
Hash-Based IP Traceback

Alex C. Snoeren†, Craig Partridge, Luis A. Sanchez‡, Christine E. Jones,
Fabrice Tchakountio, Stephen T. Kent, and W. Timothy Strayer

BBN Technologies
10 Moulton Street, Cambridge, MA 02138

{snoeren, craig, cej, ftchakou, kent, strayer}@bbn.com

ABSTRACT

The design of the IP protocol makes it difficult to reliably identify
the originator of an IP packet. Even in the absence of any delib-
erate attempt to disguise a packet’s origin, wide-spread packet for-
warding techniques such as NAT and encapsulation may obscure
the packet’s true source. Techniques have been developed to deter-
mine the source of large packet flows, but, to date, no system has
been presented to track individual packets in an efficient, scalable
fashion.

We present a hash-based technique for IP traceback that generates
audit trails for traffic within the network, and can trace the origin of
a singleIP packet delivered by the network in the recent past. We
demonstrate that the system is effective, space-efficient (requiring
approximately 0.5% of the link capacity per unit time in storage),
and implementable in current or next-generation routing hardware.
We present both analytic and simulation results showing the sys-
tem’s effectiveness.

1 INTRODUCTION

Today’s Internet infrastructure is extremely vulnerable to motivated
and well-equipped attackers. Tools are readily available, from
covertly exchanged exploit programs to publicly released vulner-
ability assessment software, to degrade performance or even dis-
able vital network services. The consequences are serious and, in-
creasingly, financially disastrous, as can be seen by all-too-frequent
headlines naming the most recent victim of an attack.

†Alex C. Snoeren is also with the MIT Laboratory for Computer Science
(snoeren@lcs.mit.edu).
‡Luis A. Sanchez was with BBN Technologies; he is now with Megisto
Systems, Inc. (lsanchez@megisto.com).

This work was sponsored by the Defense Advanced Research Projects
Agency (DARPA) under contract No. N66001-00-C-8038. Views and con-
clusions contained in this document are those of the authors and should not
be interpreted as representing official policies, either expressed or implied.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008...$5.00

While distributed denial of service attacks, typically conducted by
flooding network links with large amounts of traffic, are the most
widely reported, there are other forms of network attacks. Many
other classes of attacks can be conducted with significantly smaller
packet flows. In fact, there are a number of widely-deployed op-
erating systems and routers that can be disabled by a single well-
targeted packet [13]. To institute accountability for these attacks,
the source of individual packets must be identified.

Unfortunately, the anonymous nature of the IP protocol makes it
difficult to accurately identify the true source of an IP datagram if
the source wishes to conceal it. The network routing infrastructure
is stateless and based largely on destination addresses; no entity in
an IP network is officially responsible for ensuring the source ad-
dress is correct. Many routers employ a technique called ingress
filtering [9] to limit source addresses of IP datagrams from a stub
network to addresses belonging to that network, but not all routers
have the resources necessary to examine the source address of each
incoming packet, and ingress filtering provides no protection on
transit networks. Furthermore, spoofed source addresses are legiti-
mately used by network address translators (NATs), Mobile IP, and
various unidirectional link technologies such as hybrid satellite ar-
chitectures.

Accordingly, a well-placed attacker can generate offending IP pack-
ets that appear to have originated from almost anywhere. Further-
more, while techniques such as ingress filtering increase the diffi-
culty of mounting an attack, transit networks are dependent upon
their peers to perform the appropriate filtering. This interdepen-
dence is clearly unacceptable from a liability perspective; each mo-
tivated network must be able to secure itself independently.

Systems that can reliably trace individual packets back to their
sources are a first and important step in making attackers (or, at
least, the systems they use) accountable. There are a number of
significant challenges in the construction of such a tracing system
including determining which packets to trace, maintaining privacy
(a tracing system should not adversely impact the privacy of legiti-
mate users), and minimizing cost (both in router time spent tracking
rather than forwarding packets, and in storage used to keep infor-
mation).

We have developed a Source Path Isolation Engine(SPIE) to en-
able IP traceback, the ability to identify the source of a particular IP
packet given a copy of the packet to be traced, its destination, and an
approximate time of receipt. Historically, tracing individual pack-
ets has required prohibitive amounts of memory; one of SPIE’s key

1

innovations is to reduce the memory requirement (down to 0.5% of
link bandwidth per unit time) through the use of Bloom filters. By
storing only packet digests, and not the packets themselves, SPIE
also does not increase a network’s vulnerability to eavesdropping.
SPIE therefore allows routers to efficiently determine if they for-
warded a particular packet within a specified time interval while
maintaining the privacy of unrelated traffic.

The rest of this paper examines SPIE in detail. We begin by defin-
ing the problem of IP traceback in section 2, and articulate the de-
sired features of a traceback system. We survey previous work in
section 3, relating their feature sets against our requirements. Sec-
tion 4 describes the digesting process in detail. Section 5 presents
an overview of the SPIE architecture, while section 6 offers a prac-
tical implementation of the concepts. Section 7 provides both an-
alytic and simulation results evaluating SPIE’s traceback success
rates. We discuss the issues involved in deploying SPIE in section 8
before concluding in section 9 with a brief look at future work.

2 IP TRACEBACK

The concept of IP traceback is not yet well defined. In an attempt
to clarify the context in which SPIE was developed, this section
presents a detailed and rather formal definition of traceback. We
hope that presenting a strawman definition of traceback will also
help the community better evaluate different traceback schemes.

In order to remain consistent with the terminology in the literature,
we will consider a packet of interest to be nefarious, and term it an
attack packet; similarly, the destination of the packet is a victim. We
note, however, that there are many reasons to trace the source of a
packet; many packets of interest are sent with no ill intent whatso-
ever.

2.1 Assumptions

There are several important assumptions that a traceback system
should make about a network and the traffic it carries:

• Packets may be addressed to more than one physical host
• Duplicate packets may exist in the network
• Routers may be subverted, but not often
• Attackers are aware they are being traced
• The routing behavior of the network may be unstable
• The packet size should not grow as a result of tracing
• End hosts may be resource constrained
• Traceback is an infrequent operation

The first two assumptions are simply characteristics of the Internet
Protocol. IP packets may contain a multicast or broadcast address
as their destination, causing the routing infrastructure to duplicate
them internally. An attacker can also inject multiple, identical pack-
ets itself, possibly at multiple locations. A tracing system must
be prepared for a situation where there are multiple sources of the
same (identical) packet, or a single source of multiple (also typi-
cally identical) packets.

The next two assumptions speak to the capabilities of the at-
tacker(s). An attacker may gain access to routers along (or adjacent
to) the path from attacker to victim by a variety of means. Further, a
sophisticated attacker is aware of the characteristics of the network,
including the possibility that the network is capable of tracing an

attack. The traceback system must not be confounded by a moti-
vated attacker who subverts a router with the intent to subvert the
tracing system.

The instability of Internet routing is well known [15] and its impli-
cations for tracing are important. Two packets sent by the same host
to the same destination may traverse wildly different paths. As a re-
sult, any system that seeks to determine origins using multi-packet
analysis techniques must be prepared to make sense of divergent
path information.

The assumption that the packet size should not grow is probably
the most controversial. There are a number of protocols today that
cause the packet size to grow, for example technologies that rely on
IP tunnels, such as IPsec and mobile IP. However, increasing the
packet size causes MTU problems and increases overhead sharply
(each byte of additional overhead reduces system bandwidth by
about 1%, given the average packet size of about 128 bytes). It
follows that an efficient traceback system should not cause packet
size to grow.

