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10 Conclusion

The Internet requires fast switches and routers to handle the increasing congestion. One emerging strategy to

achieve this is to merge the strengths of ATM and IP; building IP routers around high speed cell switches. Current

cell switches can employ shared output queueing due to relatively low bandwidths. Unfortunately, the growth in

demand for bandwidth far exceeds the growth in memory bandwidth, making it inevitable that switches will main-

tain queues at their inputs. We believe that these switches will use virtual output queueing, and hence will need

fast, simple, fair and efficient scheduling algorithms to arbitrate access to the switching fabric.

To this end, we have introduced theiSLIP algorithm; an iterative algorithm that achieves high throughput, yet

is simple to implement in hardware and operate at high speed. By using round-robin arbitration,iSLIP provides

fair access to output lines and prevents starvation of input queues. By careful control of the round-robin pointers,

the algorithm can achieve 100% throughput for uniform traffic. When the traffic is non-uniform, the algorithm

quickly adapts to an efficient round-robin policy among the busy queues. The simplicity of the algorithm allows

the arbiter for a 32-port switch to be placed on single chip, and to make close to 100million arbitration decisions

per second.
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We are preparing a second paper that focusses on the implementation of the algorithm, but it suffices here to

make the following observations. First, the area required to implement the scheduler is dominated by the 2N pro-

grammable priority encoders. The number of inverter equivalents required to implement the programmable prior-

ity encoders for prioritized-iSLIP is shown in Table 1.1 The number of gates for a 32-port scheduler is less than

100,000 making it readily implement in current CMOS technologies, and the total number of gates grows approx-

imately with . We have observed in two implementations that the regular structure of the design makes routing

relatively straightforward. Finally, we have observed that the complexity of the implementation is (almost) inde-

pendent of the number of iterations. When multiple iterations are used, the number of arbiters remain unchanged.

The control overhead necessary to implement multiple iterations is very small.

In some implementations, it may be desirable to reduce the number of arbiters, sharing them among both the

grant and accept steps of the algorithm. Such an implementation requiring only N arbiters2 is shown in Figure 22.

When the results from the grant arbiter have settled, they are registered and fed back to the input for the second

step. Obviously each arbiter must maintain a separate register for thegi andai pointers, selecting the correct

pointer for each step.

1.These values were obtained from a VHDL design that was synthesized using the Synopsis design tools, and compiled for the Texas
Instruments TSC5000 0.25µm CMOS ASIC process. The values for regular iSLIP will be smaller.

2.A slight performance penalty is introduced by registering the output of the grant step and feeding back the result as the input to the accept
step. This is likely to be small in practice.

Switch Size (N)
Number of inverter

equivalents per arbiter

Total number of
inverter equivalents

for N arbiters

4 274 2,194

8 384 6,148

16 642 20,560

32 1,210 77,440

64 2,420 154,848

128 4,591 587,648

Table 1  Number of inverter equivalents required to implement 1 andN arbiters for a prioritized-
iSLIP scheduler, with four levels of priority.

N2
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Figure 21 shows how 2N arbiters (N at each input andN at each output) and anN2-bit memory are intercon-

nected to construct aniSLIP scheduler for an  switch. The state memory records whether an input queue is

empty or non-empty. From this memory, anN2-bit wide vector presentsN bits to each ofN grant arbiters, repre-

sentingStep 1—Request. The grant arbiters select a single input among the contending requests, thus implement-

ing Step 2—Grant. The grant decision from each grant arbiter is then passed to theN accept arbiters, where each

arbiter selects at most one output on behalf of an input, implementingStep 3—Accept. The final decision is then

saved in a decision register and the values of thegi andai pointers are updated. The decision register is used to

notify each input which cell to transmit and to configure the crossbar switch.
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As illustrated in Figure 20, eachiSLIP arbiter consists of a priority encoder with a programmable highest pri-

ority, a register to hold the highest priority value, and an incrementer to move the pointer after it has been updated.

The decoder indicates to the next bank of arbiters which request was granted.
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FIGURE 20  Round-robingrant arbiter for iSLIP algorithm. The priority encoder has a programmed highest-priority,gi.
Theaccept arbiter at the input is identical.
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8.2 ThresholdiSLIP

 Scheduling algorithms that find a maximumweightmatch outperform those that find a maximumsized

match. In particular, if the weight of the edge between inputi and outputj is the occupancyLi,j(t) of input queue

Q(i,j) then we will conjecture that the algorithm can achieve 100% throughput for all i.i.d. Bernoulli arrival pat-

terns. But maximum weight matches are significantly harder to calculate than maximum sized matches [35] and to

be practical, must be implemented using an upper limit on the number of bits used to represent the occupancy of

the input queue.

In the ThresholdiSLIP algorithm we make a compromise between the maximum sized match and the maxi-

mum weight match by quantizing the queue occupancy according to a set of threshold levels. The threshold level

is then used to determine the priority level in the PriorityiSLIP algorithm. Each input queue maintains an ordered

set of threshold levels , where . If  then the input makes a

request of level .

8.3 WeightediSLIP

In some applications, the strict priority scheme of PrioritizediSLIP may be undesirable, leading to starvation

of low-priority traffic. The WeightediSLIP algorithm can be used to divide the throughput to an output non-uni-

formly among competing inputs. The bandwidth from inputi to outputj is now a ratio  subject to the

admissibility constraints .

In the basiciSLIP algorithm each arbiter maintains an ordered circular list, . In the Weighted

iSLIP algorithm the list is expanded at outputj  to be the ordered circular list where

 and inputi appears  times in .

9 Implementing iSLIP

An important objective is to design a scheduler that is simple to implement. To conclude our description of

iSLIP, we consider the complexity of implementingiSLIP in hardware. We base our discussion on single-chip

versions ofiSLIP that have been implemented for 16-port [6] and 32-port [26] systems.

