
Copyright Hari Balakrishnan, 1998-2005, all rights reserved. Please do not redistribute
without permission.

LECTURE 7
Router-Assisted Congestion Control

I
nthe previous lecture, we studied the principles of end-to-end congestion control and the
practice of one of them (TCP). End-to-end congestion control using TCP is an extremely

successful model for handling congestion problems, that approach does have some limita-
tions. This lecture is the first of three that discusses router-assisted resource management.
We will focus on explicit congestion notification (ECN) and active queue management
schemes (specifically, RED). These notes do not discuss XCP, which is a generalization of
ECN in which routers send rate information to sources.

! 7.1 Motivation and Overview

The rationale for investigating router-assisted congestion control include the following:

1. Routers are the place where congestion occurs, so it would make sense to try and do
smarter things at the routers with regard to congestion control. However, the trade-
off here is making sure that what’s running in the routers isn’t overly complex or
slow.

2. Purely end-to-end congestion control cannot enforce isolation between flows. If we
want the rate of transmissions of flows to not affect each other, a purely end-to-end
control strategy won’t suffice in general. Depending on the economic model for net-
work service, isolation may be a desired goal. We will discuss this issue in the context
of scheduling and fair allocation schemes in the next lecture.

3. More generally, if various rate, delay, or delay jitter guarantees are desired, then
router support is essential. We will discuss these issues in the context of quality-of-
service (QoS).

4. Whereas the viability of end-to-end congestion control relies on cooperating sources,
it isn’t always a good assumption in today’s Internet. Protecting the network against
malicious traffic requires router support. We will address this issue when we discuss
security later in the course.

1



2 LECTURE 7. ROUTER-ASSISTED CONGESTION CONTROL

What can routers do to overcome these limitations of end-to-end congestion control?

1. Congestion signaling. Routers can signal congestion when it occurs or is about to
occur, to the sources in the network. This signaling can take on many forms: packet
drops, explicit markings on packets, and explicit messages sent to sources. Some are
more practical than others.

2. Buffer management. Routers have queues, primarily to absorb and accommodate
bursts of packets. A router needs to decide when to signal congestion, and if it de-
cides to, which packet to mark or drop to signal congestion. These two decisions
are made by the buffer managememt algorithm at the router. A good buffer man-
agement scheme provides good incentives for end-to-end congestion control to be
implemented.

3. Scheduling. When packets from multiple connections share a router, which packet
should be sent next? Scheduling deals with this decision.

One might think that if routers were to implement sophisticate resource management
algorithms, then end-to-end congestion control isn’t needed. This perception, however,
is not correct. To understand why, we need to understand what the dangers are of not
doing any form of congestion control. As discussed in L3, the problem is the potential for
congestion collapse.

In general, congestion collapse might take several forms and might occur for several
reasons. The following is a taxonomy developed by Floyd.

1. Classical collapse: This is the congestion collapse caused by redundant retransmis-
sions, such as when the TCP retransmission timeout ends up re-sending packets that
aren’t actually lost but onlu in queues en route.

2. Fragmentation-based collapse: Here, (large) datagrams are broken up into smaller frag-
ments and sent. The loss of even a single fragment will cause the higher layer to
transmit the entire datagram. (Think of running NFS over UDP across a congested
network with a block size of 8 KB and an MTU of 1500 bytes! This is not hypotheti-
cal.)

3. Control traffic-triggered collapse: Some protocols use control packets separate from the
packets used to send application payload. Examples include multicast group mem-
bership packets, routing updates, etc. If not designed carefully, control packets can
start overwhelming a network.

4. Undelivered packets: This form of inefficiency, caused by unresponsive or aggressive
traffic, is the hardest form to tackle. Some applications also incrase their bandwidth
use upon detecting loss, sometimes by increased FEC (FEC in itself isn’t bad, it’s the
increased bandwidth use that is).