We assume that an end host, and in particular the victim of an at-
tack, may be resource-poor and unable to maintain substantial ad-
ditional administrative state regarding the routing state or the pack-
ets it has previously received. This assumption comes from the
observed rise in special purpose devices such as microscopes, cam-
eras, and printers that are attached to the Internet but have few inter-
nal resources other than those devoted to performing their primary
task.

The final assumption that traceback queries are infrequent has im-
portant design implications. It implies queries can be handled by a
router’s control path, and need not be dealt with on the forwarding
path at line speed. While there may be auditing tasks associated
with packet forwarding to support traceback that must be executed
while forwarding, the processing of the audit trails is infrequent
with respect to their generation.

2.2 The goal

Ideally, a traceback system should be able to identify the source
of any piece of data sent across the network. In an IP framework,
the packet is the smallest atomic unit of data. Any smaller division
of data (a byte, for instance) is contained within a unique packet.
Hence an optimal IP traceback system would precisely identify the
source of an arbitrary IP packet. Any larger data unit or stream can
be isolated by searching for any particular packet containing data
within the stream.1

As with any auditing system, a traceback system can only be effec-
tive in networks in which it has been deployed. Hence we consider
the source of a packet to be one of:

• The ingress point to the traceback-enabled network
• The actual host or network of origin
• One or more compromised routers within the enabled network

If one assumes that any router along the path may be co-opted to
assist in concealing a packet’s source, it becomes obvious that one

1Indeed, we would argue that it is desirable to trace the individual pack-
ets within a stream because the individual packets may have originated at
different sites (meeting only at the victim) and are likely to have followed
different paths through the network.

2

V

R6

R8 R9

R7

R1S1

S3A1

R4

A2 S4

R3R2

R5S5

Figure 1: An attack graph containing attack paths for two iden-
tical packets injected by A1 and A2 and received by the vic-
tim, V . The arrows indicate links traversed by the packet;
nodes on an attack path are shaded: {A1, R1, R4, R7, R9, V } and
{A2, R2, R5, R7, R9, V }.

must attempt to discern not only the packet’s source, but its entire
path through the network. If a path can be traced through any num-
ber of non-subverted routers, then it must terminate at either the
source of the flow or pass through a subverted router which can be
considered to be a co-conspirator and treated appropriately. Hence,
we are interested in constructing an attack path, where the path
consists of each router traversed by the packet on its journey from
source to the victim. Because conspiring routers can fabricate trace
information, the path can only be guaranteed to be accurate on the
portion from the victim to the first source—multiple sources may be
identified if routers are subverted. Further, since multiple, indistin-
guishable packets may be injected into the network from different
sources in the general case, a traceback system should construct an
attack graphcomposed of the attack paths for every instance of the
attack packet that arrived at the victim. Figure 1 depicts the net-
work as viewed by the victim and a particular attack graph for that
victim.

An attack graph may contain false positives in the presence of sub-
verted routers; that is, the attack graph may identify sources that
did not actually emit the packet. We argue this is an unavoidable
consequence of admitting the possibility of subverted routers. An
ideal traceback system, however, produces no false negativeswhile
attempting to minimize false positives; it must never exonerate an
attacker by not including the attacker in the attack graph.

Further, when a traceback system is deployed, it must not reduce the
privacy of IP communications. In particular, entities not involved in
the generation, forwarding, or receipt of the original packet should
not be able to gain access to packet contents by either utilizing or
as part of participating in the IP traceback system. An ideal IP
traceback system must not expand the eavesdropping capabilities
of a malicious party.

2.3 Transformations

It is important to note that packets may be modified during the for-
warding process. In addition to the standard decrementing of the

time to live (TTL) field and checksum recomputation, IP packets
may be further transformed by intermediate routers. Packet trans-
formation may be the result of valid processing, router error, or
malicious intent. A traceback system need not concern itself with
packet transformations resulting from error or malicious behavior.
Packets resulting from such transformations only need be traced to
the point of transformation, as the transforming node either needs
to be fixed or can be considered a co-conspirator. An optimum
traceback system should trace packets through valid transforma-
tions, however, back to the source of the original packet.

Valid packet transformations are defined as a change of packet state
that allows for or enhances network data delivery. Transformations
occur due to such reasons as hardware needs, network management,
protocol requirements, and source request. Based on the transform
produced, packet transformations are categorized as follows:

1. Packet Encapsulation: A new packet is generated in which the
original packet is encapsulated as the payload (e.g., IPsec).
The new packet is forwarded to an intermediate destination
for de-encapsulation.

2. Packet Generation: One or more packets are generated as a
direct result of an action by the router on the original packet
(e.g. an ICMP Echo Reply sent in response to an ICMP Echo
Request). The new packets are forwarded and processed in-
dependent of the original packet.

Common packet transformations include those performed by
RFC 1812-compliant routers [1] such as packet fragmentation, IP
option processing, ICMP processing, and packet duplication. Net-
work address translation (NAT) and both IP-in-IP and IPsec tunnel-
ing are also notable forms of packet transformation. Many of these
transformations result in an irrecoverable loss of the original packet
state due to the stateless nature of IP networks.

A study of wide-area traffic patterns conducted by the Cooperative
Association for Internet Data Analysis (CAIDA) found less than
3% of IP traffic undergoes common transformation and IP tunnel-
ing [12]. While this study did not encompass all forms of transfor-
mation (NAT processing being a notable omission), it seems safe
to assume that packet transformations account for a relatively small
fraction of the overall IP traffic traversing the Internet today. How-
ever, attackers may transmit packets engineered to experience trans-
formation. The ability to trace packets that undergo transformation
is, therefore, an essential feature of any viable traceback system.

3 RELATED WORK

There are two approaches to the problem of determining the route
of a packet flow: one can audit the flow as it traverses the network,
or one can attempt to infer the route based upon its impact on the
state of the network. Both approaches become increasingly difficult
as the size of the flow decreases, but the latter becomes infeasible
when flow sizes approach a single packet because small flows gen-
erally have no measurable impact on the network state.

Route inference was pioneered by Burch and Cheswick [5] who
considered the restricted problem of large packet flows and pro-
posed a novel technique that systematically floods candidate net-
work links. By watching for variations in the received packet flow
due to the restricted link bandwidth, they are able to infer the flow’s

3

route. This requires considerable knowledge of network topology
and the ability to generate large packet floods on arbitrary network
links.

One can categorize auditing techniques into two classes according
to the way in which they balance resource requirements across the
network components. Some techniques require resources at both
the end host and the routing infrastructure, others require resources
only within the network itself. Of those that require only infrastruc-
ture support, some add packet processing to the forwarding engine
of the routers while others offload the computation to the control
path of the routers.

3.1 End-host schemes

Some auditing approaches attempt to distribute the burden by stor-
ing state at the end hosts rather than in the network. Routers notify
the packet destination of their presence on the route. Because IP
packets cannot grow arbitrarily large, schemes have been developed
to reduce the amount of space required to send such information.
Recently proposed techniques by Savage et al.[21] and Bellovin [2]
explore in-band and out-of-band signaling, respectively.

Because of the high overhead involved, neither Savage nor Bellovin
attempt to provide audit information for every packet. Instead, each
employs probabilistic methods that allow sufficiently large packet
flows to be traced. By providing partial information on a subset
of packets in a flow, auditing routers enable an end host to recon-
struct the entire path traversed by the packet flow after receiving a
sufficient number of packets belonging to the flow.

