
MIT Laboratory for Computer Science
545 Technology Square, ne43-512
Cambridge, ma 02139
(617) 452-2820
snoeren@lcs.mit.edu

January 1, 2002

To Whom it May Concern:

I am writing to apply for a tenure-track position as an assistant professor in your department. I
am currently a PhD candidate in the Electrical Engineering and Computer Science department
at the Massachusetts Institute of Technology and expect to complete my dissertation work this
year. My research interests lie in the area of computer systems, especially networking, operating
systems, andmobile and distributed computing. I am particularly interested in scalable services
and protocols to support secure, wide-area mobile internetworking.

I have enclosed my curriculum vitae, a list of references, statements of research and teaching
interest, and four representative publications. These materials are also available electronically
in both PDF and Postscript formats at http://nms.lcs.mit.edu/~snoeren/appkit/.

I look forward the opportunity to discuss my application in person.

Sincerely,

Alex C. Snoeren

encl: Curriculum Vitae (including names of references)
Statement of Research Interests & Methods
Statement of Teaching Interests
“Hash-Based IP Traceback”
“An End-to-End Approach to Host Mobility”
“Mesh-Based Content Routing using XML”
“Adaptive Inverse Multiplexing for Wide-Area Wireless Networks”

[This page intentionally left blank.]

Alex C. Snoeren

MIT Laboratory for Computer Science
545 Technology Square, ne43-512
Cambridge, ma 02139
(617) 452-2820

snoeren@lcs.mit.edu
http://nms.lcs.mit.edu/~snoeren

Education
Massachusetts Institute of Technology

PhD in Electrical Engineering and Computer Science (Summer completion expected)2002
Dissertation: An End-to-End Approach to Internet Mobility
Hari Balakrishnan and M. Frans Kaashoek, advisors

Minor in Public Policy (at the Harvard JFK School of Government)

Georgia Institute of Technology

MS in Computer Science1997
BS in Applied Mathematics (summa cum laude)
BS in Computer Science (summa cum laude)1996

Research interests
Many aspects of computer systems, especially operating systems, networking, andmobile and distributed
systems. Particularly interested in scalable services and protocols to support secure, robust wide-area
mobile internetworking.

Employment summary
Massachusetts Institute of Technology1997–
Research assistant in the Advanced Network Architecture, Networks & Mobile Systems, and Parallel &
Distributed Operating Systems groups of the Laboratory for Computer Science

BBN Technologies1999–
Research scientist in the Internetworking Research department

Hewlett-Packard Research Labs1995–7
Research intern in the Performance, Management & Design group of the Software Technology lab

NASA Lewis (Glenn) Research Labs1994
Summer research intern in the Electro-Physics branch

Teaching experience
Massachusetts Institute of Technology

Instructor – 6.033: Computer Systems Engineering2001
A position usually held by a member of the faculty. Prepared and taught weekly recitation sessions
centered around the discussion of current and seminal papers in computer systems. The core MIT
undergraduate systems course, 6.033 is a broad survey of the field of computer systems, including
modularity, concurrency, file systems, networking, fault tolerance, etc.

Recitation instructor – 6.821: Programming languages1998
Taught weekly recitation sections to about 25 students. Answered students’ questions, graded problem
sets, led quiz reviews. Developed course material, including problem sets, exams, and Scheme code.

Snoeren 1 / 6

Georgia Institute of Technology

Teaching assistant – CS 4345: Computerization and Society1997
Lead classroom discussions, answered questions, graded reports, and helped students with writing
assignments on the societal impact of computing.

Recitation instructor – CS 2360: Knowledge Representation and Process (Six terms)1994–7
Taught weekly lab/recitation section of approximately 30 students. Developed course assignments and
code base, answered questions, graded assignments, and assisted students with LISP.

Teaching assistant – CS 3361: Artificial Intelligence1996
Graded programming assignments, answered questions, and helped develop class assignments.

Recitation instructor – CS 2430: Control and Concurrency1995
Taught weekly lab/recitation section of approximately 30 students. Answered questions, graded assign-
ments, and assisted students with C. Lectured to class of 250 students in professor’s absence on IPC and
synchronization. Nominated by the course instructor for the graduate teaching award as an undergrad.

Recitation instructor – CS 1501: Introduction to Computing (Two terms)1994
Assisted in the development of a new introductory course in computer science. Taught weekly recitation
and lab sections of 25 students, graded homework, quizzes, and exams, designed and taught review
sessions, and helped students learn a special-purpose Pascal-like language used in the course.

Advising
M. Eng. Thesis —Massachusetts Institute of Technology2001–
Along with Hari Balakrishnan, co-supervise Jon Salz, a student whose M. Eng. thesis on TESLA: A
Transparent Extensible Session-Layer Architecture is related to dissertation topic.

Academic advisor — SPAARC, Georgia Institute of Technology1995–6
Assisted undergraduate students in selecting appropriate classes, choosing majors, and planning their
course of study. Provided guidance for majors in the colleges of computing and sciences.

Awards
Best Student Paper, ACM SIGCOMM2001

Department of Defense National Science and Engineering Graduate Fellowship1997
National Science Foundation Graduate Research Fellowship (Declined)

Georgia Institute of Technology Faculty Honors (4.0 GPA)1993–7

Rhodes Scholar Finalist1996
Outstanding College of Computing Undergraduate, Georgia Tech

National Merit Scholar1993
National Science Scholar
National Academy of Space, Science & Technology Scholar
Georgia Institute of Technology President’s Scholar

Member, ANAK Georgia Tech senior honor society
Member, Omicron Delta Kappa leadership honor society (past Alpha-Eta Circle president)
Member, Golden Key academic honor society
Member, Delta Chi fraternity

Patents
Two patent applications submitted, covering various aspects of the Source Path Isolation Engine (SPIE)2001
technology developed jointly with co-inventors at BBN Technologies.

Snoeren 2 / 6

Refereed publications

Journal articles

“Single-Packet IP Traceback.” Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones,2002
Fabrice Tchakountio, Beverly Schwartz, Stephen T. Kent, andW. Timothy Strayer. To appear in IEEE/ACM
Transactions on Networking (ton), Volume 10, 2002.

“FIRE: Flexible Intra-AS Routing Environment.” Craig Partridge, Alex C. Snoeren, W. Timothy Strayer,2001
Beverly Schwartz, Matthew Condell, and Isidro Castineyra. IEEE Journal on Selected Areas in Communi-
cations (j-sac), Volume 19, Number 3, March 2001.

Conference papers

“Mesh-Based Content Routing using XML.” Alex C. Snoeren, Kenneth Conley, and David K. Gifford.2001
Proceedings of the 18th ACM Symposium on Operating System Principles (sosp 18), Banff, Canada, October
2001.

“Hash-Based IP Traceback.” Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones,
Fabrice Tchakountio, Stephen T. Kent, and W. Timothy Strayer. Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication (sigcomm ‘01), San
Diego, California, August 2001.

“Hardware Support for a Hash-Based IP Traceback.” Luis A. Sanchez, Walter C. Milliken, Alex C.
Snoeren, Fabrice Tchakountio, Christine E. Jones, Stephen T. Kent, Craig Partridge, and W. Timothy
Strayer. Proceedings of the Second DARPA Information Survivability Conference and Exposition (discex II),
Anaheim, California, June 2001.

“Fine-Grained Failover Using Connection Migration.” Alex C. Snoeren, David G. Andersen, and Hari
Balakrishnan. Proceedings of the Third USENIX Symposium on Internet Technologies and Systems (usits ’01),
San Francisco, California, March 2001.

“FIRE: Flexible Intra-AS Routing Environment.” Craig Partridge, Alex C. Snoeren, W. Timothy Strayer,2000
Beverly Schwartz, Matthew Condell, and Isidro Castineyra. Proceedings of the ACM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communication (sigcomm 2000), Stockholm,
Sweden, August 2000.

“An End-to-End Approach to Host Mobility.” Alex C. Snoeren and Hari Balakrishnan. Proceedings of the
Sixth Annual International Conference on Mobile Computing and Networking (MobiCom 2000), Boston,
Massachusetts, August 2000.

“Adaptive Inverse Multiplexing for Wide-Area Wireless Networks.” Alex C. Snoeren. Proceedings of the1999
IEEE Conference on Global Communications (GlobeCom ’99), Global Internet Symposium, Rio de Janiero,
Brazil, December 1999.

Workshop papers

“The Migrate Approach to Internet Mobility.” Alex C. Snoeren, Hari Balakrishnan, and M. Frans2001
Kaashoek. Proceedings of the Student Oxygen Workshop (sow ’01), Gloucester, Massachusetts, July 2001.

“Reconsidering Internet Mobility.” Alex C. Snoeren, Hari Balakrishnan, and M. Frans Kaashoek. Pro-
ceedings of the Eighth Workshop on Hot Topics in Operating Systems (HotOS-VIII), Elmau, Germany, May
2001.

“Automated Whole-System Diagnosis of Distributed Services Using Model-Based Reasoning.” George1998
Forman, Mudita Jain, Masoud Mansouri-Samani, Joseph Martinka, and Alex C. Snoeren. Proceedings of
the Ninth IFIP/IEEE Workshop on Distributed Systems: Operations and Management (dsom ’98), Newark,
Delaware, October 1998.

(All publications are available electronically from http://nms.lcs.mit.edu/~snoeren/publications.html)

Snoeren 3 / 6

Talks
“Hash-Based IP Path Tracing,” IP Path Tracing (IPPT) BOF, 52nd Internet Engineering Task Force2001
Meeting (ietf 52), Salt Lake City, Utah, December 13, 2001.

