exist in different packet switching networks is presented. The proto-
§c01 provides for variation in individual network packet sizes, trans-
. mission failures, sequencing, flow control, end-to-end error checking,
and the creation and destruction of logical process-to-process con-
L nections. Some implementation issues are considered, and problems
such as internetwork routing, accounting, and timeouts are exposed.

SERE DML

-3

INTRODUCTION

N THE LAST few years considerable effort has been
=L expended on the design and implementation of packet
witching networks [17]-{7],[14],[177]. A principle reason

haring of computer resources. A packet communication
Pnetwork includes a transportation mechanism for deliver-
g data between computers or between computers and
{terminals. To make the data meaningful, computers and
erminals share a common protocol (i.e., a set of agreed
pon conventions). Several protocols have already been
eveloped for this purpose [8]-[127],[16] However,
g these protocols have addressed only the problem of com-
L munication on the same network. In this paper we present
La protocol design and philosophy that supports the sharing
of resources that exist in different packet switching net-
 works. ‘

After a brief introduction to internetwork protocol
sues, we describe the function of a GATEWAY 48 an inter-
ce between networks and discuss its role in the protocol.
{We then consider the various details of the protocol,
cluding addressing, formatting, buffering, sequencing,
ow eontrol, error control, and so forth. We close with a
deseription of an interprocess communication mechanism
_‘nd show how it can be supported by the internetwork
protocol.

Even though many different and complex problems
ust be solved in the design of an individual packet
switching network, these problems are manifestly com-
pounded when dissimilar networks are interconnected.
Issues arise which may have no direct counterpart in an
individual network and which strongly influence the way
in- which internetwork communication can take place.
L A typical packet switching network is composed. of a

Paper approved by the Associate Editor for Data Communica-
tions of the IEEE Communications Society for publication without
oral presentation. Manuscript received November 5, 1973. The
fresearch reported in this paper was supported in part by the Ad-
bvanced Research Projects Agency of the Department of Defense
finder Contract DAHC 15-73-C-0370.
V. G. Cerf is with the Department of Computer Science and Elec-
ical Engineering, Stanford University, Stanford, Calif. i
R. E. Kahn is with the Information Processing Technology
0ffice, Advanced Research Projects Agency, Department of De-
ffense, Arlington, Va.

EEE TRANSACTIONS ON COMMUNICATIONS, VOL. coM-22, No. 5, May 1974

L Abstract—A protocol that supports the sharing of resources that -

r developing such networks has been to facilitate the
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set of computer resources called HOSTS, a set of one or
more packet switches, and a collection of communication
media that interconnect the packet switches. Within
each HOsT, we assume that there exist processes which
must communicate with processes in their own or other
HosTs. Any current definition of a process will be adequate
for our purposes [ 187]. These processes are generally the

“ultimate source and destination of data in the network.

Typically, within an individual network, there exists a
protocol for communication between any .source and
destination process. Only. the source and destination
processes require knowledge of this convention for com-
munication to take place. Processes in two distinct net-
works would ordinarily use different protocols for this
purpose. The ensemble of packet switches and com-
munication media is called the packet swilching subnet.
Fig. 1 illustrates these ideas.

In a typical packet switching subnet, data of a fixed
maximum size are accepted from a source mosT, together
with a formatted destination address which is used to
route the data in a store and forward fashion. The transmit
time for this data is usually dependent upon internal
network parameters such as communication media data
rates, buffering and signaling strategies, routing, propa-
gation delays, ete. In addition, some mechanism is gen-
erally present for error handling and detcrmination - of
status of the networks components.

Individual packet switching networks may differ in
their implementations as follows.

1) Each network may have distinct ways of addressing
the receiver, thus requiring that a uniform addressing
scheme be created which can be understood by each
individual network.

2) 'Each network may accept data of different maximum
size, thus requiring networks to deal in units of the
smallest maximum size - (which may be impractically
small) or requiring’ procedures which allow data crossing
a network boundary to be reformatted into smaller
pieces. : :

3) The success or failure of a transmission and its per-
formance in each network is governed by different time
delays in accepting, delivering, and transporting the data.
This requires careful development of internetwork timing
procedures to insure that data can be successfully de-
livered through the various networks:

4) Within each network, communication may be dis-
rupted due to unrecoverable mutation of the data or
missing data. End-to-end restoration procedures are

desirable to allow complete recovery from these con-
ditions.
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PACKET-SWITCHING SUBNETWORK

PACKET-SWITCHING NETWORK PS = PACKET SWITCH

Fig. 1. Typical packet switching network.

5) Status information, routing, fault detection, and
isolation are typically different in each network. Thus, to
obtaln verification of certain conditions, such as an in-
accessible or dead destination, various kinds of coordi-
nation must be invoked between the communicating net-
works.

It would be extremely convenient if all the differences
between networks could be economically resolved by
suitable interfacing at the network boundaries. For
many of the differences, this objective can be achieved.
Howecever, both economic and technical considerations lead
us to prefer that the interface be as simple and reliable
as possible and deal primarily with passing data between
networks that use different packet switching strategies.

The question now arises as to whether the interface
ought to account for differences in HosT or process level
protocols by transforming the source conventions into the
corresponding destination conventions. We obviously
want to allow conversion between packet switching
strategics at the interface, to permit interconnection of
existing and planned networks., However, the complexity
and dissimilarity of the HOST or process level protocols
makes it desirable to avoid having to transform between
them at the interface, even if this transformation were
always possible. Rather, compatible rHOsT and process
level protocols must be developed to achieve cffective
internetwork resource sharing. The unacceptable al-
ternative is for every HosT or process to implement every
protocol (a potentially unbounded number) that may be
needed to communicate with other networks. We there-
fore assume that a common protocol 1s to be used between
HosT's or processes in different networks and that the
interface between networks should take as small a role as
possible in this protocol.

To allow networks under different ownership to inter-
conneet, some accounting will undoubtedly be needed for
traffic that passes across the interface. In its simplest
terms, this involves an accounting of packets handled by
cach net for which charges are passed from net to net
until the buck finally stops at the user or his representa-
tive. Turthermore, the interconnection must preserve
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intact the internal operation of each individual network.
This is easily achieved if two networks interconnect as
if each were a HOsT to the other network, but without
utilizing or indeed incorporating any elaborate HosT
protocol transformations.

