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Abstract

Traditiond application programming interfaces for
transporiprotocolsmake a virtue of hiding mostinternal
per-comection state. We argue that this information-
hiding predudesmary potentally usefulapplication fea-
turesandperfomanceoptimizations. We adwcde a dis-
ciplined, portable,andsecureinterfacethatgivesappic-
ationsboth “get” and“set” accessto transpat connectio
state.

1 Introduction

Most modernoperathg systens provide a protocol-
independerappication programming interface (API) to
transporprotocolssuchasTCPor SCTP. ThisAPI, often
basedon the BSD socketabstractn, makes a virtue of
hiding most internal perconnetion stake. Applications
use abstrad “connedions’ with highHevel chaacterist
ics (eg., “reliable streani) guarantee by the protocol
implementation, and reman ignorant of internal details
sich as sequencenumbers,roundtrip time estimates,
andtransport-level options.

Theinformaion-hiding inherent in a socket-like trans-
port API promotesapplication portability between trans-
port protocols,andbetweendifferentimplemengtions of
the sane transport If the appication cannot see thein-
ternd statefor aconnedion, it won't hawe anydepeden-
ciesonthis state. Other operathg systens, suchas Plan
9 [18], go evenfurtherthanBSD in makirg a virtue of
hiding information.

Thisappoad hasreacheal itslimits. It workedfine for
simple applications,such as Telnet, FTR, andemail. But
tradifond hidden-séte transportAPIs preclude mary
potentally useful appication featuresand performane
optimizations. In this pape, we descibe a numberof
appicationtechniquesthatcannd beimplementd usirg
hidden-stateAPIs, but that could exploit expcsed trans-
port stte.

We adwcée that a tradiiond API, sud assockets,
coud be exendedwith a disciplined, portable, and se-
cureinterface to give appications bath “get” and“set”
acessto transpot connetion state. The provision of
“set” accessis aradical suggestin, andwe addres both
itsjustification andits safety

In this paper, we focuson TCP, rather than on trans-

ports in general. Other transpors are either uninterest-
ing (e g., UDP has essatially no “per-connetion state’)

or aretoo novel (e.g., SCTPimplementations are avail-

able[20] but we aren't sufficiently knowledgeable about
the protocol or the implementations). The principleswe
disausswith respecto TCPshoud be applcableto other
transports, and the API proposed in Section 5 is mosty

transport-generic.

2 A fewscenarios

We start by presentng afew scenarics to motivatethe
restof the pape. Later in Section 4, we will disauss a
largervariety of potential appications.

2.1 Processmigration

Supposeonewants to migratea running processfrom
onehostto anoher, without requiring exgicit migraion
supprt in the operating sysem, andtransparenty to all
commuricating pee processeson other hosts. Miloji-
cic etal. argue that userlevel implementations of mi-
gration hawe somebenefitoover kernelimplementations,
but point out that moving connection endponts can make
this difficult [14]. For examplewhentransferring a live
TCP connetion, the TCP sequene numbers must be
preseved. Thisis currently extremdy difficult for ause-
level implementation of processmigration [1].

In our apprach,theappication (or auserlevel library
ading onits behalf) on the migration source hostwould
usethe “get” feature of our proposedAPI| extenson to
extrad all the necesary TCP comnection state for the
process (See Sedion 3 for adiscusgon of whatstate this
entaik.) This state would thenbe shippedto a newpro-
cessat the migration targethaost, which would createnew
socketsandinitialize themwith the imported TCP con-
nedion state via the“set” feature of our API. Of course,
many other challengedacesud amigration mechanism;
we believe (from implementtion experience[16]) that
they areall surmoutable, but we lack spae to discuss
them here.

2.2 Adapting Web contert to the network path

A widely-used Websaver onthe Internet might sene
clients with dramdically varying network conrectivity.
Somepeopk use dialup netwaks; othersusecable mo-
dens. The awailable bandwiths spanseveral ordersof



magntude, posirg a problem for a site designer who
wants to provide rich detail for well-conrected users
while not sibjeding dialup usergo enormousdelays.

If the Web sever could make a crude estimate of the
network pathas soonas the client establshests conrec-
tion, the saver could then deliver conent whose com-
plexity is adgtedto the path bandwidth —withoutrequi-
ingtheuserto click to choosebetwea “ high bandwidth”
and“low bandwith” versionsof the site [15].