“Mesh-Based Content Routing using XML,” 18th ACM Symposium on Operating Systems Principles
(sosp 18), Banff, Canada, October 23, 2001.

——,PEOInterchangeXMLInitiative (PIXIT)Meeting, TheMITRECorporation,Bedford,Massachusetts,
October 16, 2001.

“Hash-Based IP Traceback,” ACM Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication (sigcomm ’01), San Diego, California, August 29, 2001.

——, Systems Seminar, College of Computing, Georgia Institute of Technology, Atlanta, Georgia, October
18, 2001.

“Reconsidering Internet Mobility,” EighthWorkshop onHot Topics in Operating Systems (HotOS-VIII),
Elmau, Germany, May 21, 2001.

“Fine-Grained Failover Using Connection Migration,” Third USENIX Symposium on Internet Technolo-
gies and Systems (usits ’01), San Francisco, California, March 28, 2001.

“FIRE: Flexible Intra-AS Routing Environment,” ACM Conference on Applications, Technologies, Ar-2000
chitectures, and Protocols for Computer Communication (sigcomm 2000), Stockholm, Sweden, August
31, 2000.

“An End-to-End Approach to Host Mobility,” Sixth Annual International Conference on Mobile Comput-
ing and Networking (MobiCom 2000), Boston, Massachusetts, August 9, 2000.

“TCP Connection Migration,” IRTF End-to-End Research Group Meeting, Cambridge, Massachusetts,
June 23, 2000.

“Adaptive Inverse Multiplexing for Wide-Area Wireless Networks,” IEEE Conference on Global Commu-1999
nications (GlobeCom ’99), Global Internet Symposium, Rio de Janiero, Brazil, December 6, 1999.

“PROMISE - Using Flipper for Automated System Diagnosis: A Tutorial,” HP Research Labs, Palo Alto,1996
California, September 1996.

Service
Referee — GlobeCom, HotOS, MobiCom, MoMuC, SOSP, USITS, CCR, J-SAC, TOCS1998–

Network Reading Group (NetRead) Organizer —MIT Laboratory for Computer Science2000
Organized weekly student-led seminars discussing recent and seminal papers in computer networking
and related fields.

Curriculum Committee Member — Georgia Tech College of Computing1997
Participated in the complete redefinition of the requirements for the Bachelors degree in computer
science at Georgia Tech in preparation for the conversion from quarters to the semester system in the
fall of 1999.

Graduate senator — Georgia Tech Student Government Association
Served as one of two senators representing the College of Computing in the Graduate Senate.

Computer Ownership Committee Member — Georgia Institute of Technology1996
Helped define the first mandatory computer ownership policy in the state university system, instituted
in Fall 1998. Assisted the President and Provost in presenting the policy to the Georgia Board of Regents.

Department representative — Georgia Tech Student Government Association1995–6
Served as one of two students representing the College of Computing in the Undergraduate House.

Snoeren 4 / 6

Research summary
Massachusetts Institute of Technology

End-to-end mobility – Dissertation research investigates end-to-end techniques to support mobility and1999–
disconnected operation in the Internet. As Internet hosts become increasinglymobile, many applications
require additional system support. Developed a mobility architecture calledMigrate that allows session-
based applications to gracefully handle changes in network attachment point as well as unexpected
periods of disconnectivity. The Migrate architecture is based solely on end-host signaling and requires
no additional infrastructure support.

Migrate provides programmatic system support formanaging session state during periods of intermittent
connectivity, and allows for the reallocation of both application and kernel resources during periods
of disconnection. By constantly monitoring network connectivity, interpreting user preferences, and
reacting to changes in network conditions, Migrate provides a unified framework to ease the burden of
mobile-aware application programming.

An initial version of the mobility architecture, based upon a novel TCPmigration scheme, was presented
in 1999. A full-featured version, implemented as a session-layer service, forms the core of the thesis.
A system-wide Migrate service monitors network performance and brokers session communication,
guided by user- and application- specified policies. An extended Migrate API provides mobile-aware
applications with advanced session-based resource management facilities, while a conformance library
allows legacy applications to leverage basic mobility and disconnectivity support.

Robust content distribution–Somehigh-value streaming applications require greater reliability and lower2001–
latency than is typically available by current Internet distribution technologies. Oneway to simultaneously
increase reliability and decrease latency is to send redundant information over disjoint paths, sometimes
called dispersity routing. Helped design and implement an extremely reliable and timely content streaming
service by distributing data through a redundant mesh of overlay routers.

Co-designed and co-implemented the Diversity Control Protocol (DCP), which allows a receiver to
intelligently reassemble a packet flow redundantly forwarded over multiple paths, enabling low-latency
delivery of time-critical data in the presence of lossy channels. DCP forms the basis of a mesh-based
XML content delivery network. A prototype network delivers XML-encoded real-time air traffic data in a
timely and reliable fashion.

IP over wireless links – In an effort to achieve higher data rates using current-generation wide-area1997–9
wireless technologies, developed a technique to efficiently bundle shared heterogeneous links called
link quality balancing (LQB). Unlike previous techniques, which assume stable (typically identical) per-
formance characteristics across bundled links, LQB provides high throughput even in the presence of
dynamic channel and traffic characteristics. Implemented LQB in FreeBSD’smulti-link PPPmodule, and
used it to multiplex IP traffic over bundled Cellular Digital Packet Data (CDPD) channels. Installed a pro-
totype router (and supporting power and communication equipment) into an AMC Hummer all-terrain
vehicle.

BBN Technologies

Denial of service detection – Due to the anonymous nature of the IP protocol, it is impossible to reliably2000–
discern the source of an IP packet by examining it upon receipt. Increased awareness of the significant
damage potential of denial-of-service attacks has motivated techniques to isolate the source of IP packets.
Most known IP traceback techniques, however, require a large number of packets from the same source
in order to isolate the sender. Along with several other researchers, developed a hash-based IP traceback
system, the Source Path Isolation Engine (SPIE). SPIE represents the only known scalable solution that
can trace a single IP packet to its source, even if it was transformed (tunneled, NATed, fragmented, etc.)
in flight.

Through the use of Bloom filters, SPIE-enabled routers can efficiently maintain a sliding history of
packets they have forwarded in the recent past. By recursively inspecting packet histories at each router
backwards along the packet’s path to the destination, SPIE is able to determine the path traversed by any
arbitrary, recently-received IP packet.

Snoeren 5 / 6

Active networking – The promise of active networking has proven difficult to achieve in routing protocols.1999–2000
While the ability to continually describe custom forwarding paths for specific classes of traffic is attractive,
designing a secure, scalable, and robust routing protocol is no small task. Hence, operators are loathe to
adjust tuning parameters in operational networks, let alone replace routing protocols.

Helped design and implement the Flexible Intra-AS Routing Environment (FIRE), an extensible routing
protocol that enables class-based routing through the use of multiple forwarding tables, constructed by
downloadable routing algorithms using user-defined metrics. These algorithms build forwarding tables
based upon link-state metrics collected using a shared, secure distribution protocol. FIRE frees traffic
engineers to focus on routing algorithms by alleviating the burden of developing a distribution protocol.

Hewlett-Packard Research Labs

Distributed application management – Over the course of three summers, assisted in the design and im-1995–7
plementation of a Model-Based Reasoning system for distributed application management, PROMISE.
Modeled distributed applications using a novel inference language that allowed the expression of per-
formance dependencies between components of a distributed system. Performance monitoring and
control services enabled application management at the infrastructure (CORBA, DCE) level. In addition
to service modeling, was responsible for network monitoring and configuration, as well as graphical user
interfaces for model visualization.

NASA Lewis (Glenn) Research Labs

Monte-Carlo simulation – Designed and implemented Monte-Carlo simulations of spacecraft coating1994
degradation during low-earth orbit due to high atomic-oxygen fluence, resulting in order-of-magnitude
performance improvements over previous simulations, with no loss of accuracy. The physical phenomena
resulting in decay occurs with infinitesimal probability, forcing traditional simulations to run for days
before producing statistically significant results. By leveraging probability distributions, was able to
dramatically decrease the number of runs required for convergence.

References
Prof. Hari Balakrishnan Prof. M. Frans Kaashoek
MIT Laboratory for Computer Science MIT Laboratory for Computer Science
545 Technology Square, ne43-510 545 Technology Square, ne43-522
Cambridge, ma 02139 Cambridge, ma 02139
(617) 253-8713 (617) 253-7149
hari@lcs.mit.edu kaashoek@lcs.mit.edu

Prof. David K. Gifford Dr. Craig Partridge
MIT Laboratory for Computer Science BBN Technologies
545 Technology Square, ne43-401 10 Moulton Street
Cambridge, ma 02139 Cambridge, ma 02138
(617) 253-6039 (517) 324-3425
gifford@lcs.mit.edu craig@bbn.com

Additional references available upon request.

