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Abstract— The localization problem is to determine an assign-
ment of coordinates to nodes in a wireless ad-hoc or sensor
network that is consistent with measured pairwise node distances.
Most previously proposed solutions to this problem assume that
the nodes can obtain pairwise distances to other nearby nodes
using some ranging technology. However, for a variety of reasons
that include obstructions and lack of reliable omnidirectional
ranging, this distance information is hard to obtain in practice.
Even when pairwise distances between nearby nodes are known,
there may not be enough information to solve the problem
uniquely.

This paper describes MAL, a mobile-assisted localization
method which employs a mobile user to assist in measuring
distances between node pairs until these distance constraints form
a “globally rigid” structure that guarantees a unique localization.
We derive the required constraints on the mobile’s movement
and the minimum number of measurements it must collect;
these constraints depend on the number of nodes visible to the
mobile in a given region. We show how to guide the mobile’s
movement to gather a sufficient number of distance samples
for node localization. We use simulations and measurements
from an indoor deployment using the Cricket location system
to investigate the performance of MAL, finding in real-world
experiments that MAL’s median pairwise distance error is less
than 1.5% of the true node distance.

I. INTRODUCTION

The localization problem in sensor networks can be stated
as follows: Given a collection of N nodes, and distance
measurements of each node to its neighbors, produce a set
of coordinate assignments pi for each node i, such that
the assigned distance between nodes i and j, ‖pj − pi‖,
is equal to the measured distance, dij . Of course, in the
absence of an external coordinate reference, this assignment
can be unique only up to an arbitrary rotation, translation, and
possible reflection, but its scale is determined by the measured
ranges. For example, if three nodes are placed such that the
pairwise distances between them are 3, 4, and 5 units, a correct
coordinate assignment would be (0, 0), (3, 0), and (0, 4).

The localization problem has received a great deal of
recent attention in the literature (e.g., [1]–[7]). Knowledge
of location enables nodes in a sensor network to annotate
sensed data with location information, making the sensed
information more useful to applications. Knowledge of node
location can be used to implement efficient message-routing
protocols (such as geographic forwarding) in wireless ad-hoc
and sensor networks. Localization is also useful in indoor
location infrastructures such as Cricket [8], [9] and Bat [10],

in which reference nodes at various “known” locations in a
building provide location information to mobile devices and
sensor nodes. Because manually configuring each reference
node with its position is cumbersome and error-prone, such
systems benefit from a method to automatically localize the
reference nodes.

Previous approaches to solving the localization problem
generally rely on each node being able to obtain its distances to
the nodes near it (e.g.,within radio range). Given these pairwise
distances, a distributed or centralized algorithm then computes
a coordinate assignment for all nodes that is consistent with
the measured pairwise node distances.

When one attempts to implement a localization algorithm
in real-world systems, significant problems arise. The first
problem is that physical obstacles that obstruct line-of-sight
connectivity between neighboring nodes prevent pairwise node
distances from being obtained. This problem arises inside
many buildings, where it is often hard to obtain line-of-
sight connectivity between rooms and open spaces. More-
over, physically realizable ranging hardware is often not
omni-directional; for example, in an ultrasound-based location
infrastructure such as Cricket in which ceiling- and wall-
mounted beacons broadcast spatial and ranging information
to mobile listeners, the ultrasonic transmitters point toward
the floor, making it less likely that a given pair of beacons
will be able to measure their mutual distance.

Another significant problem that arises in practice is that
there may be too few distance constraints to obtain a consistent
coordinate assignment. Obtaining a coordinate assignment that
is unique up to translation, rotation, and reflection requires that
the graph formed by available distances be globally rigid in a
technical sense defined in Section III. An arbitrary deployment
of location-infrastructure nodes (either beacons or passive
receivers) or sensors will not generally produce a globally rigid
structure. Section II describes in more detail these and other
barriers to achieving practical localization.

This paper shows that mobility can help solve these prob-
lems. In mobile-assisted localization, a roving human or
robot wanders through an area, collecting distance information
between the nodes and itself. We describe a simple method
that, given distance information between the moving node and
the static nodes, formulates an optimization problem whose
solution is the pairwise node distances between the static
nodes. The challenge is to design movement strategies that



produce a globally rigid structure of known distances among
the static nodes. Using theoretical results from rigidity theory,
we show that it is possible to constrain node movement in
a way that achieves our goals. Section III gives one such
practical movement algorithm.

The pairwise node distances resulting from our strategy can
then be fed into a localization algorithm. We briefly discuss the
Anchor-Free Localization (AFL) algorithm [6], which does not
require any “anchor” nodes that already know their positions.
AFL computes an initial coordinate assignment to all the
nodes, using the radio connectivity information alone. This
initial assignment results in a node layout that resembles a
scaled version of the actual node layout, roughly preserving
the topological ordering of nodes. AFL then uses an iterative
optimization procedure to reduce the sum of squared distance
errors between the nodes’ true distances and the distances
inferred from their current coordinates.

We show using simulations and real-world measurements
that mobile-assisted localization is a practical approach that
can be used in real-world systems. Although our solution is
end-to-end, we believe that our decomposition into the mobile-
assisted topology building phase and the localization phase
is valuable. In particular, a variety of solutions to the latter
phase can be implemented within our framework, adapting
the algorithm to conditions at hand (e.g., node density, range,
expected ranging errors, etc.). Section V describes our experi-
mental and simulation results, which show that mobile-assisted
localization is both practical and accurate.

II. THE CASE FOR MOBILE-ASSISTED LOCALIZATION

A localization algorithm needs a sufficient number of pair-
wise node distances to be able to compute node coordinates
correctly. However, there are several reasons why it is hard to
meet this requirement in practice, especially indoors.