T t1 t2 … tT, , ,{ }= t1 t2 … tT< < < ta Q i j,( )≤ ta 1+<

l i a=

fij

nij

dij

-----=

fij
i

∑ 1< fij
j

∑ 1<,

S 1 … N, ,{ }=

Sj 1 … Wj, ,{ }=
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8 Variations on iSLIP

8.1 Prioritized iSLIP

Many applications use multiple classes of traffic with different priority levels. The basiciSLIP algorithm can

be extended to include requests at multiple priority levels with only a small performance and complexity penalty.

We call this the PrioritizediSLIP algorithm.

In PrioritizediSLIP each input now maintains a separate FIFOfor each priority level and for each output.

This means that for an  switch withP priority levels, each input maintains  FIFOs. We shall label the

queue between inputi and outputj at priority levell,  where , . As before, only one cell

can arrive in a cell time, so this does not require a processing speedup by the input.

The PrioritizediSLIP algorithm givesstrict priority to the highest priority request in each cell time. This

means that will only be served if all queues are empty.

The iSLIP algorithm is modified as follows:

Step 1. Request. Inputi selects the highest priority non-empty queue for outputj. The input sends the pri-
ority level lij of this queue to the outputj.

Step 2. Grant. If output j receives any requests, it determines the highest level request. i.e. it finds
. The output then chooses one input among only those inputs that have requested at level

. The output arbiter maintains a separate pointer,  for each priority level. When choosing among
inputs at levelL(j), the arbiter uses the pointer and chooses using the same round-robin scheme as
before. The output notifies each input whether or not its request was granted. The pointer is incre-
mented (modulo N) to one location beyond the granted input if and only if inputi accepts outputj in step
3 of the first iteration.

Step 3. Accept. If input i  receives any grants, it determines the highest level grant. i.e. it finds
. The input then chooses one output among only those that have requested at level

. The input arbiter maintains a separate pointer,  for each priority level. When choosing
among outputs at level , the arbiter uses the pointer and chooses using the same round-robin
scheme as before. The input notifies each output whether or not its grant was accepted. The pointer

is incremented (modulo N) to one location beyond the accepted output.

Implementation of the PrioritizediSLIP algorithm is more complex than the basiciSLIP algorithm, but can

still be fabricated from the same number of arbiters.

N N× P N×

Ql i j,( ) 1 i j, N≤ ≤ 1 l P≤ ≤
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latency isproportional to the expected burst length. The performance for bursty traffic is not heavily influenced

by the queueing policy.
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FIGURE 19  Performance ofiSLIP for 1, 2 and 4 iterations under bursty arrivals. Arrival process is a 2-state Markov-
modulated on-off process. Average burst lengths are 16, 32 and 64 cells.
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mum sized match. But only up to a point: for an  switch under this traffic load, increasing the number of

iterations beyond four does not measurably increase the average match size.

7.3 With Bursty Arrivals

We illustrate the effect of burstiness oniSLIP using an on-off arrival process modulated by a 2-state Markov-

chain. Figure 19 shows the performance ofiSLIP under this arrival process for a  switch, comparing the

performance for 1, 2 and 4 iterations. As we would expect, the increased burst size leads to a higher queueing

delay whereas an increased number of iterations leads to a lower queueing delay. In all three cases, the average

FIGURE 18  Comparison of the match size foriSLIP with the size of a maximum sized match for the same set of
requests. Results are for a  switch and uniform i.i.d. Bernoulli arrivals.16 16×
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multiple iterations ofiSLIP significantly increase the size of the match and therefore reduces the queueing delay.

In fact, iSLIP can achieve 100% throughput for one or more iteration with uniform i.i.d. Bernoulli arrivals. Intu-

itively, the size of the match increases with the number of iterations: each new iteration potentially adds connec-

tions not made by earlier iterations. This is illustrated in Figure 18 which compares the size ofiSLIP matching

with the size of the maximum matching for the same instantaneous queue occupancies. Under low offered load,

the iSLIP arbiters move randomly and the ratio of the match size to the maximum match size decreases with

increased offered load. But when the load exceeds approximately 65%, the ratio begins to increase linearly. As

expected, the ratio increases with the number of iterations indicating that the matching gets closer to the maxi-
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Property 4. The algorithm will converge in at most N iterations. Each iteration will schedule zero, one or
more connections. If zero connections are scheduled in an iteration then the algorithm has converged: no
more connections can be added with more iterations. Therefore, the slowest convergence will occur if
exactly one connection is scheduled in each iteration. At most N connections can be scheduled (one to
every input and one to every output) which means the algorithm will converge in at most N iterations.

Property 5. The algorithm will not necessarily converge to a maximum sized match. At best, it will find
amaximal match: the largest size match without removing connections made in earlier iterations.

7 Simulated Performance of IterativeiSLIP

7.1 How Many Iterations?

When implementingiSLIP with multiple iterations, we need to decide how many iterations to perform during

each cell time. Ideally, from Property 4 above we would like to perform N iterations. However, in practice there

may be insufficient time for N iterations, and so we need to consider the penalty of performing onlyi iterations,

where . In fact, because of the desynchronization of the arbiters,iSLIP will usually converge in fewer than N

iterations. An interesting example of this is shown in Figure 16. In the first cell time, the algorithm takes N itera-

tions to converge, but thereafter converges in one less iteration each cell time. After N cell times, the arbiters have

become totally desynchronized and the algorithm will converge in a single iteration.