Snoeren 6 / 6

Statement of Research Interests & Methods

An advisor once described me as “being interested in any interesting problem.” I look
forwardwith great anticipation to establishing a research groupwith studentsworking ondiverse
problems in networking and computer systems that wemutually find intriguing. Supervising an
M. Eng. student atMIT recently, I learned that working closely with students can be a wonderful
source of creativity and insight. I hope to foster an environment where I can collaborate with
students on related, but distinct projects that personally excite each of them. I enjoy tackling
several projects at once. Inspiration strikes on its own schedule, and I often find it rewarding
to pursue several promising ideas in parallel.
At MIT, I’ve worked with a number of different faculty members on research projects in

a broad range of areas, including mobile networking, wireless network performance, robust
content distribution, fault-tolerant Internet services, and distributed application management.
In addition, I have worked part-time at BBN Technologies for the past three years, where I have
focused on active networking and denial of service detection. While the focus of my projects
has been varied, there are several unifying themes in my research. Chief among them is an
emphasis on networking, particularly in the mobile and wide-area environments. Networks
have become the life-blood of computer systems and provide a virtually inexhaustible source of
new topics for exploration.
My projects endeavor to develop new functionality. Achieving good performance is critical,

but the art of squeezing out the last few cycles is best used in moderation. I strive to develop
systems that extend the state-of-the-art, and qualitatively, rather than only quantitatively, improve
the fields of networking and computer systems. I derive great satisfaction fromdoing something
today that was impossible yesterday.
There is also commonality in the way I approach problems. While all researchers enjoy

charting new territory, it is often fruitful to re-examine classical problems with known (limited)
solutions. I enjoy considering alternative approaches. Where the classical approach remains
superior, examining unexplored alternatives may yield a deeper understanding of the limits
or applicability of the current approach. However, if one seeks to identify domains in which
circumstances have changed, or new technologies have beendeveloped, onemay find techniques
previously discarded as foolish or infeasible are relevant once again. This is precisely the case
in two of my recent research projects.
My dissertation research proposes, implements, and evaluates the Migrate architecture for

Internet host mobility. A fundamental problem inmobile networking is preserving connectivity
when communicating hosts change network locations and efficiently resuming communication
after periods of disconnection. Current approaches to host mobility, such as Mobile IP and ad-
hoc routing, assume Internet hosts are either rarely mobile or constantly mobile and always on
and reachable. Neither model is appropriate for the intermittently connected laptops and PDAs
that populate today’s Internet, and both approaches lack the application support necessary for
the cell phones and personal communication devices that will comprise tomorrow’s. Migrate
addresses these shortcomings by handling intermittent connectivity and a variety of mobility
modes.
One interesting technical component of Migrate is a novel TCP connection migration

scheme. It allows aTCP connection to be resumed fromadifferent IP address, solving a problem
that Vint Cerf described in a 1983 paper as “[having] plagued network designers since the design

Snoeren 1 / 3

of the ARPANET in 1968.” A TCP connection is identified by its end points; hence, a change in
end point (IP address) invalidates the connection. TCP migration schemes have been proposed
previously but failed in various ways to preserve the semantics, performance, or security of
the connection. The Migrate option avoids such ill-effects by utilizing multiple, standard TCP
connections. It negotiates a cryptographically secure identifier for each connection which can
then be used to continue over an entirely new connection at another end point. The key
observation is that only the connection end points need to be aware of the previous connection;
all other entities in the network (routers, NATs, firewalls, etc.) should view the continuation
as another, independent connection. So long as the end points ensure they can stitch together
a TCP connection and its continuation, the resulting connection must perform identically to a
standard TCP connection, as the network cannot tell the difference.
At BBN, I helped design the Source Path Isolation Engine (SPIE), which was developed to

help combat denial of service and other IP-based attacks. SPIE identifies the true source of an IP
packet and the path the packet followedwhile in the network, allowing victims to reliably identify
their attacker(s). Paths are constructed by maintaining records of every packet forwarded at
each router, and simply querying each router backwards along the path beginning at the victim.
This general technique, known in the literature as packet logging, was previously regarded as
intractable in the wide-area due to the massive packet histories required. The centerpiece of
SPIE is a hash-based packet digesting procedure that reduces the storage requirement of an IP
packet to only a few bits, bringing packet logging into the realm of practicality.
My experience with both the cryptographic aspects of Migrate and the hashing and data

storage requirements of SPIE has reinforced my belief that systems research is often best
conducted in a collaborative, cross-disciplinary fashion. It is critical that systems researchers
spend time with experts in more formal disciplines, such as mathematicians and theoreticians.
Recent systems projects in a wide range of areas, from distributed storage systems to overlay
networks to event notification systems, have shown theoretical computer science can provide a
powerful toolbox of techniques for those with sufficient understanding, desire, and patience to
search for creative applications.
Do not mistake my predilection for clever theoretical and algorithmic approaches as an

aversion to detailed implementation. I firmly believe that high-quality computer systems re-
search requires building, deploying, and evaluating real systems. I have built every system I’ve
proposed as part of my graduate research, and each implementation experience has presented
additional complications, subtleties, and sometimes even principles that would otherwise have
gone unnoticed. Not only is a full-scale implementation absolutely essential to fully under-
standing the implications of a proposed system, but it often uncovers fertile areas for future
research as well—perhaps unrelated to the project at hand. In either case, system building
keeps faculty in touch with today’s trends, and produces students who are intimately familiar
with the details of real systems, knowledge and skills they will find extremely valuable in both
academic research and industry.
Moving forward, I plan to continue to focus on providing new functionality in computer

systems. In particular, I believe the ever-increasing permeation of light-weight, mobile com-
puting devices will challenge classical notions of computer systems and provide a fertile area
for research. Just as recent interest in peer-to-peer systems has rejuvenated work in distributed
file systems, I expect the significant computational power now available in a hand-held form
factor will lead to a renaissance of distributed computing. I look forward to designing systems

Snoeren 2 / 3

agile enough to function on such a substrate and networks capable of securely and robustly
communicating between them. In the near term, I intend to explore topics exposed by my
dissertation and recent work in robust content distribution.
The Migrate architecture proposed in my dissertation addresses host mobility, but stops

short of handling user or service mobility, where an application or communication end point
moves not only across network location, but across computational location (e.g. from laptop to
cell phone) as well. As cell phones, PDAs, and other devices approach the computational power
available in laptops, the ability to migrate sessions across devices becomes increasingly practical
and desirable. This form of migration is complicated by the heterogeneity of system resources
and methods of user interaction, but may yield to a continuation-based approach similar that
advocated by Migrate.
In another thrust, I hope to extend my recent work on content distribution. Mesh-based,

multi-path overlay routing has shown promise in delivering greater levels of reliability and
performance than traditional distribution networks, but little is currently known about how
to effectively construct distribution topologies in the wide area, or how their configuration
affects overall network performance. By making a general-purpose, standards-based content
distribution utility available to fellow researchers, I hope to build a distribution network large
enough to study such effects.

Snoeren 3 / 3

[This page intentionally left blank.]

Statement of Teaching Interests

More than anything else, a desire to teach at the collegiate level motivated my pursuit of a PhD.
This passion ignited in only my second term on a college campus, when I was offered a position as a
recitation instructor for cs1501, Georgia Tech’s introductuctory computer science course. That initial
experience was so addictive that I continued to serve as a recitation instructor or teaching assistant each
term for the remainder of my four years at Georgia Tech, including five different classes over the course
of eleven academic terms. My years at MIT have been tightly focused on research activities, yet I taught
two additional courses, one as a recitation instructor and the last as a full-fledged instructor, along side
several professors. In total, these seven different courses span the entire range from freshman-year
introductory courses to the advanced graduate level.
Regardless of the level or subject matter, my teaching is driven by a quest to impart intuition

and inspire curiosity. Facts and methods learned by rote are likely soon forgotten, but the seeds of
interest, once planted, often sprout anew. During my four years of teaching at Georgia Tech, I had the
opportunity to teach several students multiple times as they proceeded through the curriculum. I found
a great sense of satisfaction in watching students who I taught in the first introductory course succeed at
progressively higher and higher levels. Just recently, I chanced upon a student whom I recalled having
considerable difficulty in my cs1501 class as he searched for direction in his studies. Now seven years
later, he informed me that he had not only successfully graduated with a degree in Computer Science,
but was employed as a software engineer. The joy the news brought me reaffirmed my belief that I have
chosen the right vocation.
My broad academic background equips me to teach a range of undergraduate courses, frommy core

expertise in networking and operating systems to more distant topics such as computer architecture,
algorithms, and discrete mathematics. I take pride in my ability to make complex material accessible at
many levels. I strive to frame lectures around intuitive explanations backed by concrete examples. Ex-
amples, whenever possible, are reinforced with illustrative problems. I try to craft exam and homework
problems that not only reinforcematerial covered in lecture, but are learning experiences in themselves.
At the graduate level, I look forward to teaching topics directly related to my research, such as

computer networking and advanced operating systems. It is my firm belief that graduate courses
in computer systems should be project-based. Carefully crafted class projects frequently produce
publishable results, and, more importantly, motivated researchers. To that end, I would be particularly
excited to develop a seminar course on mobile internetworking or content distribution networks as a
vehicle for introducing students to my areas of research.
Classroom learning is only part of the educational process. Once a student has been motivated to

move beyond the classroom and into the research laboratory, the professor’s role takes on an additional
dimension. A student’s advisor can greatly influence the success of student’s graduate career, not
only through straightforward means such as exposing students to interesting and topical problems, but
in far more subtle, yet likely more critical ways like thoughtful selection of office-mates and project
teams. My most rewarding experiences as a researcher have come from deep, collaborative immersion
in a focused problem area. I believe such experiences are critical for developing a taste for promising
research areas and defining crisp problems to address. I have watched as my thesis advisors, Hari
Balakrishnan and Frans Kaashoek, have constructed productive and thriving research groups. While
the flavor and personality of the two groups differ, in my view, the groups share a similar cohesive spirit
of collaborative exploration and critical self-examination fostered by careful mentoring. I look forward
to continuing this tradition of collegial collaboration as I form my own research group.

Snoeren 1 / 1

[This page intentionally left blank.]