The two schemes diverge in the methods used to communicate the
information to the end host. Savage et al. employ a packet marking
scheme that encodes the information in rarely-used fields within
the IP header itself. This approach has been improved upon by
Song and Perrig to improve the reconstruction of paths and authen-
ticate the encodings [23]. In order to avoid the backwards compat-
ibility issues and increased computation required by the sophisti-
cated encoding schemes employed in the packet marking schemes,
Bellovin’s scheme (and later extensions by Wu et al. [25]) simply
sends the audit information in an ICMP message.

3.2 Infrastructure approaches

End-host schemes require the end hosts to log meta data in case an
incoming packet proves to be offensive. Alternatively, the network
itself can be charged with maintaining the audit trails.

The obvious approach to auditing packet flow is simply to log pack-
ets at various points throughout the network and then use appropri-
ate extraction techniques to discover the packet’s path through the
network. Logging requires no computation on the router’s fast path
and, thus, can be implemented efficiently in today’s router architec-
ture. Sager suggests such a monitoring approach [19]. However,
the effectiveness of the logs is limited by the amount of space avail-
able to store them. Given today’s link speeds, packet logs quickly
grow to intractable sizes, even over relatively short time frames. An
OC-192 link is capable of transferring 1.25GB per second. If one
allows 60 seconds to conduct a query, a router with 16 links would
require 1.2TB of high-speed storage.

These requirements can be reduced by sampling techniques similar
to those of the end-host schemes, but down-sampling reduces the

probability of detecting small flows and does not alleviate the se-
curity issues raised by storing complete packets in the router. The
ability of an attacker to break into a router and capture terrabytes of
actual traffic has severe privacy implications.

Alternatively, routers can be tasked to perform more sophisticated
auditing in real time, extracting a smaller amount of information
as packets are forwarded. Many currently available routers support
input debugging, a feature that identifies on which incoming port
a particular outgoing packet (or set of packets) of interest arrived.
Since no history is stored, however, this process must be activated
before an attack packet passes by. Furthermore, due to the high
overhead of this operation on many popular router architectures,
activating it may have adverse effects on the traffic currently being
serviced by the router.

3.3 Specialized routing

One of the main problems with the link testing or logging meth-
ods above is the large amount of repetition required. A trace is
conducted in a hop-by-hop fashion requiring a query at each router
along the way. Once the incoming link or links have been identified,
the process must be repeated at the upstream router.

Several techniques have been developed to streamline and automate
this process. Some ISPs have developed their own ad hoc mecha-
nisms for automatically conducting input debugging across their
networks. Schnackenberg et al. [22] propose a special Intruder
Detection and Isolation Protocol (IDIP) to facilitate interaction be-
tween routers involved in a traceback effort. IDIP does not specify
how participating entities should track packet traffic; it simply re-
quires that they be able to determine whether or not they have seen
a component of an attack matching a certain description. Even with
automated tools, however, each router in the ISP must support input
debugging or logging which are not common in today’s high-speed
routers for reasons discussed above.

In order to avoid this requirement, Stone [24] suggests constructing
an overlay network connecting all the edge routers of an ISP. By
using a deliberately simple topology of specialized routers, suspi-
cious flows can be dynamically rerouted across the special tracking
network for analysis. This approach has two major shortcomings.
First, the attack must be sufficiently long-lived to allow the ISP to
effect the rerouting before the relevant flow terminates. Second, the
routing change is perceptible by the attacker, and an especially mo-
tivated attacker may be able to escape detection by taking appropri-
ate action. While techniques exist to hide precisely what changed
about the route, changes in layer-three topology are hard to mask.

4 PACKET DIGESTING

SPIE, the Source Path Isolation Engine, uses auditing techniques to
support the traceback of individual packets while reducing the stor-
age requirements by several orders of magnitude over current log-
based techniques [19]. Traffic auditing is accomplished by comput-
ing and storing 32-bit packet digests rather than storing the packets
themselves. In addition to reducing storage requirements, storing
packet digests instead of the actual packet contents preserves traf-
fic confidentiality by preventing SPIE from being used as a tool for
eavesdropping.

4

Payload

Options

Destination Address

Source Address

TTL Protocol Checksum

Identification
D
F

M
F

Fragment Offset

Version
Header
Length

Type of Service Total Length

Figure 2: The fields of an IP packet. Fields in gray are masked
out before digesting, including the Type of Service, Time to Live
(TTL), IP checksum, and IP options fields.

4.1 Hash input

The packet content used as input to the hash function must uniquely
represent an IP packet and enable the identification of the packet
across hops in the forwarding path. At the same time, it is desir-
able to limit the size of the hash input both for performance and
for reasons discussed below (c.f. section 5.3). Duffield and Gross-
glauser encountered similar requirements while sampling a subset
of forwarded packets in an attempt to measure traffic flows [7]. We
use a similar approach, masking variant packet content and select-
ing an appropriate-length prefix of the packet to use as input to the
digesting function. Our choice of invariant fields and prefix length
is slightly different, however.

Figure 2 shows an IP packet and the fields included by the SPIE di-
gesting function. SPIE computes digests over the invariant portion
of the IP header and the first 8 bytes of the payload. Frequently
modified header fields are masked prior to digesting. Note that be-
yond the obvious fields (TTL, TOS, and checksum), certain IP op-
tions cause routers to rewrite the option field at various intervals. To
ensure a packet appears identical at all steps along its route, SPIE
masks or compensates for these fields when computing the packet
digests. It is important to note that the invariant IP fields used for
SPIE digesting may occasionally be modified by a packet transform
(c.f. section 5.3).

Our research indicates that the first 28 invariant bytes of a packet
(masked IP header plus the first 8 bytes of payload) are sufficient
to differentiate almost all non-identical packets. Figure 3 presents
the rate of packet collisions for an increasing prefix length for two
representative traces: a WAN trace from an OC-3 gateway router,
and a LAN trace from an active 100Mb Ethernet segment. (Results
were similar for traces across a number of sites.) Two unique pack-
ets which are identical up to the specified prefix length are termed
a collision. A 28-byte prefix results in a collision rate of approxi-
mately 0.00092% in the wide area and 0.139% on the LAN.

Unlike similar results reported by Duffield and Grossglauser [7, fig.
4], our results include only unique packets; exact duplicates were
removed from the packet trace. Close inspection of packets in the

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

20 22 24 26 28 30 32 34 36 38 40

F
ra

ct
io

n
of

 C
ol

lid
ed

 P
ac

ke
ts

Prefix Length (in bytes)

WAN
LAN

Figure 3: The fraction of packets that collide as a function of pre-
fix length. The WAN trace represents 985,150 packets (with 5,801
duplicates removed) collected on July 20, 2000 at the University of
Florida OC-3 gateway [14]. The LAN trace consists of one million
packets (317 duplicates removed) observed on an Ethernet segment
at the MIT Lab for Computer Science.

wide area with identical prefixes indicates that packets with match-
ing prefix lengths of 22 and 23 bytes are ICMP Time Exceeded
error packets with the IP identification field set to zero. Similarly,
packets with matching prefixes between 24 and 31 bytes in length
are TCP packets with IP identifications also set to zero which are
first differentiated by the TCP sequence number or acknowledg-
ment fields.2

The markedly higher collision rate in the local area is due to the lack
of address and traffic diversity. This expected result does not sig-
nificantly impact SPIE’s performance, however. LANs are likely to
exist at only two points in an attack graph: immediately surround-
ing the victim and the attacker(s). False positives on the victim’s
local network can be easily eliminated from the attack graph—they
likely share the same gateway router in any event. False positives
at the source are unlikely if the attacker is using spoofed source ad-
dresses, as this provides the missing diversity in attack traffic, and
remain in the immediate vicinity of the true attacker by definition.
Hence, for the purposes of SPIE, IP packets are effectively distin-
guished by the first 28 invariant bytes of the packet.