1) Obstructions occlude line-of-sight connectivity, making
it hard or impossible for nodes to obtain pairwise
distances between each other.

2) Sparse node deployments make it hard to obtain a rigid
structure, which is necessary to obtain a unique solution.

3) Geometric dilution of precision (GDOP) causes a node
that is far from a group of closely spaced nodes to incur
large errors in its position estimate.

The rest of this section describes these problems in detail,
and explains why mobile-assisted localization helps solve
them. We also explain some additional benefits that mobility
brings in solving the localization problem.

A. Obstructions

The lack of line-of-sight connectivity may prevent the nodes
from obtaining direct node-to-node distances. Most of the
ranging technologies used for accurate indoor ranging today,
including time-of-flight of ultrasound, laser, and infrared,
require line-of-sight between the transmitter and the receiver.
Even technologies that do not need line of sight, such as
ultrawideband (UWB) radio, have better accuracy when line-
of-sight connectivity is available. Based on our experience

with deploying Cricket, a system that uses ultrasound ranging,
we have found that it is almost impossible to deploy nodes in a
typical office or home to achieve sufficient connectivity across
all nearby nodes. For example, it is hard to obtain ranging
between nodes placed inside and outside a room in a standard
building.

The lack of omnidirectional ranging may prevent reference
nodes in a location system from obtaining pairwise distances.
Because the primary goal of a location system is to help
mobile devices obtain distance and location information, a key
requirement is to provide maximum coverage to users. As a
result, directional ranging transmitters on reference nodes are
usually pointed toward where the users are likely to be, rather
than toward other reference nodes.1 Building omnidirectional
ranging is usually more expensive (e.g., it requires multiple
transceivers) and entails hardware changes; furthermore, it
seems wasteful because localization of the reference nodes
is done only during deployment and not continually as for
mobile localization.

In some cases, the reference nodes may have no ability
to receive the signals necessary to estimate distances. For
example, the reference nodes may emit radio and ultrasonic
signals, but not have an ultrasonic receiver; alternatively, the
reference node may be a passive tag-like device that mobile
units query to obtain distance information. In such cases,
mobile-assisted localization will be invaluable to the auto-
localization procedure.

B. Sparse Node Deployments

Although a dense node deployment of reference nodes
helps achieve good coverage in a location system, economic
considerations often force sparse node deployments. In a
sensor network, the deployment density may be dictated by
cost or application requirements, and may be sparse. Sparse
deployments reduce inter-node connectivity and could lead
to a structure that is not rigid. For example, a room with
four reference nodes where only four distances are known
(forming a quadrilateral among the nodes) leads to a non-
rigid structure. In such cases, no auto-localization algorithm
can find the right positions of the nodes, because there are
too few constraints and an ambiguous solution space. Yet,
there is a unique (modulo translation, rotation, and reflection)
assignment of position coordinates to nodes.

Mobile-assisted localization is well-suited to collect enough
distance samples such that the resulting per-node distances that
are inferred form a rigid structure. Because the reference nodes
are deployed to cover an area where users move, the moving
user or robot can take advantage of the many positions where
distance ranges to the sensor nodes are obtained.

1For example, due to the radiation pattern of the ultrasonic transducers used,
our ultrasonic-based ranging system has a 12 m range when the transmitter
and the receiver are facing each other but only a <2 m mutual range when they
are on the same horizontal plane facing away from the plane (e.g., downwards
from a ceiling).



C. Geometric Dilution of Precision (GDOP)

In practice, the distance measurements used to compute
node coordinates almost always have some error. These mea-
surement errors get reflected in the computed node coordi-
nates. The magnitude of the final computed error depends on
both the magnitude of the measurement error and the true
geometry of the structure induced by the nodes and edges.
The contribution due to geometry is called the geometric
dilution of precision (GDOP) [11]2, and is defined as the ratio
between the computed coordinate error and the measurement
error. That is, GDOP represents the factor by which the
distance measurement error gets multiplied when it is used
to compute node coordinates. When distance measurements
are used for computing node coordinates by solving for an
exactly constrained system of equations, we get GDOP > 1.

It is well-known that using an over-constrained system of
equations tends to reduce GDOP errors [12]. Adding additional
constraints in conventional approaches leads to increased node
density; in contrast, with mobile-assisted localization, a mobile
unit can move around a region and usually obtain as many
additional constraints as are necessary. Our approach uses
these additional constraints only locally to accurately com-
pute the internode distance. Since obtaining a large number
of additional constraints is not cumbersome, mobile-assisted
localization can greatly improve the accuracy of coordinate
position estimation by reducing the adverse effects of GDOP.

D. Other Benefits

Although the use of mobile device positions as “virtual”
nodes to add more constraints to a weakly connected graph
and running a localization algorithm on the combined set of
nodes seems like a simple extension, the flexibility offered
by the mobile device acting as a virtual node creates several
opportunities that makes our approach quite different from
traditional node localization:

1) The dynamic nature of the mobile-assisted scheme en-
ables us to evaluate the currently available distance
information “on the fly,” and navigate the mobile to
obtain any additional distances required.

2) The additional virtual nodes corresponding to mobile
positions do not have the associated cost of additional
physical nodes. The only criteria that limit the number
of such positions are the available computational and
storage resources, both of which are usually ample on
current hand-held devices.

3) The reference and virtual (mobile) nodes typically oc-
cupy different regions in space. In a typical location
infrastructure deployment, for example, the reference
nodes will be located close to the ceiling of a room
and above the space occupied by users. In contrast, the
virtual nodes, corresponding to mobile locations, will be
located close to the users. This separation helps mobile-
assisted localization perform well, as we will see.

