
LECTURE 1
Connecting Computers with Packet

Switching

1

This lecture discusses different ways of interconnecting links (of the same kind) to build
a simple computer network. To achieve this task, we will use a device called a switch, and
discuss several different ways of switching to move data across a network. We focus on
packet switching, discussing its main ideas and principles.

This lecture assumes that the reader is familiar with standard ways of communicating
digital information (bits and link-layer frames) over a single link. Most networking texts
cover this material in depth; we provide a short summary of the essential ideas in L0.

! 1.1 Interconnections

The rather limited scope—in terms of physical distance, number of connected hosts, and
amount of sustainable traffic—of single-link networks leads us to examine ways of inter-
connecting single-link communication media together to form larger networks of comput-
ers. We start by discussing a few different interconnection techniques. The fundamental
problem is that the most obvious way to build a computer network—by connecting each
pair of computers with a dedicated link—is both prohibitively expensive (because of the
sheer number of links required, a number that grows quadratically with the network size)
and technically challenging (because signals attenuate with distance, requiring ways to
regenerate information across large distances). The solution to these problems is to de-
velop ways to share links between different communicating nodes, and to regenerate the
information being communicated as it travels across the network.

The key component used for such interconnections is a switch, which is a specialized
computing device that receives data frames (of bits) that arrive over links, processes them,
and forwards them over one (or more) other links. Links are physically connected to
switches at attachment points or switch ports.

1Copyright Hari Balakrishnan, 1998-2005, all rights reserved. Please do not redistribute without permis-
sion.

1



2 LECTURE 1. CONNECTING COMPUTERS WITH PACKET SWITCHING

The fundamental functions performed by switches are to multiplex and demultiplex
data frames belonging to different computer-to-computer information transfer sessions
(or “conversations”), and to determine the link(s) along which to forward any given data
frame. This task is essential because a given physical link will usually be shared by several
concurrent sessions between different computers.

Over time, two radically different techniques have developed for doing this. The first,
used by networks like the telephone network, is called circuit switching. The second, used
by networks like the Internet, is called packet switching. The key difference between the
two is that, in circuit-switched networks, the frames do not need to carry any special in-
formation that tells the switches how to forward information, while in packet-switched
networks, they do.

The transmission of information in circuit-switched networks usually occurs in two
phases: first, a setup phase in which some state is configured at each switch along a path
from source to destination, and second, the information transfer phase when the frames
are actually sent. Of course, because the frames themselves contain no information about
where they should go, the setup phase needs to instantiate the correct state in the switches
to enable correct forwarding.

A common (but not the only) way to implement circuit switching is using time-division
multiplexing (TDM), also known as isochronous transmission. Here, the physical capacity of
a link connected to a switch, C (in bits/s), is conceptually broken into some number N of
virtual “channels,” such that the ratio C/N bits/s is sufficient for each information transfer
session (such as a telephone call between two parties). Call this ratio, R, the rate of each
independent transfer session. Now, if we constrain each frame to be of some fixed size,
s bits, then the switch can perform time multiplexing by allocating the link’s capacity in
time-slots of length s/C units each, and by associating the ith time-slice to the ith transfer
(modulo N). It is easy to see that this approach provides each session with the required rate
of R bits/s, because each session gets to send s bits over a time period of Ns/C seconds,
and the ratio of the two is equal to C/N = R bits/s.

Each data frame is therefore forwarded by simply using the time slot in which it arrives
at the switch to decide which port it should be sent on. Thus, the state set up during the
first phase has to associate one of these channels with the corresponding soon-to-follow
data transfer by allocating the ith time-slice to the ith transfer. The end computers trans-
mitting data send frames only at the specific time-slots that they have been told to do so
by the setup phase.

Other ways of doing circuit switching include wavelength division multiplexing (WDM),
frequency division multiplexing (FDM), and code division multiplexing (CDM); the latter two
(as well as TDM) are used in some cellular wireless networks. Various networking text-
books (e.g., Tanenbaum, Peterson and Davie, etc.) describe these schemes in some detail.