Hash-Based IP Traceback

Alex C. Snoeren†, Craig Partridge, Luis A. Sanchez‡, Christine E. Jones,
Fabrice Tchakountio, Stephen T. Kent, and W. Timothy Strayer

BBN Technologies
10 Moulton Street, Cambridge, MA 02138

{snoeren, craig, cej, ftchakou, kent, strayer}@bbn.com

ABSTRACT

The design of the IP protocol makes it difficult to reliably identify
the originator of an IP packet. Even in the absence of any delib-
erate attempt to disguise a packet’s origin, wide-spread packet for-
warding techniques such as NAT and encapsulation may obscure
the packet’s true source. Techniques have been developed to deter-
mine the source of large packet flows, but, to date, no system has
been presented to track individual packets in an efficient, scalable
fashion.

We present a hash-based technique for IP traceback that generates
audit trails for traffic within the network, and can trace the origin of
a single IP packet delivered by the network in the recent past. We
demonstrate that the system is effective, space-efficient (requiring
approximately 0.5% of the link capacity per unit time in storage),
and implementable in current or next-generation routing hardware.
We present both analytic and simulation results showing the sys-
tem’s effectiveness.

1 INTRODUCTION

Today’s Internet infrastructure is extremely vulnerable to motivated
and well-equipped attackers. Tools are readily available, from
covertly exchanged exploit programs to publicly released vulner-
ability assessment software, to degrade performance or even dis-
able vital network services. The consequences are serious and, in-
creasingly, financially disastrous, as can be seen by all-too-frequent
headlines naming the most recent victim of an attack.

†Alex C. Snoeren is also with the MIT Laboratory for Computer Science
(snoeren@lcs.mit.edu).
‡Luis A. Sanchez was with BBN Technologies; he is now with Megisto
Systems, Inc. (lsanchez@megisto.com).

This work was sponsored by the Defense Advanced Research Projects
Agency (DARPA) under contract No. N66001-00-C-8038. Views and con-
clusions contained in this document are those of the authors and should not
be interpreted as representing official policies, either expressed or implied.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008...$5.00

While distributed denial of service attacks, typically conducted by
flooding network links with large amounts of traffic, are the most
widely reported, there are other forms of network attacks. Many
other classes of attacks can be conducted with significantly smaller
packet flows. In fact, there are a number of widely-deployed op-
erating systems and routers that can be disabled by a single well-
targeted packet [13]. To institute accountability for these attacks,
the source of individual packets must be identified.

Unfortunately, the anonymous nature of the IP protocol makes it
difficult to accurately identify the true source of an IP datagram if
the source wishes to conceal it. The network routing infrastructure
is stateless and based largely on destination addresses; no entity in
an IP network is officially responsible for ensuring the source ad-
dress is correct. Many routers employ a technique called ingress
filtering [9] to limit source addresses of IP datagrams from a stub
network to addresses belonging to that network, but not all routers
have the resources necessary to examine the source address of each
incoming packet, and ingress filtering provides no protection on
transit networks. Furthermore, spoofed source addresses are legiti-
mately used by network address translators (NATs), Mobile IP, and
various unidirectional link technologies such as hybrid satellite ar-
chitectures.

Accordingly, a well-placed attacker can generate offending IP pack-
ets that appear to have originated from almost anywhere. Further-
more, while techniques such as ingress filtering increase the diffi-
culty of mounting an attack, transit networks are dependent upon
their peers to perform the appropriate filtering. This interdepen-
dence is clearly unacceptable from a liability perspective; each mo-
tivated network must be able to secure itself independently.

Systems that can reliably trace individual packets back to their
sources are a first and important step in making attackers (or, at
least, the systems they use) accountable. There are a number of
significant challenges in the construction of such a tracing system
including determining which packets to trace, maintaining privacy
(a tracing system should not adversely impact the privacy of legiti-
mate users), and minimizing cost (both in router time spent tracking
rather than forwarding packets, and in storage used to keep infor-
mation).

We have developed a Source Path Isolation Engine (SPIE) to en-
able IP traceback, the ability to identify the source of a particular IP
packet given a copy of the packet to be traced, its destination, and an
approximate time of receipt. Historically, tracing individual pack-
ets has required prohibitive amounts of memory; one of SPIE’s key

3

innovations is to reduce the memory requirement (down to 0.5% of
link bandwidth per unit time) through the use of Bloom filters. By
storing only packet digests, and not the packets themselves, SPIE
also does not increase a network’s vulnerability to eavesdropping.
SPIE therefore allows routers to efficiently determine if they for-
warded a particular packet within a specified time interval while
maintaining the privacy of unrelated traffic.

The rest of this paper examines SPIE in detail. We begin by defin-
ing the problem of IP traceback in section 2, and articulate the de-
sired features of a traceback system. We survey previous work in
section 3, relating their feature sets against our requirements. Sec-
tion 4 describes the digesting process in detail. Section 5 presents
an overview of the SPIE architecture, while section 6 offers a prac-
tical implementation of the concepts. Section 7 provides both an-
alytic and simulation results evaluating SPIE’s traceback success
rates. We discuss the issues involved in deploying SPIE in section 8
before concluding in section 9 with a brief look at future work.

2 IP TRACEBACK

The concept of IP traceback is not yet well defined. In an attempt
to clarify the context in which SPIE was developed, this section
presents a detailed and rather formal definition of traceback. We
hope that presenting a strawman definition of traceback will also
help the community better evaluate different traceback schemes.

In order to remain consistent with the terminology in the literature,
we will consider a packet of interest to be nefarious, and term it an
attack packet; similarly, the destination of the packet is a victim. We
note, however, that there are many reasons to trace the source of a
packet; many packets of interest are sent with no ill intent whatso-
ever.

2.1 Assumptions

There are several important assumptions that a traceback system
should make about a network and the traffic it carries:

• Packets may be addressed to more than one physical host
• Duplicate packets may exist in the network
• Routers may be subverted, but not often
• Attackers are aware they are being traced
• The routing behavior of the network may be unstable
• The packet size should not grow as a result of tracing
• End hosts may be resource constrained
• Traceback is an infrequent operation

The first two assumptions are simply characteristics of the Internet
Protocol. IP packets may contain a multicast or broadcast address
as their destination, causing the routing infrastructure to duplicate
them internally. An attacker can also inject multiple, identical pack-
ets itself, possibly at multiple locations. A tracing system must
be prepared for a situation where there are multiple sources of the
same (identical) packet, or a single source of multiple (also typi-
cally identical) packets.

The next two assumptions speak to the capabilities of the at-
tacker(s). An attacker may gain access to routers along (or adjacent
to) the path from attacker to victim by a variety of means. Further, a
sophisticated attacker is aware of the characteristics of the network,
including the possibility that the network is capable of tracing an

attack. The traceback system must not be confounded by a moti-
vated attacker who subverts a router with the intent to subvert the
tracing system.

The instability of Internet routing is well known [15] and its impli-
cations for tracing are important. Two packets sent by the same host
to the same destination may traverse wildly different paths. As a re-
sult, any system that seeks to determine origins using multi-packet
analysis techniques must be prepared to make sense of divergent
path information.

The assumption that the packet size should not grow is probably
the most controversial. There are a number of protocols today that
cause the packet size to grow, for example technologies that rely on
IP tunnels, such as IPsec and mobile IP. However, increasing the
packet size causes MTU problems and increases overhead sharply
(each byte of additional overhead reduces system bandwidth by
about 1%, given the average packet size of about 128 bytes). It
follows that an efficient traceback system should not cause packet
size to grow.

We assume that an end host, and in particular the victim of an at-
tack, may be resource-poor and unable to maintain substantial ad-
ditional administrative state regarding the routing state or the pack-
ets it has previously received. This assumption comes from the
observed rise in special purpose devices such as microscopes, cam-
eras, and printers that are attached to the Internet but have few inter-
nal resources other than those devoted to performing their primary
task.

The final assumption that traceback queries are infrequent has im-
portant design implications. It implies queries can be handled by a
router’s control path, and need not be dealt with on the forwarding
path at line speed. While there may be auditing tasks associated
with packet forwarding to support traceback that must be executed
while forwarding, the processing of the audit trails is infrequent
with respect to their generation.

2.2 The goal

Ideally, a traceback system should be able to identify the source
of any piece of data sent across the network. In an IP framework,
the packet is the smallest atomic unit of data. Any smaller division
of data (a byte, for instance) is contained within a unique packet.
Hence an optimal IP traceback system would precisely identify the
source of an arbitrary IP packet. Any larger data unit or stream can
be isolated by searching for any particular packet containing data
within the stream.1

As with any auditing system, a traceback system can only be effec-
tive in networks in which it has been deployed. Hence we consider
the source of a packet to be one of:

• The ingress point to the traceback-enabled network
• The actual host or network of origin
• One or more compromised routers within the enabled network

If one assumes that any router along the path may be co-opted to
assist in concealing a packet’s source, it becomes obvious that one

1Indeed, we would argue that it is desirable to trace the individual pack-
ets within a stream because the individual packets may have originated at
different sites (meeting only at the victim) and are likely to have followed
different paths through the network.

4

V

R6

R8 R9

R7

R1S1

S3A1

R4

A2 S4

R3R2

R5S5

Figure 1: An attack graph containing attack paths for two iden-
tical packets injected by A1 and A2 and received by the vic-
tim, V . The arrows indicate links traversed by the packet;
nodes on an attack path are shaded: {A1, R1, R4, R7, R9, V } and
{A2, R2, R5, R7, R9, V }.

must attempt to discern not only the packet’s source, but its entire
path through the network. If a path can be traced through any num-
ber of non-subverted routers, then it must terminate at either the
source of the flow or pass through a subverted router which can be
considered to be a co-conspirator and treated appropriately. Hence,
we are interested in constructing an attack path, where the path
consists of each router traversed by the packet on its journey from
source to the victim. Because conspiring routers can fabricate trace
information, the path can only be guaranteed to be accurate on the
portion from the victim to the first source—multiple sources may be
identified if routers are subverted. Further, since multiple, indistin-
guishable packets may be injected into the network from different
sources in the general case, a traceback system should construct an
attack graph composed of the attack paths for every instance of the
attack packet that arrived at the victim. Figure 1 depicts the net-
work as viewed by the victim and a particular attack graph for that
victim.