A crudeestimate thatsimply clusersclientsinto “f ast”
and“slow” categries shoud allow a saver to chocse
between a par of page versions[11]. Sud an estimate
coud derivefrom theinitial roundtrip time (RTT) meas-
urementfor theconnetion, which is availableassom as
the client's reques arrives. A single RTT measuremet
might be an inaccurate predctor of the path bandwidth,
but sincea TCP connedion's initial througlput is usu-
ally RTT-limited, not bandwidth-limited [4]), it could be
suficient.

Making TCP conrection stateinformation, sud asthe
RTT estimate, the congeston window, the retransmis-
sionrate,andotherindirect esimatorsof thepath quality,
available to anInternet sever could alow it to adaptits
behavior automdically.

3 Categoriesof transport state
We find it usdul to caegaize transpor state acord-
ingto several axes:

Hard state vs. soft state: The hard stat of a transpor
comection mustbe preserwed (i.e., acrossa check-
point or migration) in order for the connectbn to
cortinue transparatly to the remote peer. Hard
state includesthe TCP part number, state-macdiine
state (e.g., ESTABLISHED or TIME_WAIT), se-
guene andadknowledgement(ACK) numbers,and
sane TCPoptionssuch asWindow Scaleand MSS.
Soft statecould be discardedwithout affecting cor
rectnessand can be recoveredor rediscovered, al-
thowghitslossmight reduceperfomance Softstate
includesthe estmatedRTT, currentsettngs of con-
nection timers,andthe congeston window.

Fixed, varying, or connedion-initialization state:
Certain conrection state is inherently fixed from
the initial creaion of a connedion. For TCR, this
includes the port numbersandIP addesses. Other
state, suchas sequence numbers, variesduring the
enire lif etime of the connedion. A third caegay
of state,such asthe TCP MSS, is allowed to vary
only during the initialization of a connedion. We
separte the fixedand conrection-initialization ca-
egories because the forme can never be changd,
but the latter might change (under the contrd of

the remote pee&) during initi alization, which might
affect how the appication interads with this state.

In addition to thesestak values, we also neel to give
the appication control over whether they can change
ag/nchronausly. That is, when the apgication is get-
ting or setthg connectio state,in many casesit neals
atomic accessto the entire state, and it might need to
awid asynchroousstat changeghat might result from
padet arrivals or timer exgrations. Thus,we definea
sort of meta-state for the connedion that can be one of
in-progress quiesang, or frozen The appication must
be able to request that the protocol stak quiesce an
in-progress connedion, to discover whenquiescenceis
complete (i.e., that the connedion is frozen), andto re-
sumefrom the frozenstate.

4 Applications of this approach

In this section, we sketchavarietyof applcationsthat
could bendit from more accessto transportconnection
state. We hawe divided the list of appications into sev-
erd mgor cate@ries, but this caegoization is neither
exhausive nor definitive.

Ou goal in preseting this sa& of appications is to
motivate the provision of a simple and genericfadcil-
ity for use-level aacessto transpor connection state.
Mary of theseappications could instead be enabled us-
ing problem-speific operating systemextensions, but
we adwocate the adoption of a genericmechaiism be-
causeit shoutl be usefuleven for applicationsthat we
haven't thoudht of.

4.1 Connection persistence over failures and
migrations

Traditional APIs bind transport comections to spe-
cific processes The processabstaction, while useful,
somdimes overdetermineghe binding of connedions
and other resources. It can be valuable to recover the
stateof a process(i.e., using a checkpdnt) for fault tol-
erance [9, 12], or to mowe the state of a process(i.e.,
processmigration [14]) for eitherfault toleranceor load
balancing

Both checkpointing and process migrationrequre spe-
cific techniquesto presave extanttranspor connectns.
We focus on techniquesimplemented in user-level code.

4.1.1 Processmigration via a use-level library

Processmigration canbeimplementedasa userlewellib-
rary with relatively little explicit kernel suppat, but mi-
grating adive transrt connetions can bedifficult. We
introduced this applicationin Sedion 2.1.

