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Abstract— Today’s networking community is becoming
increasinglyskeptical of the significanceof research results
foundedwholly upon experimentalresultsconductedin sim-
ulation. Now, with the availability of wide-area distrib uted
testbedssuch as PlanetLab, it is feasible to move beyond
evaluation by simulation, and to perform wide-area exper-
iments acrossthe Inter net asan alternative. However, while
use of a distrib uted testbed affords much greater realism
than a network simulation, there is a significant downside,
astight control over one’s experimentsis relinquished.

We arguethat providing servicesfor distrib uted testbeds
that capture aspectsof the specifiable, repeatablebehav-
ior implicit in simulation and emulation will be an integral
componentof next-generationtestbeds.As a casestudy, we
consider the following problem: given a desired end-system
topology consistingof a setof pairwise constraints (suchas
upper and lower boundson bandwidth and delay), locatea
representative subtopologywithin a wide-area testbedthat
satisfiesthose constraints. Previous work on Netbed ad-
dresseswide-areaembeddingproblemsof this form usingan
optimization framework, whereasweemployconstraint sat-
isfaction. Wediscussthe relativemerits of theseapproaches,
outline the theoretical foundations of a distrib uted service
that providesa synergy betweenadaptivenetwork measure-
ments and the embedding process,and report on prelimi-
nary experimental resultsconductedon PlanetLab.

I . INTRODUCTION

Networking researchersprimarily employ threeexper-
imental methodologies:simulation,emulation,and ob-
servationof live deploymentsacrossthewide-areaInter-
net. While the currentstateof the art in simulationand
emulationadmitselaboratescenariosand hasadvanced
rapidly over the pastdecade,the currentbestpracticein
conductingInternet-wideexperimentsis ratherprimitive
in comparison.Oneof the strengthsof both simulation
andemulationis thedegreeof controlwhicha researcher
canexert over an experiment. As a result,onecanpre-
scribe a specific set of test conditions,can run an ex-
perimentrepeatedly(and repeatably!),and can be con-
fident that resultsare not distortedby external factors.
But themainweaknessof theseapproachesis closelyre-
lated to their main strength: control is not easily relin-
quishedto a realisticmodelof the Internet,sincesucha
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model doesnot exist [3], [2]. Thus, simulatedscenar-
ios areoften opento criticism for beingoverly artificial
or simplistic. It is this point which compelsnetworking
researchersto performwide-areaexperimentswhenever
feasible,sincewide-areaexperimentationenablesthem
to test their methods“in the wild” ratherthanagainsta
model.

Historically, obtaining accessto a large set of dis-
tributednodeshasbeena barrier to Internetexperimen-
tation on any significantscale. The communityhasre-
spondedto this challengewith a numberof efforts cur-
rently in progressto build large-scale,widely deployed,
InternettestbedssuchasPlanetLab[8]; andin develop-
ing emulationenvironmentsthat incorporateconnections
acrossthe wide-area,suchasNetbed[12]. Deploying a
large-scalenetworking testbed,however, is only a start-
ing point. In particular, thewide-areanetwork conditions
betweenend-systemsreflectinstantaneousInternetusage,
andunlike simulationor emulationenvironments,these
conditionscannotcurrently be configured,customized,
nor tightly controlled. This lack of control canleave re-
searcherslongingfor thecomfortsof simulation,suchas
specifiable,predictableandrepeatablebehavior.

The contrastingmerits of simulation and emulation
versustheuseof testbedsmotivateusto considerwhether
thebestfeaturesof eachcanbecombined.Weview simu-
lationandemulationenvironmentsasofferingresearchers
a “blank slate”on which they cancraft their experimen-
tal set-updown to fine details. In contrast,many rele-
vant parametersof a testbedconfigurationare fixed in
advanceand are outsidethe experimenter’s direct con-
trol. However, all is not lost, as the experimenteroften
hasthe ability to determineor estimateparametersof a
wide-areatestbedby conductingmeasurements.1 Also,
it seemslikely that testbedswill soonscaleto sizesthat
couldbeordersof magnitudelargerthana typical (small)
experiment. Therefore,in the nearfuture, a researcher
maywell have theability andflexibility to selectasubset
of nodesfrom thetestbedthatsatisfydesiredparameters
of a giventestconfiguration.