How many iterations should we use? it clearly doesn’t always take N. One option is to always run the algo-

rithm to completion, resulting in a scheduling time that varies from cell to cell. In some applications this may be

acceptable. In others, such as in an ATM switch, it is desirable to maintain a fixed scheduling time and to try and

fit as many iterations into that time as possible.

Under simulation, we have found that for an  switch it takesabout log2N iterations foriSLIP to con-

verge. This is similar to the results obtained for PIM in [2], in which the authors prove that

,  (4)

whereI is the number of iterations that PIM takes to converge. For all the stationary arrival processes we have

tried  for iSLIP. However, we have not been able to prove that this relation holds in general.

7.2 With Benign Bernoulli Arrivals

To illustrate the improvement in performance ofiSLIP when the number of iterations is increased, Figure 17

shows the average queueing delay for 1, 2 and 4 iterations under uniform i.i.d. Bernoulli arrivals. We find that

i N<

N N×
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6.2 Properties

With multiple iterations, theiSLIP algorithm has the following properties:

Property 1. Connections matched in the first iteration become the lowest priority in the next cell time.

Property 2. No connection is starved. Because pointers are not updated after the first iteration, an output
will continue to grant to the highest priority requesting input until it is successful.

Property 3. For iSLIP with more than one iteration, and under heavy load, queues with a common output
may each have a different throughput. repeats every three cell times.

FIGURE 15  Example of starvation, if pointers are updated after every iteration. The  switch is heavily loaded, i.e.
all active connections have an offered load of 1 cell per cell time. The sequence of grants and accepts repeats after 2 cell
times, even though the (highlighted) connection from input 1 to output 2 has not been made. Hence, this connection will
be starved indefinitely.
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Step 2. Grant. If an unmatched output receives any requests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the highest priority element. The output notifies each input
whether or not its request was granted. The pointer  to the highest priority element of the round-robin
schedule is incremented (modulo N) to one location beyond the granted input if and only if the grant is
accepted in Step 3 of the first iteration.

Step 3. Accept. If an unmatched input receives a grant, it accepts the one that appears next in a fixed,
round-robin schedule starting from the highest priority element. The pointer  to the highest priority
element of the round-robin schedule is incremented (modulo N) to one location beyond the accepted out-
put.

6.1 Updating Pointers

Note that pointersgi andai are only updated for matches found in the first iteration. Connections made in sub-

sequent iterations do not cause the pointers to be updated. This is to avoid starvation. To understand how starva-

tion can occur, we refer to the example of a  switch with 5 active and heavily loaded connections, shown in

Figure 15. The switch is scheduled using two iterations of theiSLIP algorithm, except in this case the pointers are

updated afterboth iterations. The figure shows the sequence of decisions by the grant and accept arbiters; for this

traffic pattern, they form a repetitive cycle in whichthe highlighted connection from input 1 to output 2 is never

served. Each time the round-robin arbiter at output 2 grants to input 1, input 1 chooses to accept output 1 instead.

Starvation is eliminated if the pointers are not updated after the first iteration. In the example, output 2 would

continue to grant to input 1 with highest priority until it is successful.

gi

ai

3 3×
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improves as we increase the number of iterations (up to aboutlog2N, for an  switch). Once again, we shall

see thatdesynchronization of the output arbiters plays an important rôle in achieving low latency.

When multiple iterations are used, it is necessary to modify the iSLIP algorithm. The three steps of each iter-

ation operate in parallel on each output and input and are as follows:

Step 1. Request. Each unmatched input sends a request to every output for which it has a queued cell.
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FIGURE 14  Comparison of analytical approximation and simulation results for the average number of synchronized
output schedulers. Simulation results are for a  switch with i.i.d Bernoulli arrivals and an on-off process
modulated by a 2-state Markov chain with an average burst length of 64 cells. The analytical approximation is shown in
Equation 3.
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not constant: when a queue changes between empty and non-empty, the scheduler must adapt to the new set of

queues that require service. This adaptation takes place over many cell times while the arbiters desynchronize

again. During this time, the throughput will be worse than for the M/D/1 queue and the queue length will increase.

This in turn will lead to an increased latency.

5.2 Desynchronization of Arbiters

We have argued that the performance ofiSLIP is dictated by the degree of synchronization of the output

schedulers. In this section we present a simple model of synchronization for a stationary and sustainable uniform

arrival process.

In [24, see Appendix 1] we find an approximation for , the expected number of synchronized output

schedulers at timet. The approximation is based on two assumptions:

1.  Inputs that are unmatched at timet are uniformly distributed over all inputs.

2.  The number of unmatched inputs at timet has zero variance.

This leads to the approximation

 (3)

where,

We have found that this approximation is quite accurate over a wide range of uniform workloads. Figure 14

compares the approximation in Equation 3 with simulation results for both i.i.d. Bernoulli arrivals and for an on-

off arrival process modulated by a 2-state Markov-chain.

6 The iSLIP Algorithm with Multiple Iterations

Until now, we have only considered the operation ofiSLIP with a single iteration. We now examine how the

algorithm must change when multiple iterations are performed.

With more than one iteration, the iterativeiSLIP algorithm improves the size of the match: each iteration

attempts to add connections not made by earlier iterations. Not surprisingly, we find that the performance
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5.1 Convergence to Time-Division Multiplexing Under Heavy Load

Under heavy load,iSLIP will behave similarly to an M/D/1 queue with arrival rates  and deterministic ser-

vice time  cell times. So, under a heavy load of Bernoulli arrivals the delay will be approximated by Equation 2.