An attack graph may contain false positives in the presence of sub-
verted routers; that is, the attack graph may identify sources that
did not actually emit the packet. We argue this is an unavoidable
consequence of admitting the possibility of subverted routers. An
ideal traceback system, however, produces no false negatives while
attempting to minimize false positives; it must never exonerate an
attacker by not including the attacker in the attack graph.

Further, when a traceback system is deployed, it must not reduce the
privacy of IP communications. In particular, entities not involved in
the generation, forwarding, or receipt of the original packet should
not be able to gain access to packet contents by either utilizing or
as part of participating in the IP traceback system. An ideal IP
traceback system must not expand the eavesdropping capabilities
of a malicious party.

2.3 Transformations

It is important to note that packets may be modified during the for-
warding process. In addition to the standard decrementing of the

time to live (TTL) field and checksum recomputation, IP packets
may be further transformed by intermediate routers. Packet trans-
formation may be the result of valid processing, router error, or
malicious intent. A traceback system need not concern itself with
packet transformations resulting from error or malicious behavior.
Packets resulting from such transformations only need be traced to
the point of transformation, as the transforming node either needs
to be fixed or can be considered a co-conspirator. An optimum
traceback system should trace packets through valid transforma-
tions, however, back to the source of the original packet.

Valid packet transformations are defined as a change of packet state
that allows for or enhances network data delivery. Transformations
occur due to such reasons as hardware needs, network management,
protocol requirements, and source request. Based on the transform
produced, packet transformations are categorized as follows:

1. Packet Encapsulation: A new packet is generated in which the
original packet is encapsulated as the payload (e.g., IPsec).
The new packet is forwarded to an intermediate destination
for de-encapsulation.

2. Packet Generation: One or more packets are generated as a
direct result of an action by the router on the original packet
(e.g. an ICMP Echo Reply sent in response to an ICMP Echo
Request). The new packets are forwarded and processed in-
dependent of the original packet.

Common packet transformations include those performed by
RFC 1812-compliant routers [1] such as packet fragmentation, IP
option processing, ICMP processing, and packet duplication. Net-
work address translation (NAT) and both IP-in-IP and IPsec tunnel-
ing are also notable forms of packet transformation. Many of these
transformations result in an irrecoverable loss of the original packet
state due to the stateless nature of IP networks.

A study of wide-area traffic patterns conducted by the Cooperative
Association for Internet Data Analysis (CAIDA) found less than
3% of IP traffic undergoes common transformation and IP tunnel-
ing [12]. While this study did not encompass all forms of transfor-
mation (NAT processing being a notable omission), it seems safe
to assume that packet transformations account for a relatively small
fraction of the overall IP traffic traversing the Internet today. How-
ever, attackers may transmit packets engineered to experience trans-
formation. The ability to trace packets that undergo transformation
is, therefore, an essential feature of any viable traceback system.

3 RELATED WORK

There are two approaches to the problem of determining the route
of a packet flow: one can audit the flow as it traverses the network,
or one can attempt to infer the route based upon its impact on the
state of the network. Both approaches become increasingly difficult
as the size of the flow decreases, but the latter becomes infeasible
when flow sizes approach a single packet because small flows gen-
erally have no measurable impact on the network state.

Route inference was pioneered by Burch and Cheswick [5] who
considered the restricted problem of large packet flows and pro-
posed a novel technique that systematically floods candidate net-
work links. By watching for variations in the received packet flow
due to the restricted link bandwidth, they are able to infer the flow’s

5

route. This requires considerable knowledge of network topology
and the ability to generate large packet floods on arbitrary network
links.

One can categorize auditing techniques into two classes according
to the way in which they balance resource requirements across the
network components. Some techniques require resources at both
the end host and the routing infrastructure, others require resources
only within the network itself. Of those that require only infrastruc-
ture support, some add packet processing to the forwarding engine
of the routers while others offload the computation to the control
path of the routers.

3.1 End-host schemes

Some auditing approaches attempt to distribute the burden by stor-
ing state at the end hosts rather than in the network. Routers notify
the packet destination of their presence on the route. Because IP
packets cannot grow arbitrarily large, schemes have been developed
to reduce the amount of space required to send such information.
Recently proposed techniques by Savage et al. [21] and Bellovin [2]
explore in-band and out-of-band signaling, respectively.

Because of the high overhead involved, neither Savage nor Bellovin
attempt to provide audit information for every packet. Instead, each
employs probabilistic methods that allow sufficiently large packet
flows to be traced. By providing partial information on a subset
of packets in a flow, auditing routers enable an end host to recon-
struct the entire path traversed by the packet flow after receiving a
sufficient number of packets belonging to the flow.

The two schemes diverge in the methods used to communicate the
information to the end host. Savage et al. employ a packet marking
scheme that encodes the information in rarely-used fields within
the IP header itself. This approach has been improved upon by
Song and Perrig to improve the reconstruction of paths and authen-
ticate the encodings [23]. In order to avoid the backwards compat-
ibility issues and increased computation required by the sophisti-
cated encoding schemes employed in the packet marking schemes,
Bellovin’s scheme (and later extensions by Wu et al. [25]) simply
sends the audit information in an ICMP message.

3.2 Infrastructure approaches

End-host schemes require the end hosts to log meta data in case an
incoming packet proves to be offensive. Alternatively, the network
itself can be charged with maintaining the audit trails.

The obvious approach to auditing packet flow is simply to log pack-
ets at various points throughout the network and then use appropri-
ate extraction techniques to discover the packet’s path through the
network. Logging requires no computation on the router’s fast path
and, thus, can be implemented efficiently in today’s router architec-
ture. Sager suggests such a monitoring approach [19]. However,
the effectiveness of the logs is limited by the amount of space avail-
able to store them. Given today’s link speeds, packet logs quickly
grow to intractable sizes, even over relatively short time frames. An
OC-192 link is capable of transferring 1.25GB per second. If one
allows 60 seconds to conduct a query, a router with 16 links would
require 1.2TB of high-speed storage.

These requirements can be reduced by sampling techniques similar
to those of the end-host schemes, but down-sampling reduces the

probability of detecting small flows and does not alleviate the se-
curity issues raised by storing complete packets in the router. The
ability of an attacker to break into a router and capture terrabytes of
actual traffic has severe privacy implications.

Alternatively, routers can be tasked to perform more sophisticated
auditing in real time, extracting a smaller amount of information
as packets are forwarded. Many currently available routers support
input debugging, a feature that identifies on which incoming port
a particular outgoing packet (or set of packets) of interest arrived.
Since no history is stored, however, this process must be activated
before an attack packet passes by. Furthermore, due to the high
overhead of this operation on many popular router architectures,
activating it may have adverse effects on the traffic currently being
serviced by the router.

3.3 Specialized routing

One of the main problems with the link testing or logging meth-
ods above is the large amount of repetition required. A trace is
conducted in a hop-by-hop fashion requiring a query at each router
along the way. Once the incoming link or links have been identified,
the process must be repeated at the upstream router.

Several techniques have been developed to streamline and automate
this process. Some ISPs have developed their own ad hoc mecha-
nisms for automatically conducting input debugging across their
networks. Schnackenberg et al. [22] propose a special Intruder
Detection and Isolation Protocol (IDIP) to facilitate interaction be-
tween routers involved in a traceback effort. IDIP does not specify
how participating entities should track packet traffic; it simply re-
quires that they be able to determine whether or not they have seen
a component of an attack matching a certain description. Even with
automated tools, however, each router in the ISP must support input
debugging or logging which are not common in today’s high-speed
routers for reasons discussed above.

In order to avoid this requirement, Stone [24] suggests constructing
an overlay network connecting all the edge routers of an ISP. By
using a deliberately simple topology of specialized routers, suspi-
cious flows can be dynamically rerouted across the special tracking
network for analysis. This approach has two major shortcomings.
First, the attack must be sufficiently long-lived to allow the ISP to
effect the rerouting before the relevant flow terminates. Second, the
routing change is perceptible by the attacker, and an especially mo-
tivated attacker may be able to escape detection by taking appropri-
ate action. While techniques exist to hide precisely what changed
about the route, changes in layer-three topology are hard to mask.

4 PACKET DIGESTING

SPIE, the Source Path Isolation Engine, uses auditing techniques to
support the traceback of individual packets while reducing the stor-
age requirements by several orders of magnitude over current log-
based techniques [19]. Traffic auditing is accomplished by comput-
ing and storing 32-bit packet digests rather than storing the packets
themselves. In addition to reducing storage requirements, storing
packet digests instead of the actual packet contents preserves traf-
fic confidentiality by preventing SPIE from being used as a tool for
eavesdropping.

6

Payload

Options

Destination Address

Source Address

TTL Protocol Checksum

Identification
D
F

M
F

Fragment Offset

Version
Header
Length

Type of Service Total Length

Figure 2: The fields of an IP packet. Fields in gray are masked
out before digesting, including the Type of Service, Time to Live
(TTL), IP checksum, and IP options fields.

4.1 Hash input

The packet content used as input to the hash function must uniquely
represent an IP packet and enable the identification of the packet
across hops in the forwarding path. At the same time, it is desir-
able to limit the size of the hash input both for performance and
for reasons discussed below (c.f. section 5.3). Duffield and Gross-
glauser encountered similar requirements while sampling a subset
of forwarded packets in an attempt to measure traffic flows [7]. We
use a similar approach, masking variant packet content and select-
ing an appropriate-length prefix of the packet to use as input to the
digesting function. Our choice of invariant fields and prefix length
is slightly different, however.