Currently, thedefactoselectionpracticeon a platform
suchasPlanetLabis to hand-picknodesand links with
the“right” characteristics,a time-consumingandtedious
practice.An experimenteronthisplatformmusthopethat�

Arguablyit is the job of anunderlayservice,andnot the individual
experimenter, to conductthesemeasurements,asarticulatedin [6].



an appropriateselectionof nodescurrentlyexists, locate
it, andconducttheexperiment(while it still exists!). This
illustratesoneadvantageof thesimulationandemulation
approaches— given a sufficiently large blank slate,al-
most any experimentmay be crafted. Indeed,an auto-
matedversionof mappingandselectiontoolsarealready
anintegralpartof theNetbedemulationenvironment[12]
(discussedbelow), giving aNetbedexperimenterthecon-
venienceof “just specifyinga scenario”.Our work advo-
catesa similar approachto that implementedin Netbed,
albeit with a different methodologyfor specifyingcon-
straints,conductingmeasurements,anddirectingsearch.

In building a framework for automatedembeddingser-
vices, we decomposethe issuesinto three categories:
topologyspecification,testbedcharacterization,andem-
beddingdiscovery. First, a researchermust concisely
specify the relevant experimentalparameters,e.g. the
allowablevaluesfor metricsappliedto eachend-to-end
path. Second,the currentconditionsof the testbedmust
besufficiently well characterizedto determinewhetheror
not a specificembeddingmeetsthespecifiedparameters.
Finally, theresultingcharacterizationof thetestbedmust
besearchedfor anembeddingmatchingthespecification.
While theseareconceptuallydifferentsteps,we envision
a synergistic relationbetweenthemin practice.In partic-
ular, our framework allows for the specificationtogether
with a searchin progressto guide additionalmeasure-
mentsfor characterization.Simultaneously, the current
characterizationcanguidediscoverytowardsembeddings
thatmayberealizedwithoutadditionalmeasurements.

Individually, eachof thesecategorieshasbeenconsid-
eredin its own right. Extensive experiencewith simula-
tion andemulation(e.g. ns2[7] andNetbed[12] respec-
tively) hasdevelopedsophisticatedinterfacesand tools
for topology specification. We advocateeither reusing
or extendingthesemethodsfor our studyasappropriate.
The metric-inducednetwork topology (MINT) frame-
work [1] providesanothertool for describingandchar-
acterizingtopologiesby abstractingaway low-level path
detailswhile still capturingthecharacteristicsof end-to-
endpathsandtheir interactionswith eachother.

On the measurementside,thereis considerablelitera-
tureabouthow to performmeasurementsto characterize
anentirenetwork (e.g.[10]), but relatively little aboutex-
tractingkey detailsandproviding thosedetailsaspartof
a service. The recent“underlay” proposal[6] motivates
sharedinfrastructurefor issuessuchasroutingdecisions
in overlaynetworks. This sameapproachis equallyuse-
ful for testbedcharacterization,especiallywhen shared
acrossmultiple experimentsrunningon thetestbed.

Theproblemof identifyingsuitableembeddingsof test
topologiesin emulationenvironmentshasbeenaprimary
focusof Netbed[12], [11], [9]. Ricci, Alfeld andLepreau
describethe designof a solver for the problemof map-
ping a (potentiallyvery large) desiredexperimentalsce-
narioontoa testbedof smallerscale[9]. Variantsof this