4.2 Bloom filters

Storing the set of digests for the traffic forwarded by the router
would require massive amounts of storage. Instead, SPIE uses a
space-efficient data structure known as a Bloom filter to record
packet digests [4]. A Bloom filter computes k distinct packet di-
gests for each packet using independent uniform hash functions,
and uses the n-bit results to index into a 2n-sized bit array. The
array is initialized to all zeros, and bits are set to one as packets are
received. Figure 4 depicts a Bloom filter with k hash functions.

Membership tests can be conducted simply by computing the k di-
gests on the packet in question and checking the indicated bit posi-

2Further investigation indicates a number of current operating systems,
including recent versions of Linux, frequently set the IP ID to zero.

5

H1(P)

H2(P)

H3(P)

.

.

.

Hk(P)

n bits

1

1

1

1

2n

bits

Figure 4: For each packet received, SPIE computes k independent
n-bit digests, and sets the corresponding bits in the 2n-bit digest
table.

tions. If any one of them is zero, the packet was not stored in the
table. If, however, all the bits are one, it is highly likely the packet
was stored. It is possible that some set of other insertions caused all
the bits to be set, creating a false positive, but the rate of such false
positives can be controlled [8].

4.3 Hash functions

SPIE places three major restrictions on the family of hash functions,
F , used in its Bloom filters. First, each member function must
distribute a highly correlated set of input values (IP packet prefixes),
P , as uniformly as possible over the hash’s result value space. That
is, for a hash function H : P → 2m in F , and distinct packets
x �= y ∈ P , Pr[H(x) = H(y)] = 1/(2m). This is a standard
property of good hash functions.

SPIE further requires that the event that two packets collide in one
hash function (H(x) = H(y) for some H) be independent of col-
lision events in any other functions (H′(x) = H ′(y),H ′ �= H).
Intuitively, this implies false positives at one router are independent
of false positives at neighboring routers. Formally, for any func-
tion H ∈ F chosen at random independently of the input packets
x and y, Pr[H(x) = H(y)] = 2−m with high probability. Such
hash families, called universal hash families, were first defined by
Carter and Wegman [6] and can be implemented in a variety of
fashions [3, 10, 11].

Finally, member functions must be straightforward to compute at
high link speeds. This requirement is not impractical because SPIE
hash functions do not require any cryptographic “hardness” prop-
erties. That is, it does not have to be difficult to generate a valid
input packet given a particular hash value. Being able to create a
packet with a particular hash value enables three classes of attacks,
all of which are fairly benign. One attack would ensure that all at-
tack packets have the same fingerprint in the Bloom filter at some
router (which is very difficult since there are multiple, independent
hashes at each router), but this merely elicits a packet trace that
reveals a larger set of systems from which the attacker can attack.
Another attack is to ensure all attack packets have different finger-

Router

Router

DGA

Router
Router

Router

DGA

SCAR
Router

Router

Router

DGA

STM

ISP's Network

Figure 5: The SPIE network infrastructure, consisting of Data Gen-
eration Agents (DGAs), SPIE Collection and Reduction Agents
(SCARs), and a SPIE Traceback Manager (STM).

prints, but that is the common case already. The third, and most
difficult attack, is to create an attack packet with the same finger-
print as another, non-attack packet. In general, this attack simply
yields one more false-positive path, usually only for one hop (as
the hash functions change at each hop).

5 SOURCE PATH ISOLATION ENGINE

SPIE-enhanced routers maintain a cache of packet digests for re-
cently forwarded traffic. If a packet is determined to be offensive
by some intrusion detection system (or judged interesting by some
other metric), a query is dispatched to SPIE which in turn queries
routers for packet digests of the relevant time periods. The results of
this query are used in a simulated reverse-path flooding (RPF) algo-
rithm to build an attack graph that indicates the packet’s source(s).

5.1 Architecture

The tasks of packet auditing, query processing, and attack graph
generation are dispersed among separate components in the SPIE
system. Figure 5 shows the three major architectural components
of the SPIE system. Each SPIE-enhanced router has a Data Gener-
ation Agent (DGA) associated with it. Depending upon the type of
router in question, the DGA can be implemented and deployed as a
software agent, an interface card plug to the switching background
bus, or a separate auxiliary box connected to the router through
some auxiliary interface.

The DGA produces packet digests of each packet as it departs the
router, and stores the digests in bit-mapped digest tables. The tables
are paged every so often, and represent the set of traffic forwarded
by the router for a particular interval of time. Each table is anno-
tated with the time interval and the set of hash functions used to
compute the packet digests over that interval. The digest tables are
stored locally at the DGA for some period of time, depending on
the resource constraints of the router. If interest is expressed in the
traffic data for a particular time interval, the tables are transferred
to a SPIE Collection and Reduction (SCAR) agent for longer-term
storage and analysis.

6

SCARs are responsible for a particular region of the network, serv-
ing as data concentration points for several routers. SCARs monitor
and record the topology of their area and facilitate traceback of any
packets that traverse the region. Due to the complex topologies of
today’s ISPs, there will typically be several SCARs distributed over
an entire network. Upon request, each SCAR produces an attack
graph for its particular region. The attack graphs from each SCAR
are grafted together to form a complete attack graph by the SPIE
Traceback Manager (STM).

The STM controls the whole SPIE system. The STM is the inter-
face to the intrusion detection system or other entity requesting a
packet trace. When a request is presented to the STM, it verifies
the authenticity of the request, dispatches the request to the appro-
priate SCARs, gathers the resulting attack graphs, and assembles
them into a complete attack graph. Upon completion of the trace-
back process, STMs reply to intrusion detection systems with the
final attack graph.

5.2 Traceback processing

Before the traceback process can begin, an attack packet must be
identified. Most likely, an intrusion detection system (IDS) will de-
termine that an exceptional event has occurred and provide the STM
with a packet, P , victim, V , and time of attack, T . SPIE places two
constraints on the IDS: the victim must be expressed in terms of the
last-hop router, not the end host itself, and the attack packet must
be identified in a timely fashion. The first requirement provides the
query process with a starting point; the latter stems from the fact
that traceback must be initiated before the appropriate digest tables
are overwritten by the DGAs. This time constraint is directly re-
lated to the amount of resources dedicated to the storage of traffic
digests. (We discuss timing and resource tradeoffs in section 7).

Upon receipt of traceback request, the STM cryptographically ver-
ifies its authenticity and integrity. Any entity wishing to employ
SPIE to perform a traceback operation must be properly authorized
in order to prevent denial of service attacks. Upon successful ver-
ification, the STM immediately asks all SCARs in its domain to
poll their respective DGAs for the relevant traffic digests. Time
is critical because this poll must happen while the appropriate di-
gest tables are still resident at the DGAs. Once the digest tables
are safely transferred to SCARs, the traceback process is no longer
under real-time constraints.

Beginning at the SCAR responsible for the victim’s region of the
network, the STM sends a query message consisting of the packet,
egress point, and time of receipt. The SCAR responds with a partial
attack graph and the packet as it entered the region (it may have
been transformed, possibly multiple times, within the region). The
attack graph either terminates within the region managed by the
SCAR, in which case a source has been identified, or it contains
nodes at the edge of the SCAR’s network region, in which case the
STM sends a query (with the possibly-transformed packet) to the
SCAR abutting that edge node.