Figure 2 shows an IP packet and the fields included by the SPIE di-
gesting function. SPIE computes digests over the invariant portion
of the IP header and the first 8 bytes of the payload. Frequently
modified header fields are masked prior to digesting. Note that be-
yond the obvious fields (TTL, TOS, and checksum), certain IP op-
tions cause routers to rewrite the option field at various intervals. To
ensure a packet appears identical at all steps along its route, SPIE
masks or compensates for these fields when computing the packet
digests. It is important to note that the invariant IP fields used for
SPIE digesting may occasionally be modified by a packet transform
(c.f. section 5.3).

Our research indicates that the first 28 invariant bytes of a packet
(masked IP header plus the first 8 bytes of payload) are sufficient
to differentiate almost all non-identical packets. Figure 3 presents
the rate of packet collisions for an increasing prefix length for two
representative traces: a WAN trace from an OC-3 gateway router,
and a LAN trace from an active 100Mb Ethernet segment. (Results
were similar for traces across a number of sites.) Two unique pack-
ets which are identical up to the specified prefix length are termed
a collision. A 28-byte prefix results in a collision rate of approxi-
mately 0.00092% in the wide area and 0.139% on the LAN.

Unlike similar results reported by Duffield and Grossglauser [7, fig.
4], our results include only unique packets; exact duplicates were
removed from the packet trace. Close inspection of packets in the

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

20 22 24 26 28 30 32 34 36 38 40

F
ra

ct
io

n
of

 C
ol

lid
ed

 P
ac

ke
ts

Prefix Length (in bytes)

WAN
LAN

Figure 3: The fraction of packets that collide as a function of pre-
fix length. The WAN trace represents 985,150 packets (with 5,801
duplicates removed) collected on July 20, 2000 at the University of
Florida OC-3 gateway [14]. The LAN trace consists of one million
packets (317 duplicates removed) observed on an Ethernet segment
at the MIT Lab for Computer Science.

wide area with identical prefixes indicates that packets with match-
ing prefix lengths of 22 and 23 bytes are ICMP Time Exceeded
error packets with the IP identification field set to zero. Similarly,
packets with matching prefixes between 24 and 31 bytes in length
are TCP packets with IP identifications also set to zero which are
first differentiated by the TCP sequence number or acknowledg-
ment fields.2

The markedly higher collision rate in the local area is due to the lack
of address and traffic diversity. This expected result does not sig-
nificantly impact SPIE’s performance, however. LANs are likely to
exist at only two points in an attack graph: immediately surround-
ing the victim and the attacker(s). False positives on the victim’s
local network can be easily eliminated from the attack graph—they
likely share the same gateway router in any event. False positives
at the source are unlikely if the attacker is using spoofed source ad-
dresses, as this provides the missing diversity in attack traffic, and
remain in the immediate vicinity of the true attacker by definition.
Hence, for the purposes of SPIE, IP packets are effectively distin-
guished by the first 28 invariant bytes of the packet.

4.2 Bloom filters

Storing the set of digests for the traffic forwarded by the router
would require massive amounts of storage. Instead, SPIE uses a
space-efficient data structure known as a Bloom filter to record
packet digests [4]. A Bloom filter computes k distinct packet di-
gests for each packet using independent uniform hash functions,
and uses the n-bit results to index into a 2n-sized bit array. The
array is initialized to all zeros, and bits are set to one as packets are
received. Figure 4 depicts a Bloom filter with k hash functions.

Membership tests can be conducted simply by computing the k di-
gests on the packet in question and checking the indicated bit posi-

2Further investigation indicates a number of current operating systems,
including recent versions of Linux, frequently set the IP ID to zero.

7

H1(P)

H2(P)

H3(P)

.

.

.

Hk(P)

n bits

1

1

1

1

2n

bits

Figure 4: For each packet received, SPIE computes k independent
n-bit digests, and sets the corresponding bits in the 2n-bit digest
table.

tions. If any one of them is zero, the packet was not stored in the
table. If, however, all the bits are one, it is highly likely the packet
was stored. It is possible that some set of other insertions caused all
the bits to be set, creating a false positive, but the rate of such false
positives can be controlled [8].

4.3 Hash functions

SPIE places three major restrictions on the family of hash functions,
F , used in its Bloom filters. First, each member function must
distribute a highly correlated set of input values (IP packet prefixes),
P , as uniformly as possible over the hash’s result value space. That
is, for a hash function H : P → 2m in F , and distinct packets
x �= y ∈ P , Pr[H(x) = H(y)] = 1/(2m). This is a standard
property of good hash functions.

SPIE further requires that the event that two packets collide in one
hash function (H(x) = H(y) for some H) be independent of col-
lision events in any other functions (H′(x) = H ′(y),H ′ �= H).
Intuitively, this implies false positives at one router are independent
of false positives at neighboring routers. Formally, for any func-
tion H ∈ F chosen at random independently of the input packets
x and y, Pr[H(x) = H(y)] = 2−m with high probability. Such
hash families, called universal hash families, were first defined by
Carter and Wegman [6] and can be implemented in a variety of
fashions [3, 10, 11].

Finally, member functions must be straightforward to compute at
high link speeds. This requirement is not impractical because SPIE
hash functions do not require any cryptographic “hardness” prop-
erties. That is, it does not have to be difficult to generate a valid
input packet given a particular hash value. Being able to create a
packet with a particular hash value enables three classes of attacks,
all of which are fairly benign. One attack would ensure that all at-
tack packets have the same fingerprint in the Bloom filter at some
router (which is very difficult since there are multiple, independent
hashes at each router), but this merely elicits a packet trace that
reveals a larger set of systems from which the attacker can attack.
Another attack is to ensure all attack packets have different finger-

Router

Router

DGA

Router
Router

Router

DGA

SCAR
Router

Router

Router

DGA

STM

ISP's Network

Figure 5: The SPIE network infrastructure, consisting of Data Gen-
eration Agents (DGAs), SPIE Collection and Reduction Agents
(SCARs), and a SPIE Traceback Manager (STM).

prints, but that is the common case already. The third, and most
difficult attack, is to create an attack packet with the same finger-
print as another, non-attack packet. In general, this attack simply
yields one more false-positive path, usually only for one hop (as
the hash functions change at each hop).

5 SOURCE PATH ISOLATION ENGINE

SPIE-enhanced routers maintain a cache of packet digests for re-
cently forwarded traffic. If a packet is determined to be offensive
by some intrusion detection system (or judged interesting by some
other metric), a query is dispatched to SPIE which in turn queries
routers for packet digests of the relevant time periods. The results of
this query are used in a simulated reverse-path flooding (RPF) algo-
rithm to build an attack graph that indicates the packet’s source(s).

5.1 Architecture

The tasks of packet auditing, query processing, and attack graph
generation are dispersed among separate components in the SPIE
system. Figure 5 shows the three major architectural components
of the SPIE system. Each SPIE-enhanced router has a Data Gener-
ation Agent (DGA) associated with it. Depending upon the type of
router in question, the DGA can be implemented and deployed as a
software agent, an interface card plug to the switching background
bus, or a separate auxiliary box connected to the router through
some auxiliary interface.

The DGA produces packet digests of each packet as it departs the
router, and stores the digests in bit-mapped digest tables. The tables
are paged every so often, and represent the set of traffic forwarded
by the router for a particular interval of time. Each table is anno-
tated with the time interval and the set of hash functions used to
compute the packet digests over that interval. The digest tables are
stored locally at the DGA for some period of time, depending on
the resource constraints of the router. If interest is expressed in the
traffic data for a particular time interval, the tables are transferred
to a SPIE Collection and Reduction (SCAR) agent for longer-term
storage and analysis.

8

SCARs are responsible for a particular region of the network, serv-
ing as data concentration points for several routers. SCARs monitor
and record the topology of their area and facilitate traceback of any
packets that traverse the region. Due to the complex topologies of
today’s ISPs, there will typically be several SCARs distributed over
an entire network. Upon request, each SCAR produces an attack
graph for its particular region. The attack graphs from each SCAR
are grafted together to form a complete attack graph by the SPIE
Traceback Manager (STM).

The STM controls the whole SPIE system. The STM is the inter-
face to the intrusion detection system or other entity requesting a
packet trace. When a request is presented to the STM, it verifies
the authenticity of the request, dispatches the request to the appro-
priate SCARs, gathers the resulting attack graphs, and assembles
them into a complete attack graph. Upon completion of the trace-
back process, STMs reply to intrusion detection systems with the
final attack graph.

5.2 Traceback processing

Before the traceback process can begin, an attack packet must be
identified. Most likely, an intrusion detection system (IDS) will de-
termine that an exceptional event has occurred and provide the STM
with a packet, P , victim, V , and time of attack, T . SPIE places two
constraints on the IDS: the victim must be expressed in terms of the
last-hop router, not the end host itself, and the attack packet must
be identified in a timely fashion. The first requirement provides the
query process with a starting point; the latter stems from the fact
that traceback must be initiated before the appropriate digest tables
are overwritten by the DGAs. This time constraint is directly re-
lated to the amount of resources dedicated to the storage of traffic
digests. (We discuss timing and resource tradeoffs in section 7).

Upon receipt of traceback request, the STM cryptographically ver-
ifies its authenticity and integrity. Any entity wishing to employ
SPIE to perform a traceback operation must be properly authorized
in order to prevent denial of service attacks. Upon successful ver-
ification, the STM immediately asks all SCARs in its domain to
poll their respective DGAs for the relevant traffic digests. Time
is critical because this poll must happen while the appropriate di-
gest tables are still resident at the DGAs. Once the digest tables
are safely transferred to SCARs, the traceback process is no longer
under real-time constraints.