solver (wanassign for wide-areanetworks in [12] and
wirelessnetworks in [11]) aredirectedat the samegen-
eralproblemwe consider:mappinga testtopologywith
a setof user-specifiedwide-areaconstraintsontoa setof
physical nodes.Their solver usesoptimizationmethods
to identify a topologyminimizing an appropriatelycho-
sendistancefunctionbetweentheattributesof thedesired
topologyandtheselectedtopology. Thisoptimizationap-
proachcontrastswith theconstraint satisfactionapproach
we employ, which we argueaffords a numberof advan-
tagesfor thisapplication.First,anoptimizationapproach
requirestheuserto choosetherelativeimportanceof each
link attribute to definean appropriatenotion of distance
betweentopologies. In contrast,with a constraintsatis-
faction approach,an experimentercan simply realizea
binary yes-noguaranteeon a set of experimentalcon-
ditions in which the error toleranceis prescribedin ad-
vance. A secondadvantageof constraintsatisfaction is
thatit readilyallowsstatisticalsamplingfrom thespaceof
satisfiableembeddings,which canbeusefulin assessing
representativeoutcomes.Finally, aconstraintsatisfaction
approachcanadmitamoreparsimonioususeof measure-
mentsthanoptimization,asit mayberelatively easierto
conductfewer total measurementsto find a satisfactory
embeddingthanto find the“best” embedding.

The remainderof this paperproceedsasfollows. We
first developaconstraint-basedproblemstatementin Sec-
tion II anddiscussboth thecomputationalcomplexity of
theembeddingdiscoveryproblemandpracticalheuristics
for reducingandmanagingcomplexity. SectionIII then
examinestestbedcharacterizationandmethodsfor reduc-
ing thenumberof measurementsperformed.Finally, Sec-
tion IV presentsthe resultsof several proof-of-concept
experimentsconductedon PlanetLab.

I I . EMBEDDING EXPERIMENTAL TOPOLOGIES IN

TESTBEDS

Wenow introduceour topologyembeddingframework
andsketchmethodsfor practicalimplementation.

A. ProblemStatement

Supposewe have a desiredembeddingconsistingof �
nodesand their incident links. Startingfrom the same
formulation consideredin wanassign [12], we spec-
ify the desiredembeddingasa ����� constraint matrix�	��
����� ��

where
����� �

definesa set of constraintson
the interconnectionbetween� and � . In practice,con-
straintsarelikely to bevectorscharacterizingoverlaylink
attributesacrossa setof differentdimensions.Our meth-
odsapplyto complex, multi-attributeconstraints,andcan
also incorporatethe placementof additionalconstraints
on nodesratherthanlinks. For simplicity in the techni-
cal discussionhowever, we will discussconstraintstak-
ing the form of an upperand lower boundon a single
metric, measuredround-trip time (RTT). The constraint



����� ����� ��� � �"!$#%��� �'& in sucha specificationrequiresthat we
embednodes( and ) asnodes* and + in thetestbedsuch
that ����� �-,/.10 * ! +32 ,4#%��� � , where .50 * ! +%2 is themeasured
RTT. If theRTT betweenapairof nodesis not important,
onemayusetheentry � 67!$89& to matchany latency.

Complementingour specificationis a matrix charac-
terizing the : -node testbedtopology. We describethe
result of measurementsthat have beenconductedin an:<;=: inferencematrix > . > is composedof entries?@��� � , eachof which is again a range � �BA��� � !'#7A� � � & , but each?@��� � boundsthemeasuredRTT betweenrealnodes( and) . In theeventwe canconductend-to-endmeasurements
betweena pair of nodes( and ) , we assumethatwe can
usetheseto specifythe entry ?@��� � tightly, i.e. suchthat�BA��� � �C#%A��� � . However, in many situations,conducting
measurementsfor all pairsmay be impracticalor infea-
sible,so tight boundson ?@��� � maynot beknown. Later,
in SectionIII we discussmethods(specificallyapplica-
ble to delayconstraints),that enableus to infer bounds
on many ?@��� � entriesfrom a much smallerset of mea-
surements.This allows us to be selective with respect
to conductedmeasurements.Sinceour embeddingser-
vice is compatiblewith aninexactcharacterizationof the
underlyingtopology, we needonly conducta setof mea-
surementsthatcharacterizethe topologysufficientlywell
to locatea desiredembedding.The connectionbetween
constraintsand inferencesdrawn from measurementsis
capturedin thefollowing definition,which motivatesour
problemstatements.

Definition1—FeasibleEmbedding:Givenaconstraint
matrix D , andan inferencematrix > associatedwith a
graph E , a feasibleembeddingis a one-to-onemappingF

from the G specificationnodesto G of theverticesin E
suchthat for all ( and ) , ����� �H,I�BAJ"K �MLN� J"K ��L ,O#7AJ"K �MLN� J"K ��L ,#%��� �"P

Wenow considerthefollowing naturalproblems.
Problem1—Locatinga FeasibleEmbedding:Given a

constraintmatrix D and an inferencematrix > on E ,
searchfor a feasibleembeddingof D onto E .