It is thus apparent that the interface between networks
must play a central role in the development of any net-
work interconnection strategy. We give a special name to
this interface that performs these functions and call it a
GATEWAY.

THE GATEWAY NOTION

In Fig. 2 we illustrate three individual networks labeled
A, B, and C which are joined by caTeways M and N.
GATEWAY M iInterfaces network A with network B, and
GATEWAY N Interfaces network B to network C. We
assume that an individual network may have more than
one GATEWAY (e.g., network B) and that there may be
more than onc GATEWAY path to use in going between a
pair of networks. The responsibility for properly routing
data resides in the GATEWAY.

In practice, a GATEWAY between two networks may be
composed of two halves, each associated with its own
network. It is possible to implement each half of a garE-
waY 50 it need only embed internetwork packets in local
packet format or extract them. We propose that the
cATEWAYS handle intcrnetwork packets in a standard
format, but we are not proposing any particular trans-
mission procedure between GATEWAY halves.

Let us now trace the flow of data through the inter-
connceted networks. We assume a packet of data from
process X enters network A destined for process YV in
network €. The address of Y is initially specified by
process X and the address of caTEway M is derived from
the address of process Y. We make no attempt to specify
whether the choice of caTeway is made by process X,
its HOST, or one of the packet switches in network A. The
packet traverses network A until it reaches cateway M.
At the careEway, the packet is reformatted to meet the
requirements of network B, account is taken of this unit
of flow between A and B, and the caTEwAY delivers the
packet to network B. Again the derivation of the next
GATEWAY address is accomplished based on the address of
the destination Y. In this case, GATEWAY N 1s the next one.
The packet traverses network B until it finally reaches
GATEWAY N where it is formatted to meet the requirements
of network C. Account is again taken of this unit of flow
between networks B and €. Upon entering network €,
the packet is routed to the HostT in which process ¥
resides and there it is delivered to its ultimate destination.

Since the cateEwAy must understand the address of the
source and destination mosTs, this information must be

available in a standard format in every packet which .

arrives at the cateEway. This information is contained
in an internetwork header prefixed to the packet by the
source HOST. The packet format, including the internet-
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packet from
process x

'

GATEWAY GATEWAY

Fig. 2. Three networks interconnected by two GATEWAYs.

B (may be nui} ]——‘ Internetwork Header

|LOCAL HEADER[SOURCE ’DESTINATION ] SEQUENCE NO. IBVTE COUNT[FLAG FIELDI TEXT !CHECKSUM

Fig. 3. Internetwork packet format (fields not shown to scale).

work header, is illustrated in Tig. 3. The source and desti-
mation entries uniformly and uniquely identify the address
of every HOST in the composite network. Addressing is a
subject of considerable complexity which is discussed
jin greater detail in the next section. The next two entries in
Ithe header provide a sequence number and a byte count
that may be used to properly sequence the packets upon
delivery to the destination and may also cnable the
ATEWAYS to detect fault conditions affecting the packet.
The flag field is used to convey specific control information
and is discussed in the section on retransmission and
duplicate detection later. The remainder of the packet
eonsists of text for delivery to the destination and a trailing
heck sum used for end-to-end software verification. The
6ATEWAY does not modify the text and merely forwards the
theck sum along without computing or recomputing it.
Each network may need to augment the packet format
before it can pass through the individual network. We
have indicated a local header in the figure which is prefixed
fo the beginning of the packet. This local header is intro-
fuced merely to illustrate the concept of embedding an
jnternetwork packet in the format of the individual net-
prork through which the packet must pass. It will ob-
'ously vary in its exact form from network to network
pnd may even be unnecessary in some cases. Although not
explicitly indicated in the figure, it is also possible that a
Jocal trailer may be appended to the end of the packet.
Unless all transmitted packets are legislatively re-
jtricted to be small enough to be accepted by every in-
fividual network, the GATEWAY may be forced to split a
packet into two or more smaller packets. This action is
palled fragmentation and must be done in such a w ay that
jhe destination is able to picce together the fragmented
packet. It is clear that the internctwork header format
Jmposes a minimum packet size which all networks
pust carry (obviously all networks will want to carry
packets larger than this minimum). We believe the long
pange growth and development of internctwork com-
punication would be scriously inhibited by speeifying
pow much larger than the minimum a packet size can be,
or the following reasons.
1) If a maximum permitted packet size is specified then
i becomes impossible to completely isolate the internal
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packet size parameters of one network from the internal
packet size parameters of all other networks.

2) Tt would be very difficult to increase the maximum
permitted packet size in response to new technology (e.g.,
large memory systems, higher data rate communication
facilities, etc.) since this would require the agreement and
then implementation by all participating networks.

3) Associative addressing and packet eneryption may
require the size of a particular packet to expand during
transit for incorporation of new information.

Provision for fragmentation (regardless of where it is
performed) permits packet size variations to be handled
on an individual network basis without global admin-
Istration and also permits mHosts and processes to be
insulated from changes in the packet sizes permitted in
any nctworks through which their data must pass.

If fragmentation must be done, it appears best to do it
upon entering the next network at the caTEwAY since only
this GaTEwAy (and not the other networks) must be aware
of the internal packet size parameters which made the
fragmentation necessary.

If a GaTEWAY fragments an incoming packet into two or
more packets, they must eventually be passed along to the
destination HosT as fragments or reassembled for the
HOST. It is conecivable that one might desire the GaTEWAY
to perform the reassembly to simplify the task of the desti-
nation HosT (or process) and/or to take advantage of a
larger packet size. We take the position that GATEWAYS
should not perform this function since GATEWAY re-
assembly can lead to serious buffering problems, potential
deadlocks, the necessity for all fragments of a packet to
pass through the same GaTeway, and increased delay in
transmission. I'urthermore, it is not sufficient for the
GATEWAYS to provide this function since the final GATEWAY
may also have to fragment a packet for transmission.
Thus the destination HosT must be prepared to do this
task.

