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Abstract— Today’s networking community is becoming
increasingly skeptical of the significanceof reseach results
foundedwholly upon experimentalresultsconductedin sim-
ulation. Now, with the availability of wide-areadistrib uted
testbedssuch as PlanetLab, it is feasible to move beyond
evaluation by simulation, and to perform wide-area exper
iments acrossthe Inter net asan alternative. However, while
use of a distrib uted testbed affords much greater realism
than a network simulation, there is a significant downside,
astight control over one’s experimentsis relinquished.

We arguethat providing servicesfor distrib uted testbeds
that capture aspectsof the specifiable, repeatable behav-
ior implicit in simulation and emulation will be an integral
componentof next-generationtestbeds.As a casestudy, we
considerthe following problem: given a desired end-system
topology consistingof a setof pairwise constraints (such as
upper and lower bounds on bandwidth and delay), locate a
representative subtopologywithin a wide-area testbedthat
satisfiesthose constraints. Previous work on Netbed ad-
dressesvide-areaembeddingproblemsof this form usingan
optimization framework, whereaswe employ constraint sat-
isfaction. We discussthe relative merits of theseapproaches,
outline the theoretical foundations of a distrib uted service
that providesa synemy betweenadaptive network measuie-
ments and the embedding process,and report on prelimi-
nary experimentalresultsconductedon PlanetLab.

I. INTRODUCTION

Networking researcherprimarily employ threeexper
imental methodologies:simulation, emulation,and ob-
senation of live deploymentsacrosghe wide-arealnter-
net. While the currentstateof the art in simulationand
emulationadmits elaboratescenariosand has advanced
rapidly over the pastdecadethe currentbestpracticein
conductinglnternet-wideexperimentsis ratherprimitive
in comparison.One of the strengthsof both simulation
andemulationis the degreeof controlwhich aresearcher
canexert over an experiment. As a result, onecanpre-
scribe a specific set of test conditions, can run an ex-
perimentrepeatedly(and repeatably!),and can be con-
fident that resultsare not distortedby external factors.
But the mainweaknes®f theseapproachess closelyre-
lated to their main strength: control is not easily relin-
quishedto a realisticmodelof the Internet,sincesucha
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model doesnot exist [3], [2]. Thus, simulatedscenar
ios are often opento criticism for being overly artificial
or simplistic. It is this point which compelsnetworking
researcherto performwide-areaexperimentswheneer
feasible,since wide-areaexperimentationenablesthem
to testtheir methods'in the wild” ratherthanagainsta
model.

Historically, obtaining accessto a large set of dis-
tributed nodeshasbeena barrierto Internetexperimen-
tation on ary significantscale. The communityhasre-
spondedo this challengewith a numberof efforts cur
rently in progresgo build large-scalewidely deployed,
Internettestbedssuchas PlanetLab[8]; andin develop-
ing emulationervironmentsthatincorporateconnections
acrossthe wide-area,suchasNetbed[12]. Deploying a
large-scalenetworking testbed however, is only a start-
ing point. In particular thewide-areanetwork conditions
betweerend-systemeeflectinstantaneoukternetusage,
and unlike simulationor emulationenvironments,these
conditionscannotcurrently be configured,customized,
nor tightly controlled. This lack of control canleave re-
searchersonging for the comfortsof simulation,suchas
specifiablepredictableandrepeatabldehaior.

The contrastingmerits of simulation and emulation
versughe useof testbedsnotivateusto considemwhether
thebestfeaturesof eachcanbecombined We view simu-
lationandemulationervironmentsasofferingresearchers
a “blank slate” on which they cancraft their experimen-
tal set-updown to fine details. In contrast,mary rele-
vant parameterf a testbedconfigurationare fixed in
adwanceand are outsidethe experimenters direct con-
trol. However, all is not lost, asthe experimenteroften
hasthe ability to determineor estimateparameter®f a
wide-areatestbedby conductingmeasurements. Also,
it seemdikely thattestbedswill soonscaleto sizesthat
couldbeordersof magnituddargerthanatypical (small)
experiment. Therefore,in the nearfuture, a researcher
maywell have the ability andflexibility to selectasubset
of nodesfrom the testbedthat satisfydesiredparameters
of agiventestconfiguration.