Problem2—SamplingfromFeasibleEmbeddings:
Given a constraintmatrix D andan inferencematrix >
on E , selectan embeddingof D onto E uniformly at
randomfrom thespaceof feasibleembeddingsof D ontoE .

Beforewe proceed,we confirm the reader’s suspicion
thattheproblemswehavemotivatedhavehighworst-case
complexity. Indeed,in the simplecasein which the in-
ferencematrix andconstraintmatrix consistof 0/1 val-
uesandrepresentadjacenciesandnon-adjacencies,then
finding a feasibleembeddingis equivalent to the sub-
graphisomorphismproblem,a well-known NP-complete
problem [4]. Also, from well-known connectionsbe-
tween samplingand counting, the secondproblem we
consideris Q P-complete.However, in practice,we find
thatmany interestingprobleminstancesdonot lie closeto
theboundaryof solubility andinsolubility, andfor these
instances,theheuristicswedescribecaneasilyscaleupto

experimentsinvolving hundredsof nodes.For example,
large constraintmatriceswill typically have both recur-
sivestructureandsparsity, whichweexploit in SectionII-
B to speedup search.

B. Search Strategies

We now discusssearchstrategiesfor discovering em-
beddings.Sincetheembeddingproblemis NP-complete,
we cannot guaranteeworst-caseperformancesubstan-
tially betterthanbruteforcesearch.Nevertheless,in prac-
tice, our methodsareeffective for testbedtopologiesup
throughat leasthundredsof nodes.

A naive brute force approachto discovering embed-
dings considerseachof the R S TVU setsof G real nodes,
and compareseachpermutationto seewhetherit satis-
fies the entriesin the constraintmatrix. Sucha method
takes W RVR S TXU G5YZG\[ U time, While this is clearly impractical
by itself, our proof of conceptimplementationis based
on sucha simple enumerationusing depth-firstsearch.
Coupledwith variouspruningmethods,thisenumeration-
basedapproachcanbe practicalfor discovering feasible
embeddingson currenttestbedsaswill be demonstrated
in SectionIV.

Thefirst pruningmethodweconsideredaimsto reduce
thenumberof setsof realnodesenumerated.Here,asim-
ple ideais quitepowerful in practice- if thepartialsetof
nodeschosenso far cannotbe embeddedinto the con-
straintmatrix, thenprunethesearchat thatpoint. These
partial embeddingscan be computedincrementallyand
are essentiallysmaller instancesof the original embed-
dingproblem.

The secondpruningmethodis baseduponthe obser-
vation thatmany simpleconstraintmatriceshave a regu-
lar structurethatallows multiple equivalentmappingsof
constraintsonto the sameset of real nodes. By reduc-
ing thesesetsof equivalentmappingsbetweenconstraints
and the nodesin the testbedto a single representative,
thesearchspacecanbesubstantiallyreduced.Theprun-
ing methodwe applyleveragesconceptsfrom groupthe-
ory, namelyautomorphismgroups. Briefly, an automor-
phismis a renamingof nodeswhich preservesthestruc-
ture, which in this caseis the constraintmatrix D . By
computingtheautomorphismgroupof D , wecanidentify
equivalent nodeswithin D and reducethe searchspace
looking for embeddingsinto D accordingly. While it is
not known whetherautomorphismgroupscan be com-
putedin polynomial time (it is well known to be equiv-
alent to graphisomorphism),the fastestpracticalgraph
isomorphismprogramscanhandlegraphswith thousands
of nodes.Oneof these,Nauty[5], alreadyusesautomor-
phismsasameansof pruningits searchtree.

I I I . INFERENCES FROM TESTBED MEASUREMENTS

As suggestedin SectionII-A, our searchmethodsdo
not requiretheprecisevaluesof metricsonoverlaypaths.