Let us now turn briefly to the somewhat unusual ac-
counting effect which arises when a packet may be frag-
mented by one or more GaTEwavs. We assume, for
simplicity, that cach network initially charges a fixed rate
per packet transmitted, regardless of distance, and if one
network can handle a larger packet size than another, it
charges a proportionally larger price per packet. We also
assume that a subsequent increase in any network’s
packet size does not result in additional cost per packet to
its users. The charge to a user thus remains basically
constant through any net which must fragment a packet.
The unusual effect oceurs when a packet is fragmented into
smaller packets which must individually pass through a
subsequent network with a larger packet size than the
original unfragmented packet. We cxpect that most net-
works will naturally sclect packet sizes close to one
another, but in any case, an increase in packet size in one
net, even when it causes fragmentation, will not increase
the cost of transmission and may actually decrease it. In
the event that any other packet charging policies (than
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the one we suggest) are adopted, differences in cost can be
used as an economic lever toward optimization of indi-
vidual network performance.

PROCESS LEVEL COMMUNICATION

We suppose that processes wish to communicate in full
duplex with their correspondents using unbounded but
finite length messages. A single character might constitute
the text of a message from a process to a terminal or vice
versa. An entire page of characters might constitute the
text of a message from a file to a process. A data stream
(e.g., a continuously generated bit string) can be repre-
sented as a sequence of finite length messages.

Within a HOST we assume the existence of a transmission
control program (TCP) which handles the transmission
and acceptance of messages on bchalf of the processes it
serves. The TCP is in turn served by one or more packet
switches connected to the HosT in which the TCP resides.
Processes that want to communicate present messages
to the TCP for transmission, and TCP’s deliver incoming
messages to the appropriate destination processes. We
allow the TCP to break up messages into segments be-
cause the destination may restrict the amount of data that
may arrive, because the local network may limit the
maximum transmission size, or because the TCP may
need to share its resources among many processes con-
currently. TFurthermore, we constrain the length of a
segment to an integral number of 8-bit bytes. This uni-
formity is most helpful in simplifying the software needed
with HosT machines of different natural word lengths.
Provision at the process level can be made for padding a
message that is not an integral number of bytes and for
identifying which of the arriving bytes of text contain
information of interest to the receiving process.

Multiplexing and demultiplexing of scgments among
processes are fundamental tasks of the TCP. On trans-
mission, a TCP must multiplex together segments from
different source processes and produce internetwork
packets for delivery to one of its serving packet switches.
On reception, a TCP will accept a sequence of packets
from its serving packet switch(es). From this sequence
of arriving packets (generally from different HOSTS),
the TCP must be ablé to reconstruct and deliver messages
to the proper destination processes.

We assume that every segment is augmented with ad-
ditional information that allows transmitting and re-
ceiving TCP’s to identify destination and source processes,
respectively. At this point, we must face a major issuc.
How should the source TCP format segments destined for
the same destination TCP? We consider two cases.

Case 1) : If we take the position that segment boundaries
are immaterial and that a byte stream can be formed of
segments destined for the same TCP, then we may gain
improved transmission cfficiency and resource sharing by
arbitrarily parceling the stream into packets, permitting
many scgments to share a single internetwork packet
header. However, this position results in the need to re-
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construct: exactly, and in order, the stream of text bytes
produced by the source TCP. At the destination, this The
stream must first be parsed into segments and these in § petwor
turn must be used to reconstruct messages for delivery to may v:
the appropriate processes. ternetw
There are fundamental problems associated with this § g, 1w,
strategy due to the possible arrival of packets out of order 8 of inter
at the destination. The most critical problem appears Simil
to be the amount of interference that processes sharing the process
same TCP-TCP byte stream may cause among them- § We int
sclves. This is especially so at the receiving end. First, process
the TCP may be put to some trouble to parse the stream § The po
back into segments and then distribute them to buffers B as50cia
where messages are reassembled. If it is not readily ap- B are gen
parent that all of a segment has arrived (remember, it § therefo
may come as several packets), the receiving TCP may f address
have to suspend parsing temporarily until more packets § 4 fyl] d
have arrived. Second, if a packet is missing, it may not be
clear whether succeeding segments, even if they are identi-
fiable, can be passed on to the receiving process, unless the TCP
TCP has knowledge of some process level sequencing § issues,
scheme. Such knowledge would permit the TCP to decide § destina
whether a succeeding segment could be delivered to is § packet.
waiting process. Finding the beginning of a segment when § the TC
there are gaps in the byte stream may also be hard. ficatior
Case 2): Alternatively, we might take the position that § size se
the destination TCP should be able to determine, upon § the T
its arrival and without additional information, for which § TCP’s
process or processes a received packet is intended, and if | for any
so, whether it should be delivered then. As e
If the TCP is to determine for which process an arriving & observe
packet is intended, every packet must contain a process " to roul
header (distinet from the internetwork header) that com- | nected
pletely identifies the destination process. For simplicity, § are usc
we assume that each packet contains text from a single § networ
process which is destined for a single process. Thus each . cATEW
packet need contain only one process header. To decide [ -GaTEW.
whether the arriving data is deliverable to the destination g dividu
process, the TCP must be able to determine whether the Jf identif;
data is in the proper sequence (we can make provision ¥ out the
for the destination process to instruct its TCP to ignore J& interne
sequencing, but this is considered a special case). With the ff caATEW.
assumption that each arriving packet contains a proces &
header, the necessary sequencing and destination process
identification is immediately available to the destination A re
TCP. ing the
Both Cases 1) and 2) provide for the demultiplexing jl§ reconst
and delivery of segments to destination processes, but [ process
only Casc 2) does so without the introduction of potential j§ means
interprocess interference. Furthermore, Case 1) introduce 16 bits:
extra machinery to handle flow control on a HosTI-to- A send
HosT basis, since there must also be some provision forfl port ic
~will be

process level control, and this machinery i little used since
the probability is small that within a given HOST, two
processes will be coincidentally scheduled to send messages
to the same destination HOsT. For this reason, we selec
the method of Case 2) as a part of the internelwork
transmisston protocol.
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xt by ADDRESS FORMATS

on, thE The selection of address formats is a problem between
'Fhese etworks because the local network addresses of TCP’s
livery { ay vary substantially in format and size. A uniform in-
. ernetwork TCP  address space, understood by each
ith thl) oway and TCP, is essential to routing and delivery
of ord@ internetwork packets.

appea@ Similar troubles are encountered when we deal with
TIng tilrocess addressing and, more generally, port addressing,
) th.e We introduce the notion of ports in order to permit a
L Firslyocess to distinguish between multiple message streams.
- strealiyo port is simply a designator of one such message stream
puffe ssociated with a process. The means for identifying a port
:htl)y alre generally different in different operating systems, and
nber,

herefore, to obtain uniform addressing, a standard port

‘P malidress format is also required. A port address designates

paclt{e h full duplex message stream.