Consider the network shown in Figure 7-1. Here, there are two sources S1 and S2,
and every router implements flow isolation using fair queueing. Despite this, end-to-end
congestion adaptation is essential, for otherwise, the 1.5 Kbps middle link ends up shar-
ing bandwidth across S1 and S2, but most of S2’s packets end up getting dropped on the



SECTION 7.2. CONGESTION SIGNALING 3

1.5 Mbps

128 Kbps

10 Mbps

10 Mbps

10 Mbps

Fair 
queueing

on 1.5 Mbps link

TCP

Non-congestion-controlled
UDP flow

Figure 7-1: End-to-end congestion control is essential even with ubiquitously deployed flow isolation

mechanisms like fair queueing. This example is from Floyd and Fall, 1999.

downstream 128 Kbps link! The absence of end-to-end congestion control is wasteful in-
deed!

The rest of this lecture deals with congestion signaling strategies and buffer manage-
ment. The next lecture concerns scheduling and fair capcity allocation strategies, specifi-
cally flow isolation using fair queueing.

! 7.2 Congestion signaling

There are three ways in which routers can signal congestion to the sources. The first, and
most robust for wired networks, is by dropping packets. On wired networks, packet losses
occur mostly only because of congestion, and the right reaction is to reduce the speed of
transmission (e.g., window reduction).

The second way is not to drop a packet when the need to signal congestion arises, but to
mark it by setting some bits in the IP header. When the receiver receives this marked packet,
it echoes the mark to the sender in its ACK. Upon receiving an ACK with a mark echoed
on it, the sender does exactly the same thing it would’ve done on a packet loss-based
congestion signal. An example of a one-bit marking scheme is ECN, Explicit Congestion
Notification. A generalization of the approach is for the “bottleneck” switch to “mark”
the packet with explicit rate information; when this information is relayed to the sender in
ACKs, the sender can set its transmission rate according to the feedback it gets. XCP uses
this idea.

The third approach is to send an explicit message to the sender of the packet when the
router decides that the network is congested (or congestion is incipient). This message is
sometimes called a source quench and was once believed to be a good idea. It isn’t used
much today; one of the big problems with it is that it forces more packets to be sent pre-



4 LECTURE 7. ROUTER-ASSISTED CONGESTION CONTROL

cisely when congestion is occurring in the network!

! 7.2.1 Packet drops

On wired networks, packet drops almost always signify network congestion. The receiver
in a reliable transport protocol indicates the loss of packets to the sender, which can per-
form the appropriate congestion control tasks. For protocols that don’t require reliability,
some form of feedback is still important in order to perform congestion control.

Not all schemes drop packets only when the router’s queue is full. One can gain a great
deal by making the drops early, so that the average queue size is still kept relatively small,
even though the total queue size available is substantially larger, to accommodate bursts
of packets. We will study this in Section 7.3.

! 7.2.2 Marking packets

Various proposals have been made for doing this. Historically, the first proposal was the
DECBIT scheme by Ramakrishnan and Jain, which combined an AIMD source with router
support, where the routers would mark a bit in the packet header when the queue size (as
estimated over a certain time interval, not the instantaneous queue size) exceeded some
threshold.

The current standard way of signaling congestion using packet marking is called Ex-
plicit Congestion Notification (ECN). First worked out for TCP/IP by Floyd in 1994, it has
recently been standardized. The implementation of this approach is quite straightforward:

1. The sender uses a special TCP option to tell the receiver it is capable of ECN in the
connection setup (SYN) packet.

2. If the receiver is capable of ECN, it responds in its SYN ACK sent to the initiating
peer.

3. All subsequent packets on the connection have a bit set in the IP header that tell the
routers that this packet belongs to a connection that understands, and will react to,
ECN.

4. Each router may use its own policy to implement the ECN mechanism. For example,
one might use RED, and mark the packet (by setting another bit in the IP header)
when the average queue size exceeds some threshold, rather than dropping it. Of
course, this marking is done only if the packet is found to be ECN-capable (i.e.,
the packet belongs to an ECN-capable connection or flow); otherwise, it is simply
dropped. Marking the bit only for ECN-capable traffic is important because it allows
both ECN and non-ECN flows to co-exist and compete fairly with each other.

5. Upon receiving any packet with ECN set on it, the receiver echoes this information in
its ACK (or equivalent feedback) message to the sender.

6. When the sender receives an ACK or feedback message with ECN echoed, it takes
appropriate congestion control measures; e.g., by reducing its window. It also sets
some information in the IP header that tells the receiver that the sender has in fact
reacted to this echo.