This process continues until all branches of the attack graph termi-
nate, either at a source within the network, or at the edge of the
SPIE system. The STM then constructs a composite attack graph
which it returns to the intrusion detection system.

Digest Type I Packet Data

29 bits 3 bits 32 bits

Figure 6: A Transform Lookup Table (TLT) stores sufficient infor-
mation to invert packet transformations at SPIE routers. The table
is indexed by packet digest, specifies the type of transformation,
and stores any irrecoverable packet data.

5.3 Transformation processing

IP packets may undergo valid transformation while traversing the
network, and SPIE must be capable of tracing through such trans-
formations. In particular, SPIE must be able to reconstruct the origi-
nal packet from the transformed packet. Unfortunately, many trans-
formations are not invertible without additional information due to
the stateless nature of IP networks. Consequently, sufficient packet
data must be recorded by SPIE at the time of transformation such
that the original packet is able to be reconstructed.

The packet data chosen as input to the digesting function deter-
mines the set of packet transformations SPIE must handle—SPIE
need only consider transformations that modify fields used as input
to the digest function. SPIE computes digests over the IP header
and the first eight bytes of the packet payload but masks out (or
omits in the case of IP options) several frequently updated fields
before digesting, as shown in figure 2 of section 4. This hides
most hop-by-hop transformations from the digesting function, but
forces SPIE to explicitly handle each of the following transfor-
mations: fragmentation, network address translation (NAT), ICMP
messages, IP-in-IP tunneling, and IP security (IPsec).

Recording the information necessary to reconstruct the original
packet from a transformed packet requires additional resources.
Fortunately for SPIE, the circumstances that cause a packet to un-
dergo a transformation will generally take that packet off of the
fast path of the router and put it onto the control path, relaxing
the timing requirements. The router’s memory constraints remain
unchanged, however; hence, transformation information must be
stored in a scalable and space-efficient manner.

5.3.1 Transform lookup table

Along with each packet digest table collected at a DGA, SPIE main-
tains a corresponding transform table for the same interval of time
called a transform lookup table, or TLT. Each entry in the TLT con-
tains three fields. The first field stores a digest of the transformed
packet. The second field specifies the type of transformation—
three bits are sufficient to uniquely identify the transformation type
among those supported by SPIE. The last field contains a variable
amount of packet data the length of which depends upon the type
of transformation being recorded.

For space efficiency, the data field is limited to 32 bits. Some trans-
formations, such as network address translation, may require more
space. These transformations utilize a level of indirection—one bit
of the transformation type field is reserved as an indirect flag. If
the indirect, or I, flag is set, the third field of the TLT is treated as a
pointer to an external data structure which contains the information
necessary to reconstruct the packet.

7

The indirect flag can also be used for flow caching. In many cases,
packets undergoing a particular transformation are related. In such
cases, it is possible to reduce the storage requirements by suppress-
ing duplicate packet data, instead referencing a single copy of the
required data that can be used to reconstruct any packet in the flow.
Such a scheme requires, however, that the SPIE-enabled router it-
self be capable of flow caching, or at least identification, so that the
packets within the flow can be correlated and stored appropriately.

In order to preserve alignment, it is likely efficient implementations
would store only 29 bits of the packet digest resulting in 64-bit wide
TLT entries. This width implies eight distinct packet digests will
map to the same TLT entry. The relative rarity of packet transfor-
mations [12], the sparsity of the digest table, and the uniformity of
the digesting function combine to make collisions extremely rare
in practice. Assuming a digest table capacity of roughly 3.2Mpkts
(16Mb SRAM, see section 7.2) and a transformation rate of 3%, the
expected collision rate is approximately 1:5333 packets. Even if a
collision occurs, it simply results in an additional possible trans-
formation of the queried packet. Each transformation is computed
(including the null transformation) and traceback continues. In-
correctly transformed packets likely will not exist at neighboring
routers and, thus, will not contribute any false nodes to the attack
graph.

5.3.2 Special-purpose gateways

Some classes of packet transformations, notably NAT and tunnel-
ing, are often performed on a large fraction of packets passing
through a particular gateway. The transform lookup table would
quickly grow to an unmanageable size in such instances; hence,
SPIE considers the security gateway or NAT functionality of routers
as a separate entity. Standard routing transformations are handled as
above, but special purpose gateway transformations require a differ-
ent approach to transformation handling. Transformations in these
types of gateways are generally computed in a stateful way (usually
based on a static rule set); hence, they can be inverted in a similar
fashion. While the details are implementation-specific, inverting
such transformations is straightforward; we do not consider it here.

5.3.3 Sample transformations

A good example of transformation is packet fragmentation. To
avoid needing to store any of the packet payload, SPIE supports
traceback of only the first packet fragment. Non-first fragments
may be traced to the point of fragmentation which, for fragment-
based attacks [13], is the attacker. (If only a subset of the fragments
is received by the victim the packet cannot be reassembled; hence,
the only viable attack is a denial of service attack on the reassembly
engine. But, if the fragmentation occurs within the network itself,
an attacker cannot control which fragments are received by the vic-
tim so the victim will eventually receive a first fragment to use in
traceback.) Packet data to be recorded includes the total length,
fragment offset, and more fragments (MF) field. Since properly-
behaving IP routers cannot create fragments with less than 8 bytes
of payload information [17], SPIE is always able to invert fragmen-
tation and construct the header and at least 64 bits of payload of the
pre-fragmented packet which is sufficient to continue traceback.

Observe that SPIE never needs to record any packet payload infor-
mation. ICMP transformations can be inverted because ICMP error

V

R6

R8 R9

R7

R1S1

S3S2

R4

A S4

R3R2

R5S5

Figure 7: Reverse path flooding, starting at the victim’s router, V ,
and proceeding backwards toward the attacker, A. Solid arrows
represent the attack path; dashed arrows are SPIE queries. Queries
are dropped by routers that did not forward the packet in question.

messages always include at least the first 64 bits of the offending
packet [16]. Careful readers may be concerned that encapsulation
cannot be inverted if the encapsulated packet is subsequently frag-
mented and the fragments containing the encapsulated IP header
and first 64 bits of payload are not available. While this is strictly
true, such transformations need to be inverted only in extreme cases
as it takes a very sophisticated attacker to cause a packet to be first
encapsulated, then fragmented, and then ensure fragment loss. If
all the fragments are received, the original header can be extracted
from the reassembled payload. It seems extremely difficult for an
attacker to insure that packet fragments are lost. It can cause packet
loss by flooding the link, but to do so requires sending such a large
number of packets that it is extremely likely that all the fragments
for at least one packet will be successfully received by the decapsu-
lator for use in traceback.

5.4 Graph construction

Each SCAR constructs a subgraph using topology information
about its particular region of the network. After collecting the
digest tables from all of the routers in its region, a SCAR sim-
ulates reverse-path flooding (RPF) by examining the digest ta-
bles in the order they would be queried if an actual reverse path
flood was conducted on the topology that existed at the time the
packet was forwarded. Figure 7 shows how reverse-path flood-
ing would discover the attack path from V to A, querying routers
R8, R9, R7, R4, S5, R5, and R2 along the way. It is important to
note that the routers are not actually queried—the SCAR has al-
ready cached all the relevant hash digests locally.