Circuit switching makes sense for a network where the workload is relatively uniform,
with all information transfers using the same capacity, and where each transfer uses a con-
stant bit rate (CBR) (or near-constant bit rate). The most compelling example of such a
workload is telephony, and this is indeed how most telephone networks today are archi-
tected. (The other reason for this design choice is historical; circuit switching was invented
long before packet switching.)

However, circuit-switching tends to waste link capacity if the workload has a variable



SECTION 1.2. PACKET SWITCHING 3

bit-rate, or if the frames arrive in bursts at a switch. Because a large number of computer
applications induce burst data patterns, we should consider at other link sharing strategies
for computer networks. It turns out that the once-radical packet-switching technique is a
general way of getting better performance for such workloads, and is the fundamental
multiplexing approach used in most networks today.

! 1.2 Packet switching

The best way to overcome the above inefficiencies is to allow for any sender to transmit
data at any time, but yet allow the link to be shared. Packet switching is a way to accom-
plish this, and uses a tantalizingly simple idea: add to each frame of data a little bit of
information that tells the switch how to forward it. This information is added to what is
usually called a header. There are several different forms of packet switching, which differ
in the details of what information is present in the header and what information the switch
needs to perform forwarding. The combination of a data frame, with a header that tells
switches something about the data’s destination or path, is called a packet.2

The “purest” form of packet switching uses a datagram as the unit of framing, with the
header containing the address of the destination. This address uniquely identifies the desti-
nation of data, which each switch uses to forward the datagram. The second form of packet
switching is source routing, where the header contains a complete sequence of switches, or
complete route that the datagram can take to reach the destination. Each switch now has
a simple forwarding decision, provided the source of the datagram provides correct infor-
mation. The third form of packet switching is actually a hybrid between circuit and packet
switching, and uses an idea called virtual circuits. Because it uses a header, we classify it as
a packet switching technique, although its use of a setup phase resembles circuit switching.
We now look at each of these techniques in more detail.

Packet switches usually require queues to buffer packets that arrive in bursts. We will
spend a fair amount of time discussing approaches to managing congestion and queues
when we discuss network resource management schemes.

! 1.2.1 Datagram routing

In datagram routing, the sender transmits datagrams that include the address of the des-
tination in the header; datagrams also usually include the sender’s address to help the
receiver send messages back to the sender. The job of the switch is to use the destination
address as a key and perform a lookup on a data structure called a routing table (or forward-
ing table; the distinction between the two is sometimes important and will be apparent later
in the course). This lookup returns an output port to forward the packet on towards the
intended destination.

While forwarding is a relatively simple lookup in a data structure, the harder question is
determining how the entries in the routing table are obtained. This occurs in a background
process using a routing protocol, which is typically implemented in a distributed manner
by the switches. There are several types of routing protocols possible (both in theory and
practice, although some only in theory!), and we will study several in later lectures. For

2This term is due to Donald Davies from the early 1960s.



4 LECTURE 1. CONNECTING COMPUTERS WITH PACKET SWITCHING

now, it is enough to understand that the result of running a routing protocol is to obtain
routes (paths) in the network to every destination.

Switches in datagram networks that implement the functions described in this section
are often called routers. Forwarding and routing of packets using the Internet Protocol (IP)
in the Internet is an example of datagram routing.

! 1.2.2 Source routing

Whereas switches implemented routing protocols to populate their routing tables in the
“pure” datagram networks of the previous section, the equivalent function of determining
which paths to use could also be performed by each sender. When this is done, the network
can implement source routing, where the sender attaches an entire (and complete) sequence
of switches (or more helpfully, per-switch next-hop ports) to each packet. Now, the task of
each switch is rather simple; no table lookups are needed. However, it does require each
sender to participate in a routing protocol to learn the topology of the network.