2GDOP is a well-known problem that arises in all location systems,
including GPS.
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Fig. 1. Examples of graphs that are not rigid (flexible as a bar-and-joint
framework), rigid but not globally rigid (multiple embeddings), and globally
rigid (one embedding up to rotation, translation, and reflection).

III. THEORETICAL FRAMEWORK AND

MOVEMENT STRATEGIES

The standard localization problem is to reconstruct the
position assignment of nodes (global geometry) given a graph
with edges labeled by measured distances (local geometry). In
mobile-assisted localization, only part of the graph (if at all)
is given and fixed: the rest we have (limited) control over by
moving a mobile node according to a particular strategy.

This section defines MAL’s movement strategy for building
up such a graph in a way that guarantees a unique solution
(and even an easy-to-find solution) of the resulting standard
localization problem. More precisely, we show how a mobile
can explore a geographic area and incrementally build a
localizable graph by adding new virtual nodes (corresponding
to the various positions of the mobile) and adding edges
between these nodes and stationary nodes. At a high level,
the mobile starts by finding a cluster of nearby nodes, and
then it explores the visible region for new nodes to which it
can measure distance. The number of measurements required
by the mobile is linear in the number of stationary nodes,
and the total motion required by the mobile can be similarly
bounded.

We also show how to reduce the size of the localizable
graph, removing the virtual nodes arising from mobile po-
sitions, and leaving just the stationary nodes. Indeed, our
approach is to find virtual node configurations that allow us to
measure one or more distances between two stationary nodes,
after which the virtual nodes and their incident edges can
be discarded. Then our goal becomes to measure distances
between stationary nodes so that the graph on the stationary
nodes becomes localizable. We show that this approach is as
efficient as possible: no loss is caused by discarding virtual-
node information once it is abstracted into the graph of
stationary nodes. The benefit is that this reduction in graph
size speeds up the final phase of localization using, e.g., the
method outlined in Section IV.

A. Connections to Rigidity

We start by describing connections between standard local-
ization, in particular determining whether a problem instance
has enough information to have a unique solution, and a branch
of mathematics called rigidity theory. These connections pro-
vide tools for understanding when we have enough distance
information to guarantee localizability.



Given just distance information, at best we can localize the
network up to rotation, translation, and reflection. This local
coordinate system is enough in many cases, or else can be
matched against a global coordinate system if a few nodes
have global coordinates obtained through, e.g., GPS. However,
for some graphs, the position assignment is not unique even
up to rotation, translation, and reflection, as shown in Figure 1.
If we treat the graph as a bar-and-joint framework or linkage,
the graph should at least be rigid in the sense that it cannot
be flexed while preserving the distances (as in a rectangle, for
example). Even if the graph is rigid, it may be subject to “local
flips.” For example, if there are just two triangles sharing an
edge, one triangle can be reflected through that edge without
any distances changing. We call such a graph locally rigid
but not globally rigid. For the localization problem to have
a unique solution, we need a globally rigid graph that has
exactly one embedding with correct edge lengths.

Global rigidity was introduced by Hendrickson [13] as
an important variation on the well-studied concept of local
rigidity [14]–[16]. Hendrickson showed that, for a graph to be
generically3 globally rigid in d dimensions, it must satisfy two
properties: (1) the removal of any d vertices must leave the
graph connected ((d + 1)-connectivity), and (2) the removal
of any edge must leave the graph generically locally rigid.
Both these properties can be checked in polynomial time.
Connelly [17] proved that these two properties are insufficient
in 3D: they do not imply generic global rigidity of a 3D graph.
However, Hendrickson conjectured that these two properties
exactly characterize generic global rigidity in 2D, and this
conjecture was recently proved in unpublished work of Jack-
son and Jordán [18]. Thus, global rigidity is well-understood
in 2D, but not in 3D. Nonetheless, we show how to construct
graph structures that are guaranteed to be globally rigid and
therefore localizable in both 2D and 3D.

B. Engineering Rigidity

Although testing global rigidity can be difficult in general,
we can build up 3D and 2D structures that are guaranteed
to have global rigidity. For the duration of this subsection,
we consider what distances should be measured between
stationary nodes in order to guarantee a rigid structure among
just those nodes. In the following subsections, we show how
to measure such distances using a mobile, and ultimately how
to organize the motion of the mobile to measure all required
distances.

To start a rigid structure, suppose that we can measure
all pairwise distances between some four nodes p1, p2, p3, p4

(which we assume lie at distinct points in space). The resulting
structure is a tetrahedron, which is the simplest globally rigid
graph in 3D. It is globally rigid no matter where the points pi

are located, but for further building, suppose that they do not
lie on a common plane.

3The “generic” qualifier here is a technical detail that allows us to consider
the qualities of a combinatorial graph, and not the specific edge lengths, that
make a structure rigid. With probability 1, the problem is generic.
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Fig. 2. Connecting a node (po) to three already-localized nodes (p1, p2, p3)
on a locally rigid graph results in a locally rigid graph.
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Fig. 3. Connecting a node (p0) to four non-coplanar points on a globally
rigid graph results in a globally rigid graph.

Now suppose that we have already localized three nodes
p1, p2, p3 that do not lie on a common line, as in Figure 2,
and we want to localize a new node p0 given the measured
distances di = ‖pi−p0‖. Point p0 therefore lies simultaneously
on three different spheres, centered at pi and with radius di, for
i = 1, 2, 3. The intersection of three spheres with non-collinear
centers is always at most two points. Thus we can compute in
constant time two possible locations for p0: the true location of
p0 and the reflection of that location through the plane passing
through p1, p2, p3. If we know extra information about which
side of the plane p0 lies (from external information, e.g., input
by the user), this local rigidity would suffice, but generally it
does not.