Currently the defactoselectionpracticeon a platform
suchas PlanetLabis to hand-picknodesand links with
the“right” characteristicsatime-consumingndtedious
practice.An experimentennthis platformmusthopethat

1Arguablyit is thejob of anunderlayservice,andnot the individual
experimenterto conductthesemeasurementssarticulatedn [6].



an appropriateselectionof nodescurrently exists, locate
it, andconductthe experiment(while it still exists!). This
illustratesoneadwantageof the simulationandemulation
approaches— given a sufiiciently large blank slate, al-

mostary experimentmay be crafted. Indeed,an auto-
matedversionof mappingandselectiontools arealready
anintegral partof the Netbedemulationenvironment[12]

(discussedbelow), giving a Netbedexperimentethecon-
venienceof “just specifyinga scenario”.Our work advo-

catesa similar approacito thatimplementedn Netbed,
albeit with a different methodologyfor specifyingcon-
straints,conductingmeasurementsnddirectingsearch.

In building aframeawork for automatedmbeddinger
vices we decomposehe issuesinto three categories:
topology specificationtestbedcharacterizationandem-
beddingdiscovery. First, a researchemust concisely
specify the relevant experimentalparameterse.g. the
allowable valuesfor metricsappliedto eachend-to-end
path. Secondthe currentconditionsof the testbedmust
besuficiently well characterizetb determinevhetheror
not a specificembeddingneetsthe specifiedparameters.
Finally, the resultingcharacterizationf the testbedmust
besearchedor anembeddingnatchingthe specification.
While theseareconceptuallydifferentstepswe ernvision
asynegistic relationbetweerthemin practice.In partic-
ular, our framework allows for the specificationtogether
with a searchin progressto guide additional measure-
mentsfor characterization.Simultaneouslythe current
characterizatiosanguidediscoverytowardsembeddings
thatmayberealizedwithout additionalmeasurements.

Individually, eachof thesecateyorieshasbeenconsid-
eredin its own right. Extensve experiencewith simula-
tion andemulation(e.g. ns2[7] andNetbed[12] respec-
tively) has developedsophisticatednterfacesand tools
for topology specification. We adwocateeither reusing
or extendingthesemethodsfor our studyasappropriate.
The metric-inducednetwork topology (MINT) frame-
work [1] providesanothertool for describingand char
acterizingtopologiesby abstractingaway low-level path
detailswhile still capturingthe characteristicef end-to-
endpathsandtheir interactionswith eachother

On the measuremenrgide, thereis considerablditera-
ture abouthow to performmeasurement® characterize
anentirenetwork (e.g.[10]), but relatively little aboutex-
tractingkey detailsandproviding thosedetailsaspart of
a service. The recent“underlay” proposal[6] motivates
sharednfrastructurefor issuessuchasrouting decisions
in overlay networks. This sameapproachs equallyuse-
ful for testbedcharacterizationespeciallywhen shared
acrosgnultiple experimentgunningon thetestbed.

Theproblemof identifying suitableembedding®sf test
topologiesin emulationervironmentshasbeena primary
focusof Netbed12], [11], [9]. Ricci, Alfeld andLepreau
describethe designof a solver for the problemof map-
ping a (potentially very large) desiredexperimentalsce-
nario onto a testbedof smallerscale[9]. Variantsof this

solver (wanassi gn for wide-areanetworksin [12] and
wirelessnetworksin [11]) aredirectedat the samegen-
eral problemwe consider:mappinga testtopologywith
a setof userspecifiedwide-areaconstraintoonto a setof
physical nodes. Their solver usesoptimizationmethods
to identify a topology minimizing an appropriatelycho-
sendistancdunctionbetweertheattributesof thedesired
topologyandtheselectedopology This optimizationap-
proachcontrastwith the constaint satisfactiorapproach
we employ, which we ague affords a numberof adwan-
tagedor thisapplication.First,anoptimizationapproach
requiregheuserno choosdherelatveimportanceof each
link attribute to definean appropriatenotion of distance
betweentopologies. In contrast,with a constraintsatis-
faction approach,an experimentercan simply realizea
binary yes-noguaranteeon a set of experimentalcon-
ditions in which the error toleranceis prescribedn ad-
vance. A secondadwantageof constraintsatisactionis
thatit readilyallows statisticalsamplingfrom the spaceof
satisfiableembeddingswhich canbe usefulin assessing
representatie outcomeskFinally, a constraintsatisaction
approactcanadmita moreparsimoniousiseof measure-
mentsthanoptimization,asit may be relatively easierto
conductfewer total measurementto find a satishctory
embeddinghanto find the “best” embedding.