People tend not to build networks solely using source routing because of the above rea-
son, but many networks (e.g., the Internet) allow source routing to co-exist with datagram
routing.3

! 1.2.3 Virtual circuits

Virtual circuit (VC) switching is an interesting hybrid between circuit and packet
switching—it combines the setup phase of circuit switching with the explicit header of
packet switching. The setup phase begins with the source sending a special signaling mes-
sage addressed to a destination, which traverses a sequence of switches on its way to the
destination. Each switch associates a local tag (or label), on a per-port basis, with this sig-
naling message and sets this tag on the message before forwarding it to the next switch.
When a switch receives a signaling message on one of its input ports, it first determines
what output port will take the packet to its destination. It then associates the combination
of input port and incoming tag to an entry in a local table, which maps this combination
to an output port and outgoing tag (unique per-output).

Data transfer does not use the destination address in the packet header, but uses these
tags instead. The forwarding task at each switch now consists of a tag lookup step, which
yields and output port and replacement tag, and a tag swapping step which replaces the
tag in the packet header.

The reason for the replacement tag is simply to avoid confusion; if global tags were
used, then each source would have to be sure that any tag it chooses is not currently being
used in the network.

There are many examples of network technologies that employ virtual circuit switching,
including Frame Relay and Asynchronous Transfer Mode (ATM). These networks differ
in the details of the tag formats and semantics (and these tags are known by different
names; e.g., in ATM, a tag is a combination of a VPI or Virtual Path Identifier and VCI
or Virtual Circuit Identifier, which can be thought of as a single tag whose structure is
hierarchical), and in the details of how these tags are computed. “Multi-Protocol Label
Switching” (MPLS) is a link technology-independent approach that network switches can

3It turns out that source routing isn’t deployed widely in the Internet today for security reasons.



SECTION 1.3. CASE STUDY: LAN SWITCHING (AKA “BRIDGING”) 5

use to implement tag switching. The general principle in all these systems is as explained
in this section.

Proponents of virtual circuit switching argue that it is advantageous over datagram
routing because of several reasons, including:

• “It allows routes between source and destination to be “pinned” to a fixed route,
which allows network operators to provision and engineer their network for various
traffic patterns.”

• “Tag lookups are more efficient than more-complex lookups based on various fields
in the datagram header.”

• “Because there is an explicit setup phase, applications that (think they) need resource
reservation (e.g., link bandwidth, switch buffer space) can use this signaling to re-
serve resources.”

The above claims are quoted, because they are all quite controversial, except perhaps
the first one. Virtual circuit switching is arguably more complex than datagram routing,
requiring a separate signaling protocol to set up switch state, and does not handle link or
route failures as naturally. (This signaling is in addition to another protocol that allows
the switches to discover the network topology, as in datagram networks.) Furthermore,
the more complex forwarding table lookups required in IP datagrams are now efficient to
implement even at high speeds, and the speed advantages of tag switching appear non-
existent. The rationale and mechanism for resource reservation has been hotly debated in
the community and will continue to be for some more years! (We will discuss these issues
in later lectures.)

Virtual circuit technologies are common in the Internet infrastructure, and are often
used to connect two IP routers in a so-called transport network.4 Transport networks are
the “link-layer” over which IP packets between two routers are communicated; exam-
ples include ATM-based link technologies, switched Ethernet-based local-area networks,
802.11-based wireless networks, etc.

Let us now look at a concrete example of a switched network in more detail, using the
widely deployed LAN (local-area network) switching technology as a case study.

! 1.3 Case study: LAN switching (aka “bridging”)

5

A single shared medium segment, like a single Ethernet, is limited by the number of
stations it can support and by the amount of traffic that can be shared on it. To extend the
reach of a single LAN segment requires some way of interconnecting many of them to-
gether. Perhaps the simplest way of extending LANs is via “LAN switching,” a technique
historically known as “bridging”. Bridges (or LAN switches; we will use the two terms
interchangably) are datagram switches that extend the reach of a single shared physical

4Not to be confused with transport protocols, which are used by end points to communicate with each
other.

5In 2005, this material will be discussed during a recitation.



6 LECTURE 1. CONNECTING COMPUTERS WITH PACKET SWITCHING

medium. They work by looking at data frames arriving on one segment, capturing them,
and transmitting them on one or more other segments.

Another reason to study bridges is because they are a great example of self-configuring
(“plug-and-play”) networks.