To attain global rigidity, we need the distances from the
new point p0 to four already localized points p1, p2, p3, p4

that do not lie on a common plane, as in Figure 3. The extra
distance constraint from p4 defines an additional sphere of
radius d4 = ‖p4−p0‖. Given that p4 lies off the plane passing
through p1, p2, p3, only one of the two reflection solutions will
have the proper distance. Thus we uniquely localize p0.



This approach for building globally rigid graphs can be
summarized as follows:

Theorem 1: A graph is globally rigid if it is formed by start-
ing from a clique of four non-coplanar nodes and repeatedly
adding a node connected to at least four non-coplanar existing
nodes.

The idea of this incremental construction was first used
in 2D by Coullard and Lubiw [19] to prove global rigidity
of certain 2D visibility structures. It has since been used in
several incremental localization algorithms [1], [20].

Our main novelty is the use of mobile assistance to ef-
ficiently perform such a construction, as described in the
following subsections. In the absence of mobile assistance,
incremental localization approaches over the stationary nodes
alone often do not yield good results because it is hard to
arrange for the stationary nodes to be added to a previously
rigid structure while preserving rigidity. Moreover, our ap-
proach combats problems due to GDOP and non-rigid node
placement, as explained in Section II.

C. MAL: Distance Measurement

Theorem 1 guides our mobile by determining when it has
measured “enough” distances: once the graph is constructible
according to the theorem, we are guaranteed to have a globally
rigid graph. If we have any such strategy for finding a globally
rigid graph including both the original stationary nodes and
the virtual nodes representing mobile positions, then this
rigid structure defines a unique coordinate assignment, so in
particular we can measure distances between any pair of nodes.
Thus any strategy can be viewed as a method for determining
distances (possibly through indirect measurement/deduction)
between certain pairs of stationary nodes in such a way that
these distances form a globally rigid graph. We take this
approach, and by the argued equivalence, this approach does
not require us to take any more measurements than inherently
necessary.

The rest of this subsection considers the subproblem of how
to derive the distance between two stationary nodes given
just distances between various positions for the mobile and
various stationary nodes, none of which have been localized.
We consider several alternatives for solving this problem,
depending on what assumptions (if any) can be made of the
stationary nodes and mobile locations. The next subsection
(Section III-D) describes how the mobile navigates to find a
set of distances satisfying Theorem 1.

1) Calculating distance between two nodes: We start with
what superficially seems like the most natural problem: com-
pute the distance between two nodes n0 and n1 by measuring
their distances to various locations of a mobile node m. This
problem starts with a single unknown, ‖n0 − n1‖, and no
known information. Unfortunately, for every new location of
the mobile node, we introduce three new unknowns for the
coordinates of that location, and add only two new known
quantities. Thus adding more information actually makes the
problem less determined. (It is necessary, though not sufficient,
for a naı̈ve count of the number of degrees of freedom
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Fig. 4. Computing distance between two nodes by measuring distances from
3 points on a parallel line.

(unknowns minus knowns) to be at most 0.) Even if we
suppose that the mobile node m stays on a plane (say, a
fixed height from the floor), the new knowns balance the new
unknowns, but we never actually gain any information, so we
cannot learn the original unknown.

Thus we are forced to turn to a different problem. We start
with some restricted forms of motion by the mobile that make
distance calculation possible. In most situations, however, the
most practical strategy is to involve more than two nodes in
distance measurement, as described below.

The first approach is to move the mobile along a line in a
plane containing both n0 and n1. A practical example of this
setting is when the stationary nodes are at a fixed height from
the floor, as is the mobile (at a different height), in which case
the mobile should move along a projection of the line through
n0 and n1 (Figure 4). If we now measure distances from three
mobile locations, we obtain an extra constraint that these three
locations are collinear. This constraint is enough to determine
the configuration:

Proposition 2: The geometry of five coplanar points
n0, n1, m0, m1, m2, where m0, m1, m2 are collinear, is deter-
mined by the distances ‖ni−mj‖ for i = 0, 1 and j = 0, 1, 2.

The solution geometry can be computed in polynomial
time using standard techniques in real constraint optimization
for numerically solving systems of polynomial equations (the
theory of the reals). Although the minimum number of mobile
locations required for a solution is three, using a larger number
of points would reduce the error caused by GDOP. Note also
that it may not be practical to constrain movement in this
fashion. A second, simpler approach when both stationary
nodes are at a fixed height from the ground is to position the
mobile directly under one of the nodes. Now we can use the
Pythagorean theorem to compute the distance between two
nodes as

√

d2
2
− d2

1
, where d1 is the distance to the node

directly above and d2 is the distance to the other node from
the mobile [21]. Unfortunately, positioning the mobile directly
under a node is error-prone; manual placement could cause an
error of several centimeters.

2) Calculating distances among three nodes: Next we
consider a more tractable problem: compute the pairwise



distances between three nodes n0, n1, and n2 by measuring
their distances to various locations of a mobile node m.
Now the problem starts with three unknowns, ‖n0 − n1‖,
‖n1−n2‖, and ‖n2−n0‖. Without any assumptions, we again
run into the problem that each mobile position introduces as
many unknowns (the three coordinates of the position) as new
constraints (the three distances).