Notethat in additionto accessto hardconnetion state,
suchasTCP sequencenumbersa use-level library that



migratesconnedions would alsoneed a way to freeze
the transmssion of TCP acknavledgments. An ACK
allows the remote pee to discard its buffered data; if
our hostsendsan ACK after we snapshbits connectio
state, then we could lose dat arriving after that snap-
shot. (It might not be necesaryto freeze the processirg
of arriving ACKs, since losing this informaion causes
extraneousretransmi ratherthan dataloss)

Wholesalemigration of processesfromonehaost to an-
otheralsoimpliestheneedfor ameango movethehosts
IP address(If both ends of theconnedtion arecontolled
by theprocessmigration system this might notbenecs-
sary) There are seweral possble soluionsto that prob-
lem, suchas broadcating an Address Reslution Pro-
tocol messgeto changethe (1P, Ethernet) bindings. Al-
ternatively, one could perhgps sugport changng the IP
addess, through the Migrate TCP options propcsed by
Sroeren andBalakrishnan [22].

All of the consderations above, except for IP addess
migration, alsoappl to a processchedpointing facility,
for usein preservirg proces®s acrossfailures sud as
system crashes.

4.1.2 Readingunavailable input data

If aprocesswith opentransprt connectionsis beingmi-
grated or checkpdnted by userlevel code, the check-
point must cgpture received data tha the kernel has
already ACKed but not yet deliveredto the application.
(Either the applcation hasnot yet madea sysem call
to read the data, or the call has nat fully completed.)
For transpot implementions usingonly cumuhtive ac-
knowledgmens, suchas the original TCP standardthis
is relatively simple: thelibrary code freezes ACK trans-
mission and then usesthe standardead() systemcall to
readall of the dataup to thecumulative ACK limit.

Modern TCP implementations, however, support se-
lective acknavledgment(SACK) [13], which allows the
recaver to adknowledge dataeven if there are holesin
the arriving TCP strean. The semantics of the read()
system cdl preventit fromreading pag such ahole, mak-
ing it impossilke for a usermodelibraryto capture ary
seletively-acknavledgeddata following thefirst hole.

Thisis nat a corre¢nessproblem for SACK, which is
specifiedto preventthe senderfrom droppng databefore
thecorrespording cumuktive ACK, althoughit mightbe
a probem for a future transportthat lacks this require-
ment. It might also be a performanceproldem when mi-
grating or checkpointing an application, suchasa sever
with lotsof opendata-reeiving connectios.

Thus,a use-level migration/checkpont facility might
benefit from an API allowing it to capure and restore

adknowledgedbut unawailable inpu data.

4.1.3 Making TCP sendsredoable

Typical rollback-reovery sysemsrequrethat all applic-
ation events are eithernatiely “undoable” or “redable,’
or canbe madesoby the recovery system12]. Most ap-
plication event do saisfy thisrequrement.For example,
modifying datain memoty or writingto anon-sharel file
are both intrinsically redoabé events, and both can be
made undoabé through appropriate undalogging in the
recovery system

Howewer, beauseof a messae's effect on other pro-
cesses, a TCP sendcannot(easily) be madeundoable.
Nor can TCP sendsbe maderedoabé at userlevel. If a
processsendsa TCPmessaye, fails, recoversto anearlier
exeaution point, thenattemptsto resend the sane mes-
sage, TCP will transnit the“resent”messageavith anew
rangeof sequene numbers.The messageecipient will
seethis asa newmessageatherthana retransmissio.

The prodem for use-level redo is that the send
sguence number is not expceed by the traditional
TCP API. Existing recvery sysems work arownd this
problem by intercepting and inspecting outgoing TCP
frames [1], using a spe¢al TCP implementation at the
clientandsener [21], rolling bad the state of the mes-
sage recaver [23], or spoofingthe applicationinto using
auserlevel, TCP-ike transport over UDP[12].

An API thatexposeshe sequene number would per-
mit a use-level recovery sysem to chedpoint it along
with therest of the processstate. An API that alsoallows
“set” acessto the sequence number would permit the
recovery coce to restore this to its last committed value.
Both “get” and “set” are necessaryto render TCP sends
redoableand to enable a userlevel recovery systemto
corredly recover apgicationswith TCP connedions.