Bridges are switches that are characterized by:

1. Promiscuous receive-and-forward behavior with two or more ports. Each port has a
unique identifier, or address, as does each network interface on computers attached
to the LAN. “Promiscuous receive-and-forward” means that any packet that arrives
on a particular bridge port is replicated by the bridge and forwarded on all other
ports to which LANs are currently attached.

Each bridge port has at most one LAN attached to it (i.e., there could be bridges with
no attached LANs), with each LAN in turn possibly containing other bridges. In
such LANs implementing promiscuous receive-and-forward behavior with no other
mechanisms in place, the aggregate capacity does not exceed the capacity of the
weakest segment, since any packet transmitted on any LAN appears on all others,
including the slowest one.

2. Learning, wherein they learn which stations are on which LAN segments to forward
packets more efficiently.

3. Spanning tree construction, by which bridge topologies with loops can form a loop-free
topology and avoid packet duplication and implosion.

Bridges are transparent entities—they completely preserve the integrity of the packets
they handle without changing them in any way. Of course, they may add a little to the
delays experienced by packets and may occasionally (or frequently, under severe conges-
tion) lose packets because they are, by nature, receive-and-forward devices, but they are
transparent to end-points in terms of the functionality they provide.

! 1.3.1 Learning bridges

The basic idea of a learning bridge is that the bridge “learns”, by building a forwarding
table, which stations are downstream of which port. Then, when a packet destined to a
given destination (MAC address) arrives, it knows which port to forward it on. How does
it build this table? It learns by looking at the source address of packets it sees. When it
associates the source address of a packet with a LAN segment, it adds that source-segment
pair to the forwarding table.

If the table doesn’t have an entry for some destination, the bridge simply floods the
packet on all ports except the one the packet just arrived on. Thus, the forwarding table
state maintained by a learning bridge is akin to a cache, and is used only as an optimization
(albeit a very useful one). The consistency of this cache is not essential for correctness,
because the absence of any information causes the packet to be flooded.

This strategy works well, except when there are loops in the network topology. In fact,
in the absence of loops, not only does the above strategy handle routing in the static case,
it also properly handles nodes that move in the topology from time to time (mobile nodes).
If a node moves to another location in the switched network, the first time it sends data,



SECTION 1.3. CASE STUDY: LAN SWITCHING (AKA “BRIDGING”) 7

B1 B2

S

Port 11

Port 12

LAN 1

LAN 2

DataS D

Type

Packet from S on LAN1

Node Port
S 11

Cache at B1
Node Port

S 21

Cache at B2Port 21

Port 22

Figure 1-1: Learning bridges with loops. Such bridges suffer from packet duplication and proliferation.

the bridges along the (new) path to its destination cache the new point of attachment of
the node that moved. Indeed, a variant of this method with a few optimizations is used
in various wireless LAN access points to implement link-layer mobility. 802.11 (“WiFi”)
access points use this idea.

When there are loops in a switched LAN, significant problems arise. Consider the ex-
ample shown in Figure 1.3.1, where bridges B1 and B2 have been configured to connect
LAN1 and LAN2 together. (One reason for configuring such a network might be to add
redundancy to the topology for reliability.) Consider a packet from source S transmitted
on LAN1 for destination D. Since both B1 and B2 see this packet, they both pick it up and
learn that node S is on LAN1, and add the appropriate information to their forwarding
tables (caches) as shown in the picture. Then, if the bridges don’t have any information
in their tables for destination D, both bridges enqueue the packet for forwarding it on to
LAN2. They compete for the channel (LAN2) according to the CSMA/CD protocol and
one of them, say B1, wins the contention race. When B1 forwards the packet on to LAN2,
the packet is seen by B2.

B2 has now seen a duplicate packet, but in addition, B2 will believe that the source node
S of this packet is on LAN2, when in fact it is on LAN1! The forwarding table has now
been corrupted. However, B2 would also enqueue the packet for transmission onto LAN1,
because:

1. B2 does not have an entry for D in its table, and

2. B2 really has no way of telling that the packet is a duplicate short of carefully looking
through every bit of each enqueued packet, a very inefficient process.