Beginning at the SCAR responsible for the victim’s region of the
network, the STM sends a query message consisting of the packet,
egress point, and time of receipt. The SCAR responds with a partial
attack graph and the packet as it entered the region (it may have
been transformed, possibly multiple times, within the region). The
attack graph either terminates within the region managed by the
SCAR, in which case a source has been identified, or it contains
nodes at the edge of the SCAR’s network region, in which case the
STM sends a query (with the possibly-transformed packet) to the
SCAR abutting that edge node.

This process continues until all branches of the attack graph termi-
nate, either at a source within the network, or at the edge of the
SPIE system. The STM then constructs a composite attack graph
which it returns to the intrusion detection system.

Digest Type I Packet Data

29 bits 3 bits 32 bits

Figure 6: A Transform Lookup Table (TLT) stores sufficient infor-
mation to invert packet transformations at SPIE routers. The table
is indexed by packet digest, specifies the type of transformation,
and stores any irrecoverable packet data.

5.3 Transformation processing

IP packets may undergo valid transformation while traversing the
network, and SPIE must be capable of tracing through such trans-
formations. In particular, SPIE must be able to reconstruct the origi-
nal packet from the transformed packet. Unfortunately, many trans-
formations are not invertible without additional information due to
the stateless nature of IP networks. Consequently, sufficient packet
data must be recorded by SPIE at the time of transformation such
that the original packet is able to be reconstructed.

The packet data chosen as input to the digesting function deter-
mines the set of packet transformations SPIE must handle—SPIE
need only consider transformations that modify fields used as input
to the digest function. SPIE computes digests over the IP header
and the first eight bytes of the packet payload but masks out (or
omits in the case of IP options) several frequently updated fields
before digesting, as shown in figure 2 of section 4. This hides
most hop-by-hop transformations from the digesting function, but
forces SPIE to explicitly handle each of the following transfor-
mations: fragmentation, network address translation (NAT), ICMP
messages, IP-in-IP tunneling, and IP security (IPsec).

Recording the information necessary to reconstruct the original
packet from a transformed packet requires additional resources.
Fortunately for SPIE, the circumstances that cause a packet to un-
dergo a transformation will generally take that packet off of the
fast path of the router and put it onto the control path, relaxing
the timing requirements. The router’s memory constraints remain
unchanged, however; hence, transformation information must be
stored in a scalable and space-efficient manner.

5.3.1 Transform lookup table

Along with each packet digest table collected at a DGA, SPIE main-
tains a corresponding transform table for the same interval of time
called a transform lookup table, or TLT. Each entry in the TLT con-
tains three fields. The first field stores a digest of the transformed
packet. The second field specifies the type of transformation—
three bits are sufficient to uniquely identify the transformation type
among those supported by SPIE. The last field contains a variable
amount of packet data the length of which depends upon the type
of transformation being recorded.

For space efficiency, the data field is limited to 32 bits. Some trans-
formations, such as network address translation, may require more
space. These transformations utilize a level of indirection—one bit
of the transformation type field is reserved as an indirect flag. If
the indirect, or I, flag is set, the third field of the TLT is treated as a
pointer to an external data structure which contains the information
necessary to reconstruct the packet.

9

The indirect flag can also be used for flow caching. In many cases,
packets undergoing a particular transformation are related. In such
cases, it is possible to reduce the storage requirements by suppress-
ing duplicate packet data, instead referencing a single copy of the
required data that can be used to reconstruct any packet in the flow.
Such a scheme requires, however, that the SPIE-enabled router it-
self be capable of flow caching, or at least identification, so that the
packets within the flow can be correlated and stored appropriately.

In order to preserve alignment, it is likely efficient implementations
would store only 29 bits of the packet digest resulting in 64-bit wide
TLT entries. This width implies eight distinct packet digests will
map to the same TLT entry. The relative rarity of packet transfor-
mations [12], the sparsity of the digest table, and the uniformity of
the digesting function combine to make collisions extremely rare
in practice. Assuming a digest table capacity of roughly 3.2Mpkts
(16Mb SRAM, see section 7.2) and a transformation rate of 3%, the
expected collision rate is approximately 1:5333 packets. Even if a
collision occurs, it simply results in an additional possible trans-
formation of the queried packet. Each transformation is computed
(including the null transformation) and traceback continues. In-
correctly transformed packets likely will not exist at neighboring
routers and, thus, will not contribute any false nodes to the attack
graph.

5.3.2 Special-purpose gateways

Some classes of packet transformations, notably NAT and tunnel-
ing, are often performed on a large fraction of packets passing
through a particular gateway. The transform lookup table would
quickly grow to an unmanageable size in such instances; hence,
SPIE considers the security gateway or NAT functionality of routers
as a separate entity. Standard routing transformations are handled as
above, but special purpose gateway transformations require a differ-
ent approach to transformation handling. Transformations in these
types of gateways are generally computed in a stateful way (usually
based on a static rule set); hence, they can be inverted in a similar
fashion. While the details are implementation-specific, inverting
such transformations is straightforward; we do not consider it here.

5.3.3 Sample transformations

A good example of transformation is packet fragmentation. To
avoid needing to store any of the packet payload, SPIE supports
traceback of only the first packet fragment. Non-first fragments
may be traced to the point of fragmentation which, for fragment-
based attacks [13], is the attacker. (If only a subset of the fragments
is received by the victim the packet cannot be reassembled; hence,
the only viable attack is a denial of service attack on the reassembly
engine. But, if the fragmentation occurs within the network itself,
an attacker cannot control which fragments are received by the vic-
tim so the victim will eventually receive a first fragment to use in
traceback.) Packet data to be recorded includes the total length,
fragment offset, and more fragments (MF) field. Since properly-
behaving IP routers cannot create fragments with less than 8 bytes
of payload information [17], SPIE is always able to invert fragmen-
tation and construct the header and at least 64 bits of payload of the
pre-fragmented packet which is sufficient to continue traceback.

Observe that SPIE never needs to record any packet payload infor-
mation. ICMP transformations can be inverted because ICMP error

V

R6

R8 R9

R7

R1S1

S3S2

R4

A S4

R3R2

R5S5

Figure 7: Reverse path flooding, starting at the victim’s router, V ,
and proceeding backwards toward the attacker, A. Solid arrows
represent the attack path; dashed arrows are SPIE queries. Queries
are dropped by routers that did not forward the packet in question.

messages always include at least the first 64 bits of the offending
packet [16]. Careful readers may be concerned that encapsulation
cannot be inverted if the encapsulated packet is subsequently frag-
mented and the fragments containing the encapsulated IP header
and first 64 bits of payload are not available. While this is strictly
true, such transformations need to be inverted only in extreme cases
as it takes a very sophisticated attacker to cause a packet to be first
encapsulated, then fragmented, and then ensure fragment loss. If
all the fragments are received, the original header can be extracted
from the reassembled payload. It seems extremely difficult for an
attacker to insure that packet fragments are lost. It can cause packet
loss by flooding the link, but to do so requires sending such a large
number of packets that it is extremely likely that all the fragments
for at least one packet will be successfully received by the decapsu-
lator for use in traceback.

5.4 Graph construction

Each SCAR constructs a subgraph using topology information
about its particular region of the network. After collecting the
digest tables from all of the routers in its region, a SCAR sim-
ulates reverse-path flooding (RPF) by examining the digest ta-
bles in the order they would be queried if an actual reverse path
flood was conducted on the topology that existed at the time the
packet was forwarded. Figure 7 shows how reverse-path flood-
ing would discover the attack path from V to A, querying routers
R8, R9, R7, R4, S5, R5, and R2 along the way. It is important to
note that the routers are not actually queried—the SCAR has al-
ready cached all the relevant hash digests locally.

In order to query each router, a SCAR computes the appropriate set
of digests as indicated by the table, and then consults the table for
membership. If an entry exists for the packet in question, the router
is considered to have forwarded the packet. The SCAR adds the
current node to the attack graph and moves on to each of its neigh-
bors (except, of course, the neighbor already queried). If, however,
the digest is not found in the table, it may be necessary to search
the digest table for the previous time period. Depending on the link
latency between routers, SCARs may need to request multiple di-

10

gest tables from each router in order to assure they have the digest
for the appropriate time frame. Once a digest is located, the packet
arrival time is always considered to be the latest possible time in the
interval. This insures the packet must have been seen at an earlier
time at adjacent routers.

If the packet is not found in any of the digest tables for the relevant
time period, that particular branch of the search tree is terminated
and searching continues at the remaining routers. A list of previ-
ously visited nodes is kept at all times, and cycles are pruned to
assure termination.

The result of this procedure is a connected graph containing the set
of nodes believed to have forwarded the packet toward the victim.
Assuming correct operation of the routers, this graph is guaranteed
to be a superset of the actual attack graph. But due to digest col-
lisions, there may be nodes in the attack graph that are not in the
actual attack graph. We call these nodes false positives and base the
success of SPIE on its ability to limit the number of false positives
contained in a returned attack graph.

6 PRACTICAL IMPLEMENTATION

For our FreeBSD SPIE prototype, we simulate a universal hash
family using MD5 [18]. A random member is defined by selecting
a random input vector to prepend to each packet. The properties
of MD5 ensure that the digests of identical packets with different
input vectors are independent. The 128-bit output of MD5 is then
considered as four independent 32-bit digests which can support
Bloom filters of dimension up to four. Router implementations re-
quiring higher performance are likely to prefer other universal hash
families specifically tailored to hardware implementation [11]. A
simple family amenable to fast hardware implementation could be
constructed by computing a CRC modulo a random member of the
set of indivisible polynomials over Z2k .