‘not b

:id(;nt ; TCP ADDRESSING

less th@ TCP addressing is intimately bound up in routing
lencinflissues, since a HOST or GATEWAY must choose a suitable
decid@estination HOST or GATEWAY for an outgoing internetwork
to itfibacket. Let us postulate the following address format for
t whegithe TCP address (Fig. 4). The choice for network identi-

ffication (8 bits) allows up to 256 distinet networks. This
ize seems sufficient for the forseeable future. Similarly,
he TCP identifier field permits up to 65 536 distinct
CP’s to be addressed, which seems more than sufficient
for any given network.

As each packet passes through a cATEWAY, the GaATEWAY
observes the destination network ID to determine how
to route the packet. If the destination network is con-
nected to the caATEWAY, the lower 16 bits of the TCP address
are used to produce a local TCP address in the destination
network. If the destination network is not connected to the
GATEWAY, the upper 8 bits are used to select a subsequent
cATEWAY. We make no effort to specify how each in-
dividual network shall associate the internetwork TCP
identifier with its local TCP address. We also do not rule
out the possibility that the local network understands the
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GATEWAY of the routing responsibility.

PORT ADDRESSING

A receiving TCP is faced with the task of demultiplex-
ing the stream of internetwork packets it receives and
reconstructing the original messages for each destination
process. Each operating system has its own internal
means of identifying processes and ports. We assume that
16bitsarc sufficient to serve asinternetwork port identifiers.
A sending process need not know how the destination
port identification will be used. The destination TCP
bwill be able to parse this number appropriately to find
the proper buffer into which it will place arriving packets.
We permit a large port number field to support processes
which want to distinguish between many different
messages streams concurrently. In reality, we do not care
how the 16 bits are sliced up by the TCP’s involved.
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internetwork addressing scheme and thus alleviates the
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8 16
NETWORK ’ TCP IDENTIFKI

Fig. 4. TCP address.

Even though the transmitted port name field is large,
it is still a compact external name for the internal repre-
sentation of the port. The use of short names for port
identifiers is often desirable to reduce transmission over-
head and possibly reduce packet processing time at the
destination TCP. Assigning short names to each port,
however, requires an initial negotiation between source
and destination to agree on a suitable short name assign-
ment, the subsequent maintenance of conversion tables
at both the source and the destination, and a final trans-
action to release the short name. For dynamic assignment
of port names, this negotiation is generally necessary in
any case.

SEGMENT AND PACKET FORMATS

As shown in Fig. 5, messages are broken by the TCP
into segments whose format is shown in more detail in
Tig. 6. The field lengths illustrated are merely suggestive.
The first two fields (source port and destination port in
the figure) have already been discussed in the preceding
section on addressing. The uses of the third and fourth
ficlds (window and acknowledgment in the figure) will
be discussed later in the section on retransmission and
duplicate detection.

We recall from Fig. 3 that an internetwork header con-
tains both a sequence number and a byte count, as well as
a flag field and a check sum. The uses of these fields are
explained in the following section.

REASSEMBLY AND SEQUENCING

The reconstruction of a message at the receiving TCP
clearly requires' that each internetwork packet carry a
sequence number which is unique to its particular desti-
nation port message stream. The sequence numbers must
be monotonie increasing (or decreasing) since they are
used to reorder and reassemble arriving packets into a
message. If the space of sequence numbers were infinite,
we could simply assign the next one to cach new packet.
Clearly, this space cannot be infinite, and we will consider
what problems a finite sequence number space will cause
when we discuss retransmission and duplicate detection
in the next section. We propose the following scheme for
performing the sequencing of packets and hence the re-
construction of messages by the destination TCP.

A pair of ports will exchange one or more messages over
a period of time. We could view the scquence of messages
produced by one port as if it were embedded in an in-
finitely long stream of bytes. Each byte of the message has
a unique sequence number which we take to be its byte
location relative to the beginning of the stream. When a

'In the case of encrypted packets, a preliminary stage of re-
assembly may be required prior to decryption.




R

IEEE TRANSACTIONS ON COMMUNICATIONS, MAY 1974

642
byte identification —sequence number
— = |LH | H PHI Aq 05] (LH IHNPH' B, [CK ‘TH’H—{‘ PH An‘cﬂ
[MESSAGE 8]
(messace o] ot | Locat Network Packet ] } 1|2 { k ‘
| twork Packet ; :
nternetwork Packe LH = Local Header First Message Second Message Third Message
IH = Internetwork Header
PH = Process Header Segment Segment Segment l Segment
CK = Checksum
N . {SEQ = k)
Fig. 5. Creation of segments and packets from messages. . .
Fig. 7. Assignment of sequence numbers.
32 32 16 16 8n
Source Port Destination/Port i Window | ACK ] Text {Field sizes in bits) 16 bits

Process Header

Tig. 6. Segment format (process header and text).

segment i3 extracted from the message by the source
TCP and formatted for internetwork transmission, the
relative location of the first byte of segment text is used as
the sequence number for the packet. The byte count
field in the internctwork header accounts for all the text
in the segment (but does not include the check-sum bytes
or the bytes in either internetwork or process header).
We emphasize that the sequence number associated with
a given packet is unique only to the pair of ports that are
communicating (see Fig. 7). Arriving packets are ex-
amined to determine for which port they are intended.
The sequence numbers on each arriving packet are then
used to determine the relative location of the packet text
in the messages under reconstruction. We note that this
allows the exact position of the data in the reconstructed
message to be determined even when pieces are still
missing.

Every segment produced by a source TCP is packaged
in a single internetwork packet and a check sum is com-
puted over the text and process header associated with the
segment.

The splitting of messages into segments by the TCP
and the potential splitting of segments into smaller pieces
by GATEWAYs creates the necessity for indicating to the
destination TCP when the end of a segment (ES) has
arrived and when the end of a message (EM) has arrived.
The flag field of the internetwork header is used for this
purpose (see Iig. 8).