These problems are a direct consequence of one of the very reasons learning bridges
are so attractive—their transparent behavior. Thus, the duplicate packet would continue
to loop around forever (because bridges are transparent, there are no hop limit or time-to-
live fields in the header).

But this looping isn’t the worst part—packets in fact can reproduce over and over in



8 LECTURE 1. CONNECTING COMPUTERS WITH PACKET SWITCHING

some cases! To see how, add another bridge B3 between the two LANs. Now, each time a
bridge sends one packet on to a LAN, the two other bridges enqueue one packet each for
the other LAN. It’s not hard to see that this state of affairs will go on for ever and make the
system unusable when bridges form loops.

There are several possible solutions to this problem, including: 1) avoiding loops by
contruction, 2) detecting loops automatically and informing the network administrator to
fix the problem when loops are found, or 3) making packet forwarding somehow work in
the presence of loops. Clearly the last alternative is the most preferred one, if we can figure
out how to do this.

The trick is to find a loop-free subset of the network topology. LAN switches use a
distributed spanning tree algorithm for this task.

! 1.3.2 The Solution: Spanning Trees

There are many distributed spanning tree algorithms, and in this course we’ll encounter
different ones in the context of unicast routing, wireless routing, multicast routing, and
overlay networks. Bridges use a rooted spanning tree algorithm that generates the same
tree as Dijkstra’s shortest path trees. The idea is quite simple: bridges elect a root and form
shortest paths to the root. The spanning tree induced by the union of these shortest paths
is the final tree.

More specifically, the problem is as follows. For each bridge in the network, determine
which of its ports should participate in forwarding data, and which should remain inac-
tive, such that in the end each LAN has exactly one bridge directly connected to it on a
path from the LAN to the root.

Viewing a network of LAN segments and LAN switches as a graph over which a span-
ning tree should be constructed is a little tricky. It turns out that the way to view this in
order to satisfy the problem statement of the previous paragraph is to construct a graph
by associating a node with each LAN segment and with each LAN switch. Edges in this
graph emanate from each LAN switch, and connect to the LAN segment nodes they are
connected to in the network topology, or to other LAN switches they are connected to. The
goal is to find the subset of edges that form a tree, which span all the LAN segment nodes
in the graph (notice that there may be LAN switch nodes that may be eliminated by this
method; that is fine, because those LAN switches are in fact redundant).

The first challenge is to achieve this goal using a distributed, asynchronous algorithm,
rather than using a centralized controller. The goal is for each bridge to independently
discover which of its ports belong to the spanning tree, since it must forward packets along
them alone. The result of the algorithm is a loop-free forwarding topology. The second
challenging part is handling bridges that fail (e.g., due to manual removal or bugs), and
arrive (e.g., new bridges and LAN segments that are dynamically attached to the network),
without bringing the entire network to a halt.

Each bridge has a unique ID assigned by the network administrator (in practice, bridges
have a vendor-specified unique ID, but administrators can set their own IDs to arrange for
suitable trees to be built). Each port (network interface) on each bridge, as well as each
network interface on end point computers has a unique vendor-specified ID.

Each bridge periodically, and asynchronous with the other bridges, sends configuration
messages to all other bridges on the LAN. This message includes the following information:



SECTION 1.3. CASE STUDY: LAN SWITCHING (AKA “BRIDGING”) 9

[bridge_unique_ID] [bridge’s_idea_of_root] [distance_to_root]

By consensus, the bridge with the smallest unique ID is picked as the root of the span-
ning tree. Each bridge sends in its configuration message the ID of the bridge that it thinks
is the root. These messages are not propagated to the entire network, but only on each LAN
segment; the destination address usually corresponds to a well-known link-layer address
corresponding to “ALL-BRIDGES” and is received and processed by only the bridges on
the LAN segment. Initially, each bridge advertises itself as the root, since that’s the small-
est ID it would have heard about thus far. The root’s estimate of the distance to itself is
0.

