
is to examine all six combinations and determine the fail-
ure durations when each one produces the fewest tentative
tuples without breaking the availability requirement.

Figure 10 shows Delaynew and Ntentative for each combi-
nation and for increasing failure durations. We only show
results for failures up to 1 minute. Longer experiments con-
tinue the same trends. In this experiment, we increase the
input rate to 4500 tuples/s to emphasize differences between
approaches.
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Figure 10: Delaynew (top) and Ntentative (bottom) for each combination of delaying, processing, and suspending
during UP FAILURE and STABILIZATION. Each approach offers a different consistency-availability trade-off. X-axis
starts at 2 s. Graphs on the right show results for longer failures.

Because blocking is optimal for short failures, all ap-
proaches block for αX = 2.7 s and produce no tentative
tuples for failures below this threshold. Delaying tuples
in UP FAILURE and suspending them during STABILIZATION

(Delay & Suspend) is unviable for failures longer than 3 s
because it breaks the Delaynew < X requirement as reconcil-
iation last longer than 300 ms. (Figure 10(top)). Therefore,
this combination is of no interest because it never wins and
cannot be used for long failures.

Continuously processing new tuples during both
UP FAILURE and STABILIZATION (Process & Process)
ensures that the maximum delay always remains below αX
independently of failure duration. This combination, how-
ever, produces the most tentative tuples as it produces them
for the duration of the whole failure and reconciliation. We
can reduce the number of tentative tuples without hurting
Delaynew, by delaying new tuples during STABILIZATION

(Process & Delay), during UP FAILURE, or in both states
(Delay & Delay).

For short failures, however, Process & Suspend may win
over Delay & Delay. If reconciliation is longer than αX (for
D > 6 s in the experiment), Process & Suspend produces
fewer tentative tuples. It is thus better for such failures to
process tuples during the failure in order to suspend new
tuples during reconciliation. Once reconciliation becomes
longer than X, though (for D > 9 s), Process & Suspend
causes Delaynew to exceed X. Hence Process & Suspend
outperforms Delay & Delay only for failures between 6 and
9 s, which is a small, barely significant window.

Hence to meet the availability requirement for longer
failures, nodes must process new tuples not only during
UP FAILURE but also during STABILIZATION. Nodes can pro-
duce fewer tentative tuples, however, by always running on
the verge of breaking that requirement.

5.2 Multiple Nodes
We now examine which of the above combinations meets

the required availability while producing the fewest tentative
tuples in a distributed SPE. We cause a 15 second failure at
the input of a chain of 1 to 4 SPEs. Once the failure heals,
the nodes reconcile their states in sequence: a node produces
boundary tuples only after it goes back into STABLE state,
while its downstream neighbors can start reconciling only
after receiving these boundary tuples. We reduce the state
of the joins to 50 tuples to speed-up the experiments.

Figure 11(top) shows the maximum end-to-end processing
delay for new tuples. The Process & Process combination
has the lowest Delaynew. The delay is equal to only αX plus
the normal processing delay through the chain. Delay & De-
lay leads to a slightly worse availability as Delaynew increases
by αX for each node in the sequence. Both combinations,
however, keep the end-to-end delay within the required kX,
where k is the number of nodes in the chain. Process & Sus-
pend once again is clearly unviable. Delaynew is the sum of
the stabilization delays of all nodes in the chain. This delay
increases for each consecutive node as it undoes and redoes
more tuples than its upstream neighbor.

Figure 11(bottom) shows Ntentative received by the client
application. With Process & Process, Ntentative increases
with the length of the chain because all nodes produce tenta-
tive tuples during STABILIZATION, which occurs in sequence
at each node. Interestingly, Delay & Delay not only does not
provide any benefit but can even hurt when compared with
no delay. Indeed, when STABILIZATION starts, each consec-
utive node in the sequence runs behind by αX more than
its upstream neighbor. When that neighbor stabilizes, both
downstream replicas receive all tuples until the most recent
ones. Because the replica that continues processing new tu-
ples is only supposed to delay new tuples by αX, it catches
up and it does so while processing significantly more tuples
than the savings during UP FAILURE.

Overall, for a chain of nodes, Process & Process is clearly
the best approach as it maximize availability and produces
the fewest tentative tuples.



Approach Delaynew CPU Overhead Memory Overhead

Checkpoint P + Spcopy + (D + 0.5l)λpproc
Spcopy

l
S + (l + D)λin

Undo P + S(pcomp + pproc) + (D + 0.5l)λ(pcomp + pproc)
Spcomp

l
S + (l + D)λstateful

Table 2: Performance and overhead of checkpoint/redo and undo/redo reconciliations.
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5.3 Reconciliation
We now compare the overhead and performance of check-

point/redo and undo/redo reconciliation. Overheads due to
SUnion operators are examined in the next section. Table 2
summarizes the analytical results. P is the per-node process-
ing delay. pcomp is the time to read and compare a tuple.
pcopy is the time to copy a tuple. pproc is the time an oper-
ator takes to process a tuple. We assume pproc is constant
but it may increase with operators’ state sizes.