The ES flag is set by the source TCP each time 1t pre-
pares a segment for transmission. If it should happen that
the message is completely contained in the segment, then
the EM flag would also be set. The EM flag is also set on
the last segment of a message, if the message could not
be contained in one segment. These two flags are used
by the destination TCP, respectively, to discover the
presence of a check sum for a given scgment and to discover
that a complete message has arrived. '

The ES and EM flags in the internetwork header are
known to the catEwAy and are of special importance when
packets must be split apart for propagation through the
next local network. We illustrate their use with an ex-
ample in Fig. 9.

The original message .4 in Fig. 9 is shown split into two
segments A, and A, and formatted by the TCP into a pair

E
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L> End of Message when set = 1

L End of Segment when set = 1

L Release Use of Process/Port when set=1
L Synchronize to Packet Sequence Number when set = 1

Fig. 8.

Internetwork header flag field.

———— - 1000 bytes
100 101 102 ...

[ | TEXT OF MESSAGE A ]
SEQ CT ES EM 500 2
SRc| DST | 100 [so0] 1] 0 V. ] pu | TExy e |
. | «———— internetwork header ——— segment A4
split by
source
Tcp
SEQ CT ES EM 500 2
src| psT[ 600 | 5001 1 [ 1 777 pu T vext [ ok |
segment Az l
%0 2

[src]osT 100 [250] 0 [ 0 77 PH | TEXT [/} packet Agy
;!;'it [src]psT[ 350] 250 1 [o 7 P | TexT [cK | packet Aqy
GATEWAY

[src]osT 600 [250 [0 [ 0 7777 o | TexT [[77] packet Ay

[src]osT [850 | 250 [ 1 | 1 [/ PH | TEXT | CK | packet Ayy

Fig. 9. Message splitting and packet splitting.

of internetwork packets. Packets A; and A, have their
ES bits set, and A, has its EM bit set as well. When
packet A; passes through the GATEWAY, it is split into two
pieces: packet Ay for which neither EM nor ES bits are
set, and packet A whose ES bit is set. Similarly, packet
A, is split such that the first picce, packet A, has neither
bit set, but packet Az has both bits set. The sequence
number field (SEQ) and the byte count field (CT) of each
packet is modified by the GATEWAY to properly identify
the text bytes of each packet. The GATEWAY need only
oxamine the internetwork header to do fragmentation.
The destination TCP, upon reassembling segment Ay,
will detect the ES flag and will verify the check sum it
knows is contained in packet A Upon receipt of packet
Ags, assuming all other packets have arrived, the desti-
nation TCP detects that it has reassembled a complete
message and can now advise the destination process of its
receipt. '
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RETRANSMISSION AND DUPLICATE
DETECTION

No transmission can be 100 percent reliable. We
propose a timeout and positive acknowledgment mecha-
nism which will allow TCP’s to recover from packet losses
from one HosT to another. A TCP transmits packets and
waits for replies (acknowledgements) that are carried in
the reverse packet stream. If no acknowledgment for a
particular packet is received, the TCP will retransmit.
It is our expectation that the HOsT level retransmission
mechanism, which is described in the following para-
graphs, will not be called upon very often in practice.
Evidence already exists? that individual networks can be
effectively constructed without this feature. However, the
inclusion of a HOST retransmission capability makes it
possible to recover from occasional network problems and
allows a wide range of HoOsT protocol strategies to be in-
corporated. We envision it will occasionally be invoked to
allow HOST accommodation to infrequent overdemands for
limited buffer resources, and otherwise not used much.

Any retransmission policy requires some means by
which the receiver can detect duplicate arrivals. Even if
an infinite number of distinet packet sequence numbers
were available, the receiver would still have the problem
of knowing how long to remember previously received
packets in order to detect duplicates. Matters are compli-
cated by the fact that only a finite number of distinct
sequence numbers are in fact available, and if they are
reused, the receiver must be able to distinguish between
new transmissions and retransmissions.

A window strategy, similar to that used by the French
cYCLADES system (vole virtuelle transmission mode [87])
and the ARPANET very distant HOST connection [187,
is proposed here (see Fig. 10).

Suppose that the sequence number ficld in the inter-
network header permits sequence numbers to range from
0ton — 1. We assume that the sender will not transmit
more than w bytes without receciving an acknowledgment.
The w bytes serve as the window (sce Fig. 11). Clearly,
w must be less than n. The rules for sender and recciver
are as follows.

Sender: Let L be the sequence number associated with
the left window edge.

1) The sender transmits bytes from segments whose

| text lies between L and uptoL + w — 1.

2) On timeout (duration unspecified), the sender
retransmits unacknowledged bytes.

3) On receipt of acknowledgment consisting of the
receiver’s current left window edge, the sender’s left
window edge is advanced over the acknowledged bytes

L (advancing the right window edge implieitly).

Recetver:

1) Arriving packets whose sequence numbers coincide
with the receiver’s current left window edge arc acknowl-

edged by sending to the source the next sequence number

?The ARPANET is one such example.

643
Left Window Edge

L] B [ ]
! I

| window |

]

{*—-— packet sequence number space ——»‘

Fig. 10. The window concept.

1 Source
Address
2 Destination
Address
3 Next Packet Seq.
a4 Current Buffer Size
5 Next Write Position
6 Next Read Position
7 End Read Position
8 No. Retrans. Max Retrans.
9 Timeout Flags
10 Curr. Ack Window

Fig. 11. Conceptual TCB format.

expeceted. This effectively acknowledges bytes in between.
The left window edge is advanced to the next sequence
number expected.

2) Packets arriving with a sequence number to the left
of the window edge (or, in fact, outside of the window) are
discarded, and the current left window edge is returned as
acknowledgment.

3) Packets whose sequence numbers lie within the
receiver’s window but do not coinicide with the receiver’s
left window edge are optionally kept or discarded, but
are not acknowledged. This is the case when packets arrive
out of order.

We make some observations on this strategy. First, all
computations with sequence numbers and window edges
must be made modulo n (e.g., byte 0 follows byte n — 1).
Second, w must be less than n/2%; otherwise a retrans-
mission may appear to the recciver to be a new trans-
mission in the case that the receiver has accepted a
window’s worth of incoming packets, but all acknowledg-
ments have been lost. Third, the receiver can either save
or discard arriving packets whose sequence numbers do
not coincide with the receiver’s left window. Thus, in the
simplest implementation, the receiver need not buffer
more than one packet per message stream if space is
critical. Fourth, multiple packets can be acknowledged
simultancously. Fifth, the receiver is able to deliver
messages to proeesses in their proper order as a natural
result of the reassembly mechanism. Sixth, when dupli-
cates are detected, the acknowledgment method used
naturally works to resynchronize sender and receiver.
Furthermore, if the receiver accepts packets whose
sequence numbers lic within the current window but

3 Actually n/2 is merely a convenient number to use; it is only
required that a retransmission not appear to be a new transmission.