At any point in time, a bridge hears of and builds up information corresponding to the
smallest ID it has heard about and the distance to it. The distance usually corresponds to
the number of other bridge ports that need to be traversed to reach the root. It stores the
port on which this message arrived, the “root port” and advertises the new root on all its
other ports with a metric equal to one plus the metric it has stored. Finally, it does not
advertise any messages if it hears someone else advertising a better metric on the same
LAN. This last step is necessary to ensure that each LAN segment has exactly one bridge
that configures itself to forward traffic for it. This bridge, called the designated bridge for the
LAN, is the one that is closest to the root of the spanning tree. In the case of ties, the bridge
with smallest ID performs this task.

It is not hard to see that this procedure converges to a rooted spanning tree if nothing
changes for “a while.” Each bridge only forwards packets on ports chosen as part of the
spanning tree. To do this, it needs to know its root port and also which of its other ports
are being used by other bridges as their preferred (or designated) root ports. Obtaining the
former is trivial. Obtaining the latter is not hard either, since being a designated bridge for
a LAN corresponds to this. When two bridges are directly connected to each other, each
bridge views the other as a LAN segment.

The result of this procedure is a loop-free topology that is the same as a shortest-paths
spanning tree rooted at the bridge with smallest ID.

Notice that the periodic announcements of configuration messages handle new bridges
and LAN segments being attached to the network. The spanning tree topology reconfig-
ures without bringing the entire network to a complete standstill in most cases.

This basic algorithm doesn’t work when bridges fail. Failures are handled by timing
information out in the absence of periodic updates. In this sense, bridges treat configu-
ration announcements and their forwarding table entries as soft state. The absence of a
configuration message from a designated bridge or the root triggers a spanning tree recal-
culation. Furthermore, an entry in the table that hasn’t been used for a while may be timed
out, resulting in packet flooding for that destination every once in a while. This approach
trades of some bandwidth efficiency for robustness, and turns out to work well in practice
in many networks.

The notion of “soft state” is an important idea that we will repeatedly see in this course,
and is important to robust operation in a scalable manner. Together, periodic announce-
ments to refresh soft state information inside the network enable eventual consistency to a
loop-free spanning tree topology using the algorithm described above.



10 LECTURE 1. CONNECTING COMPUTERS WITH PACKET SWITCHING

! 1.3.3 Virtual LANs

As described thus far, switched LANs do not scale well to large networks. The reasons
for this include the linear scaling behavior of the spanning tree algorithm, and the fact
that all broadcast packets in a switched LAN must reach all nodes on all connected LAN
segments. Virtual LANs improve the scaling properties of switched LANs by allowing a
single switched LAN to be partitioned into several separate virtual ones. Each virtual LAN
is assigned a “color,” and packets are forwarded by a LAN switch on to another only if the
color matches. Thus, the algorithms described in the previous section are implemented
over each color of the LAN separately, and each port of a LAN switch is configured to
some subset of all the colors in the entire system.

! 1.4 Summary

Switches are specialized computers used to interconnect single-link communication media
to form bigger networks. There are two main forms of switching—circuit switching and
packet switching. Packet switching comes in various flavors, as do switched networks
themselves. We studied some features of one of them, switched LANs.

This lecture illustrated two key ideas that we will encounter time and again:

• Soft state maintained by network elements.

• Distributed, asynchronous algorithms (spanning tree constuction in the case of LAN
switches).

While LAN switches work well, they aren’t enough to build a global network infras-
tructure. The primary reason for this is poor scalability. This approach may scale to a
network with thousands of nodes (perhaps), but not to larger networks. The first scaling
problem us caused by each LAN switch having to maintain per-destination information in
its forwarding table. The second problem is due to the occasional flooding that’s required.

A second reason for the approach described in this lecture being unattractive for a
global network is that the approach may not work well over heterogeneous link technolo-
gies, many of which don’t resemble Ethernet.A method for interconnecting heterogeneous
link technologies is needed. This interface is what IP, the Internet Protocol, provides.

IP solves the “internetworking problem” of connecting different networks together. In
the coming lectures, we will investigate its design.