SECTION 7.3. BUFFER MANAGEMENT, ACTIVE QUEUE MANAGEMENT, AND RED 5

7. To guard against possible ACK loss, the receiver sets ECN on all ACK messages
until it receives a packet from the sender that indicates that in fact the sender has
paid attention to this feedback. For reliable transport like TCP, this redundancy is
sufficient because the receiver will eventually receive the packet from the sender that
tells it that the sender has taken steps to deal with the information it received about
congestion on the path.

There are several things to notice about the ECN design. First, an important goal is
backward compatibility with existing TCPs, both in terms of the header formats, and in
terms of how ECN and non-ECN flows compete for link capacity. Second, the ECN mech-
anism needs some attention to implementation details because bits in the IP header aren’t
freely available. Third, the ECN mechanism is susceptible to abuse by receivers, because
the receiver can exchange information with the sender assuring it that it will echo ECN
information, causing the sender to set the bits in the packet that tell the routers that the
packet belongs to an ECN-capable connection. Then, when the receiver gets a packet with
ECN set on it, it can silently ignore this and not echo it back to the sender! The end-result is
that this malicious receiver can obtain a largely disproportionate amount of the bottleneck
link’s available bandwidth.

The solution proposed by Spring et al. to this problem is elegant and simple: use nonces
on packets such that the receiver can prove to the sender that it did in fact receive a packet
without the “congestion-experienced” bits when that packet arrived with this informa-
tion set. In principle, this can be done by the source setting a random number in the
packet header. When a router sees an ECN-capable connection and is about to set the
“congestion-experienced” bits, it also clears the nonce to zero. The receiver, now, cannot lie
that it received a packet without notification about congestion, since then it would have to
echo the correct nonce!

The paper asserts that one-bit nonces suffice for this. It isn’t hard to see why, because the
probability of guessing a 1-bit random nonce correctly is 0.5. So, to be successful at lying
k times falls off as 1

2k , which is rapid. Furthermore, upon discovering a lying receiver, the
sender (if it wishes) can treat it punitively, by giving it much less than its fair share.

The final trick to completing the scheme is to make sure it works when not every packet
is acknowledged. This is handled by making the nonces cumulative (i.e., the sum of all
nonces sent so far, in (0, 1) arithmetic). Furthermore, when the receiver cannot reconstruct
the nonce (because it was cleared by a router on congestion), the sender needs to resyn-
chronize its notion of the cumulative value with the receivers, and continue from there.

! 7.3 Buffer management, active queue management, and RED

Buffer management schemes at routers decide when to drop a packet and which packet to drop.
The simplest scheme is drop-tail, where packets are accommodated until the queue is full,
after which all incoming packets are dropped until queue space is again available.

Drop-tail has several drawbacks: it doesn’t signal congestion early enough, it causes
packets to be dropped in bursts, and it doesn’t keep average queue sizes small. This last
drawback means that flows experience higher delays than might be reasonable.

It’s worth noting that most of the Internet today still runs drop-tail gateways. The
performance of drop-tail for TCP traffic under high degrees of statistical multiplexing isn’t



6 LECTURE 7. ROUTER-ASSISTED CONGESTION CONTROL

particularly well-understood.

! 7.4 RED: Random Early Detection

RED is an active queue management scheme, which explicitly tries to monitor and contain the
average queue size to be small—small enough for delays to be small, but large enough for
bottleneck link utilization to be high when bursty traffic causes a temporary lull in offered
load (e.g., when a set of TCP sources cut down their sending speeds).

The key idea in RED is to use randomization to avoid synchronizations and biases that
could occur in deterministic approaches, and to drop or mark packets earlier than when
the queue is full.

The approach is as follows: If the average queue size, qa is between minth and maxth the
packet is marked or dropped packet with some probability, pa. If qa > maxth, then the packet
is (always) dropped. If qa < minth, then the packet is forwarded through.

Two key issues in RED are: (1) how to compute qa and (2) how to compute pa.

! 7.4.1 Computing qa

qa is computed using a standard EWMA filter:

qa = (1 − wq)qa + wqq

Here wq is time constant of low pass filter. If wq is too large, it implies a rapid response to
transient congestion. If it is too low, it implies sluggish behavior. The paper shows a back-
of-the-envelop for setting this: obtain an upper bound based on how much burstiness
you want to allow, and obtain a lower bound based on how much memory you want to
maintain. It isn’t clear to me how well this works in practice.