Thus we impose one restriction: that the mobile positions
all lie on a common plane. This restriction is easy to achieve
in practice by moving the mobile receiver at a fixed height
from the ground, assuming that the ground is flat. Now if we
have k mobile locations, we obtain k−3 additional coplanarity
constraints. (The first three mobile locations are automatically
coplanar, as are all three points in space.) Therefore, k = 6
mobile locations are necessary to reduce the number of degrees
of freedom to 0. Moreover, these constraints suffice to uniquely
determine the geometry provided we know that the stationary
nodes are all above the plane containing the mobile:

Proposition 3: The geometry of three non-collinear points
n0, n1, n2 above the plane containing six coplanar points
m0, m1, m2, m3, m4, m5, no three of which are collinear, is
determined by the distances ‖ni − mj‖ for i = 0, 1, 2 and
j = 0, 1, 2, 3, 4, 5.

As above, the solution geometry can be computed in
polynomial time using standard techniques in real constraint
optimization for numerically solving systems of polynomial
equations (the theory of the reals). Although the minimum
number of mobile locations required for a solution is six, using
a larger number of points would reduce the error caused by
GDOP.

3) Calculating distances among four (or more) nodes:
Finally we consider a version of the problem that requires
no additional assumptions: compute the pairwise distances
between j ≥ 4 nodes n1, n2, . . . , nj by measuring their
distances to various locations of a mobile node m. Now each
new position of the mobile node adds j more constraints
and only 3 unknowns, for a total reduction in the number
of degrees of freedom by j − 3 ≥ 1. Initially there are
3j−5 unknowns: three coordinates per stationary node, minus
3 degrees of translational motion and 2 degrees of rotational
motion. Thus we require at least d(3j − 5)/(j − 3)e mobile
positions for the number of degrees of freedom to reduce to
at most 0.

It is impractical to assume that j is too large, both because
it requires a large node density to have so many line-of-sight
paths (especially indoors) and because solving the resulting
system of polynomial equations grows in difficulty (though
for any fixed j it is polynomial). Therefore we focus on the
simplest form of this case, j = 4. Then d(3j−5)/(j−3)e = 7.
Again, we find that 7 mobile positions suffice to uniquely
determine the geometry, as the degree-of-freedom analysis
predicts:

Proposition 4: The geometry of eleven points
n1, n2, n3, n4, m1, m2, m3, m4, m5, m6, m7, no four of
which are coplanar, is determined by the distances ‖ni −mj‖
for i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5, 6, 7.

The non-coplanarity assumption requires no more than three
nodes to be a constant distance from the floor. This property
is easy to arrange on the ceiling by varying-length mounts,
and is easy to arrange for a mobile human by the difference
in elevation while walking.

D. MAL: Movement Strategy

Combining the approaches of the previous subsection for
deriving distances between stationary nodes with Theorem 1
characterizing which distances will guarantee global localiza-
tion, we obtain a natural movement strategy for the mobile to
collect these distances:

1) Initialize:

a) Find four stationary nodes that can all be seen
from a common mobile location. (In this descrip-
tion, visibility is defined in terms of whether two
node locations can directly measure the distance
between each other.)

b) Move the mobile to at least seven nearby locations
and measure distances.

c) Compute the pairwise distances between the four
stationary nodes using Proposition 4.

d) Localize the resulting tetrahedron according to
Theorem 1.

Alternatively, if some information is known about the
stationary node positions or the mobile positions, we
can use multiple mobile locations that see just some of
the four stationary nodes; we do not elaborate for the
initialization step.

2) Loop:

a) Pick a stationary node that has been localized but
has not yet been examined by this loop.

b) Move the mobile around the (perimeter of) the vis-
ibility region of that stationary node (i.e., the set of
mobile positions that can see the stationary node),
searching for positions from which the mobile can
hear a not-yet-localized stationary node as well as
zero, one, or two additional localized stationary
nodes (depending on the assumptions about node
positions).

c) For each such mobile position:

i) Compute the distances among those two, three,
or four stationary nodes using Proposition 2, 3,
or 4.

ii) If the not-yet-localized stationary node now has
four known distances to localized stationary
nodes, localize it according to Theorem 1.

This algorithm terminates either when every stationary node
has been localized (success) or when no more progress can
be made according to Theorem 1 (failure). It is easy to see
that the algorithm makes as much progress as possible from
its starting point. Furthermore, we can show that success
is independent of the particular tetrahedron from which we
start. As a consequence we obtain the following “correctness”
guarantee:



Theorem 5: The mobile movement strategy described
above is guaranteed to find a globally rigid graph on the
stationary nodes of the type described in Theorem 1 provided
that such a graph can be constructed using one mobile.

We can also bound the performance of the algorithm by
observing that we stop searching for distances to a stationary
node once it has four known distances:

Theorem 6: The number of distance measurements made
by the mobile movement strategy described above is linear in
the number of stationary nodes.

The total amount of motion required by the strategy depends
on the perimeter of node visibility regions (which is normally
small) as well as the amount of travel required between
measurement points. To minimize the latter travel, we can
make Step 2a more specific to follow a depth-first search in the
graph of node visibilities, restricted by the constraints required
by Step 2a. Because a newly localized node is always adjacent
to a previously localized node, the graph of node visibilities
is connected, even with the additional constraints placed by
Step 2a on adjacencies. Using a standard amortization on the
total length of a depth-first search, we obtain the following
performance bound:

Theorem 7: The total distance traveled by the depth-first
mobile movement strategy described above is proportional
to the product of the number of stationary nodes and the
perimeter of a stationary node’s visibility region.