If wecaninfer sufficiently tight boundsonapath’sactual
valuefrom asetof othermeasurements,wecanavoid per-
formingmeasurementsalongthatpath.Therefore,anim-
portantresearchdirectionrelatedto searchis thatof min-
imizing the numberof measurementsneededto locatea
candidatetopology. Here,we formalizeandmotivatea
setof suchinferenceproblemsthatareindependentof the
underlyingmetric, andthenconsiderinferencemethods
specificto delayconstraints.

A. OptimizingMeasurementOrderings

We first assumethat conductinga measurementover
a givenoverlayedge ]_^a`cb\d givesusthevalue egf�h i anden-
ablesusto set j%f�h ilk<m�f�h ilkneof�h i . In practice,thisnotionof
conductingameasurementmightentailsendinganumber
of probes.Next, we definethefollowing quality measure
on inferencematrices,noting thatmany otheralternative
measuresarealsoreasonable.

Definition2: For a given inferencematrix p , we say
thatthemeanrangeof p is

q ] prdsk/t f t i
j%f�h ivu�m�f h iwyx z

Definition3: Given a set of measurementsand a set
of deterministicinferencemethods,theminimalinference
matrix is theuniqueinferencematrix with minimal mean
rangethat is consistentwith themeasurementsandinfer-
encemethods.

This motivatesthe following problem in choosinga
measurementordering,which we stateinformally, aswe
donotpresentany theoreticalresults.Experimentswhich
demonstratetheeffectivenessof employing heuristicsfor
thisproblemwith respectto latency aredescribedin Sec-
tion IV.

Problem3: Givenasetof inferencemethodsandaset
of alreadyconductedmeasurementse%{|`�e}x` z~z~z e}� , effi-
ciently selectmeasurementeg�V��{ suchthat the resulting
minimal inferencematrix �p minimizesthe expectation
of q ] �p�d .
B. InferenceTechniques

We now sketch deterministicinferencemethodsspe-
cific to latency constraintsto motivateourability to derive
goodboundsoninferencematrixentrieswhileconducting
far fewer than ��� x~� measurements(assumingsymmetry
andno self measurements).Thesemethodsassumethat
latency follows thetriangleinequality, egf�h i���egf�h ����e\�Xh i .

Our measurementsindicate that the percentageof
triplesof PlanetLabend-systemsthatviolate the triangle
inequalityis approximately4.4%,a valuethat is consis-
tent with other recentmeasurements.The methodswe
presentlater in this sectiongeneralizeto usevariousre-
laxationsof the triangleinequality. Onesuchrelaxation
is to assumethat eof�h i��n�1]�egf�h ����e\�Xh iXd���� , for constants

�4��� and ����� . For example,the numberof viola-
tions on PlanetLabis lessthan �X� of all triples with ei-
ther ��k�� z �V� and ��k�� msor ��k�� z �g� and ��k�� ms.
However, we alsonotethat therea handfulof individual
triplesthatbadlyviolatethetriangleinequality, andthese
mighthave to bemonitoredandhandledseparately.

Our methodsfirst decomposethe inferencematrix p
into two separateupperandlower boundmatrices� and 

, composedof entriesj%f�h i and m�f�h i respectively. Weper-
form inferenceson thesematricesseparately. Inferences
onthe � matrixarestraightforward:givenmeasurementsegf�h i and e"i¡h � , wecanapplythetriangleinequalitydirectly
to set j%f�h �¢k£eof h i���ei¡h � , if this reducesthevalueof j%f�h � .
Similarly, recursive applicationsof this rule allow us to
set j%f�h ��k£j%f�h i���j\i¡h � if this improves j7f�h � . In fact,all of
theupperboundsin theminimal inferencematrix canbe
obtainedefficiently by runningan algorithmfor the All
Pairs ShortestPaths(APSP)problemon the � matrix.
To do so, we initialize the j%f�h i entriesto eof�h i when egf�h i
is known and ¤ otherwise,thenusethesej%f�h i entriesas
link weightsin theAPSPcomputation.Uponcompletion,
theAPSPmatrix is ournew upperboundmatrix � .