4.1.4 Delaying ACKsuntil recaver commits data

Mary failureremvery systemsre basel on messajelog-
ging[9], recording thenon-determinstic eventsexecuted
by a process, such as messagereapions. The recv-
ery systencanrephly theloggedevensto therecovering
applicdion, causing it to determinstically recomputeits
pre-failure state.

A userlevel implementation of a pessimist loggng
protocol interceptseach receéved messageand writesit
to stable staage beforeddivering it to the appication.
Since the TCP senderdeletes its buffered copy of the
messagelponreceiving an ACK, theloggemustprevent
this ACK until the messagehasbeen sdely logged [1].
Otherwise a failure after the ACK and beforethe log



write would leadto inconsistencyafterrecovery?.

If the TCP API alowed use-level code to decide
whetherto send anACK for a particularbyte in the TCP
sequencespace, this would permit a use-level logging
system to delayACKs untl mesagesaresdely logged.
Note thatddaying anACK beyondlimit of thesmdler of
therecaver and sendewindows could lead to deadlek,
unlessthe ACK-delayng medchanism includesatimeout.

4.1.5 Hiding arecowering system

If aremotepee might time out while a failed systemis
recovering, it might be useful to createthe illusionthat
the TCP connedion is still alive. Oneway to do this,
similar to atechnique usedby Alvisi etal. [1], is to em-
ploy a“helper systeni thatfakesadivity ononeor more
comectionswhile thered system is recovering.

A helpersystemthat knows the currentsequene and
acknavledgment numberdor the crasied endof a TCP
comection can send periodic keep-alve padets to the
remote pee, which appea to comefrom the crashed
host. It probably doesnat need fully up-to-date sequene
numbe values, since use of somewhatold values, while
appearing to be delayedduplicates, shodd still convince
the remote pee of the liveness of the system. Sqg, the
helpersysem canobtain sequencend acknovledgment
numbes lazily and asynchraousy from the protected
system, while it is not crashed. (Alvisi et al. also sug-
gest simulating a closedreceive window, to prevent the
wasteful transmisson of data tha will bediscarded.)

4.2 Performanceadaptation

Mostconnecibn stateneede to sypportpersisteneis
hard state. Sdt connedion state, in cortrast,is mostuse-
ful in improving application performanceandegecially
in adapting this perfamanceto network condtions.

4.21 Adapting contentto path bandwidth

Sectio 2.2 introduced the potential for adapthg Web
cortentto the capaity of the network pathto the client,
andusing subsds of the “sot” TCP state to quickly (if
cruckly) esimate that capaity.

Thistechniaie,if basel on timinginformaton suchas
theRTT, mayrequire theuseof finer-grainedtimersthan
typically emplg/ed in TCP stadks. Since most dialup
mocdems impase one-way delaysof 50 msee, independ-
entof distancg6], anRTT well belov 100 msee clealy
indicatesa non-dialup (i.e., potentially high-bandwdth)
TCP connedion. RTT measurerentin 4.4BSD-lased
systems uses a 500-mse clock tick, far too coarse for

1optimisiic logging [23] avoids thisrisk, at the experseof a com-
plicatedpratocd for rolling backthe sende after afailure.

disaiminating betwee dialup and other paths. Brakmo
andPeerson desribed an efficient wayto compue RTTs
at much better precision [3]. One might also estimate
bandwith using a “packet-pait’ approach[10], if the
API can provide fine-graired arrival timestampsfor the
mostreentpadets(and theirlenghs).

4.2.2 Checking output buffer size

Someapplcations (e.g., streaming media savers) can
adat to changig network congegdion by dynamicély
increasng or decreasing the compresson of transmitted
content Thereis no value to data that is stuckin the
sending haost's output buffer for lenghy periods;the cli-
entwill discardit, astoo stale, when it arrives. A sener
that can deted¢ congeston could reduce its output rate
consiséent with network capadty, thus deivering timely
(if samewhatdegraded)conent to theclient.

A TCP-bagd streamingsever can easily detectcon-
geston on a spedfic path by monitoring the amountof
buffered output data. If the buffer sizeis growing (over
a suitable measurerentinterval) thendata is being sent
fasterthan the network can carryit. Measuring buffer
consumpbn by blocking on a send() sysem call is inef-
ficient andinaccuratean explicit API featuethatreturns
the numberof buffered,unacknownledgedbyteswould be
quite usdul.