644

which are not coincident with the left window edge, an
acknowledgment consisting of the current left window
edge would act as a stimulus to cause retransmission of the
unacknowledged bytes. Finally, we mention an overlap
problem which results from retransmission, packet
splitting, and alternate routing of packets through dif-
ferent GATEWAYS.

A 600-byte packet might pass through one GATEWAY
and be broken into two 300-byte packets. On retrans-
mission, the same packet might be broken into three
200-byte packets going through a different GATEWAY.
Since each byte has a sequence number, there is no con-
fusion at the receiving TCP. We leave for later the issue
of initially synchronizing the sender and receiver left
window edges and the window size.

FLOW CONTROL

Every segment that arrives at the destination TCP is
ultimately acknowledged by returning the sequence
number of the next segment which must be passed to the
process (it may not yet have arrived).

TFarlier we described the use of ‘a sequence number
space and window to aid in duplicate detection. Ac-
knowledgments are carried in the process header (see
Fig. 6) and along with them there is provision for a
“suggested window’” which the receiver can use to control
the flow of data from the sender. This is intended to be
the main component of the process flow control mecha-
nism. The receiver is frec to vary the window sizg accord-
ing to any algorithm it desires so long as the window
size never exceeds half the sequence number space.?

This flow control mechanism is exceedingly powerful
and flexible and does not suffer from synchronization
troubles that may be encountered by incremental buffer
allocation schemes [97,[10]. However, it relies heavily
on an effective retransmission strategy. The receiver can
reduce the window even while packets are en route from
the sender whose window is presently larger. The net
effect of this reduction will be that the recelver may
discard incoming packets (they may be outside the
window) and reiterate the current window size along with
a current window edge as acknowledgment. By the same
token, the sender can, upon occasion, choose to send more
than a window’s worth of data on the possibility that the
receiver will expand the window to aceept it (of course, the
sender must not send more than half the sequence number
space at any time). Normally, we would expeet the sender
to abide by the window limitation. Expansion of the
window by the receiver merely allows more data to be ac-
cepted. For the recciving HOST with a small amount of
buffer space, a strategy of discarding all packets whose

sequence numbers do not coincide with the current left
edge of the window is probably necessary, but it will incur
the expense of extra delay and overhead for retransmis-
sion.

e N
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TCP INPUT/OUTPUT HANDLING

The TCP has a component which handles input/output
(I/0) to and from the network. When a packet has ar-
rived, it validates the addresses and places the packet
on a queue. A pool of buffers can be set up to handle
arrivals, and if all available buffers are used up, succeeding
arrivals can be discarded since unacknowledged packets
will be retransmitted.

On output, a smaller amount of buffering is needed,
since process buffers can hold the data to be transmitted.
Perhaps double buffering will be adequate. We make no
attempt to specify how the buffering should be done,
except to require that it be able to service the network
with as little overhead as possible. Packet sized buffers,
one or more ring buffers, or any other combination are
possible candidates.

When a packet arrives at the destination TCP, it is placed
on a queue which the TCP services frequently. For ex-
ample, the TCP could be interrupted when a queue place-
ment oceurs. The TCP then attempts to place the packet
text into the proper place in the appropriate process
receive buffer. If the packet terminates a segment, then
it can be checksummed and acknowledged. Placement
may fail for several reasons.

1) The destination process may not be prepared to
receive from the stated source, or the destination port D
may not exist.

2) There may be insufficient buffer spacc for the text.

3) The beginning sequence number of the text may
not coincide with the next sequence number to be delivered
to the process (e.g., the packet has arrived out of order).

In the first case, the TCP should simply discard the
packet (thus far, no provision has been made for error
acknowledgments). In the second and third cases, the
packet sequence number can be inspected to determine
whether the packet text lies within the legitimate window
for reception. If it does, the TCP may optionally keep the
packet queued for later processing. If not, the TCP
can discard the packet. In either case the TCP can
optionally acknowledge with the current left window cdge.

It may happen that the process receive buffer is not
present in the active memory of the mostT, but is stored on
secondary storage. If this is the case, the TCP can prompt
the scheduler to bring in the appropriate buffer and the
packet can be queued for later processing.

If there are no more input buffers available to the TCP
for temporary qucueing of incoming packets, and if the
TCP cannot quickly use the arriving data (e.g., a TCP
to TCP message), then the packet is discarded. Assuming
a scnsibly functioning system, no other processes than the
one for which the packet was intended should be affected
by this discarding. If the delayed processing queue grows

4 This component can serve to handle other protocols whose
associated control programs are designated by internetwork destina-
tion address.
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excessively long, any packets in it can be safely discarded

since none of them have yet been acknowledged. Con-
gestion at the TCP level is flexibly handled owing to the
robust retransmission and duplicate detection strategy.

TCP/PROCESS COMMUNICATION

In order to send a message, a process sets up its text
in a buffer region in its own address space, inserts the
requisite control information (described in the following
list) in a transmit control block (TCB) and passes control
to the TCP. The exact form of a TCB is not specified
here, but it might take the form of a passed pointer, a
pseudointerrupt, or various other forms. To receive a
message in its address space, a process sets up a receive
buffer, inscrts the requisite control information in a
receive control block (RCB) and again passes control
to the TCP.

In some simple systems, the buffer space may in fact
be provided by the TCP. For simplicity we assume that
a ring buffer is used by each process, but other structures
(e.g., buffer chaining) are not ruled out.

A possible format for the TCB is shown in Fig. 11. The
TCB contains information necessary to allow the TCP
to extract and send the process data. Some of the informa-
tion might be implicitly known, but we are not concerned
with that level of detail. The various fields in the TCB
are described as follows.

1) Source Address: This is the full net/most/TCP/port
address of the transmitter.

2) Destination Address: This is the full nect/most/

:‘ TCP/port of the receiver.