Ourmethodfor deriving boundson
 

is somewhatless
obvious. As with the � matrix, we initialize entriesin 

wherewe haveconductedmeasurementsto thosemea-
suredvalues. The remainingentriesaresetto zero. We
thennotethatby thetriangleinequality, for all ^a`cb"`'¥ :

egf�h i¦��e"i¡h � � eof h �egf�h i§� eof h �lu�e"i¡h ����m�f h �lu9j\i¡h �egf�h i§� ¨ª©X«� ]_m�f h �lu=j\i¡h �od
Therefore,both ¨ª©«3��]�m�f�h �lu9j\i¡h �od , andby a similar ar-
gument, ¨ª©«3�¬]_mB�Xh i¬u=j5�Xh fcd , serve asnew lower bounds
for egf�h i . So we can assign m�f�h i to the larger of these
two quantities. If we rewrite theseformulas in terms
of u�m�f�h i , then we get u�m�f�h i9k¨¯®±°1�¬]a]²uvm�f�h �"d³��j\i¡h �od oruvm�f h i-k´¨-®µ°5�¬]Nj3�h f1�n]²uvmB�h iVdad . This is now very similar
to thematrixmultiplicationformulationof all pairsshort-
estpaths. In fact, usinga known variantof matrix mul-
tiplication in which we substituteoperators]_¨¯®µ°¶`$�·d for]N��`|¸¹d , we cancomputeall of thelower boundinferences
with two matrixmultiplications.

While we have simpleheuristicsfor applyingthesein-
ferencemethodsto optimize measurementorderings,a
provablyrobustsolutionis anopenproblemthatweleave
for future work. We briefly sketch the power of using
inferencesto minimizethenumberof measurementscon-
ductedin SectionIV.

IV. EXPERIMENTAL RESULTS

As aproofof concept,weprototypedacentralizedver-
sion of the embeddingservice. We useda snapshotof
PlanetLabpair-wise latenciesfrom July 12, 2003. Start-
ing from the productionnode list, nodesnot respond-
ing to pingswerefirst removed. As measurementswere



CliqueSize 2 3 4 5 6 7 8 9 10 11 12

0-10mscliques 8/403 5/936 9/1475 17/1645 8/1327 8/771 8/315 3/86 3/14 1/1 0/0
1-10mscliques 35/325 61/501 84/387 60/142 20/20 0/0 0/0 0/0 0/0 0/0 0/0

TABLE I
EMBEDDING LOW LATENCY CLIQUES (NUMBER OF MAXIMAL CLIQUES/TOTAL NUMBER OF CLIQUES).

performed,nodeswith full file systemsand CPU loads
over2.0(measuredwith uptime)werealsoremovedfrom
the list, leaving 118 nodesfor our experiments.All the
searcheswereportonbelow took lessthan30secondson
a1GHzPentium3 processor.

First, we demonstratethe feasibility of embedding
topologieswithin PlanetLabin SectionIV, along with
someintriguing resultsregardingthe lack of certainem-
beddings.Wethenshow theresultsof preliminaryheuris-
tics for adaptiveprobing.

A. FindingLowLatencyCliques

Our first setof experimentssearchesfor variablesize
cliqueswith at most º|» msRTT betweeneachnode(i.e.¼5½¿¾À1ÁgÂ Ã ½�Ä Á�ÅÇÆ »\ÈVº|»XÉ_Ê ). A set of nodesmatchingsucha
topology might be ideal for a tightly synchronizeddis-
tributed protocol requiring quick responsetimes from
peers.We notethatfinding cliquesis alsoa well-known
NP-completeproblem[4], but dueto theirregularnature
of the measuredPlanetLabtopology and the compara-
tively small cliquesizes,we find it is actuallyquiteeasy
to find suchcliquesin practice(thelongestsearchestook
lessthan30 seconds).

The first row of Table I shows the numberof cliques
of eachsizefound,whereeachentry Ë%Ì"Í meansthatthere
are Ë maximalcliquesof thatsizeandÍ is thetotalnumber
of cliquesof thatsize(amaximalcliqueis notasubgraph
of a largerclique). Despite º|» msbeinga low RTT value
for the Internetas a whole, we find many suchcliques
sincePlanetLabnodestendto be well connected.How-
ever, thenumberof maximalcliquesis muchsmallerthan
the total numberof cliques– mostof thesmallercliques
arepartof largerclusters.

