Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.829 Fall 2005 Problem Set 3 October 4, 2005

This problem set has four questions. The first two questions involve programming and experimental
analysis. Turn in your solutions on Friday, October 14, 2005 in recitation. Do a make handin
in your code directory and email the tarball to 6.829-tas@mit.edu before 1:30pm on October 14,
2005. Your code will be tested and graded in a manner similar to Problem Set 1.

Congestion Control in RMTP

The first two questions in the problem set involve implementing and understanding congestion
control in RMTP. To answer these questions, you must extend the RMTP framework from Problem
Set 1 to include TCP-style congestion control. We have re-factored the RMTP code to be more
generally extensible, and so your earlier ReliableServer implementation cannot be used for this
problem set.

The framework code is available in tar’d, gzip’d format at http://nms.csail.mit.edu/6.829/
rmtp/rmtp.tar.gz. Download that file onto your local machine, and run the following to get to
the code:

tar -xzf rmtp.tar.gz; cd rmtp

You will find nine Python files in this directory:

e msg.py: Defines a class for the messages sent between the client and server. Also defines the
messages types.

e network.py: A networking layer used by both the client and the server to transmit mes-
sages. This file handles all the messy details of scheduling timeouts and writing to sockets.
The client and server interact with the network mostly through Network.sendMessage and
Network.cancelTimeout (please note that cancelTimeout now returns the canceled time-
out).

e queue.py: Used by the network layer to emulate a bottleneck link. Schedules packets at a
specified rate, and drops new packets whenever a queue of finite size is full.

e client.py: Defines the ReliableClient class, which implements the client side of the RMTP
protocol. This file now contains a full implementation.

e vserver.py: Defines the VirtualServer, the parent class to all server types. It’s a bit of a
Python hack — you don’t need to understand how this class works.

e server.py: Defines the ReliableServer class. This file now contains a full implementation.

e ccserver.py: Defines the AIMDReliableServer class, a sub-class of ReliableServer. You
must complete this class by extending and overriding ReliableServer methods to implement
TCP-style congestion control. This file also contains the AIMDData class, which you must
populate with any data that is used directly by your AIMDReliableServer class (e.g., cwnd,
ssthresh, rtt, outstanding, etc.).



e manyservers.py: Creates multiple AIMDReliableServers that all share the same network
bottleneck.

e mhserver.py: Creates a single logical, multi-homed server that allows data to be striped
across multiple network paths.

Code documentation for these files is available at http://nms.csail.mit.edu/6.829/rmtp.

Your implementation of AIMDReliableServer should implement three main aspects of TCP-style
congestion control: slow start, AIMD congestion avoidance, and fast retransmit.! To implement
slow-start, the AIMDReliableServer starts transmitting data with a cwnd of 1 packet. On every
ACK, cwnd is incremented by 1 packet until cwnd reaches ssthresh (initially, set ssthresh to
be AIMDData.SSTHRESH MAX). Thereafter, the server enters the congestion avoidance phase and
implements AIMD style congestion control, i.e., cwnd is incremented by 1/cwnd on every ACK.
Out-of-order ACKs are treated as indicative of lost packets. Upon receiving three out-of-order
ACKSs, it retransmits the lost packet (even before it times out) and halves its cwnd. This multi-
plicative decrease is done at most once per RT'T. Note that the server needs to maintain additional
state about which packets have been transmitted and which ACKs have been received, in order
to identify out-of-order ACKs. Note also that the RTT estimate should now be stored as part of
AIMDData since it is used in AIMD-related computations. On a timeout, the server sets ssthresh
to half the current value of cwnd, resets cwnd to 1 and begins slow start.

The Network class now has several new parameters: size, rate, and delay. The rate specifies the
rate at which packets are drained from some queue in the network, and can be used to emulate
bottleneck links with a specified bandwidth (in packets per second). The queue size specifies the
maximum number of untransmitted packets the queue can hold; the network layer will drop new
packets when the queue is full. In addition, if a non-zero delay value is specified, all packets through
the network layer are transmitted after the specified delay. This can be used to emulate a connection
with a specific RTT. Also, as in Problem Set 1, when a non-zero loss rate is specified, all packets
being transmitted over the network are dropped with the specified probability. By convention, any
queuing and delay occurs on the server side of the connection.

Note that the questions in this problem set are intended to be research-oriented, and in many cases
are under-specified on purpose. Use your good judgment to fill in any holes in the problem with
reasonable choices, and explain in your solutions what you did.

Security advisory: Running the server exposes any file on your computer to anyone
who knows the protocol and the port number. Do not leave the server running for
long periods of time.