Delaynew is the normal processing delay, P , plus the recon-
ciliation time. For checkpoint/redo, the reconciliation time
is the sum of Spcopy, the time to copy the state with size S,
and (D + 0.5l)λpproc, the average time to reprocess all tu-
ples since the last checkpoint before failure. D is the failure
duration, l is the interval between checkpoints, and λ is the
aggregate tuple rate on all input and intermediate streams.
For undo/redo, reconciliation consists of processing the undo
history up to the correct stream markers and reprocessing all
tuples since then. Producing an undo message takes a negli-

gible time. We assume that the number of tuples necessary
to rebuild an operator state is equal to the state size and
that stream markers are computed ever l time units. The
number of tuples in the undo log that must be processed
backward then forward is thus: (D + 0.5l)λ + S. Hence, we
expect checkpoint/redo to perform better but the difference
should appear only for a large query network state size.

Figure 12 shows the experimental Delaynew as we increase
the state size, S, of the query network (left) or the number
of tuples to re-process i.e., Dλ (middle). In this experiment,
D is 5 seconds and we vary λ. For both approaches, the time
to reconcile increases linearly with S and Dλ. When we vary
the state size, we keep the tuple rate low at 1000 tuples/s.
When we vary the tuple rate, we keep the state size at only
20 tuples.

Undo/redo takes longer to reconcile primarily because it
must rebuild the state of the query network (Spproc) rather
than recopy it (Spcopy), as shown in Figure 12(left). Interest-
ingly, even when we keep the state size small and vary the
number of tuples to reprocess (Figure 12(middle)), check-
point/redo beats undo/redo, while we would expect the ap-
proaches to perform the same (∝ (D + 0.5l)λpproc). The
difference is not due to the undo history because when we
do not buffer any tentative tuples in the undo buffer (Undo
“limited history” curve), the difference remains. In fact,
an SPE always blocks for αX (1 s in this experiment) be-
fore going into UP FAILURE. For checkpoint/redo, because
we checkpoint every 200 ms, we always checkpoint the pre-
failure state and avoid reprocessing on average 0.5lλ tuples,
which corresponds to tuples that accumulate between the
checkpoint and the beginning of the failure. Undo/redo al-
ways pays this penalty, as stream markers are computed only
when the join processes new tuples.

As shown in Figure 12(left and middle), for both ap-
proaches, splitting the state across two operators in series
(curves labeled “2 boxes”), simply doubles λ and increases
curve slopes.

In theory, checkpoint/redo has higher CPU overhead than
undo/redo because checkpoints are more expensive than
scanning the state of an operator to compute stream mark-
ers (Figure 12(right)). However, because a node has time
to checkpoint its state when going into UP FAILURE state,
it can perform checkpoints only at that point and avoid the



Boundary interval (ms) 50 100 150 200 250 300
Average processing delay 69 120 174 234 298 327
Stddev of the averages 0.5 4 10 28 55 70

Table 3: Latency overhead of serialization.

overhead of periodic checkpoints at runtime. Stream mark-
ers can also be computed only once a failure occurs. Hence
both schemes can avoid overhead in the absence of failures.

Given that we checkpoint the state when entering
UP FAILURE, l = 0. Hence, the memory overhead for check-
point/redo is only S + Dλin, the state size plus the input
tuples that accumulate during the failure (λin is the aggre-
gate input rate). Even if we assume that we need no more
than S tuples to rebuild the state, the memory overhead
for undo/redo is higher because we need to buffer tuples on
all streams that feed stateful operators. λstateful will most
frequently be significantly greater than λin.

Checkpoint/redo thus appears superior to undo/redo both
in terms of reconciliation time and memory overhead. The
main advantage of the undo-based approach, however, is the
flexibility to undo any suffix of the input streams and prop-
agate reconciliation only on paths affected by failures.

5.4 Overhead and Scalability
In addition to undo and checkpoint overheads, SUnions

are the main cause of overhead. If the sorting function re-
quires the operator to wait until a bucket is stable before pro-
cessing tuples, the processing delay increases linearly with
the boundary tuple interval (we assume this interval is equal
to the bucket size). Table 3 shows the average end-to-end
delay from nine 20 s experiments and increasing bucket sizes.
The memory overhead increases proportionally to the num-
ber of SUnion operators, bucket sizes, and the rate of tuples
that arrive into each SUnion.

Other overheads imposed by our scheme are negligible.
Operators must check tuple types and must process bound-
ary tuples. The former is negligible while the latter is equiva-
lent to the overhead of computing stream markers. SOutput
must also save the last stable tuple that it sees in every burst
of tuples that it processes.

Our approach relies on replication. It increases resource
utilization proportionally to the number of replicas. These
replicas, however, can actually improve runtime performance
by forming a content distribution network, where clients and
nodes connect to nearby upstream neighbors rather than a
single, possibly remote, location.