IV. AFL: ANCHOR-FREE LOCALIZATION

Once we have obtained enough inter-node distances to
build a rigid graph of the nodes, we can run any of several
localization schemes to compute node coordinates. Some of
these localization schemes assume the availability of a fraction
of anchor nodes with already known position information for
computing node coordinates [22], [23], [2], [1], [24], while
other schemes do not use anchor nodes [5], [3], [4], [25],
[26], [7].

However, most of the traditional localization algorithms
have been designed for well-connected dense networks of
nodes deployed in environments with relatively small number
of obstacles. For these algorithms, indoor environments be-
come particularly challenging; indoors, node density is often
sparse with only 3 to 4 nodes per room, and has poor con-
nectivity across rooms. As a solution, we have developed an
anchor-free localization algorithm called AFL that is especially
well-suited to low connectivity graphs [6]. In this section, we
give a brief overview of AFL, which we use to evaluate the
performance of MAL.

AFL runs in two phases, it first computes an initial coordi-
nate assignment for nodes, which results in an unfolded and
scaled-up version of the actual physical layout of the graph.
In this phase, the 2D version of AFL runs multiple instances
of a leader election algorithm to elect 5 nodes as shown in
Figure 5; here, the lines joining n1,n2 and n3,n4 are roughly
perpendicular to each other, and n0 is close to the intersection
of these two lines. Next, AFL uses the shortest path hop count
from these elected nodes to compute the initial coordinates of
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n
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1

2

3

4

Fig. 5. Nodes elected during the initialization phase of AFL for a well-
connected graph.

each node i. For two nodes i, j, let hi,j and di,j respectively
denote the shortest path hop count and the (true) Euclidean
distance between i and j, and let R denote the “range” of the
nodes in the graph. The range R determines if i and j are
neighbors or not, according to whether di,j ≤ R or di,j > R
(this model is only an approximation of reality). If i and j are
neighbors, we denote this relationship by i ↔ j. The initial
coordinates of node i, computed by AFL, are given by:

x(i) = Rh0,i

h3,i − h4,i
√

(h3,i − h4,i)
2

+ (h1,i − h2,i)
2

y(i) = Rh0,i

h1,i − h2,i
√

(h3,i − h4,i)
2

+ (h1,i − h2,i)
2

AFL’s initialization phase uses only node connectivity in-
formation, not distance information. This feature makes AFL
suitable for indoor environments since pairwise node connec-
tivity (e.g., RF connectivity) is much easier to obtain compared
to precise inter-node distances. Although some previous work
also compute node coordinates using connectivity informa-
tion [27], [4], [28], AFL’s initialization phase is unique in
attempting to compute a coordinate assignment that results in
a scaled-up unfolded version of the original graph.

After the initialization phase, AFL uses a non-linear opti-
mization algorithm to minimize the sum-squared energy E of
the graph defined by:

E =
∑

i↔j

‖dm(i, j) − dc(i, j)‖
2 (1)

Here, dm(i, j) denotes the “measured” distance between the
nodes i and j obtained by running MAL; and, dc(i, j) denotes
the “computed” distance between i and j obtained from the
current coordinate assignment of the nodes. If dm(i, j) is
equal to the true Euclidean distance between i and j (di,j),
then E = 0 implies that the current coordinate assignment
satisfies the inter-node distances for all i, j, i ↔ j. Because
the graph produced by MAL is rigid, E = 0 corresponds
to a coordinate assignment that is consistent with the true
embedded graph. When dm(i, j) is only approximately equal
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Fig. 6. An indoor deployment of 24 nodes to evaluate the performance of
MAL.

to di,j , the coordinate assignment corresponding to the global
minimum of E results in graph that approximates the true
embedded graph.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of MAL,
measuring the error characteristics of the pairwise distance
estimates it produces and measuring the “end-to-end” localiza-
tion performance of MAL running in conjunction with AFL.
We evaluate performance both using a 24-node real-world
Cricket-based testbed and in simulation.

Cricket is an indoor location system that we have developed
over the past several years [8]. Cricket consists of two types
of nodes: beacons that are attached to the walls and ceiling of
a building, and listeners that are attached to various mobile
and fixed devices that need to know their location. The
beacons periodically transmit location information us an RF
signal; at the start of the RF signals, they transmit a narrow
ultrasonic signal. The listeners listen to beacon transmissions
and compute the distance to nearby beacons using the time-
difference-of-arrival of RF and ultrasonic signals. Since the
ultrasound signals used in Cricket do not penetrate walls,
there should be a line-of-sight path between a beacon and
a listener to measure distance. Although Cricket beacons have
ultrasound receiving capability, when mounted on the same
plane, they cannot measure distance between each other due
to the physical properties of the ultrasonic sensors.

A. Results from deployment

Our experimental testbed of 24 Cricket nodes deployed
indoors is shown in Figure 6. The deployment covers four
different rooms, three of which are connected by a common
corridor. The only line-of-sight connectivity from one room
to the corridor is through the 0.9 m wide door. The rooms
have no line of sight connectivity to each other. All the nodes
except O and T were on the ceiling at the same height. Nodes
O and T were on a beam 30 cm below the ceiling.

θ

θ

d
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Listener

Fig. 7. Cricket ranging accuracy estimation setup.
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Fig. 8. The Cricket ranging error as a function of the rotation of the beacon
and the listener at different beacon to listener distances.

To compare the distances produced by MAL with the true
distances between the nodes, we manually measured the dis-
tances between different walls and beacons using a laser range
finder; although these distances may contain measurement
errors, we will refer to the coordinates obtained from these
distances as true coordinates, to distinguish them from the
coordinates computed using MAL.