The remainderof this paperproceedsasfollows. We
first developaconstraint-basegroblemstatemenin Sec-
tion Il anddiscusshoththe computationatomplexity of
theembeddingliscovery problemandpracticalheuristics
for reducingand managingcompleity. Sectionlll then
examinegestbedharacterizatioandmethoddor reduc-
ing thenumberof measuremenigerformed.Finally, Sec-
tion IV presentshe resultsof several proof-of-concept
experimentsconductedn PlanetLab

Il. EMBEDDING EXPERIMENTAL TOPOLOGIES IN
TESTBEDS

We now introduceour topologyembeddingramewvork
andsketchmethoddor practicalimplementation.

A. ProblemStatement

Supposeve have a desiredembeddingconsistingof &
nodesand their incidentlinks. Startingfrom the same
formulation consideredn wanassi gn [12], we spec-
ify the desiredembeddingasa k x k constaint matrix
C = {ci;} wherec;; definesa setof constraintson
the interconnectiorbetween; and j. In practice,con-
straintsarelik ely to bevectorscharacterizingverlaylink
attributesacrossa setof differentdimensions Our meth-
odsapplyto comple, multi-attribute constraintsandcan
alsoincorporatethe placementof additional constraints
on nodesratherthanlinks. For simplicity in the techni-
cal discussiorhowever, we will discussconstraintsak-
ing the form of an upperand lower boundon a single
metric, measuredound-triptime (RTT). The constraint



ci,j = [li,j, hi,j] In sucha specificationrequiresthat we
embednodes andj asnodesz andy in thetestbedsuch
thatl; ; < d(z,y) < h;j;, whered(z,y) is themeasured
RTT. If theRTT betweera pair of nodess notimportant,
onemayusetheentry[0, co] to matchary lateng.
Complementingour specificationis a matrix charac-
terizing the n-node testbedtopology We describethe
resultof measurementthat have beenconductedn an
n x n inferencematrix M. M is composedf entries
m;,;j, eachof which is again arangell; ;, h; ;], but each
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m;,; boundsthe measued RTT betweerrealnodes; and

experimentsinvolving hundredsof nodes. For example,
large constraintmatriceswill typically have both recur

sive structureandsparsitywhich we exploit in Sectionll-

B to speedup search.

B. Seach Stratggies

We now discusssearchstratgiesfor discosering em-
beddings.Sincethe embeddingproblemis NP-complete,
we cannot guaranteeworst-caseperformancesubstan-
tially betterthanbruteforcesearchNeverthelessin prac-

j. In theeventwe canconductend-to-endneasurements tice, our methodsare effective for testbedtopologiesup

betweena pair of nodes: andj, we assumehatwe can
usetheseto specifythe entry m; ; tightly, i.e. suchthat
l;; = hi; However, in mary situations,conducting
measurementir all pairs may be impracticalor infea-
sible, sotight boundson m; ; may not be known. Later,

in Sectionlll we discussmethods(specificallyapplica-
ble to delay constraints)that enableus to infer bounds
on mary m; ; entriesfrom a much smallersetof mea-
surements. This allows us to be selectve with respect
to conductedmeasurementsSince our embeddingser

vice is compatiblewith aninexactcharacterizationf the

underlyingtopology we needonly conducta setof mea-
surementshat characterizehe topology suficiently well

to locatea desiredembedding.The connectiornbetween
constraintsand inferencesdravn from measurements

capturedn thefollowing definition, which motivatesour

problemstatements.

Definition 1—FeasibleEmbedding: Givenaconstraint
matrix C, and an inferencematrix M associatedvith a
graph@G, afeasibleembeddings a one-to-onemapping
f fromthe k specificatiomodedto & of the verticesin G
}szuchthatfor alliandj, ; ; < l}(i)’f(j) < h’f(i)’f(].) <
’\J/Ve now considetthe following naturalproblems.