A pendng-autput-bytes measuremet medanism
might also be usefulfor an appication (such asa Web
saver) wishirg to awid overcommiting kernel buffer
spae, or to presene it for high-QoScustomers.

4.3 Implementation techniques
Thefinal caegay of applicationsinvolves novel im-
plementaton techniques.

4.3.1 Moving connedionsbetwee TCP stacks

Tradtiondly, each host hasjust one implementation of
the TCPstak. Howe\er, in certain circumstancesa host
might neal to move a live connedion between one of
seeralimplementations.

For example jf the TCPimplementaton is being up-
datedto fix bugsor add feaures,on a high-availability
systemit might be desirable to runthe new implement-
tion temporarily in pardlel with the old one (with some
coordnation!), shft live comectionsto the new imple-
mentation, andthen diséble the old one.

Or if thenetwak interfaceprovides“T CP offload”, it
might be desirable to shift live connectbnsbetwea the
offloadedand softwareimplementations(e.g.,if resource
limits of the offloaded implementation allow it to host
only asmal subse of the conrections.)



Moving connectios for thes reasors is similar to
moving them for process migration or chedpointing,
and has similar requrements. Stack-shiting, however,
placesa premium on the portabiity of connedion state;
thatis, it requires anexternal form that does not reflect
the details of a spedfic implementation.

It is nat clea if stack-shiting is bestdone inside or
outside the kernd, but a user-lewel soluion is attractve
because (if dore via a uniform API) it works seamlesly
acrosary pair of stak implementtions.

We are not awere of any implemengtions that shift
live connedions between stacks on the same host.
Howevwer, Migratory TCP does implement connetion-
shfting between stackson different hosts [24], which
should be of similar difficulty.

4.3.2 Absolute sequencenumbersin MPA

“Marker PDU Aligned Framingfor TCP” (MPA) is a
propcsedframing layer, betweenTCPandanupperlayer
thatsupports direct (hon-tbuffered) placementof received
data into memory [7]. MPA uses makers to allow
hardwarebaseddirect placenent even when TCP seg-
mentsare recaved out of order. The details of MPA are
beyord the scopeof this paper but the marker mechan-
ismisof interes.

MPA markersareinseatedevery 512 bytesin the TCP
sequenceumber spae. This deterministic spacing al-
lows the TCP recdver to locate the makers in ary
packet. The spedfication calls for insertng markers at
512-byte boundariesrelative to the startof the conrec-
tion. Eiriksson [8] pointedout thatthis requires a hard-
ware implementaton of MPA to obtain some protocol
cortrol block informaion for eacharriving padketbefore
it canlocate the markers; suchlookups are costly. He
propcsedinsteadthatmarkersshaild appeaat512-byte
intervals in the absolite sequence numberspae (i.e.
when the sequen@ numbermod512 is zero).

While this proposedmodification had bath cost and
benefits, the mainargumentagainstit wasthatstandards-
body consicerationsrequire thatMPA be implementable
in userlevel code, over an existing TCP stack,and ex-
isting staks do nat expcse TCP sequenceumbers. If
widespred APIs had exposed TCP sequence numbe's,
thenMPA could have usedabsolute sequence numbess.

Thisscenaio doesnat imply that adoging our propos-
alsfor the TCPAPI would changehedesigndedsionfor
MPA,; it is far too late for that. We include this example
only to shav how in analternate universe,whereall TCP
APIsalready provide aaccessto thesequenceumbe, this
design for MPA woud be feasibke and perhapswould
hawe beenadoped.

5 A disciplined API

In this section, we proposean exposed-staté\PI for
TCPR A similar API shauld be feasble for other trans-
potts. For reasors of space, we omit manydetaik (some
of which arein ary casenotyet clearto us).

We cdl this a “disciplined” API becaise,while it ex-
posesstate previously consdered best left hidden, we
have tried to exposeonly state, not implementaton de-
tails. Ideally, our APl shoud permitportability of use-
level code,andperhaps evenmigration of adive connec
tions,betweendifferent operding sysems.