The paper uses wq = 0.002. Also, the recommendation is for maxth ≥
2minth. The best place to find out how these parameters should be set is
http://www.aciri.org/floyd/red.html

! 7.4.2 Computing pa

Initially, compute pb = maxp × qa−minth
maxth−minth

. This is standard linear interpolation.
There are two ways in which pa, the actual drop probability, can be derived from pb.

1. Method #1: pa = pb. This leads to a geometric random variable (r.v.) for inter-arrivals
between markings (or drops). Consider the r.v. X = number of packets between
successive marked packets. Then P(X = n) = (1 − pb)n−1pb. This is a geometric dis-
tribution.

Unfortunately, this doesn’t mark packets at fairly regular intervals. E[X] = 1/pb, but
because packets get marked in bunches, more synchronization than is good could
occur. Var[X] = 1/p2

b − 1/pb, which gets big for small pb.

2. Method #2: Uniform r.v. for inter-arrivals between markings or drops. Let X be uni-
form in {1, 2, . . . , 1/pb − 1}. This has the nice property that we want, and is achieved



SECTION 7.4. RED: RANDOM EARLY DETECTION 7

if we set pa = pb/(1 − count × pb), where count is the number of unmarked packets
since last marked packet. E[X] = 1/(2pb).

The final point is about the choice of maxp. One argument is that it should never have
to be large, since after qa > maxth, all packets are dropped anyway. However, a small
value of maxp (like 0.02) makes the behavior of pb rather abrupt and discontinuous when
qa ≈ maxth. A “gentle” variant of RED has been proposed that makes it less discontinuous,
or indeed continuous.

Several variants of RED and alternatives to it have been proposed in the last few years.
A search on Netbib (see the “Useful Links” page from the class Web page) or the Web will
give you some pointers. Some examples include Gentle RED (where the transition from
probabilistic to always drop is not so sudden), ARED, SRED, AVQ, BLUE, CHOKE, etc.

! 7.4.3 Encouraging end-to-end congestion control

Note: This material wasn’t discussed in Fall 2005.
In principle, active queue management schemes, and RED in particular, can also han-

dle misbehaving or uncooperative sources, by penalizing them after detecting misbhavior
(“penalty box”). In theory, this can be done (for example) by RED keeping an “drop his-
tory” of connections that incurred RED drops (or marks) and periodically scanning this
history to see if there are packets from any particular connections that dominate this his-
tory.

If this sort of mechanism were implementable, then it would form the basis for the right
incentive structure to encourage the use of end-to-end congestion control mechanisms.

With RED, in the long run, a connection’s share of marked (or probabilistically dropped)
packets is directly proportional to its share of bandwidth. This is because RED equalizes
drop rates (the ratio of number of dropped packets to number of sent packets) across com-
peting flows. (Note however that RED doesn’t provide flow isolation and isn’t fair in the
fair queueing sense of max-min fairness.)

It can be shown (Floyd and Fall, 1999) that for a fixed qavg, n packet drops, and a fraction

b of arriving bandwidth, P(flow receives > 2 × its “fair share” of drops) ≤ e−2nb2
.

So, over a sufficiently large number of drops (and a drop rate that’s not too large), the
RED packet drop history should be a good estimator of the long-term arrival rate of a flow.

One important point to note is that we haven’t actually specified what characterizes an
“ill-behaved” flow, the type of flow we’re trying to penalize. There are several possible
notions of this:

1. Flows that aren’t TCP-friendly (see L8 for what this means). These are more aggres-
sive than the throughput ∝ 1√

p relationship for conformant TCPs.

2. Flows that are unresponsive. These don’t reduce their rate in proportion to increases
in loss rate.

3. Flows that are using disproportionate bandwidth. These are both responsive and TCP-
friendly, but using more than their fair share (e.g., “significantly” more than 1/n
when there are n flows in all).



8 LECTURE 7. ROUTER-ASSISTED CONGESTION CONTROL

Depending on the goals of the network provider, tests for some or all of these will be
useful (but these are usually difficult to devise). When a misbehaving flow is detected,
this flow’s packets would be placed in a “penalty box” on the forwarding path, and not
serviced in a timely manner. This provides a disincentive against being unresponsive to
congestion.