In order to query each router, a SCAR computes the appropriate set
of digests as indicated by the table, and then consults the table for
membership. If an entry exists for the packet in question, the router
is considered to have forwarded the packet. The SCAR adds the
current node to the attack graph and moves on to each of its neigh-
bors (except, of course, the neighbor already queried). If, however,
the digest is not found in the table, it may be necessary to search
the digest table for the previous time period. Depending on the link
latency between routers, SCARs may need to request multiple di-

8

gest tables from each router in order to assure they have the digest
for the appropriate time frame. Once a digest is located, the packet
arrival time is always considered to be the latest possible time in the
interval. This insures the packet must have been seen at an earlier
time at adjacent routers.

If the packet is not found in any of the digest tables for the relevant
time period, that particular branch of the search tree is terminated
and searching continues at the remaining routers. A list of previ-
ously visited nodes is kept at all times, and cycles are pruned to
assure termination.

The result of this procedure is a connected graph containing the set
of nodes believed to have forwarded the packet toward the victim.
Assuming correct operation of the routers, this graph is guaranteed
to be a superset of the actual attack graph. But due to digest col-
lisions, there may be nodes in the attack graph that are not in the
actual attack graph. We call these nodes false positivesand base the
success of SPIE on its ability to limit the number of false positives
contained in a returned attack graph.

6 PRACTICAL IMPLEMENTATION

For our FreeBSD SPIE prototype, we simulate a universal hash
family using MD5 [18]. A random member is defined by selecting
a random input vector to prepend to each packet. The properties
of MD5 ensure that the digests of identical packets with different
input vectors are independent. The 128-bit output of MD5 is then
considered as four independent 32-bit digests which can support
Bloom filters of dimension up to four. Router implementations re-
quiring higher performance are likely to prefer other universal hash
families specifically tailored to hardware implementation [11]. A
simple family amenable to fast hardware implementation could be
constructed by computing a CRC modulo a random member of the
set of indivisible polynomials over Z2k .

In order to ensure hash independence, each router periodically gen-
erates a set of k independent input vectors and uses them to select k
digest functions needed for the Bloom filter from the family of uni-
versal hashes. These input vectors are computed using a pseudo-
random number generator which is independently seeded at each
router. For increased robustness against adversarial traffic, the input
vectors are changed each time the digest table is paged, resulting in
independence not only across routers but also across time periods.

The size of the digest bit vector, or digest table, varies with the
total traffic capacity of the router; faster routers need larger vectors
for the same time period. Similarly, the optimum number of hash
functions varies with the size of the bit vector. Routers with tight
memory constraints can compute additional digest functions and
provide the same false-positive rates as those who compute fewer
digests but provide a larger bit vector.

Figure 8 depicts a possible implementation of a SPIE Data Genera-
tion Agent in hardware for use on high-speed routers. A full discus-
sion of the details of the architecture and an analysis of its perfor-
mance were presented previously [20]. Briefly, each interface card
in the router is outfitted with an Interface Tap which computes mul-
tiple independent digests of each packet as it is forwarded. These
digests are passed to a separate SPIE processor (implemented either
in a line card form factor or as an external unit) which stores them
as described above in digest tables for specific time periods.

...

S32

S32

S32

S32

S32

Sk

2k-bit RAM
t

t-P s

+

FIFO RAM
MUX

Readout
by

Control
Processor

...
...

Ring Buffer DRAM

Time
=t

readout
every
R ms

Signature Taps Signature Aggregation History Memory

Line Cards SPIE Card (or Box)

Figure 8: A sample SPIE DGA hardware implementation for high-
speed routers.

As time passes, the forwarded traffic will begin to fill the digest ta-
bles and they must be paged out before they become over-saturated,
resulting in unacceptable false-positive rates. The tables are stored
in a history buffer implemented as a large ring buffer. Digest tables
can then be transferred by a separate control processor to SCARs
while they are stored in the ring buffer.

7 ANALYSIS

There are several tradeoffs involved when determining the optimum
amount of resources to dedicate to SPIE on an individual router or
the network as a whole. SPIE’s resource requirements can be ex-
pressed in terms of two quantities: the number of packet digest
functions used by the Bloom filter, and the amount of memory used
to store packet digests. Similarly, SPIE’s performance can be char-
acterized in two orthogonal dimensions. The first is the length of
time for which packet digests are kept. Queries can only be issued
while the digests are cached; unless requested by a SCAR within a
reasonable amount of time, the DGAs will discard the digest tables
in order to make room for more recent ones. The second is the ac-
curacy of the candidate attack graphs which can be measured in the
number of false positives in the graph returned by SPIE.

Both of these metrics can be controlled by adjusting operational
parameters. In particular, the more memory available for storing
packet digests, the longer the time queries can be issued. Similarly,
digest tables with lower false-positive rates yield more accurate at-
tack graphs. Hence, we wish to characterize the performance of
SPIE in terms of the amount of available memory and digest table
performance.

7.1 False positives

We first relate the rate of false positives in an attack graph to the
rate of false positives in an individual digest table. This relationship
depends on the actual network topology and traffic being forwarded
at the time. We can, however, make some simplifying assumptions
in order to derive an upper bound on the number of false positives
as a function of digest table performance.

9

7.1.1 Theoretical bounds

Suppose, for example, each router whose neighbors have degree
at most d ensures its digest tables have a false-positive rate of at
most P = p/d, where 0 ≤ p/d ≤ 1 (p is just an arbitrary tuning
factor). A simplistic analysis shows that for any true attack graph G
with n nodes, the attack graph returned by SPIE will have at most
np/(1 − p) extra nodes in expectation.

The false-positive rate of a digest table varies over time, depending
on the traffic load at the router and the amount of time since it was
paged. Similarly, if the tables are paged on a strict schedule based
on maximum link capacity, and the actual traffic load is less, digest
tables will never reach their rated capacity. Hence, the analytic re-
sult is a worst case bound since the digest table performs strictly
better while it is only partially full. Furthermore, our analysis as-
sumes the set of neighbors at each node is disjoint which is not true
in real networks. It seems reasonable to expect, therefore, that the
false-positive rate over real topologies with actual utilization rates
would be substantially lower.

For the purposes of this discussion, we arbitrarily select a false-
positive rate of n/7, resulting in no more than 5 additional nodes
in expectation for a path length of over 32 nodes (approaching the
diameter of the Internet) according to our theoretical model. Using
the bound above, p = 1/8 seems a reasonable starting point and we
turn to considering its effectiveness in practice.

7.1.2 Simulation results

In order to relate false-positive rate to digest table performance in
real topologies, we have run extensive simulations using the actual
network topology of a national tier-one ISP made up of roughly 70
backbone routers with links ranging from T-1 to OC-3. We obtained
a topology snapshot and average link utilization data for the ISP’s
network backbone for a week-long period toward the end of 2000,
sampled using periodic SNMP queries, and averaged over the week.

We simulated an attack by randomly selecting a source and vic-
tim, and sending 1000 attack packets at a constant rate between
them. Each packet is recorded by every intermediate router along
the path from source to destination. A traceback is then simulated
starting at the victim router and (hopefully) proceeding toward the
source. Uniformly distributed background traffic is simulated by
selecting a fixed maximum false-positive rate, P , for the digest ta-
ble at each off-path router. (Real background traffic is not uniform,
which would result in slight dependencies in the false-positive rates
between routers, but we believe that this represents a reasonable
starting point.) In order to accurately model performance with real
traffic loads, the effective false-positive rate is scaled by the ob-
served traffic load at each router.