First, we examined the distance measurement accuracy of
the Cricket system since that determines the overall localiza-
tion accuracy. We set up a beacon and a listener as shown
in Figure 7; this setup mimics a beacon mounted on the
ceiling, and a listener held parallel to the ground. Figure 8
shows the error between the measured distance and the true
distance for different values of d and θ. Each data point on
the graph represents the mean absolute error, calculated over
100 samples; the vertical bars represent the minimum and
maximum absolute error within the 100 samples. Because the
ultrasonic sensors are not omnidirectional, we could not get
distance measurements for (d, θ) combinations that do not
have a corresponding data point. We performed the experiment
in a controlled environment to prevent outlier distance mea-
surements due to reflected ultrasonic signals. As we observe
from this graph, Cricket has ' 0.5% ranging accuracy when
the beacon and the listener are 2 m apart and are facing
each other; however, the ranging performance degrades as we
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Fig. 10. The CDF of inter-node distance estimate error after filtering and
averaging for outlier rejection.

increase the separation and when they do not face each other.
However, for the range (−40o, 40o), the error is under 5 cm.

1) MAL performance: We collected distance samples using
a receiver, mounted on a mobile cart, at 142 cm below the
ceiling. We could not collect distance samples from nodes
V,W, and X; so we did not attempt to localize these nodes.
However, these three nodes were useful for the RF connectivity
based initialization phase of AFL.

We collected distance samples by stopping the mobile at
1,592 points. We used the three nodes at a time approach
described in section III to compute the internode distances. We
ran the distance estimation algorithm on 52 different triangles
formed by different node combinations. The edges of these
triangles represented 59 unique edges connecting the nodes.
Figure 9 shows the graph obtained by these edges with nodes
at their measured coordinates. We see that MAL enabled us
to compute enough edges to build a locally rigid graph from
a collection of disconnected nodes. This graph is only locally
rigid since sections of the graph can fold along edges such as
K-L, B-G while preserving edge lengths. However, as we see
later, AFL managed to avoid such folds during localization
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Fig. 11. Graph obtained after running the AFL initialization using the RF
connectivity information.

since AFL initialization phase generates an approximately
fold-free initial coordinate assignment.

Ultrasonic propagation effects such as bending and reflec-
tion off obstacles introduces errors. We used the following easy
solution to this problem. We had multiple distance estimates
between a given pair of nodes, since an edge is typically shared
by several triangles. Since the magnitude of measurement
error depends on the position of the mobile, we were able to
filter out outliers using a simple binning and majority election
algorithm [8]. After filtering, we computed a given edge length
by averaging the estimates from different triangles.

Figure 10 shows the CDF of the % edge length error of the
distances estimates obtained using MAL, after filtering and
averaging to remove outliers. We observe that the distance
estimation error is smaller than 1.5% over 50% of the time,
and the 90th percentile has ' 5% error. This graph indicates
that MAL can provide accurate pairwise node information. We
observe that there is a wide range of percentage error values,
which we attribute to the differences in the area and the shape
of individual triangles, and the restrictions on the coverage
area of the listener due to physical obstacles such as furniture.
In section V-B, we use simulations to study how these factors
affect inter-node distance estimation accuracy.

2) AFL performance: Although indoor RF propagation is
highly erratic, RF connectivity and signal strength can be
used to obtain coarse granularity location information. Since
AFL’s initialization phase uses only connectivity information
and since RF permeates more thoroughly than ultrasound, RF
connectivity is useful for the initialization phase of AFL. In our
implementation, we use a simple strategy for measuring RF
connectivity. The nodes periodically broadcast RF messages
at an average rate of 1 message per second. Each node keeps
track of the number of messages it received from other nodes,
and it times out these message counts using an expiration timer
whose value is inversely proportional to the message arrival
rate. This approach filters out far-away nodes, and the nodes
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Fig. 13. The position estimate error as a function of the radius of the reference
node coverage area.

with a high message arrival rate are considered neighbors.
Figure 11 shows the layout resulting from the initial co-

ordinate assignment obtained by running Phase 1 of AFL.
Figure 12 shows the coordinates obtained by running Phase
2 on the previous topology and the true node coordinates
obtained by manual measurements. The error between the
estimated and true node positions is small, comparable to the
errors from the MAL algorithm (Figure 10). These results
demonstrate that MAL and AFL can work well in practice.

B. Simulation Results

This section presents the results of running several simula-
tions of the MAL algorithm. Although MAL has theoretical
correctness and performance guarantees, it is important to
understand how well it performs under errors, scale, and
various layout geometries. Due to lack of space, we do not
present simulation results of MAL running in conjunction with
AFL (we showed these results for the real-world deployment).

1) Impact of GDOP on localization error: We start with
some experiments to evaluate the impact of GDOP on location
estimation using the following configuration. We have n fixed
reference nodes, uniformly spaced, on a circle with radius r.
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Fig. 14. The position estimate error as a function of the number of reference
nodes.
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mobile coverage area.

We place a node m, 10 units away from the circle, on the
perpendicular passing through the center of the circle. We
introduce a uniformly distributed random error in the range
(−0.1, 0.1) units on the distances between the reference node
and m. We compute the position estimate of m that minimizes
the sum-squared-error for different values of r. Figure 13 plots
the position estimate error of m, computed by the distance
between the estimated and true positions, as a function of r
for n = 4; each point on the graph represents 100 simulations.
We observe that the error decreases with increasing r. Since
we have kept the measurement error distribution constant, this
graph shows the impact of geometry on the position estimate
accuracy. It also shows the importance of reference points that
cover a large area for accurate position estimation.