In this paper, we assume that tuples produced during fail-
ure and recovery are logged in output buffers and inside
SUnions on input streams. Under normal operation, a node
can truncate its output buffers once all replicas of all down-
stream neighbors acknowledge either receiving or fully pro-
cessing a prefix of tuples. Both techniques are acceptable.
As discussed in [25], acknowledging only processed tuples has
the advantage that input tuples necessary to rebuild the lat-
est consistent state are stored at upstream neighbors, which
speeds-up recovery of failed nodes. A similar approach can
be used to truncate buffers during failures, preserving only
enough tuples to rebuild the latest consistent state and cor-
rect the most recent tentative tuples. To truncate buffers, a
node must hear at least from one downstream replica during
a failure. Otherwise, a node may have to use conservative
estimates to truncate its buffers.

In this paper, we assume that operators are convergent-
capable but our techniques can be extended to support ar-

bitrary operators. For such operators, however, when suf-
ficiently long failures occur, the system must either drop
tuples at system input, or replicas must communicate with
each other to reach a mutually consistent state after failures
heal. We plan to explore such extensions in future work.

6. RELATED WORK
Until now, work on high availability in stream process-

ing systems has focused on fail-stop failures of processing
nodes [25, 35]. These techniques either do not address net-
work failures [25] or strictly favor consistency by requiring
at least one fully connected copy of the query network to
exist to continue processing [35]. Some techniques use punc-
tuation [41], heartbeats [36], or statically defined slack [1]
to tolerate bounded disorder and delays. These approaches,
however, block or drop tuples when disorder or delay exceed
expected bounds. Another approach, developed for publish-
subscribe systems tolerates failures by restricting all process-
ing to “incremental monotonic transforms” [37].

Traditional query processing also addresses trade-offs be-
tween result speed and consistency, materializing query out-
puts one row or even one cell at the time [31, 34]. In contrast
to these schemes, our approach supports possibly infinite
data streams and ensures that once failures heal all replicas
produce the same final output streams in the same order.

Fault-tolerance through replication is widely studied and
it is well known that it is not possible to provide both con-
sistency and availability in the presence of network parti-
tions [11]. Eager replication favors consistency by having
a majority of replicas perform every update as part of a
single transaction [20, 21] but it forces minority partitions
to block. With lazy replication all replicas process possi-
bly conflicting updates even when disconnected and must
later reconcile their state. They typically do so by applying
system- or user-defined reconciliation rules [27, 42], such as
preserving only the most recent version of a record [22]. It
is unclear how one could define such rules for an SPE and
reach a consistent state. Other replication approaches use
tentative transactions during partitions and reprocess trans-
actions possibly in a different order during reconciliation [22,
39]. With these approaches, all replicas eventually have the
same state and that state corresponds to a single-node serial-
izable execution. Our approach applies the ideas of tentative
data to stream processing.

Some schemes offer users fine-grained control over the
trade-off between precision (or consistency) of query results
and performance (i.e., resource utilization) [32, 33]. In con-
trast, we explore consistency/availability trade-offs in the
face of failures and ensure eventual consistency.

Workflow management systems (WFMS) [5, 4, 24] share
similarities with stream processing engines. Existing
WFMSs, however, typically commit the results of each exe-
cution step (or messages these steps exchange) in a central
highly-available storage server [26] or in persistent queues [4].
Some approaches allow replication of the central data server
using standard lazy replication [4]. They support disconnec-
tion by locking activities prior to disconnection [5].

Approaches that reconcile state after a failure using com-
binations of checkpoints, undo, and redo are well known [18,
22, 23, 29, 39]. We adapt and use these techniques in the
context of fault-tolerance and state reconciliation in an SPE
and comparatively evaluate their overhead and performance
in these environments.



7. CONCLUSION
We presented a replication-based approach to fault-

tolerant stream processing that handles node failures, net-
work failures, and network partitions. Our approach uses a
new data model that distinguishes between stable tuples and
tentative tuples, which result from processing partial inputs
and may later be corrected. Our approach favors availabil-
ity but guarantees eventual consistency. Additionally, while
ensuring that each node processes new tuples within a pre-
defined delay, X, our approach reduces the number of tenta-
tive tuples, when possible. To ensure consistency at runtime,
we introduce a data-serializing operator called SUnion. To
regain consistency after failures heal, nodes reconcile their
states using either checkpoint/redo or undo/redo.

We implemented the approach in Borealis and showed sev-
eral experimental results. For short failures, SPE nodes can
avoid inconsistency by blocking and looking for a stable up-
stream neighbor. For long failures, nodes need to process
new inputs both during failure and stabilization to ensure
the required availability. Checkpoint/redo leads to a faster
reconciliation at a lower cost compared with undo/redo.

Many stream processing applications prefer approximate
results to long delays but eventually need to see the cor-
rect output streams. It is important that failure-handling
schemes meet this requirement. We view this work as an
important first step in this direction.
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