Theuniquecliqueof size11foundin TableI only con-
tainednodesfrom six distinctinstitutions.To avoid using
co-locatednodes,we introducea lower boundof º ms,
so

¼5½¿¾À5ÁgÂ Ã ½�Ä ÁHÅÎÆ º"È|º|»ÉBÊ . The resultsof applyingthis re-
strictionto thesearchareshown in thesecondrow of Ta-
bleI. Now, thelargestcliquesizeis 6 andtherearetwenty
feasibleembeddings.However, five institutionsarerep-
resentedin eachof the twenty feasibleembeddings,and
only two otherinstitutionsfill in the remainingposition.
Oneinterpretationof theseresultsis thatthereis lessclus-
teringin thePlanetLabgraphif we look at institutionsin-
steadof nodes.

Our next experimentsextend the searchto find mul-
tiple low latency cliques,keepingthe 1mslower bound,
andaddingtherequirementthatnodesin differentcliques

havebetween20msand50mslatency sothatthecliques
arephysically separated,but not too far apart.FigureIV-
A givesanexampleconstraintmatrix Ï for threegroups
of two nodeseach. Sucha scenariois natural(although
artificially easy)for evaluatingtheeffectivenessof topo-
logicaloptimizationsin anoverlayroutingprotocol.

Number CliqueSize
of Cliques 2 3 4 5 6 7

1 325 501 387 142 20 0
2 6898 6238 1004 0 0 0
3 12950 0 0 0 0 0
4 0 0 0 0 0 0

TABLE II
EMBEDDING MULTIPLE CLIQUES.

TableII shows the numberof embeddingsfor various
numbersof cliquesandcliquesizes.Curiously, thereare
very few waysto embedmultiple separatecliqueswithin
PlanetLab. This may have significant implications for
PlanetLabresearcherswho value suchembeddingsand
could inform future nodeplacementsin order to widen
thisspaceof embeddings.

B. InformedProbing

Our final experimentsshow thepotentialof somesim-
ple heuristicsfor adaptive probing. The initial measure-
ment matrix was constructedby min-filtering a set of
threeping measurementsalongeachend-to-endpath to
limit the impactof traffic burstsandotheroutlying mea-
surements. A few entriesin the resultingmatrix were
missingdueto measurementfailures,so thecorrespond-
ing nodeswereremoved. We thenremovedthesmallset
of triangle inequalityviolations from the datasetin two
steps. Most violationswereminor andwereeliminated
simply by quantizingthe measuredRTTs (roundingup
RTTs to multiplesof 5 ms). Nodeswhich continuedto
violatethetriangleinequalityon at leastoneneighboring

Ð ÑgÒcÑ~Ó ÐÕÔVÒ�Ô$Ñ|Ó Ð Ö|ÑoÒ²×|Ñ|ÓØÐ Ö|ÑgÒ¿×VÑ~ÓÙÐ ÖVÑoÒ¿×|Ñ~ÓÇÐ Ö|ÑoÒ¿×|Ñ|ÓÐÕÔVÒ�Ô$Ñ~Ó Ð ÑoÒ¿Ñ~Ó Ð Ö|ÑoÒ²×|Ñ|ÓØÐ Ö|ÑgÒ¿×VÑ~ÓÙÐ ÖVÑoÒ¿×|Ñ~ÓÇÐ Ö|ÑoÒ¿×|Ñ|ÓÐ Ö|ÑgÒ¿×|Ñ~ÓÇÐ ÖVÑoÒ¿×|Ñ~Ó Ð ÑoÒ¿Ñ~Ó ÐÕÔVÒ¡Ô$Ñ~Ó Ð ÖVÑoÒ¿×|Ñ~ÓÇÐ Ö|ÑoÒ¿×|Ñ|ÓÐ Ö|ÑgÒ¿×|Ñ~ÓÇÐ ÖVÑoÒ¿×|Ñ~Ó Ð ÔXÒ¡Ô$Ñ~Ó Ð ÑgÒcÑ|Ó Ð ÖVÑoÒ¿×|Ñ~ÓÇÐ Ö|ÑoÒ¿×|Ñ|ÓÐ Ö|ÑgÒ¿×|Ñ~ÓÇÐ ÖVÑoÒ¿×|Ñ~ÓÙÐ Ö|ÑoÒ²×|Ñ|ÓØÐ Ö|ÑgÒ¿×VÑ~Ó Ð ÑoÒcÑ~Ó Ð ÔXÒ¡Ô'Ñ~ÓÐ Ö|ÑgÒ¿×|Ñ~ÓÇÐ ÖVÑoÒ¿×|Ñ~ÓÙÐ Ö|ÑoÒ²×|Ñ|ÓØÐ Ö|ÑgÒ¿×VÑ~Ó ÐÕÔVÒ�Ô$Ñ|Ó Ð ÑoÒcÑ~Ó
Fig. 1. A clusteredconstraintmatrix for threecliquesof two nodes.
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Fig. 2. Benefitsof inferenceandadaptive probing.