1 Multiple TCP connections sharing a bottleneck

In this problem we will study the behavior of multiple TCP connections sharing a bottleneck
link. You will first need to complete the AIMDReliableServer and AIMDData classes. The file
manyservers.py creates multiple AIMD servers all of which share the same bottleneck, emulating
the real-life situation of multiple TCP connections sharing the same bottleneck link. For example,
to start two servers sharing a bottleneck link of 10 packets/second with a queue size of 5 packets,
you can do the following:

I'Note that the fast_rxmit field in AIMDReliableServer should turn fast retransmits on and off.



python manyservers.py —--port 6829 --delay .5 --loss O --port 6830 --delay .1 --loss
.05 --rate 10 --queue-size 5

In this case, the first server listens on port 6829, has a delay of 500 ms, and no loss. The second
server listens on port 6830, has a delay of 100 ms, and a loss rate of 5%. To download files from
the two servers simultaneously, run a command like this on the client machine (all on one line):

python client.py --port 6829 --file <filel> --loss O —-output <outfilel> &
python client.py --port 6830 --file <file2> --loss .05 --output <outfile2>

All the TCP connections for the following questions should share a bottleneck link with a queue
size of 10 packets and a rate of 20 packets per second.

1.1 Throughput vs RTT

We will now observe how the throughput of the connection depends on its RTT. For connection i,
set the delay in the network layer to be 0.5¢ seconds, and the loss rate to 0. Consider 2, 3, and 4
concurrent connections. Download files large enough so that all connections are concurrent for at
least 30 seconds. Answer all questions for this period of time the connections are concurrent.

1. In each case, in what ratio do the individual connections share the bottleneck bandwidth?

2. In each case, plot the variation of cwnd of each connection over time. You should use the
provided function dumpCwndLog to write the time and congestion window to a log file (named
cwnd<port>) each time the window changes.

3. Plot a graph of the throughput (in packets per second) observed by the client and the RTT
of the connection. Run the experiment 5 times and plot the mean and standard deviation in
the graph. What can you say about the relationship between throughput and RTT?

1.2 Throughput vs Loss rate

We will now observe how the throughput of the connection depends on the loss rate on the network.
For connection i, set the loss along the path to be 5i %, and the delay to be 0.1 seconds. Consider
2, 3 and 4 concurrent connections.

1. In each case, in what ratio do the individual connections share the bottleneck bandwidth?

2. In each case, plot the variation of cwnd of each connection with time.

3. Plot a graph between throughput observed by the client and loss rate. Run the experiment 5
times and plot the mean and standard deviation in the graph. What can you say about the
relationship between throughput and loss rate?

2 TCP and Multi-homing

A conventional TCP connection is insensitive to the presence of multiple paths between the server
and the client (which might be the case when the server and/or the client are multi-homed, or



when ISPs load balance traffic across multiple paths). A TCP server maintains only one cwnd
per connection irrespective of the presence of multiple paths. When packets from one window are
“striped” across multiple paths in this manner, packets sent through the paths of lower quality
suffer losses, resulting in the reduction of the cwnd, thus preventing more packets from being sent
over the better paths. We hypothesize that a multi-homed TCP server can benefit from maintaining
separate congestion control variables (like cwnd and RTT estimates) for the different paths between
server and client. In such a case, the losses and delays on one path do not effect the cwnds of the
other paths. Thus the “better” paths can ramp up their cwnds and increase the throughput of the
connection. In this setup, whenever the TCP connection has packets to send, it sends it along the
path that has space in its cwnd. In this problem you will investigate this hypothesis.

We provide a class MultiHomedReliableServer in mhserver.py, which is a TCP server that is
aware of the multiple paths between the server and client. We emulate multiple paths between
the server and client by opening multiple sockets and multiple Network objects on the server side
with different loss and delay characteristics. The MultiHomedReliableServer instantiates multiple
servers, one for each of the paths between the server and client. In this problem, each server is only
a “virtual server”, i.e., all the servers share state like sequence numbers and file descriptors between
them using the methods of the VirtualServer class.

The MultiHomedReliableServer can be run in one of two modes - corresponding to the multi-
homing aware and multi-homing unaware modes. When mhserver.py is run with the option
--vserver—type=aimd, multiple AIMDReliableServer objects are created each with its own AIMDData
object. Thus the cwnds of these multiple paths can evolve independently of each other. On the
other hand, when the multi-homed server is run with the option --vserver-type=shared, all the
ATMDReliableServer objects are passed the same AIMDData object and hence share the same con-
gestion control variables like cwnd. In this problem we will investigate if one of these options is
better than the other.

You can start a multi-homed server using the mhserver.py file. Paths are specified using the
--network option with a 4-tuple describing loss rate, packet rate, queue size, and delay. For example,
to start a server that starts independent AIMD virtual servers on two different paths, one with a
5% loss rate and a 100 ms delay but no bottleneck, and the other with no loss rate or delay but a
10 packets/second, 5 packet bottleneck, run the following command:

python mhserver.py --port 6829 --network .05,0,0,.1 --network 0,10,5,0 --vserver-type
aimd

Consider the following network configurations, each with four underlying network paths:

e a) All four paths have a bandwidth of 20 packets/second and a queue size of 10 packets. Path
i has a delay of .5 seconds. Over four experiments, vary loss rate between 0 and 15%, where
all connections have the same loss rate.

e b) All four paths have a bandwidth of 20 packets/second and a queue size of 10 packets. Path
i has a loss rate of 5i%. Over four experiments, vary delay between 0 and 1.5 seconds, where
all connections have the same delay.

e c) All four paths have a delay of .5 seconds. Path i has a bandwidth of 10¢ packets/second
and a queue size of 5i packets. Over four experiments, vary loss rate between 0 and 15%,
where all connections have the same loss rate.