Probleml—Locatinga FeasibleEmbedding: Given a
constraintmatrix C and an inferencematrix M on G,
searcHor afeasibleembeddingf C ontoG.

Problem2—Samplindrom FeasibleEmbeddings:
Given a constraintmatrix C andan inferencematrix M
on G, selectan embeddingof C onto G uniformly at
randomfrom the spaceof feasibleembedding®f C onto
G.

Beforewe proceedwe confirmthe readers suspicion
thatthe problemswve have motivatedhave highworst-case
compl«ity. Indeed,in the simple casein which thein-
ferencematrix and constraintmatrix consistof 0/1 val-
uesandrepresentdjacencieand non-adjacencieghen
finding a feasibleembeddingis equialent to the sub-
graphisomorphismproblem,awell-known NP-complete
problem[4]. Also, from well-knovn connectionsbe-
tween samplingand counting, the secondproblem we
consideris f{P-complete. However, in practice,we find
thatmary interestingprobleminstanceslonotlie closeto
the boundaryof solubility andinsolubility, andfor these
instancestheheuristicave describecaneasilyscaleupto

throughat leasthundredf nodes.

A naive brute force approachto discosering embed-
dings considerseach of the (Z) setsof k real nodes,
and comparesachpermutationto seewhetherit satis-
fies the entriesin the constraintmatrix. Sucha method
takesO ((;)k!k?) time, While this is clearlyimpractical
by itself, our proof of conceptimplementationis based
on sucha simple enumeratiorusing depth-firstsearch.
Coupledwith variouspruningmethodsthisenumeration-
basedapproachcanbe practicalfor discovering feasible
embedding®n currenttestbedsaswill be demonstrated
in SectionlV.

Thefirst pruningmethodwe consideredimsto reduce
thenumberof setsof realnodesenumeratedHere,asim-
pleideais quite powerful in practice- if the partial setof
nodeschosenso far cannotbe embeddednto the con-
straintmatrix, thenprunethe searchat that point. These
partial embeddingscan be computedincrementallyand
are essentiallysmallerinstancesof the original embed-
ding problem.

The secondpruning methodis baseduponthe obser
vationthatmary simple constraintmatriceshave a regu-
lar structurethat allows multiple equivalentmappingsof
constraintsonto the sameset of real nodes. By reduc-
ing thesesetsof equivalentmappingdetweerconstraints
and the nodesin the testbedto a single representati,
the searchspacecanbe substantiallyreduced.The prun-
ing methodwe applyleveragessonceptsrom groupthe-
ory, namelyautomorphisngroups. Briefly, an automor
phismis a renamingof nodeswhich preseresthe struc-
ture, which in this caseis the constraintmatrix C. By
computingtheautomorphisngroupof C, we canidentify
equialentnodeswithin C and reducethe searchspace
looking for embeddingsnto C' accordingly While it is
not known whetherautomorphismgroupscan be com-
putedin polynomialtime (it is well known to be equi-
alentto graphisomorphism),the fastestpracticalgraph
isomorphisnprogramscanhandlegraphswith thousands
of nodes.Oneof these Nauty[5], alreadyusesautomor
phismsasa meansof pruningits searchree.

As suggestedn Sectionll-A, our searchmethodsdo
notrequirethe precisevaluesof metricson overlaypaths.

INFERENCES FROM TESTBED MEASUREMENTS



If we caninfer sufficiently tight boundsona paths actual
valuefrom asetof othermeasurementsye canavoid per
forming measurementslongthatpath. Therefore anim-
portantresearchlirectionrelatedto searchis thatof min-
imizing the numberof measurementseededo locatea
candidatetopology Here, we formalize and motivate a
setof suchinferenceproblemshatareindependensf the
underlyingmetric, and then considerinferencemethods
specificto delayconstraints.

A. OptimizingMeasuementOrderings

We first assumethat conductinga measurementver
agivenoverlayedge(i, j) givesusthevalued; ; anden-
ablesustoseth; ; = I; ; = d; ;. In practice thisnotionof
conductinggmeasurememnnightentailsendinganumber
of probes.Next, we definethefollowing quality measure
on inferencematrices noting that mary otheralternatve
measuregrealsoreasonable.