To see how closeiSLIP becomes to time-division multiplexing under heavy load, Figure 13 compares the

average latency for bothiSLIP and an M/D/1 queue (Equation 2). Above an offered load of approximately 70%,

iSLIP behaves very similarly to the M/D/1 queue, but with a higher latency. This is because the service policy is

λ
N
----

N

FIGURE 13  Comparison of average latency for theiSLIP algorithm and an M/D/1 queue. The switch is 16x16 and, for
the iSLIP algorithm, arrivals are uniform i.i.d. Bernoulli arrivals.
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dently and that arriving cells are successfully scheduled with very low delay. At the other extreme, when the

switch becomes uniformly backlogged, we can see that desynchronization will lead the arbiters to find an efficient

time division multiplexing scheme and operate without contention. But when the traffic is non-uniform, or when

the offered load is at neither extreme, the interaction between the arbiters becomes difficult to describe. The prob-

lem lies in the evolution and interdependence of the state of each arbiter and their dependence on arriving traffic.

FIGURE 12  Average burst length at switch output as a function of offered load. The arrivals are on-off processes
modulated by a 2-state DTMC. Results are for a 16x16 switch using theiSLIP scheduling algorithm.
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So, for theiSLIP switch under a heavy load of Bernoulli arrivals the delay will be approximately

 (2)

which is proportional to N.

4.4 Burstiness Reduction:

Intuitively, if a switch decreases the average burst length of traffic that it forwards, then we can expect it to

improve the performance of its downstream neighbor. We can expect any scheduling policy that uses round-robin

arbiters to be burst-reducing1 this is also the case foriSLIP.

iSLIP is a deterministic algorithm, serving each connection in strict rotation. We therefore expect that bursts

of cells at different inputs contending for the same output will become interleaved and the burstiness will be

reduced. This is indeed the case, as shown in Figure 12. The graph shows the average burst length at the switch

output as a function of offered load. Arrivals are on-off processes modulated by a 2-state Markov chain with aver-

age burst lengths of 16, 32 and 64 cells.

Our results indicate thatiSLIP reduces the average burst length, and will tend to be more burst-reducing as the

offered load increases. This is because the probability of switching between multiple connections increases as the

utilization increases. When the offered load is low, arriving bursts do not encounter output contention and the

burst of cells is passed unmodified. As the load increases, the contention increases and bursts are interleaved at the

output. In fact, if the offered load exceeds approximately 70%, the average burst length drops to exactly one cell.

This indicates that the output arbiters have become desynchronized and are operating as time-division multiplex-

ers, serving each input in turn.

5 Analysis ofiSLIP Performance

In general, it is difficult to accurately analyze the performance of aiSLIP switch, even for the simplest traffic

models. Under uniform load and either very low or very high offered load we can readily approximate and under-

stand the way in whichiSLIP operates. When arrivals are infrequent we can assume that the arbiters act indepen-

1.There are many definitions of burstiness, for example the coefficient of variation [36], burstiness curves [20], maximum burst length [10],
or effective bandwidth [21]. In this section, we use the same measure of burstiness that we use when generating traffic: the average burst
length. We define a burst of cells at the output of a switch as the number of consecutive cells that entered the switch at the same input.

d
λN

2 1 λ–( )
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FIFO once every N cycles and the queues will behave similarly to an M/D/1 queue with arrival rates  and deter-

ministic service time  cell times. For an M/G/1 queue with random service timesS, arrival rateλ and service

rateµ the queueing delay is given by

.  (1)

FIGURE 11  The performance ofiSLIP as function of switch size. Uniform i.i.d. Bernoulli arrivals.
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degree of synchronization of the arbiters. Under low load, arriving cells find the arbiters in random positions and

iSLIP performs in a similar manner to the single iteration version of PIM. The probability that the cell is sched-

uled to be transmitted immediately is proportional to the probability that no other cell is waiting to be routed to the

same output. Ignoring the (small) queueing delay under low offered load, the number of contending cells for each

output is approximately which converges with increasingN to .1 Hence, for constant

smallλ, the queueing delay converges to a constant asN increases.  Under heavy load, the algorithm serves each

1.Note that the convergence is quite fast, and holds approximately even for small N. For example, equals 0.6073 when
, 0.6202 when  and 0.63 when N is infinite.

FIGURE 10  The performance of iSLIP under 2-state Markov-modulated Bernoulli arrivals. All cells within a burst are
sent to the same output. Destinations of bursts are uniformly distributed over all outputs.

20 30 40 50 60 70 80 90 100
0.1

1

10

100

1e+03

1e+04

1e+05

Offered Load (%)

A
vg

 L
at

en
cy

 p
er

 C
el

l (
C

el
ls

)

Bernoulli

Burst=16

Burst=32

Burst=64

λ 1
N 1–

N
------------- 

  N 1–
– 

  λ 1 1
e
---– 

 

1
N 1–

N
------------- 

  N 1–
–

N 8= N 16=



14

shows the performance ofiSLIP under this arrival process for a  switch, comparing it with the perfor-

mance under uniform i.i.d. Bernoulli arrivals. The burst length indicated in the graph represents the average

length of each busy period. As we would expect, the increased burst size leads to a higher queueing delay. In fact,

the average latency isproportional to the expected burst length. With bursty arrivals the performance of an input-

queued switch becomes more and more like an output-queued switch under the save arrival conditions [9]. This

similarity indicates that the performance for bursty traffic is not heavily influenced by the queueing policy, or ser-

vice discipline. Burstiness tends to concentrate the conflicts on outputs rather than inputs: each burst contains cells

destined for the same output and each input will be dominated by a single burst at a time, reducing input conten-

tion. As a result, the performance becomes limited by output contention, which is present in both input and output

queued switches.

4.3 As a Function of Switch Size:

 Figure 11 shows the average latency imposed by aiSLIP scheduler as a function of offered load for switches

with 4, 8, 16 and 32 ports. As we might expect, the performance degrades with the number of ports.