The API shoutl alsoallow evolution of transportpro-
tocols and kernelimplementatons. That is, an appica-
tion usingthis API thatworks before the introduction of
a new protocol feature shauld coninue to work afterits
introduction, and should not defeat the useof that fea-
ture.

We nate that although our API proposaldoes require
changes to the kernd's transpor protocol implement-
tion, these changesarerelatively simple. Moreover, by
enadling use-level implementatonsof mary newfunc-
tions,thisonenew API suppbnts many otherpotentially
useful but pasgbly compkx, kernelmodifications.

5.1 Connection identification

Thetraditional BSD operatons(suchasgesockopt))
identify connetions usirg afile desciptor. This limits
those operatons to the processthat is using the con-
nedion (or its children). We propose,for our state-
aacessoperations, identfying comectionsinstead by the
protocokID (suchasTCR SCTR etc.) andthe corres-
pording addesstuple— (src-addr, src-port, dstadd, dst-
port) for TCP. This givesany processwith thesaneuse-
ID astheconnetion owner, or aroot-privilegedprocess,
“get” and“set” accessto connectim state. Thisin turn
endlestheuseof “helperprocesss” to assistwith func-
tionssuchas checkponting or migration. It alsoallows
cleaning up the frozenconnectionsof a deadprocess.

For compatness, we usethe term conn-D below to
refer to the (protocol, src-add, src-port, dstadd, dst-
port) tuple.

Thereis one excetion to the conn-ID approad: it
cannot be usedto bind an existing addresguple (e.g.,
for a migrating conrection) to a new socket,since that
new socket has no tuple. The APl will needa special
cdl, using afile de<riptor, for this.

5.2 Accessto state values

We want to avoid tying our API to a specificstack im-
plementaton, or to a specific point in the lifetime of a
stak. Sincedifferentstackswill natually provide dif-
ferent supprt for certain soft state, and certainoptional
componentsof hardstatethe API shoubl nat usean in-



ternd represatation of transpor state. Insteal, we ad-
vocatea (keyword, datatype, value, flags) representaton,
where “keywords” arean enumeratian type, and “data-
type”is anal@ousto thesimple types of the C language
includng arrays.The“flags” mark a retunedstate item
ashard vs. soft, initializedvs. uninitialized, etc.

The API woud include one state-readingperatio
transportstate_get(conniD, tuple-court, tuple-vector)
The tuple-vedor (with tuple-count entries) both indic-
ateswhat state items are wanted, andreturns their val-
ues (if awailable). Becauseone cdl returns muttiple
items,this shaild reduce the overhea of usingthe API.
The transport state get operation shoul also provide a
means (suchas wild-cardirg) for the appication to get
all hard comection state even for keywords unknown to
the appication; this suppotts protocol evolution.

Similarly, the operdion transpat_stae setcom-ID,
tuple-count, tuple-vestor) updatesthe conrection state
fromthevaluesin thetuple-vedor.

5.3 Connectionprogress

The transportfreez(conniD) operation setsan in-
ternd perconnedion flag preventing the transport stack
from taking any action on the connectbn. Timeous are
deferred(not lost); arriving packets might be either buf-
fered or dropped. The transport_resume(conni) oper
ation clearsthis flag, releasesany deferredtimers, and
starts the processirg of bufferedpackets.

5.4 Buffer manipulations

The transportread pendng(conn-ID, buffer, bufsize,
bufvec-array, coun) operation returns, into the buffer,
all received datathat hasbeen ACKed, ewen if there
arehdesin the sequence spae. Bufvec-arrayis an ar
ray of (offse, pointer, lengh) tuples represating the
extens of receved daa. The corresponihg trans-
port_restore_pendng(connlD, buffer, bufsize, bufvec-
array, count) operation puts databack into the “unreal”
portion of the connedion's inpu buffer. The trans-
port_buffer_purge(conntD) operation deletesall buf-
feredinput andoutput data for the connedion.

5.5 Timing infor mation

Section 4.2.1 speculated tha packet-pair timing in-
formdion could help with sener adaptabn. A trans-
port stadk could efficienty suppot this by keeping a
smallperconnedion ring buffer of recent padket arrival
timestanpsandlengths. Our API could allow the server
appication to read this buffer.