Definition2: For a giveninferencematrix M, we say
thatthemeanrange of M is

) = 3030
i g

Definition3: Given a setof measurementand a set
of deterministidnferencemethodstheminimalinference
matrix is the uniqueinferencematrix with minimal mean
rangethatis consistentvith the measurementandinfer-
encemethods.

This motivatesthe following problemin choosinga
measuremendrdering,which we stateinformally, aswe
donotpresentry theoreticakesults.Experimentsvhich
demonstrat¢he effectivenesof emplgying heuristicsfor
this problemwith respecto lateng aredescribedn Sec-
tion V.

Problem3: Givenasetof inferencemethodsanda set
of alreadyconductedmeasurementd, ds,...d,, effi-
ciently selectmeasuremend,,; suchthat the resulting
minimal inferencematrix M minimizesthe expectation
of u(M).

B. InferenceTechniques

We now sketch deterministicinferencemethodsspe-
cific tolateng constraintéo motivateour ability to derive
goodboundsninferencematrixentrieswhile conducting
far fewer than (Z) measurementgassumingsymmetry
and no self measurements)Thesemethodsassumehat
lateng followsthetriangleinequality d; ; < d; x + di. ;.

Our measurementsndicate that the percentageof
triples of PlanetLabend-systemshat violate the triangle
inequalityis approximately4.4%, a valuethatis consis-
tent with other recentmeasurementsThe methodswe
presentater in this sectiongeneralizeto usevariousre-
laxationsof the triangleinequality Onesuchrelaxation
is to assumehatd; ; < a(d;x + dk,;) + b, for constants

a > 1 andb > 0. For example,the numberof viola-
tions on PlanetLabis lessthan1% of all triples with ei-
thera = 1.15 andb = 1 msora = 1.09 andb = 5 ms.
However, we alsonotethattherea handfulof individual
triplesthatbadlyviolatethetriangleinequality andthese
might have to be monitoredandhandledseparately

Our methodsfirst decomposehe inferencematrix M
into two separateipperandlower boundmatricesH and
L, composeaf entriesh; ; andl; ; respectiely. We per
form inferenceson thesematricesseparately Inferences
onthe H matrix arestraightforvard: givenmeasurements
d; ; andd; ., we canapplythetriangleinequalitydirectly
to seth; x, = d; j + d; k. if thisreduceghevalueof h; .
Similarly, recursve applicationsof this rule allow usto
seth;, = hs; + hj i if thisimprovesh; i. In fact,all of
the upperboundsin the minimal inferencematrix canbe
obtainedefficiently by running an algorithmfor the Al
Pairs ShortestPaths (APSP) problemon the H matrix.
To do so, we initialize the h; ; entriesto d; ; whend; ;
is known andoo otherwise thenusetheseh; ; entriesas
link weightsin the APSPcomputationUponcompletion,
the APSPmatrix is our new upperboundmatrix H.

Ourmethodfor derving boundson L is somevhatless
obvious. As with the H matrix, we initialize entriesin
L wherewe have conductedneasurement® thosemea-
suredvalues. The remainingentriesare setto zero. We
thennotethatby thetriangleinequality for all 4, j, &:

dij+djx > dig
dij > dig—djx>lix—hjr
dijj > max Lk —hjk)

Therefore,both maxy, (1; x — hj ), andby a similar ar-
gument,maxy, (Ix,; — hk,;), Serne asnew lower bounds
for d; ;. So we canassigni; ; to the larger of these
two quantities. If we rewrite theseformulasin terms
of —1; ;, thenwe get —I; ; = miny ((—l; k) + hjx) OF
—l;,; = ming (hg; + (—lk,;)). Thisis now very similar
to thematrix multiplicationformulationof all pairsshort-
estpaths. In fact, usinga known variantof matrix mul-
tiplication in which we substituteoperatorgmin, +) for
(+, -), we cancomputeall of the lower boundinferences
with two matrix multiplications.

While we have simpleheuristicsfor applyingthesein-
ferencemethodsto optimize measuremenobrderings,a
provably robustsolutionis anopenproblemthatwe leave
for future work. We briefly sketch the power of using
inferencego minimizethenumberof measurementson-
ductedin SectionlV.