But the performance degrades differently under low and heavy loads. For a fixed low offered load, the queue-

ing delay converges to a constant value. However, for a fixed heavy offered load the increase in queueing delay is

proportional to N. The reason for these different characteristics under low and heavy load lies once again in the

FIGURE 9  Illustration of 100% throughput foriSLIP caused by desynchronization of output arbiters. Note that pointers
[gi] become desynchronized at the end of Cell 1 and stay desynchronized, leading to an alternating cycle of 2 cell times
and a maximum throughput of 100%.
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ority at that output (input). If inputi successfully connects to outputj, bothai andgj are updated and the
connection from inputi to outputj becomes the lowest priority connection in the next cell time.

Property 2. No connection is starved. This is because an input will continue to request an output until it
is successful. The output will serve at most  other inputs first, waiting at most N cell times to be
accepted by each input. Therefore, a requesting input is always served in less than N2 cell times.

Property 3. Under heavy load, all queues with a common output have the same throughput. This is a
consequence of Property 2: the output pointer moves to each requesting input in a fixed order, thus pro-
viding each with the same throughput.

But most importantly, this small change prevents the output arbiters from moving in lock-step leading to a

large improvement in performance.

4 Simulated Performance ofiSLIP

4.1 With Benign Bernoulli Arrivals:

Figure 5 shows the performance improvement ofiSLIP over RRM. Under low load,iSLIP’s performance is

almost identical to RRM and FIFO; arriving cells usually find empty input queues, and on average there are only

a small number of inputs requesting a given output. As the load increases, the number of synchronized arbiters

decreases (see Figure 8), leading to a large sized match. In other words, as the load increases, we can expect the

pointers to move away from each, making it more likely that a large match will be found quickly in the next cell

time. In fact, under uniform 100% offered load theiSLIP arbiters adapt to a time-division multiplexing scheme,

providing a perfect match and 100% throughput. Figure 9 is an example for a  switch showing how under

heavy traffic the arbiters adapt to an efficient time-division multiplexing schedule.

4.2 With Bursty Arrivals:

Real network traffic is highly correlated from cell to cell and so in practice, cells tend to arrive in bursts, cor-

responding perhaps to a packet that has been segmented or to a packetized video frame. Many ways of modeling

bursts in network traffic have been proposed [11], [15], [3], [22]. Lelandet al. [32] have demonstrated that mea-

sured network traffic is bursty at every level making it important to understand the performance of switches in the

presence of bursty traffic.

We illustrate the effect of burstiness oniSLIP using an on-off arrival process modulated by a 2-state Markov-

chain. The source alternately produces a burst of full cells (all with the same destination) followed by an idle

period of empty cells. The bursts and idle periods contain a geometrically distributed number of cells. Figure 10

N 1–

2 2×
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Step 2. Grant. If an output receives any requests, it chooses the one that appears next in a fixed, round-
robin schedule starting from the highest priority element. The output notifies each input whether or not
its request was granted.The pointer  to the highest priority element of the round-robin schedule is
incremented (modulo N) to one location beyond the granted input if and only if the grant is accepted in
Step 3.

This small change to the algorithm leads to the following properties ofiSLIP with one iteration:

Property 1. Lowest priority is given to the most recently made connection. This is because when the
arbiters move their pointers, the most recently granted (accepted) input (output) becomes the lowest pri-

FIGURE 8  Synchronization of output arbiters for RRM andiSLIP for i.i.d Bernoulli arrivals with destinations
uniformly distributed over all outputs. Results obtained using simulation for a 16x16 switch.
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3 The iSLIP Algorithm

The iSLIP algorithm improves upon RRM by reducing the synchronization of the output arbiters.iSLIP

achieves this by not moving the grant pointers unless the grant is accepted.iSLIP is identical to RRM except for a

condition placed on updating the grant pointers. TheGrant step of RRM is changed to:
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are the accept pointers,
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FIGURE 7  Illustration of low throughput for RRM caused by synchronization of output arbiters. Note that pointers [gi]
stay synchronized, leading to a maximum throughput of just 50%.
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The reason for the poor performance of RRM lies in the rules for updating the pointers at the output arbiters.

We illustrate this with an example, shown in Figure 6. Both inputs 1 and 2 are under heavy load and receive a new

cell for both outputs during every cell time. But because the output schedulers move in lock-step, only one input is

served during each cell time. The sequence of requests, grants, and accepts for four consecutive cell times are

shown in Figure 7. Note that the grant pointers change in lock-step: in cell time 1 both point to input 1 and during

cell time 2 both point to input 2etc. This synchronization phenomenon leads to a maximum throughput of just

50% for this traffic pattern.

Synchronization of the grant pointers also limits performance with random arrival patterns. Figure 8 shows

the number of synchronized output arbiters as a function of offered load. The graph plots the number of non-

uniquegi’s, i.e. the number of output arbiters that clash with another arbiter. Under low offered load, cells arriving

for outputj will find gj in a random position, equally likely to grant to any input. The probability that  for

all  is  which for  implies that the expected number of arbiters with the same highest-

priority value is 9.9. This agrees well with the simulation result for RRM in Figure 8. As the offered load

increases, synchronized output arbiters tend to move in lock-step and the degree of synchronization changes only

slightly.

1.The probability that an input will remain ungranted is , hence as N increases, the throughput tends to
N 1–

N
------------- 

  N
1 1

e
---– 63%≈

λ1 1, λ1 2, 1= =

λ2 1, λ2 2, 1= =

µ1 1, µ1 2, 0.25= =

µ2 1, µ2 2, 0.25= =

FIGURE 6  2x2 switch with RRM algorithm under heavy load. In the example of Figure 7, synchronization of output
arbiters leads to a throughput of just 50%.
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Step 2. Grant. If an output receives any requests, it chooses the one that appears next in a fixed, round-
robin schedule starting from the highest priority element. The output notifies each input whether or not
its request was granted. The pointer  to the highest priority element of the round-robin schedule is
incremented (modulo N) to one location beyond the granted input.