5.6 Secuity

In generd we hawe not yet found any obvioussecur
ity holescreaed if a process(or its designatedhepers)
canmodfy theinternalstateof its own connetions, via

the API we have described. The one exceptionis the po-
tenial for performane-relatedmischief, swch as denial-
of-service attacks. Sawage et al. have deseibed how a
misbehaing TCP recaver can violate congegion con-
trol noms [19] andour API would méake thateasy

We hawe considred several solutionsto this prodem
(beyondthe protedionsin [19]). It might be posgble for
the kernelto cryptographicaly signa subsef the state
it exports, andthento refuseto import an improperly
signed statevector However, this approac mightbetoo
rigid, and relies on securekey managerent(acossmul-
tiple hoss, for amigration sysem).

Alternatiely, the API could restrict the setting of cer-
tain stateitems to super-use processes Userlewvel im-
plementatons that move or update state would requie
the help of such a “chaperone’process,via the conn-1D
approachof Sectio 5.1, ratherthanallowing a regubr
processto directly updateits connection state.

We suspetthe security analyss of our appoach will
requre morework, especly with regect to transport
protocoks otherthanTCPR

6 Relatedideas

Several previousprojectshave addessal the appropri-
atelevel of applcation-level expsureof operating sys-
teminternal state, and the associatecdicy/medcanism
separationissues.

The V++ CacheKernel [5] mantaired kernelcaches
of variouskernel state (for exanple, page table entries)
but usedhanders outside the kernel to implement al-
mostall decisions and statemanipdation. This design
seemswell-suited to chedpointing and process migra-
tion. Since V++ was a micro-kernd, it had no kernel
network stack andso the Cade Kernelmedanism did
notapply to transportconrections.

In the InfoKernel approad [2], a traditionad (mono-
lithic) kernel is modified to expat abstact informaton
aboutinternal state,in order to allow userlevel codeto
influence kernel policies. Far TCP connedions, InfoKer-
nelprovidesboth sequence-numbevaluesandsome per-
padet timing information (similar but not identical to
our proposd in Section 5.5). Howewer, the InfoKernel
philosophy doesnotincludeanexplicit state-settig API;
while InfoKerneldoesallow userlevel codeto emulate
TCP Vegps [3] behavior on top of a TCP Reno kernd,
it cannotsupport use-level process migration or check-
pointing.

As noted in Section 5.6, an applcation that can up-
datetransportcomection statecoud genere network-
unfriendly packetflows [19]. Pateletal. hawe shavn,
in their work on remotely upgradng transpet protocol
implementatons [17], that a kernel can enface “TCP-



friendly” flow rate restictions on untrusied protocol
cock. Useof this kind of approad in conjunction with
our API might sufiice to proted the netwak agairst ex-
cesive traffic.

7 Summary

We have argued that mary interestng applications
coud usean API that expcses per-conrection transpor
state. We have attemptedto exdain the kinds of state,
andkinds of manipdations,thatwould be necessay or
usdul. We sketchedh simple and portable API extensian
thatshoutl meettheserequirements.

Many of the scenarie we have described for ex-
ploiting our appioach coud be resolved by appication
changegather than by expaing connedion stae. We
asset thatwhile chandng the appications might bethe
“right’ solution, if one wans to provide appication-
generic sevices such asreavery or migration, the ap-
plicationsmust be accepted astheyare.

References

[1] L. Alvisi, T. C. Bresaud, A. El-Khashah K. Marzulo,
andD. Zagaodnov. Wrappng serner-sideTCP to mak
comedionfailures InProc.INFOCOM pages329-337,
Anchorage AK, April 2001.

[2] A.C.Arpad-Dusseau,R.H. Arpad-Dussea, N. C. Bur-
nett, T. E. Derehy, T. J. Ende, H. S. Gurawi, J. A.
Nugent, and F. |. Popovici. Trandorming policies into
mechanismswith infokernd. In Proc. SOSR pages 90-
105 Bolton Landing, NY, Oct. 2003.

[3] L.S.BraékmoandL. L. Peerson. TCPVegas:Endtoerd
corgegion avoidanceon aglobd Interne. IEEE Journal
on Seleded Areasin Commuications, 13(8)1465-1480,
19%.