3) Next Packet Sequence Number: This is the sequence

" number to be used for the next packet the TCP will

transmit from this port.
4) Current Buffer Stze: This is the present size of the

“process transmit buffer,

5) Next Write Position: This is the address of the next
position in the buffer at which the process can place new
data for transmission.

6) Next Read Position: This is the address at which the
TCP should begin reading to build the next segment for
output.

7) End Read Position: This is the address at which the
TCP should halt transmission. Initially 6) and 7) bound
the message which the process wishes to transmit.

8) Number of Retransmissions/Maximum Retransmis-

§ sions: These fields enable the TCP to keep track of the

number of times it has retransmitted the data and could be
omitted if the TCP is not to give up.

9) Timeout/Flags: The timeout ficld specifies the
lelay after which unacknowledged data should be retrans-
mitted. The flag ficld is used for semaphores and other
TCP/process synchronization, status reporting, ete.

10) Current Acknowledgment/Window: The current

scknowledgment ficld identifies the first byte of data

siill unacknowledged by the destination TCP.
t
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The read and write positions move circularly around the
transmit buffer, with the write position always to the left
(module the buffer size) of the read position.

The next packet sequence number should be constrained
to be less than or equal to the sum of the current ac-
knowledgment and the window fields. In any event, the
next sequence number should not exceed the sum of the
current acknowledgment and half of the maximum possible
sequence number (to avoid confusing the receiver’s
duplicate detection algorithm). A possible buffer layout
is shown in Fig, 12.

The RCB is substantially the same, except that the end
read field is replaced by a partial segment check-sum
register which permits the receiving TCP to compute and
remember partial check sums in the event that a segment
arrives in several packets. When the final packet of the
segment arrives, the TCP can verify the check sum and if
successful, acknowledge the segment.

CONNECTIONS AND ASSOCIATIONS

Much of the thinking about proeess-to-process com-
munication in packet switched networks has been in-
fluenced by the ubiquitous telephone system. The mosT—
HOST protocol for the ARPANET deals explicitly with the
opening and closing of simplex connections between
processes [9],[10]. Evidence has been presented that
message-based ‘‘conncetion-free” protocols can be con-
structed [127], and this leads us to carefully examine the
notion of a connection.

The term connection has a wide variety of meanings. Tt
can refer to a physical or logical path between two en-
tities, it can refer to the flow over the path, it can in-
ferentially refer to an action associated with the setting
up of a path, or it can refer to an association between two
or more entities, with or without regard to any path
between them. In this paper, we do not explicitly reject
the term connection, since it is in such widespread use,
and does connote a meaningful relation, but consider
it exclusively in the sense of an association between two or
more entities without regard to a path. To be more precise
about our intent, we shall define the relationship between
two or more ports that are in communication, or are pre-
pared to communicate to be an assoctation. Ports that
are associated with each other are called associates.

It is clear that for any communication to take place
between two processes, one must be able to address the
other. The two important cases here are that the desti-
nation port may have a global and unchanging address or
that it may be globally unique but dynamically reassigned.
While in ecither case the sender may have to learn the
destination address, given the destination name, only in
the second instanece is there a requirement for learning the
address from the destination (or its representative) each
time an association is desired. Only after the source has
learned how to address the destination can an association
be said to have oceurred. But this is not yet sufficient. If
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Current Message ———————>

V22

Sent, Acked [ Sent, Not Acked Not Sent l Partial Next Message A

Current Ack

Next Seq. No.

Next Read End Read Next Write

Window 1

Transmit Buffer Size

Fig. 12. Transmit buffer layout.

ordering of delivered messages is also desired, both
TCP’s must maintain sufficient information to allow
proper sequencing. When this information is also present
at both ends, then an association is said to have ocecurred.

Note that we have not said anything about a path, nor
anything which implies that cither end be aware of the
condition of the other. Only when both partners are
prepared to communicate with each other has an associ-
ation occurred, and it is possible that neither partner
may be able to verify that an association exists until some
data flows between them.

CONNECTION-FREE PROTOCOLS WITH
ASSOCIATIONS

In the ARPANET, the interface message processors
(IMP’s) do not have to open and close connections from
source to destination. The reason for this is that con-
nections are, in effect, always open, since the address of
every source and destination is never? reassigned. When
the name and the place are static and unchanging, it is
only necessary to label a packet with source and desti-
nation to transmit it through the network. In our parlance,
every source and destination forms an association.

In the case of processes, however, we find that port
addresses are continually being used and reused. Some
ever-present processes could be assigned fixed addresses
which do not change (e.g., the logger process). If we sup-
posed, however, that every TCP had an infinite supply of
port addresses so that no old address would ever be reused,
then any dynamically created port would be assigned the
next unused address. In such an environment, there
could never be any confusion by source and destination
TCP as to the intended recipient or implied source of each
message, and all ports would be assoclates.

Unfortunately, TCP’s (or more properly, operating
systems) tend not to have an infinite supply of internal
port addresses. These internal addresses are reassigned
after the demise of cach port. Walden [12] suggests that
a set of unique uniform external port addresses could
be supplied by a central registry. A newly created port
could apply to the central registry for an address which
the central registry would guarantee to be unused by any
HosT system in the network. Each TCP could maintain
tables matching external names with internal ones, and
use the external ones for communication with other

s Unless the IMP is physically moved to another site, or the
HosT is connected to a different IMP.

e
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processes. This idea violates the premise that interprocess
communication should not require centralized control.
One would have to extend the central registry service to
include all HosT's in all the interconnected networks to
apply this idea to our situation, and we therefore do not
attempt to adopt it.

Let us consider the situation from the standpoint of the
TCP. In order to send or receive data for a given port,
the TCP needs to set up a TCB and RCB and initialize
the window size and left window edge for both. On the
receive side, this task might even be delayed until the
first packet destined for a given port arrives. By con-
vention, the first packet should be marked so that the
receiver will synchronize to the received sequence number.

On the send side, the first request to transmit could
cause a TCB to be set up with some initial sequence
number (say, zero) and an assumed window size. The
receiving TCP can reject the packet if it wishes and
notify the sending TCP of the correct window size via the
acknowledgment mechanism, but only if either

1) we insist that the first packet be a complete segment;

2) an acknowledgment can be sent for the first packet

(even if not a segment, as long as the acknowledg-
ment specifies the next sequence number such that
the source also understands that no bytes have been
accepted).
It is apparent, therefore, that the synchronizing of window
size and left window edge can be accomplished without
what would ordinarily be called a connection setup.