Step 3. Accept. If an input receives a grant, it accepts the one that appears next in a fixed, round-robin
schedule starting from the highest priority element. The pointer  to the highest priority element of the
round-robin schedule is incremented (modulo N) to one location beyond the accepted output.

2.2 Performance of RRM for Bernoulli Arrivals

As an introduction to the performance of the RRM algorithm, Figure 5 shows the average delay as a function

of offered load for uniform i.i.d. Bernoulli arrivals. For an offered load of just 63% RRM becomes unstable.1

gi

ai

FIGURE 5  Performance of RRM andiSLIP compared with PIM for i.i.d Bernoulli arrivals with destinations
uniformly distributed over all outputs. Results obtained using simulation for a 16x16 switch. The graph shows the
average delay per cell, measured in cell times, between arriving at the input buffers and departing from the switch.
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algorithm, like PIM, consists of three steps. As shown in Figure 4, for an  switch each round-robin schedule

contains N ordered elements. The three steps of arbitration are:

Step 1. Request. Each input sends a request to every output for which it has a queued cell.

1

2
2

a) Step 1:Request. Each input makes a request to each output for which it has a cell.

Step 2:Grant. Each output selects the next requesting input at or after the pointer in the round-robin
schedule. Arbiters are shown here for outputs 2 and 4. Inputs 1 and 3 both requested output 2. Since

 output 2 grants to input 1.g2 andg4 are updated to favor the input after the one that is granted.g2 1=

Input 1
L(1,1) = 1
L(1,2) = 4

Input 3
L(3,2) = 2
L(3,4) = 1

Input 4
L(4,4) = 3

c) When the arbitration has completed, a match-
ing of size two has been found. Note that this is
less than the maximum sized matching of three.

b) Step 3:Accept. Each input selects at
most one output. The arbiter for input 1 is
shown. Since  input 1 accepts output
1. a1 is updated to point to output 2.

a1 1=

3

4

1

2
4

3

4

1

2
1

3

4

g2

g4

a1

FIGURE 4  Example of the three steps of the RRM matching algorithm.
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This is because the probability that an input will remain ungranted is , hence as N increases, the through-

put tends to . Although the algorithm will often converge to a good match after several iterations, the

time to converge may affect the rate at which the switch can operate. We would prefer an algorithm that performs

well with just a single iteration.

2 The iSLIP Algorithm with a Single Iteration

In this section we describe and evaluate theiSLIP algorithm. This section concentrates on the behavior of

iSLIP with just a single iteration per cell time. Later, we will consideriSLIP with multiple iterations.

The iSLIP algorithm uses rotating priority (“round-robin”) arbitration to schedule each active input and out-

put in turn. The main characteristic ofiSLIP is its simplicity: it is readily implemented in hardware and can oper-

ate at high speed. We find that the performance ofiSLIP for uniform traffic is high; for uniform i.i.d. Bernoulli

arrivals,iSLIP with a single iteration can achieve 100% throughput. This is the result of a phenomenon that we

encounter repeatedly: the arbiters iniSLIP have a tendency todesynchronize with respect to one another.

2.1 Basic Round-Robin Matching Algorithm

iSLIP is a variation of simple basic round-robin matching algorithm (RRM). RRM is perhaps the simplest and

most obvious form of iterative round-robin scheduling algorithms, comprising a two-dimensional array of round-

robin arbiters: cells are scheduled by round-robin arbiters at each output, and at each input. As we shall see, RRM

does not perform well; but it helps us to understand how iSLIP performs, so we start here with a description of

RRM. RRM potentially overcomes two problems in PIM:complexity andunfairness. Implemented as priority

encoders, the round-robin arbiters are much simpler and can perform faster than random arbiters. The rotating pri-

ority aids the algorithm in assigning bandwidth equally and more fairly among requesting connections. The RRM

λ1 1, 1=

λ1 2, 1=

λ2 1, 1=

µ1 1,
1
4
---=

µ1 2,
3
4
---=

µ2 1,
3
4
---=

FIGURE 3  Example of unfairness for PIM under heavy, oversubscribed load with more than one iterations. Because of
the random and independent selection by the arbiters, output 1 will grant to each input with probability 1/2, yet input 1
will only accept output 1 a quarter of the time. This leads to different rates at each output.
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service. Third, it means that no memory or state is used to keep track of how recently a connection was made in

the past. At the beginning of each cell time, the match begins over, independently of the matches that were made

in previous cell times. Not only does this simplify our understanding of the algorithm, but it also makes analysis

of the performance straightforward: there is no time-varying state to consider, except for the occupancy of the

input queues.

But using randomness comes with its problems. First, it is difficult and expensive to implement at high speed:

each arbiter must make a random selection among the members of a time-varying set. Second, when the switch is

oversubscribed, PIM can lead to unfairness between connections. An extreme example of unfairness for a

switch when the inputs are oversubscribed is shown in Figure 3. We will see examples later for which PIM and

some other algorithms are unfair when no input or output is oversubscribed. Finally, PIM does not perform well

for a single iteration: it limits the throughput to approximately 63%, only slightly higher than for a FIFO switch.

k=2 requests

g=2 grants

FIGURE 2  An example of the three steps that make up one iteration of the PIM scheduling algorithm [2]. In this
example, the first iteration does not match input 4 to output 4, even though it does not conflict with other connections.
This connection would be made in the second iteration.

a) Step 1:Request. Each input makes a request to
each output for which it has a cell. This is shown
here as a graph with all weights,wi,j = 1.