triple werethrown outof thedataset.Theresultingmatrix
hadcompleteall-pairsdatafor 45 nodes.

We comparedvarious simple heuristicsagainst per-
forming all Û Ü Ý~Þ measurementsin randomorderandshow
that theseheuristicssignificantlylower ßáà ârã . We simu-
latedadaptive probingby startingwith a blank inference
matrix andfilling in measurementresultsoneentry at a
time. Asabaseline,arandompermutationof the Û Ü Ý Þ pairs
of nodeswaschosen.For eachpair of nodes,the corre-
spondingmeasurementwas then enteredinto the infer-
encematrix andinferenceswereperformedasdiscussed
in SectionIII. If thecorrespondingmeasurementhadal-
readybeenderived,i.e. ä%å�æ çlè<é�å�ê ç , thenthemeasurement
wasskipped.Weconsideredthefollowing heuristics:

Lar gest Range. Measurementson edgeswith the
largestrange( ä%å�æ ç1ë�é�å�æ ç ) weregivenprecedence,breaking
tiesin favor of smallerlowerbounds.

SmallestLower Bound. Measurementsonedgeswith
thesmallestlower boundsweregivenprecedence,break-
ing tiesin favor of largerranges.

FigureIV-B shows theresultsof this experiment,plot-
ting ßáà â�ã as the measurementsprogress. Both of
our heuristicsperform significantly better than random
choicesfor the first hundredor so measurements.How-
ever, SmallestLowerBoundfaltersthereafterandis even-
tually surpassedby the randomchoicemethod. Largest
Rangeconsistentlyachievesthelowest ßáà â�ã values,and
hastwo abrupttransitionsin its slope.Weconjecturethat
thesechangesmayberelatedto thedistribution of RTTs,
but this remainsa topic for furtherstudy.

V. SUMMARY AND FUTURE DIRECTIONS

As use of wide-areaInternet testbedsmaturesas an
experimentalmethodology, servicesfor performingpre-
dictableandrepeatableexperimentswill be required. In
this paper, we focusedon thetheoreticalfoundationsof a
topologyembeddingservicebasedon constraintsatisfac-
tion. Our approachallows us either to selecta feasible

embeddingof an experimentalspecificationin a wide-
areatestbedor to samplefrom the set of feasibleem-
beddings.Althoughtheseproblemsareintractablein the
worst-case,theheuristicmethodswe proposearepracti-
cal for probleminstancesof moderatesize.

An effective embeddingservicecanalsoexploit con-
nections betweensearchingand conducting measure-
ments. Our proposedinferencetechniquesreducethe
numberof measurementsrequiredto discover a partic-
ular embeddingby allowing the searchto inform how
andwhenmeasurementsaremade.Meanwhile,measure-
mentsperformedcan guide the searchtowards regions
wherefeasibleembeddingsarelikely to befoundwith the
fewestmeasurements.

A numberof importantimplementationissuesremain
for future investigation. Thesechallengesincludedeal-
ing with large topologies,developingdistributedmecha-
nismsfor finding feasibleembeddings,developingcon-
straint specificationsand searchmethodsthat allow ap-
proximateresults,and integrating with existing testbed
toolsandservices.
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