The first packet referencing a newly created RCB
sent from one associate to another can be marked with a
bit which requests that the recetver synchronize his left
window edge with the sequence number of the arriving
packet (see SYN bit in Fig. 8). The TCP can examine the
source and destination port addresses in the packet and
in the RCB to decide whether to accept or ignore the
request.

Provision should be made for a destination process to
specify that it is willing to LISTEN to a specific port or
“any”’ port. This last idea permits processes such as the
logger process to accept data arriving from unspecified
sources. This is purely a HosT matter, however.

The initial packet may contain data which can be stored
or discarded by the destination, depending on the avail-
ability of destination buffer space at the time. In the other
direction, acknowledgment is returned for receipt of data
which also specifies the receiver’s window size.

If the receiving TCP should want to reject the syn-
chronization request, it merely transmits an acknowledg-
ment carrying a release (REL) bit (see Fig. 8) indicating
that the destination port address is unknown or inacces-
sible. The sending HosT waits for the acknowledgment
(after accepting or rejecting the synchronization request)
before sending the next message or segment. This rejection
is quite different from a negative data acknowledgment.
We do not have explicit negative acknowledgments. If no
acknowledgment is returned, the sending HOST may

CERF AND

retransm

the left v
Becaus
for trans
sary to i
EM flag
by the T
on all b
Fig. 9).
At th
with ES
number
still out
arrived,
To as
ation ha
to the
own.
Suppt
associat
an RCI
accept
packets
which
ation s
and R(
contain
ES, EN
at a tir
seribed
can onl
(like Y
receivir
acknow
ation L
that t
transm
edgmer
duplics
destina

- previot

is to d
nation
Howev
same 8
establi
can oc
and R
packet
but do

Alte
causin
pairs ¢
data a
destro

68. (




1974 3 [CERF AND KAHN: PACKET NETWORK INTERCOMMUNICATION

CESS Wretransmit without introducing confusion if, for example,
trol. the left window edge is not changed on the retransmission.
e to i Because messages may be broken up into many packets
8 to Mfor transmission or during transmission, it will be neces-
not M ary to ignore the REL flag except in the case that the
L EM flag is also set. This could be accomplished either
f the M by the TCP or by the caTEWAY which could reset the flag
oort, M on all but the packet containing the set EM flag (see
alize ’ Fig. 9).
the At the end of an association, the TCP sends a packet
the @ yith ES, EM, and REL flags set. The packet sequence

Con- B number scheme will alert the recciving TCP if there are
the N i outstanding packets in transit which have not yet
ber. arrived, so a premature dissociation cannot occur.

ould To assure that both TCP’s arc aware that the associ-
ence - W ation has ended, we insist that the receiving TCP respond
The @t the REL by sending a REL acknowledgment of its
and @ own.
 the Suppose now that a process sends asingle message to an
associate including an REL along with the data. Assuming
ent; M an RCB has been prepared for the receiving TCP to
cket | accept the data, the TCP will accumulate the incoming
edg- packets until the one marked ES, EM, REL arrives, at
that W which point a REL is returned to the sender. The associ-
been B ation is thereby terminated and the appropriate TCB
‘ -and RCB are destroyed. If the first packet of a message
dow i contains a SYN request bit and the last packet contains
hout B ES, EM, and REL bits, then data will flow “‘one message
at a time.” This mode is very similar to the scheme de-
RCB @ seribed by Walden [12], since each succeeding message
th 2 S8 ean only be accepted at the receiver after a new LISTEN
‘ l'eft i (like Walden’s rRECEIVE) command is issued by the
ving B receiving process to its serving TCP. Note that only if the
> the Wbiscknowledgment is received by the sender can the associ-

and ation be terminated properly. It has been pointed outt
the JMthat the receiver may erroneously accept duplicate

transmissions if the sender does not receive the acknowl-
35 to WMedgment. This may happen if the sender transmits a
't 1(1)1' duplicate message with the SYN and REL bits set and the
 the

ldestination has already destroyed any record of the
fprevious transmission. One way of preventing this problem
i to destroy the record of the association at the desti-
nation only after some known and suitably chosen timeout.
However, this implies that a new association with the
same source and destination port identifiers could not be
established until this timeout had expired. This problem
can occur even with sequences of messages whose SYN
syn- gland REL bits are separated into different internetwork
edg-. packets. We recognize that this problem must be solved,
ting B but do not go into further detail here.

sces- d  Alternatively, both processes can send one message,
nent Ml wusing the respective TCP’s to allocate RCB/TCB
le_st) pairs at both ends which rendezvous with the exchanged
tion Ml data, and then disappear. If the overhead of creating and
!f‘?nt-’ bdestroying RCB’s and TCB’s is small, such a protocol
f no :

may B 3. Crocker of ARPA/IPT.
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might be adequate for most low-bandwidth uses. This idea
might also form the basis for a relatively secure trans-
mission system. If the communicating processes agree to
change their external port addresses in some way known
only to each other (i.e,, pseudorandom), then each
message will appear to the outside world as if it is part of a
different association message stream. Even if the data is
intercepted by a third party, he will have no way of
knowing that the data should in fact be considered part of
a sequence of messages.

We have described the way in which processes develop
associations with each other, thereby becoming associates
for possible exchange of data. These associations need not
involve the transmission of data prior to their formation
and indeed two associates nced not be able to determine
that they are associates until they attempt to communi-
cate.

CONCLUSIONS

We have discussed some fundamental issues related to
the interconnection of packet switching networks. In
particular, we have described a simple but very powerful
and flexible protocol which provides for variation in
individual network packet sizes, transmission failures,
sequencing, flow control, and the creation and destruction
of process-to-process associations. We have considered
some of the implementation issues that arise and found
that the proposed protocol is implementable by HosT’s
of widely varying capacity.

The next important step is to produce a detailed speci-
fication of the protocol so that some initial experiments
with it can be performed. These experiments are needed
to determine some of the operational parameters (e.g.,
how often and how far out of order do packets actually
arrive; what sort of delay is ‘there between segment
acknowledgments; what should be retransmission time-
outs be?) of the proposed protocol.
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