Input 1
L(1,1) = 1
L(1,2) = 4

Input 3
L(3,2) = 2
L(3,4) = 1

Input 4
L(4,4) = 3

b) Step 2:Grant. Each output selects an input
uniformly among those that requested it. In
this example, inputs 1 and 3 both requested
output 2. Output 2 chose to grant to input 3.

c) Step 3:Accept. Each input selects an out-
put uniformly among those that granted to it.
In this example, outputs 2 and 4 both granted
to input 3. Input 3 chose to accept output 2.

2 2×
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aggregate bandwidth of 0.5Tb/s [26].iSLIP is based on the Parallel Iterative Matching algorithm (PIM) [2], and

so to understand its operation, we start by describing PIM. Then, in Section 2 we describeiSLIP and its perfor-

mance. We then consider some small modifications toiSLIP for various applications, and finally consider its

implementation complexity.

1.2 Parallel Iterative Matching

Parallel Iterative Matching (PIM) was developed by DEC Systems Research Center for the 16-port, 1Gb/s

AN2 switch [2].1 Because it forms the basis of theiSLIP algorithm described later, we will describe the scheme in

detail and consider some of its performance characteristics.

PIM usesrandomness to avoid starvation, and to reduce the number of iterations needed to converge on a

maximal sized match. A maximal sized match (a type of on-line match) is one that adds connections incremen-

tally, without removing connections made earlier in the matching process. In general, a maximal match is smaller

than a maximum sized match, but is much simpler to implement. PIM attempts to quickly converge on a conflict-

free maximal match in multiple iterations, where each iteration consists of three steps. All inputs and outputs are

initially unmatched and only those inputs and outputs not matched at the end of one iteration are eligible for

matching in the next. The three steps of each iteration operate in parallel on each output and input and are shown

in Figure 2. The steps are:

Step 1. Request. Each unmatched input sends a request to every output for which it has a queued cell.

Step 2. Grant. If an unmatched output receives any requests, it grants to one by randomly selecting a
request uniformly over all requests.

Step 3. Accept. If an input receives a grant, it accepts one by selecting an output randomly among those
that granted to this output.

By considering only unmatched inputs and outputs, each iteration only considers connections not made by

earlier iterations.

Note that the independent output arbitersrandomlyselect a request among contending requests. This has three

effects: first the authors in [2] show that each iteration will match or eliminate on average at least  of the remain-

ing possible connections and thus the algorithm will converge to a maximal match, on average, in  itera-

tions. Second, it ensures that all requests will eventually be granted, ensuring that no input queue is starved of

1.This switch was commercialized as the Gigaswitch/ATM.

3
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tite matching on a graph with  vertices [2][25][35]; a procedure too complex to implement and run quickly in

hardware. For example, the algorithms described in [25] and [28] that achieve 100% throughput, use maximum

weight bipartite matching algorithms [35] which have a running time complexity of .

1.1 Maximum Size Matching

Most scheduling algorithms described previously are heuristic algorithms that approximate a maximumsize1

matching [1][2][5][8][18][30][36]. These algorithms attempt to maximize the number of connections made in

each cell time, and hence maximize the instantaneous allocation of bandwidth. The maximum size matching for a

bipartite graph can be found by solving an equivalent network flow problem [35] and we shall call the algorithm

that does thismaxsize. There exist many maximum size bipartite matching algorithms, and the most efficient cur-

rently known converges in  time [12].2 The problem with this algorithm is that although it is guaranteed to

find a maximum match, for our application it is too complex to implement in hardware and takes too long to com-

plete.

One question worth asking is: Does themaxsize algorithm maximize the throughput of an input-queued

switch? The answer is no:maxsize can cause some queues to be starved of service indefinitely. Furthermore, when

the traffic is non-uniform,maxsize cannot sustain very high throughput [25]. This is because it does not consider

the backlog of cells in the VOQs, or the time that cells have been waiting in line to be served.

For practical high performance systems, we desire algorithms with the following properties:

• High Throughput —An algorithm that keeps the backlog low in the VOQs. Ideally, the algorithm will
sustain an offered load up to 100% on each input and output.

• Starvation Free — The algorithm should not allow a non-empty VOQ to remain unserved indefinitely.

• Fast — To achieve the highest bandwidth switch, it is important that the scheduling algorithm does not
become the performance bottleneck. The algorithm should therefore find a match as quickly as possible.

• Simple to implement —If the algorithm is to be fast in practice, it must be implemented in special-pur-
pose hardware; preferably within a single chip.

TheiSLIP algorithm presented in this paper is designed to meet these goals, and is currently implemented in a

16-port commercial IP router with an aggregate bandwidth of 50Gb/s [6], and a 32-port prototype switch with an

1. In some literature, the maximumsize matching is called the maximumcardinality matching or just the maximum bipartite matching.

2. This algorithm is equivalent to Dinic’s algorithm [9].

N
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suggested for reducing HOL blocking, for example by considering the firstK cells in the FIFO queue, whereK>1

[8][13][17]. Although these schemes can improve throughput, they are sensitive to traffic arrival patterns and may

perform no better than regular FIFO queueing when the traffic is bursty. But HOL blocking can be eliminated by

using a simple buffering strategy at each input port. Rather than maintain a single FIFO queue for all cells, each

input maintains a separate queue for each output as shown in Figure 1. This scheme is called “virtual output

queueing” (VOQ) and was first introduced by Tamiret al. in [34]. HOL blocking is eliminated because cells only

queue behind cells that are destined to the same output: no cell can be held up by a cell ahead of it that is destined

to a different output. When VOQs are used, it has been shown possible to increase the throughput of an input-

queued  switch from 58.6% to 100% for both uniform and non-uniform traffic [25][28]. Crossbar switches that

use VOQs have been employed in a number of studies [1][14][19][23][34], research prototypes [26][31][33], and

commercial products [2][6]. For the rest of this paper, we will be considering crossbar switches that use VOQs.