Perform all experiments using for both the aimd and shared cases. Download a file large enough
so that each experiment lasts for at least 30 seconds. Run experiments 5 times and use the mean
and standard deviations in the questions below.

1. For each of these cases, find the throughput (in packets per second) observed by the client.

2. For each case, plot the evolution of the cwnd(s) of the connection over time.

3. From these answers, can you say anything about how equipped the current design of TCP is
to handle multi-homing?

4. By default, mhserver.py turns off fast retransmissions. Using the -—fast-rxmit flag to toggle
this behavior, compare the behavior of both the aimd and shared cases. What can you say
about the effect of fast retransmissions in these cases, and how do you explain any difference
in behavior?



3 Buffering in a fast router

Louis Reasoner has been recruited by a hot new startup to design the packet queueing component
of a high-speed router. The link speed of the router is 40 Gigabits/s, and he expects the average
Internet round-trip time of connections through the router to be 100 ms. Louis remembers from
his 6.829 days that he needs to put in some amount of buffering in the router to ensure high link
utilization in the presence of the TCP sources in the network growing and shrinking their congestion
windows. Louis hires you as a consultant to help design his router’s buffers.

Assume for the purposes of these questions that you're dealing with exactly one TCP connection
with RTT 100 ms (it turns out that this assumption does not change the results too much, for a
drop-tail gateway, if the connections all end up getting synchronized). Also assume that the source
is a long-running TCP connection implementing additive-increase (increase window size by 1/W
on each acknowledgment, with every packet being acknowledged by the receiver, such that the
window increases by about 1 segment size every RTT) and multiplicative-decrease (factor-of-two
window reduction on congestion). Assume that no TCP timeouts occur. Don’t worry about the
effects during slow start; this problem is about the effects on router buffering during TCP’s AIMD
congestion-avoidance phase.

You should (be able to) answer this question without running any simulation.

1. Show that if the amount of buffering in the router is equal to the product of bandwidth and
round-trip delay (the bandwidth-delay product), the TCP connection can achieve a 100% link
utilization (or very close to it). How much packet buffer memory does this correspond to for
the router under consideration?

2. Louis is shocked at how much memory is needed and thinks he may not be able to provide
this much buffering in his router. He asks you what the average link utilization is likely to be
when the amount of buffering in the router is very small compared to the bandwidth-delay
product. Explain your answer.

3. Louis asks you how the average link utilization, U, varies as a function of r, the ratio of the
amount of router buffering, B, to the “pipe-size,” P (the bandwidth-delay product). Calculate
U(r) for 0 < r < 1. (We know, from part 1, that U(1) = 1, and the answer to part 2 is U(0).)

4. Sketch U versus r, for 0 <r < 1.

Hint: A good way to think about this problem is in terms of the TCP congestion window vs.
time plots and look at how P, B, and the (time-varying) TCP congestion window size relate to
each other. Think about the “steady-state” of a TCP connection and about how much data a
TCP can send in one round-trip time. Don’t worry about the TCP receiver flow control window
limitation (i.e., assume that the receiver has a very large buffer). You may also make the simplifying
assumption that the RTT of the connection does not vary.



4 Cheating with XCP

After reading the XCP paper in 6.829, Alyssa P. Hacker and Cy D. Fect get into an argument about
just how fragile XCP is in the presence of senders who lie about the information they are given.
Consider a version of XCP where the sender reports to the network its RTT and its throughput.
In this protocol, the fields in the congestion header are: (i) RTT (ii) throughput (instead of cwnd),
and (iii) feedback. (This change from the scheme in the XCP Sigcomm ’02 paper will make it easier
for you to reason about this problem.)

We will assume that the sender can lie about the RTT and throughput to the network in an
attempt to persuade the network to give it more (or less, but that’s not too interesting) than its
correct share, or in an attempt to mess up the resulting link utilization (causing the network to run
under-utilized or to be in persistent congestion). However, the sender does not send at an arbitrary
rate; it always updates its congestion window according to the feedback the network sends.? More

precisely,
true_RTT

declared_RTT’

This adjustment ensures that the increase in the sender’s throughput is the one intended by the
network.

cwnd «— cwnd + feedback -

Alyssa and Cy get into an argument about what happens when users misbehave and lie to the
routers. Help them resolve their argument. Be precise and concise in your answers to these questions.
These questions are intentionally somewhat under-specified, to encourage you to think about all
the things that can go wrong.

1. Suppose the sender(s) lie only about RTT. What would XCP’s performance in terms of link
utilization and fairness be? (A sender might lie in either direction, of course.)

2. Suppose the sender(s) lie only about throughput. What would XCP’s performance in terms
of link utilization and fairness be? (A sender might lie in either direction, of course.)

2This constraint on the sender is reasonable; after all, in XCP, a sender that simply wished to ignore the network’s
feedback could do so anyway, and such behavior would require other network-level mechanisms to detect and control.