[4] N.Cadwell, S.Savage,andT. Andersm. Modding TCP
latency. In Proc. INFOCOM, pages1742-1751, Td Aviv,
Israel, March2000.

[5] D.R.Chaitonard K. J.Duda. A caching model of oper-
ating sygem kernd functionality. In Proc. OSDI pages
179-193 Monterey, CA, Nov. 199%.

[6] S.Chedhire. Latercy survey results(for “It 'stheLatercy,
Stupid”). http://wwmv. stuartcheshire. org/
rant s/ Lat encyResul ts. ht m , 1996

[7] P. Culey, U. Elzu, R. Recio, S. Bailey, and J. Car-
rier. Marker PDU aligned framing for TCP speific-
ation. Internet-Deft draft-culley-iwarp-mpa-03, IETF,
Jure 2008. Thisawork in progress

[8] A. Eirikssan. Relatiwe location of MPA makers con-
sideredbadfor pipdining. Persma comm., June200B.

[9] E. Elnozly, L. Alvisi, Y.-M. Warg, and D. B. Jchn-
son A survey of rollbad-recovery protoolsin mesage-
pasing systems ACM Computing Suiveys, 34(3):375-
408 Sepember20.

[10] S.Keshav. The packet pair flow cortrol protoml. ICSI
Tech. Rep TR-91-028 Intl. ComputerScience I nstitute,

Berkeley, May 1991.

[11] B. Krishnanurthy and C. E. Wills. Improving Web per-
formance by client charaderization drivensever adgpta
tion. In Proc. WWW11, Hondulu, HI, May 202.

[12] D. E. Lowell, S. Chardra,and P M. Chen Exploring
failuretrarspareny andthe limits of gereric recovery. In
Proc. ODI, pages289-303 SanDiego, CA, Od. 2000.

[13] M. Mathis,J.Mahdavi, S.Floyd, and A. Romarow. TCP
selective acknowledgment options. RFC2018 IETF, Oc
tobe 1996.

[14] D.Milojicic, F. Doudis, Y. Paindaveine,R. Wheeler, and
S. Zhou. Process migration. ACM Computing Suveys,
32(3):241-299, 2000,

[15] J. Mogul andL. Brakmo. Method for dynamicdly ad-
justing multimediacontentof a Web pageby a saver in
aacordance to netwak pah characterisiis between cli-
ert ard saver. US Patert 6,243,761, June2001.

[16] S.Osman, D. Suthraveti, G. Su, and J. Nieh. The design
ard implementation of Zap: A system for migrating com-
puting environments.In Proc. OSD|, pages361-376, Bo-
ston, MA, Decemter 2002

[17] P. Patel, A. Whitaker, D. Wethedl, J. Lepreau, and
T. Stack. Upgrading trangort protools using mobile
code In Proc. SO®, pages 1-14 Bolton Landing NY,
Oct. 2003

[18] R. Pike, D. Presato, S. Dorward, B. Flardrena
K. Thomp®n, H. Trickey, ard P. Winterbotom. Plan
9 from Bell Labs Compuing Systems 8(3):221+-254
Summer 1995.

[19] S. Savage N. Cardwell, D. Wethedl, and T. Ander-
son. TCP congegion control with a misbetaving re-
cdver. Compuer Commuication Review, 29(5), 199.

[20] SCTRorg. Strean Control Trangmission Protocol.
http://ww. sctp.org/.

[21] A. C. Snceren,D. G. Anderson, ard H. Balakishnan
Fine-grainad failover usng conrection migration. In
Proc. 3rd USENIX Symp, on Intemet Tedhnologiesand
Systemspages 22123, San Frandsco, CA, 2001

[22] A. C. Sroerenard H. Balakrishnan. An endto-erd ap-
proach to hostmability. In Proc. MobiCom, pages 155—
166, Boston,MA, Aug. 2000.

[23] R.E.Stromand S. Yemini. Optimistic Remvery in Dis-
tributed Sygems. ACM Trans. on Computer Systems
3(3):204-226, Aug. 1985.

[24] F Sdtan K. Srinivasan, D. lyer, andL. Iftode. Migratory
TCP. Connection migration for sevice continuity in the
Internet. In Proc. 22nd Intl. Corf. on Distributed Com-
puting Systemspages 469-470, Vienng July 2002