When we use a crossbar switch, we require a scheduling algorithm that configures the fabric during each cell

time, and decides which inputs will be connected to which outputs; this determines which of the  VOQs are

served in each cell time. At the beginning of each cell time, a scheduler examines the contents of the  input

queues and determines a conflict-free match,M,  between inputs and outputs. This is equivalent to finding a bipar-

FIGURE 1  An input-queued switch with “virtual output queueing”. Note that head of line blocking is eliminated by
using a separate queue for each output at each input.
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hardware. Our work was motivated by the design of two such systems: the Cisco 12000 GSR, a 50Gb/s IP router,

and theTiny Tera:a 0.5Tb/s MPLS  switch [7].

Before using a crossbar switch as a switching fabric, it is important to consider some of the potential draw-

backs; we consider three here. First, the implementation complexity of anN-port crossbar switch increases with

, making crossbars impractical for systems with a very large number of ports. Fortunately, the majority of high

performance switches and routers today have only a relatively small number of ports (usually between 8 and 32).

This is because the highest performance devices are used at aggregation points where port density is low.1  Our

work is therefore focussed on systems with low port density. A second potential drawback of crossbar switches is

that they make it difficult to provide guaranteed qualities of service. This is because cells arriving to the switch

must contend for access to the fabric with cells at both the input and the output. The time at which they leave the

input queues and enter the crossbar switching fabric is dependent on other traffic in the system making it difficult

to control when a cell will depart. There are two common ways to mitigate this problem. One is to schedule the

transfer of cells from inputs to outputs in a similar manner to that used in a time-slot interchanger, providing peak

bandwidth allocation for reserved flows. This method has been implemented in at least two commercial switches

and routers.2 The second approach is to employ “speedup” in which the core of the switch runs faster than the

connected lines. Simulation and analytical results indicate that with a small speedup, a switch will deliver cells

quickly to their outgoing port, apparently independent of contending traffic [27][37][38][39][40][41]. While these

techniques are of growing importance, we restrict our focus in this paper to the efficient and fast scheduling of

best-effort traffic.

A third potential drawback of crossbar switches is that they (usually) employ input-queues. When a cell

arrives, it is placed in an input queue where it waits its turn to be transferred across the crossbar fabric. There is a

popular perception that input-queued switches suffer frominherently low performance due to head of line (HOL)

blocking. HOL blocking arises when the input buffer is arranged as a single FIFO queue: a cell destined to an out-

put that is free may be held up in line behind a cell that is waiting for an output that is busy. Even with benign traf-

fic, it is well-known that HOL can limit thoughput to just  [16]. Many techniques have been

1. Some people believe that this situation will change in the future, and that switches and routers with large aggregate bandwidths will sup-
port hundreds or even thousands of ports. If these systems become real, then crossbar switches — and the techniques that follow in this
paper — may not be suitable. However, the techniques described here will be suitable for a few years hence.

2. A peak-rate allocation method was supported by the DEC AN2 Gigaswitch/ATM[2] and the Cisco Systems LS2020 ATM Switch.
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Abstract

An increasing number of high performance IP routers, LAN switches and ATM switches use a switched backplane based on a
crossbar switch. Most often, these systems use input queues to hold packets waiting to traverse the switching fabric. It is well-
known that if simple FIFO input queues are used to hold packets then, even under benign conditions,head-of-line (HOL)
blocking limits the achievable bandwidth  to approximately 58.6% of the maximum. HOL blocking can be overcome by the
use of virtual output queueing — which is described in this paper. A scheduling algorithm is used to configure the crossbar
switch, deciding the order in which packets will be served. Recent results have shown that with a suitable scheduling algo-
rithm 100% throughput can be achieved. In this paper, we present a scheduling algorithm called iSLIP. An iterative, round-
robin algorithm, iSLIP can achieve 100% throughput for uniform traffic, yet is simple to implement in hardware. Iterative
and non-iterative versions of the algorithms are presented, along with modified versions for prioritized traffic. Simulation
results are presented to indicate the performance of iSLIP under benign and bursty traffic conditions. Prototype and commer-
cial implementations of iSLIP exist ing systems with aggregate bandwidths ranging from 50-500Gb/s. When the traffic is non-
uniform, iSLIP quickly adapts to a fair scheduling policy that is guaranteed never to starve an input queue. Finally, we
describe the implementation complexity of iSLIP. Based on a two-dimensional array of priority encoders, single-chip sched-
ulers have been built supporting up to 32-ports, and making approximately 100million scheduling decisions per second.

1 Introduction

In an attempt to take advantage of ATM’s cell switching capacity, there has recently been a merging of ATM

switches and IP routers [29][32].  This idea is already being carried one step further, with cell-switches forming

the core, or backplane, of high performance IP routers [26][31][6][4]. Each of these high speed switches and rout-

ers is built around a crossbar switch that is configured using a centralized scheduler, and each uses a fixed size cell

as a transfer unit. Variable length packets are segmented as they arrive, transferred across the central switching

fabric, then reassembled again into packets before they depart. A crossbar switch is used because it is simple to

implement, and is non-blocking: it allows multiple cells to be transferred across the fabric simultaneously, allevi-

ating the congestion found on a conventional shared backplane. In this paper, we describe an algorithm that is

designed to configure a crossbar switch using a single-chip, centralized scheduler. The algorithm presented here

attempts to achieve high throughput for best-effort unicast traffic, and is designed to be simple to implement in
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