IV. EXPERIMENTAL RESULTS

As aproofof conceptwe prototypedacentralizedver
sion of the embeddingservice. We useda snapshobf
PlanetLabpairwise latenciesfrom July 12, 2003. Start-
ing from the productionnode list, nodesnot respond-
ing to pingswerefirst removed. As measurementaere



| CliqueSize | 2 3 4 5

6 7 8 9 10 11 12|

0-10mscliques | 8/403

5/936 9/1475 17/1645 8/1327 8/771 8/315 3/86 3/14 1/1 0/0

1-10mscliques

35/325 61/501 84/387 60/142

20/20  0/0 0/0 0/0 0/0 0/0 o0/0

TABLE |
EMBEDDING LOW LATENCY CLIQUES (NUMBER OF MAXIMAL CLIQUES/TOTAL NUMBER OF CLIQUES).

performed,nodeswith full file systemsand CPU loads
over2.0(measuredvith uptime)werealsoremovedfrom
thelist, leaving 118 nodesfor our experiments. All the
searchesve reporton below took lessthan30 second®n
a1GHzPentium3 processar

First, we demonstratethe feasibility of embedding
topologieswithin PlanetLabin SectionlV, along with
someintriguing resultsregardingthe lack of certainem-
beddings We thenshaw theresultsof preliminaryheuris-
tics for adaptve probing.

A. Finding Low LatencyCliques

Ouir first setof experimentssearchedor variablesize
cligueswith atmost10 ms RTT betweereachnode(i.e.
Vizj(ci; = [0,10])). A setof nodesmatchingsucha
topology might be ideal for a tightly synchronizeddis-
tributed protocol requiring quick responsetimes from
peers.We notethatfinding cliquesis alsoa well-known
NP-completeproblem[4], but dueto theirregularnature
of the measuredPlanetLabtopology and the compara-
tively small clique sizes,we find it is actuallyquite easy
to find suchcliquesin practice(thelongestsearchesook
lessthan30 seconds).

The first row of Table!l shavs the numberof cliques
of eachsizefound,whereeachentrya /b meanghatthere
aree maximalcliquesof thatsizeandb is thetotalnumber
of cliquesof thatsize(a maximalcliqueis notasubgraph
of alargerclique). Despitel0 msbeingalow RTT value
for the Internetas a whole, we find mary suchcliques
sincePlanetLabnodestendto be well connected.How-
ever, thenumberof maximalcliquesis muchsmallerthan
the total numberof cliques— mostof the smallercliques
arepartof largerclusters.

Theuniquecliqueof sizellfoundin Tablel only con-
tainednodesfrom six distinctinstitutions.To avoid using
co-locatednodes,we introducea lower boundof 1 ms,
S0V;xj(ci; = [1,10]). Theresultsof applyingthis re-
strictionto the searchareshawn in the secondrow of Ta-
blel. Now, thelargestcliquesizeis 6 andtherearetwenty
feasibleembeddings However, five institutionsarerep-
resentedn eachof the twenty feasibleembeddingsand
only two otherinstitutionsfill in the remainingposition.
Oneinterpretatiorof theseresultss thatthereis lessclus-
teringin the PlanetLalgraphif we look atinstitutionsin-
steadof nodes.

Our next experimentsextend the searchto find mul-
tiple low lateng cliques,keepingthe 1mslower bound,
andaddingtherequirementhatnodesn differentcliques

have betweer20 msand50 mslateng sothatthecliques
arephysically separatedput nottoo far apart. FigurelV-

A givesanexampleconstraintmatrix C for threegroups
of two nodeseach. Sucha scenarias natural(although
artificially easy)for evaluatingthe effectivenesf topo-
logical optimizationsin anoverlayrouting protocol.

Number CliqueSize
of Cliques 2 3 4 5 6 7
1 325 501 387 142 20 O
2 6898 6238 1004 O O O
3 12950 O 0 0 0 O
4 0 0 0 0 0 O
TABLE Il

EMBEDDING MULTIPLE CLIQUES.

Tablell showvs the numberof embeddinggor various
numbersof cliguesandclique sizes.Curiously thereare
very few waysto embedmultiple separateliqueswithin
PlanetLab This may have significantimplications for
PlanetLabresearchersvho value suchembeddingsand
could inform future node placementsn orderto widen
this spaceof embeddings.