For clarity, we consider a non-transformed packet with only one
source and one destination. Preliminary experiments with multi-
ple sources (as might be expected in a distributed denial of service
(DDoS) attack) indicate false positives scale linearly with respect to
the size of the attack graph, which is the union of the attack paths
for each copy of the packet. We do not, however, consider this case
in the experiments presented here. (A DDoS attack sending iden-
tical packets from multiple sources only aids SPIE in its task. A
wise attacker would instead send distinctpackets from each source,
forcing the victim to trace each packet individually.)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound
[100% util.] P=1/(8*degree)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound
[100% util.] P=1/(8*degree)

P=1/8

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound
[100% util.] P=1/(8*degree)

P=1/8
P=1/(8*degree)

Figure 9: The number of false positives in a SPIE-generated attack
graph as a function of the length of the attack path, for p = 1/8.
The theoretical bound is plotted against three simulation results,
two with false-positive rates conditioned on router degree, one
without. For the two degree-dependent runs, one considered actual
link utilization, while the other assumed full utilization. Each sim-
ulation represents the average of 5000 runs using actual topology
and utilization data from a national tier-one ISP.

In order to validate our theoretical bound, we have plotted the ex-
pected number of false positives as a function of attack path length
and digest table performance, np/(1 − p) as computed above, and
show that in comparison to the results of three simulations on our
ISP backbone topology. In the first, we set the maximum digest
table false-positive probability to P = p/d, as prescribed above.
Figure 9 shows a false-positive rate significantly lower than the an-
alytic bound. A significant portion of the disparity results from the
relatively low link utilizations maintained by operational backbones
(77% of the links in our data set had utilization rates of less than
25%), as can be seen by comparing the results of a second sim-
ulation assuming full link utilization. There remains, however, a
considerable gap between the analytic bound and simulated perfor-
mance in network backbones.

The non-linearity of the simulation results indicates there is a strong
damping factor due to the topological structure of the network. In-
tuitively, routers with many neighbors are found at the core of the
network (or at peering points), and routers with fewer neighbors are
found toward the edge of the network. This suggests false positives
induced by core routers may quickly die out as the attack graph
proceeds toward less well-connected routers at the edge.

To examine the dependence upon vertex degree, we conducted an-
other simulation. This time, we removed the false-positive rate’s
dependence upon the degree of the router’s neighbors, setting the
digest table performance to simply P = p (and returning to ac-
tual utilization data). While there is a marked increase in the num-
ber of false positives, it remains well below the analytic bound.
This somewhat surprising result indicates that despite the analytic
bound’s dependence on router degree, the hierarchical structure of
ISP backbones may permit a relaxation of the coupling, allowing
the false positive rate of the digest tables, P , to be set independently
of the degree, d, resulting in significant space savings.

10

7.2 Time and memory utilization

The amount of time during which queries can be supported is di-
rectly dependent on the amount of memory dedicated to SPIE. The
appropriate amount of time varies depending upon the responsive-
ness of the method used to identify attack packets. For the purposes
of discussion, however, we will assume one minute is a reasonable
amount of time in which to identify an attack packet and initiate
a traceback. As discussed in section 5.1, once the appropriate di-
gest tables have been moved to SCARs the actual query process can
arbitrarily be delayed.

Given a particular length of time, the amount of memory required
varies linearly with the total link capacity at the router and can be
dramatically affected by the dimension of the Bloom filter in use.
Bloom filters are typically described in terms of the number of di-
gesting functions used and the ratio of data items to be stored to
memory capacity. The effective false-positive rate for a Bloom fil-
ter that uses m bits of memory to store n packets with k digest
functions can be expressed as

P =

(
1 −

(
1 − 1

m

)kn
)k

≈
(
1 − e−kn/m

)k
.

Tables providing the effective false-positive rates for various ca-
pacities and digesting functions are readily available [8]. For the
purposes of discussion, we will consider using a Bloom filter with
three digesting functions (k = 3) and a capacity factor (m/n) of
five, meaning to store n packets, we will use a Bloom filter of size
m = 5n. Such a filter provides an effective false-positive rate of
P = 0.092 when full.

While this is well below the value of 1/8 or 0.125 used in our
degree-independent simulations, it is high if digest tables are cal-
ibrated with respect to router degree. Luckily, by increasing the
number of digesting functions, Bloom filters are able to achieve sig-
nificantly lower false-positive rates with slight increases in capacity.
For instance, a false-positive rate of 0.00314, which corresponds to
our degree-dependent simulation, P = p/d, with p = 1/8 for
routers with as many as 40 neighbors, can be achieved using 8 di-
gesting functions and memory factor of only 12—slightly greater
than twice what we suggest.

SPIE’s memory needs are determined by the number of packets
processed. Hence, we consider an average-sized packet of approx-
imately 1000 bits, and describe link speeds in terms of packets per
second. We combine this with the Bloom filter factor of 5 from
above to compute a rule of thumb: SPIE requires roughly 0.5% of
the total link capacity in digest table storage. For a typical low-end
router with four OC-3 links, this results in roughly 47MB of stor-
age. On the very high end, a core router with 32 OC-192 links3

has a maximum capacity of about 640Mpkts/sec which would re-
quire roughly 3.125Gb/sec of digest table memory or 23.4GB for
one minute’s worth of storage. In practice, however, the size of a
digest table will be limited by the type of memory required.

Capacity is not the only memory consideration, however—access
times turn out to be equally important. Packets must be recorded
in the digest table at a rate commensurate with their arrival. Even
given an optimistic DRAM cycle time of 50ns per read-modify-
write cycle, routers processing more than 20Mpkts/sec (roughly 1

3Current production routers support at most one OC-192 link.

OC-192 link, or 4 OC-48s) require an SRAM digest table. Cur-
rent SRAM technology limits digest tables to 16Mb which must be
paged to SDRAM in order to store a minute’s worth of digests as
described in section 6. Hence, an entire minute’s worth of traffic
can only be stored in one (unpaged) digest table at low link speeds.

7.3 Timing uncertainties

In the OC-192 scenario described above, 16Mb would hold roughly
5ms of traffic data; hence, the history buffer would store 12,000
individual digest tables. This observation gives rise to another im-
portant issue: imperfect timing may cause SPIE to need to examine
multiple packet digests at a particular router. The more digests that
must be considered, the greater the chance of false positives, so it is
advantageous to make the digest tables as large as possible. For rea-
sonable link speeds, the memory access time becomes slow enough
that SDRAM can be used which, using current technology, would
allow 256Mb digest tables, with a capacity of roughly 50Mpkts.

It may be the case that the approximate packet service time can-
not be confined to an interval covered by one digest table. In that
case, we expect the false-positive rate to increase linearly with the
number of digest tables examined. For high-speed routers, it is es-
pecially important to maintain precise timing synchronization be-
tween adjacent routers. We have not yet examined the impact of
typical NTP clock skew on SPIE’s performance, but believe syn-
chronization can be maintained to within a small number of digest-
ing intervals, not significantly impacting our false-positive rate.

8 DISCUSSION

There are several issues that must be dealt with for a SPIE query to
succeed. First, traceback operations will often be requested when
the network is unstable (likely due to the attack that triggered the
traceback); SPIE communications must succeed in a timely fash-
ion even in the face of network congestion and instability. The best
solution is to provide SPIE with an out-of-band channel, possibly
through either physically or logically separate (ATM VCs) links.
But even without private channels, it is still possible to ensure suc-
cessful transmission by granting sufficient priority to SPIE traffic.

SPIE’s usefulness increases greatly with widespread deployment
because SPIE can only construct an attack graph for that portion of
the packet’s path within the SPIE domain. However, it is likely that
independent ISPs may lack sufficient levels of technical or political
cooperation to unite their SPIE infrastructure. Instead, many ISPs
will prefer to have their own STM responsible for all queries within
their network. In such a case, one ISP’s STM must be granted the
authority to issue queries to adjacent ISPs’ STMs in order to com-
plete the traceback.