Figure 14 shows how position estimate error changes with
n for r = 10. The position estimate error decreases with
increasing n as positive and negative errors tend to cancel
out with large n. This implies that we can improve position
estimation accuracy using large number of measurements.
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2) MAL performance: Next, we evaluate the performance
of MAL as we vary the area covered by the mobile unit and the
number of measurements. We selected 3 nodes, representing
the fixed nodes, with (x, y) coordinates at randomly selected
points on a circle of radius 10 units, with the restriction that the
angle incident on the center of the circle by any two points
is > 10o. The z coordinates of the points were uniformly
distributed between 2.5 and 5.0 units. We selected n mobile
node positions uniformly distributed within a concentric circle
of radius r, on z = 0. To achieve a uniform distribution, we
placed a bounding circle of radius r′ at each mobile point and
iterated over different values of r′.

We examine MAL performance as we vary the mobile node
coverage area. Figure 15 shows the average error in computing
internode distances among three nodes as we vary r for both
n = 6 and n = 24; We introduced a (1%,-1%) uniformly
distributed error on mobile-to-fixed node distance estimates.
Each point represents 20 simulations. We observe that a larger
mobile coverage area reduces the distance estimate error. This
result indicates that MAL performs better when the mobile
collects samples within a large coverage area.

Next, we examine the MAL performance as we vary the
number of mobile node positions. Figure 16 plots the average
distance computation error Vs n for both ±1% and ±10%
uniformly distributed mobile-to-fixed node distance error. As
expected, the average error decreases with increasing n. This
result demonstrates a significant advantage of the MAL ap-
proach, where we can obtain a large number of mobile distance
estimates at little extra cost on the infrastructure (assuming we
can neglect the cost associated with a mobile collecting data).

VI. RELATED WORK

Scott and Hazas examine different approaches to determine
fixed node positions using distance estimates [29]. Their
experiments include both distances obtained at nodes mounted
on a mobile frame and raw distances obtained by placing
multiple nodes on the floor or from a mobile carried by

users. They report better results using the mobile-frame based
approach compared to the raw distance approach (however,
the paper does not report the size of the fixed frame used). In
the raw distance approach, they used simulated annealing to
optimize the positions of all the nodes in parallel, which can
degrade performance due to the presence of local minima in
the objective function. In contrast, we break the localization
problem to two manageable pieces. We use rigidity theory to
determine the minimum number of nodes and samples needed
per one small group. Our use of groups with small number of
nodes reduces the possibility of local minima and also makes
the localization algorithm scalable.

Pathirana et al. use a mobile robot to localize RF bea-
cons [30]. They assume the availability of precise velocity and
acceleration of mobile robot. They obtain distance information
between the robot and fixed nodes using RF signal strength.
The use of the mobile robot improves the accuracy of RF
signal strength based distance measurements, since signal
strength variations due to spatial fading of RF signals may
be reduced. Corke et al. use a flying robot equipped with
a GPS receiver to localize stationary nodes [31]. The robot
beams down its current GPS coordinates using RF; and the
stationary nodes use this information to compute their position.
Sichitiu and Ramadurai also use a GPS equipped mobile
node to localize fixed receiver nodes; they use the RF signal
strength to measure the distance between the mobile node
and fixed nodes [32]. These approaches for node localization
are similar since they all use a mobile node with known
location information to localize a collection of fixed nodes;
however they use different mechanism to determine the mobile
node position and different algorithms to compute fixed node
positions. In contrast to these approaches, we do not assume
the availability of location information at the mobile node.
However, if accurate distance information between different
mobile positions is available—from the robotic odometric sys-
tem, for instance—we can harness this additional information
to improve the MAL performance.

Indoor location systems such as Cricket, Bat, and RADAR
use distance or signal strength estimates from fixed reference
nodes to determine mobile user positions [8], [10], [33]. These
reference nodes needs to be pre-calibrated with their own
position; this is currently done by manual measurements. In
a building-wide deployment, due to the lack of line of sight
among nodes, such manual measurements would require the
combination of a map of the building and distance measure-
ments to the walls of the building. However we are interested
in an automated approach which does not require a map of the
building since we may want use the indoor location system
itself to generate the map of the building.

Previous work on anchor-based localization algorithms use
inter-node distance estimates and a fraction of nodes with
known location information to compute the location infor-
mation of the rest of the nodes [22], [23], [1], [24], [2].
Anchor free algorithms, such as the AFL algorithm, compute
a relative coordinate assignment to nodes based only on
internode distance estimates; these algorithms are particularly



important for both indoor and ad-hoc deployment since they
do not depend on an external location system [5], [4], [25], [3],
[26], [7], [28]. All of these algorithms can use the inter-node
distance estimate from MAL as an input for node localization.

VII. CONCLUSION

Most previously proposed approaches to the localization
problem assume that the nodes can obtain pairwise distance
information using local ranging. Unfortunately, for a variety
of reasons that include obstructions and lack of reliable
omnidirectional ranging (e.g., using ultrasound), this distance
information is hard to obtain in practice. Even when pairwise
distances between nearby nodes are known, there may not be
enough information to uniquely solve the coordinate assign-
ment problem.

This paper described MAL, a mobile-assisted localization
method, in which a roving mobile user or robot wanders
through the network and collects distance estimates to nodes at
various locations. We showed how to constrain this movement
such that the roving node can gather sufficient distance sam-
ples to solve the localization problem. We gave an algorithm
that, given sufficiently many distance samples, produces a con-
sistent coordinate assignment. We evaluated the algorithm’s
performance using simulations and real-world experiments.
Our results show that the median pairwise node distance error
in a real-world deployment is less than 1.5% of the distance
between the nodes; similar results are confirmed by several
simulations as well.
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