B. InformedProbing

Our final experimentsshaw the potentialof somesim-
ple heuristicsfor adaptve probing. Theinitial measure-
ment matrix was constructedby min-filtering a set of
threeping measurementalong eachend-to-endpathto
limit the impactof traffic burstsandotheroutlying mea-
surements. A few entriesin the resulting matrix were
missingdueto measuremerfailures,sothe correspond-
ing nodeswereremoved. We thenremovedthe small set
of triangle inequality violations from the datasetin two
steps. Most violations were minor and were eliminated
simply by quantizingthe measuredRTTs (roundingup
RTTs to multiplesof 5 ms). Nodeswhich continuedto
violatethetriangleinequalityon at leastoneneighboring

[0,0] [1,10] [20,50] [20,50] [20,50] [20,50]
[1,10]  [0,0] [20,50] [20,50] [20,50] [20,50]
[20,50] [20,50] [0,0]  [1,10] [20,50] [20,50]
[20,50] [20,50] [1,10]  [0,0] [20,50] [20,50]
[20,50] [20,50] [20,50] [20,50] [0,0]  [1,10]
[20,50] [20,50] [20,50] [20,50] [1,10]  [0,0]

Fig.1. A clusterecconstraintmatrix for threecliquesof two nodes.
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Fig. 2. Benefitsof inferenceandadaptve probing.

triple werethrown out of thedatasetTheresultingmatrix
hadcompleteall-pairsdatafor 45 nodes.

We comparedvarious simple heuristicsagainst per
forming all (’2”) measurements randomorderandshov
thattheseheuristicssignificantlylower p(M). We simu-
latedadaptve probingby startingwith a blankinference
matrix andfilling in measurementesultsoneentry at a
time. As abaselinearandompermutatiorof the(g) pairs
of nodeswaschosen.For eachpair of nodes,the corre-
spondingmeasurementvas then enteredinto the infer-
encematrix andinferenceswvere performedasdiscussed
in Sectionlll. If the correspondingneasuremerttadal-

readybeenderved,i.e. h; ; = [; ;, thenthemeasurement

wasskipped.We consideredhefollowing heuristics:

Largest Range. Measurement®on edgeswith the
largestrange(h; ; —; ;) weregivenprecedenceyreaking
tiesin favor of smallerlower bounds.

SmallestLower Bound. Measurementsn edgeswith
the smallesower boundsweregivenprecedencdyreak-
ing tiesin favor of largerranges.

FigurelV-B shows theresultsof this experiment plot-
ting u(M) as the measurementprogress. Both of
our heuristicsperform significantly better than random
choicesfor the first hundredor so measurementsHow-
ever, Smallest. owerBoundfaltersthereafteandis even-
tually surpassedby the randomchoicemethod. Largest
Range consistentlyachievesthelowesty (M) values,and
hastwo abrupttransitionsn its slope.We conjecturehat
thesechangesnay berelatedto thedistribution of RTTs,
but this remainsatopic for furtherstudy

V. SUMMARY AND FUTURE DIRECTIONS

As use of wide-arealnternettestbedsmaturesas an
experimentalmethodology servicesfor performingpre-
dictableandrepeatablexperimentswill berequired.In
this paperwe focusedon the theoreticafoundationsof a
topologyembeddingservicebasedn constraintsatishc-
tion. Our approachallows us eitherto selecta feasible

embeddingof an experimentalspecificationin a wide-
areatestbedor to samplefrom the set of feasibleem-
beddings.Althoughtheseproblemsareintractablein the
worst-casethe heuristicmethodswe proposeare practi-
calfor probleminstance®f moderatesize.

An effective embeddingservicecan also exploit con-
nections between searchingand conducting measure-
ments. Our proposedinferencetechniquesreducethe
numberof measurementsequiredto discover a partic-
ular embeddingby allowing the searchto inform how
andwhenmeasuremen@remade.Meanwhile,measure-
mentsperformedcan guide the searchtowards regions
wherefeasibleembeddingsirelik ely to befoundwith the
fewestmeasurements.

A numberof importantimplementatiorissuesremain
for future investigation. Thesechallengesnclude deal-
ing with large topologies,developingdistributed mecha-
nismsfor finding feasibleembeddingsdeveloping con-
straint specificationsand searchmethodsthat allow ap-
proximateresults,and integrating with existing testbed
toolsandservices.
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