In very rare cases, one may not wish to expose the content of a
packet yet still wish to employ SPIE. In such a case, it might be
possible to support call-backs from SCARs which would provide
the querying IDS with the applicable digesting function and trans-
formation information and ask it to do actual digesting. This is an
expensive operation, but the existence of such a case implies the
querying IDS has grave cause for concern in the first place and is
likely willing to dedicate a great deal of resources to the traceback.

Finally, transformations raise several additional issues, some re-
lated to performance, others to policy. In particular, assuming that

11

packet transformations represent a small percentage of the overall
IP traffic traversing a router, an efficient SPIE implementation can
easily handle the resource requirements of logging transformation
information. Attackers, though, may view packet transformations
as a method of denial of service attack on SPIE. The number of
transformations that are recorded during a given time interval is
bounded by the rate at which the router is able to process the packet
transformations. Therefore, SPIE aims to handle packet transfor-
mations at a rate equal or greater than the router. As a result, the
router rather than SPIE is the bottleneck in processing packet trans-
formations. This task is made easier when one realizes that the vast
majority of transformations occur only at low-to-medium speed
routers. Sophisticated transformations such as tunneling, NATing,
and the like are typically done at customer premises equipment.
Further, many ISPs turn off standard transformation handing, often
even ICMP processing, at their core routers.

9 CONCLUSION & FUTURE WORK

Developing a traceback system that can trace a single packet has
long been viewed as impractical due to the tremendous storage re-
quirements of saving packet data and the increased eavesdropping
risks the packet logs posed. We believe that SPIE’s key contribu-
tion is to demonstrate that single packet tracing is feasible. SPIE
has low storage requirements and does not aid in eavesdropping.
Furthermore, SPIE is a complete, practical system. It deals with the
complex problem of transformations and can be implemented in
high-speed routers (often a problem for proposed tracing schemes).

The most pressing challenges for SPIE are increasing the window of
time in which a packet may be successfully traced and reducing the
amount of information that must be stored for transformation han-
dling. One possible way to extend the length of time queries can be
conducted without linearly increasing the memory requirements is
by relaxing the set of packets that can be traced. In particular, SPIE
can support traceback of large packet flows for longer periods of
time in a fashion similar to probabilistic marking schemes—rather
than discard packet digests as they expire, discard them probabilis-
tically as they age. For large packet flows, odds are quite high some
constituent packet will remain traceable for longer periods of time.

ACKNOWLEDGEMENTS

We are indebted to Walter Milliken for his assistance in ensuring
our architecture was implementable in today’s high-speed routers,
and for designing the initial DGA hardware prototype shown in fig-
ure 8. David Karger first pointed out we could generalize our hash-
ing technique through Bloom filters to decrease memory require-
ments, and Michael Mitzenmacher and Ron Rivest provided advice
on appropriate digesting functions. We thank Christine Alvarado,
David Andersen, John Jannotti, Allen Miu, and the anonymous re-
viewers for their feedback on earlier drafts.

References
[1] BAKER, F. Requirements for IP version 4 routers. RFC 1812, IETF,

June 1995.

[2] BELLOVIN, S. M. ICMP traceback messages. Internet Draft,
IETF, Mar. 2000. draft-bellovin-itrace-05.txt (work in
progress).

[3] BLACK, J., HALEVI, S., KRAWCZYK, J., KROVETZ, T., AND RO-
GAWAY, P. UMAC: fast and secure message authentication. In Proc.
Advances in Cryptology — CRYPTO ’99(Aug. 1999), pp. 216–233.

[4] BLOOM, B. H. Space/time trade-offs in hash coding with allowable
errors. Communications of ACM 13, 7 (July 1970), 422–426.

[5] BURCH, H., AND CHESWICK, B. Tracing anonymous packets to their
approximate source. In Proc. USENIX LISA ’00(Dec. 2000).

[6] CARTER, L., AND WEGMAN, M. Universal classes of hash functions.
Journal of Computer and System Sciences(1979), 143–154.

[7] DUFFIELD, N. G., AND GROSSGLAUSER, M. Trajectory sampling
for direct traffic observation. In Proc. ACM SIGCOMM ’00(Aug.
2000), pp. 271–282.

[8] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. Summary
cache: a scalable wide-area web cache sharing protocol. ACM Trans.
on Networking 8, 3 (2000), 281–293.

[9] FERGUSON, P., AND SENIE, D. Network ingress filtering: Defeating
denial of service attacks which employ IP source address spoofing.
RFC 2267, IETF, Jan. 1998.

[10] HALEVI, S., AND KRAWCZYK, H. MMH: Software message au-
thentication in the Gbit/second rates. In Proc. 4th Workshop on Fast
Software Encryption(1997), pp. 172–189.

[11] KRAWCZYK, H. LFSR-Based hashing and authentication. In Proc.
Advances in Cryptology — CRYPTO ’94(Aug. 1994), pp. 129–139.

[12] MCCREARY, S., AND CLAFFY, K. Trends in wide area IP traffic pat-
terns: A view from Ames Internet exchange. In ITC Specialist Semi-
nar on IP Traffic Modeling, Measurement and Management(2000).

[13] MICROSOFT CORPORATION. Stop 0A in tcpip.sys when receiving
out of band (OOB) data. http://support.microsoft.com/
support/kb/articles/Q143/4/78.asp.

[14] NATIONAL LABORATORY FOR APPLIED NETWORK RESEARCH

(NLANR). Network traffic packet header traces. http://
moat.nlanr.net/Traces/Traces/20000720/FLA-
964095596.crl.enc.

[15] PAXSON, V. End-to-end internet path dynamics. ACM Trans. on
Networking 7, 3 (1999), 277–292.

[16] POSTEL, J. Internet Control Message Protocol. RFC 792, IETF, Sept.
1981.

[17] POSTEL, J. Internet Protocol. RFC 791, IETF, Sept. 1981.

[18] RIVEST, R. The MD5 message-digest algorithm. RFC 1321, IETF,
Apr. 1992.

[19] SAGER, G. Security fun with OCxmon and cflowd. Internet 2
Working Group Meeting, Nov. 1998. http://www.caida.org/
projects/NGI/content/security/1198.

[20] SANCHEZ, L. A., MILLIKEN, W. C., SNOEREN, A. C., TCHAK-
OUNTIO, F., JONES, C. E., KENT, S. T., PARTRIDGE, C., AND

STRAYER, W. T. Hardware support for a hash-based IP traceback. In
Proc. Second DARPA Information Survivability Conference and Ex-
position(June 2001).

[21] SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON, T.
Practical network support for IP traceback. In Proc. ACM SIGCOMM
’00 (Aug. 2000), pp. 295–306.

[22] SCHNACKENBERG, D., DJAHANDARI, K., AND STERNE, D. Infras-
tructure for intrusion detection and response. In Proc. First DARPA
Information Survivability Conference and Exposition(Jan. 2000).

[23] SONG, D. X., AND PERRIG, A. Advanced and authenticated marking
schemes for IP traceback. In Proc. IEEE Infocom ’01(Apr. 2001).

[24] STONE, R. CenterTrack: An IP overlay network for tracking DoS
floods. In Proc. USENIX Security Symposium ’00(Aug. 2000).

[25] WU, S. F., ZHANG, L., MASSEY, D., AND MANKIN, A. Intention-
driven ICMP trace-back. Internet Draft, IETF, Feb. 2001. draft-
wu-itrace-intention-00.txt (work in progress).

12