In order to ensure hash independence, each router periodically gen-
erates a set of k independent input vectors and uses them to select k
digest functions needed for the Bloom filter from the family of uni-
versal hashes. These input vectors are computed using a pseudo-
random number generator which is independently seeded at each
router. For increased robustness against adversarial traffic, the input
vectors are changed each time the digest table is paged, resulting in
independence not only across routers but also across time periods.

The size of the digest bit vector, or digest table, varies with the
total traffic capacity of the router; faster routers need larger vectors
for the same time period. Similarly, the optimum number of hash
functions varies with the size of the bit vector. Routers with tight
memory constraints can compute additional digest functions and
provide the same false-positive rates as those who compute fewer
digests but provide a larger bit vector.

Figure 8 depicts a possible implementation of a SPIE Data Genera-
tion Agent in hardware for use on high-speed routers. A full discus-
sion of the details of the architecture and an analysis of its perfor-
mance were presented previously [20]. Briefly, each interface card
in the router is outfitted with an Interface Tap which computes mul-
tiple independent digests of each packet as it is forwarded. These
digests are passed to a separate SPIE processor (implemented either
in a line card form factor or as an external unit) which stores them
as described above in digest tables for specific time periods.

...

S32

S32

S32

S32

S32

Sk

2k-bit RAM
t

t-P s

+

FIFO RAM
MUX

Readout
by

Control
Processor

...
...

Ring Buffer DRAM

Time
=t

readout
every
R ms

Signature Taps Signature Aggregation History Memory

Line Cards SPIE Card (or Box)

Figure 8: A sample SPIE DGA hardware implementation for high-
speed routers.

As time passes, the forwarded traffic will begin to fill the digest ta-
bles and they must be paged out before they become over-saturated,
resulting in unacceptable false-positive rates. The tables are stored
in a history buffer implemented as a large ring buffer. Digest tables
can then be transferred by a separate control processor to SCARs
while they are stored in the ring buffer.

7 ANALYSIS

There are several tradeoffs involved when determining the optimum
amount of resources to dedicate to SPIE on an individual router or
the network as a whole. SPIE’s resource requirements can be ex-
pressed in terms of two quantities: the number of packet digest
functions used by the Bloom filter, and the amount of memory used
to store packet digests. Similarly, SPIE’s performance can be char-
acterized in two orthogonal dimensions. The first is the length of
time for which packet digests are kept. Queries can only be issued
while the digests are cached; unless requested by a SCAR within a
reasonable amount of time, the DGAs will discard the digest tables
in order to make room for more recent ones. The second is the ac-
curacy of the candidate attack graphs which can be measured in the
number of false positives in the graph returned by SPIE.

Both of these metrics can be controlled by adjusting operational
parameters. In particular, the more memory available for storing
packet digests, the longer the time queries can be issued. Similarly,
digest tables with lower false-positive rates yield more accurate at-
tack graphs. Hence, we wish to characterize the performance of
SPIE in terms of the amount of available memory and digest table
performance.

7.1 False positives

We first relate the rate of false positives in an attack graph to the
rate of false positives in an individual digest table. This relationship
depends on the actual network topology and traffic being forwarded
at the time. We can, however, make some simplifying assumptions
in order to derive an upper bound on the number of false positives
as a function of digest table performance.

11

7.1.1 Theoretical bounds

Suppose, for example, each router whose neighbors have degree
at most d ensures its digest tables have a false-positive rate of at
most P = p/d, where 0 ≤ p/d ≤ 1 (p is just an arbitrary tuning
factor). A simplistic analysis shows that for any true attack graph G
with n nodes, the attack graph returned by SPIE will have at most
np/(1 − p) extra nodes in expectation.

The false-positive rate of a digest table varies over time, depending
on the traffic load at the router and the amount of time since it was
paged. Similarly, if the tables are paged on a strict schedule based
on maximum link capacity, and the actual traffic load is less, digest
tables will never reach their rated capacity. Hence, the analytic re-
sult is a worst case bound since the digest table performs strictly
better while it is only partially full. Furthermore, our analysis as-
sumes the set of neighbors at each node is disjoint which is not true
in real networks. It seems reasonable to expect, therefore, that the
false-positive rate over real topologies with actual utilization rates
would be substantially lower.

For the purposes of this discussion, we arbitrarily select a false-
positive rate of n/7, resulting in no more than 5 additional nodes
in expectation for a path length of over 32 nodes (approaching the
diameter of the Internet) according to our theoretical model. Using
the bound above, p = 1/8 seems a reasonable starting point and we
turn to considering its effectiveness in practice.

7.1.2 Simulation results

In order to relate false-positive rate to digest table performance in
real topologies, we have run extensive simulations using the actual
network topology of a national tier-one ISP made up of roughly 70
backbone routers with links ranging from T-1 to OC-3. We obtained
a topology snapshot and average link utilization data for the ISP’s
network backbone for a week-long period toward the end of 2000,
sampled using periodic SNMP queries, and averaged over the week.

We simulated an attack by randomly selecting a source and vic-
tim, and sending 1000 attack packets at a constant rate between
them. Each packet is recorded by every intermediate router along
the path from source to destination. A traceback is then simulated
starting at the victim router and (hopefully) proceeding toward the
source. Uniformly distributed background traffic is simulated by
selecting a fixed maximum false-positive rate, P , for the digest ta-
ble at each off-path router. (Real background traffic is not uniform,
which would result in slight dependencies in the false-positive rates
between routers, but we believe that this represents a reasonable
starting point.) In order to accurately model performance with real
traffic loads, the effective false-positive rate is scaled by the ob-
served traffic load at each router.

For clarity, we consider a non-transformed packet with only one
source and one destination. Preliminary experiments with multi-
ple sources (as might be expected in a distributed denial of service
(DDoS) attack) indicate false positives scale linearly with respect to
the size of the attack graph, which is the union of the attack paths
for each copy of the packet. We do not, however, consider this case
in the experiments presented here. (A DDoS attack sending iden-
tical packets from multiple sources only aids SPIE in its task. A
wise attacker would instead send distinct packets from each source,
forcing the victim to trace each packet individually.)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound
[100% util.] P=1/(8*degree)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound
[100% util.] P=1/(8*degree)

P=1/8

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
vg

. N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

Length of Attack Path (in hops)

Theoretical bound
[100% util.] P=1/(8*degree)

P=1/8
P=1/(8*degree)

Figure 9: The number of false positives in a SPIE-generated attack
graph as a function of the length of the attack path, for p = 1/8.
The theoretical bound is plotted against three simulation results,
two with false-positive rates conditioned on router degree, one
without. For the two degree-dependent runs, one considered actual
link utilization, while the other assumed full utilization. Each sim-
ulation represents the average of 5000 runs using actual topology
and utilization data from a national tier-one ISP.

In order to validate our theoretical bound, we have plotted the ex-
pected number of false positives as a function of attack path length
and digest table performance, np/(1 − p) as computed above, and
show that in comparison to the results of three simulations on our
ISP backbone topology. In the first, we set the maximum digest
table false-positive probability to P = p/d, as prescribed above.
Figure 9 shows a false-positive rate significantly lower than the an-
alytic bound. A significant portion of the disparity results from the
relatively low link utilizations maintained by operational backbones
(77% of the links in our data set had utilization rates of less than
25%), as can be seen by comparing the results of a second sim-
ulation assuming full link utilization. There remains, however, a
considerable gap between the analytic bound and simulated perfor-
mance in network backbones.

The non-linearity of the simulation results indicates there is a strong
damping factor due to the topological structure of the network. In-
tuitively, routers with many neighbors are found at the core of the
network (or at peering points), and routers with fewer neighbors are
found toward the edge of the network. This suggests false positives
induced by core routers may quickly die out as the attack graph
proceeds toward less well-connected routers at the edge.

To examine the dependence upon vertex degree, we conducted an-
other simulation. This time, we removed the false-positive rate’s
dependence upon the degree of the router’s neighbors, setting the
digest table performance to simply P = p (and returning to ac-
tual utilization data). While there is a marked increase in the num-
ber of false positives, it remains well below the analytic bound.
This somewhat surprising result indicates that despite the analytic
bound’s dependence on router degree, the hierarchical structure of
ISP backbones may permit a relaxation of the coupling, allowing
the false positive rate of the digest tables, P , to be set independently
of the degree, d, resulting in significant space savings.

12

7.2 Time and memory utilization

The amount of time during which queries can be supported is di-
rectly dependent on the amount of memory dedicated to SPIE. The
appropriate amount of time varies depending upon the responsive-
ness of the method used to identify attack packets. For the purposes
of discussion, however, we will assume one minute is a reasonable
amount of time in which to identify an attack packet and initiate
a traceback. As discussed in section 5.1, once the appropriate di-
gest tables have been moved to SCARs the actual query process can
arbitrarily be delayed.

Given a particular length of time, the amount of memory required
varies linearly with the total link capacity at the router and can be
dramatically affected by the dimension of the Bloom filter in use.
Bloom filters are typically described in terms of the number of di-
gesting functions used and the ratio of data items to be stored to
memory capacity. The effective false-positive rate for a Bloom fil-
ter that uses m bits of memory to store n packets with k digest
functions can be expressed as

P =

(
1 −

(
1 − 1

m

)kn
)k

≈
(
1 − e−kn/m

)k
.

Tables providing the effective false-positive rates for various ca-
pacities and digesting functions are readily available [8]. For the
purposes of discussion, we will consider using a Bloom filter with
three digesting functions (k = 3) and a capacity factor (m/n) of
five, meaning to store n packets, we will use a Bloom filter of size
m = 5n. Such a filter provides an effective false-positive rate of
P = 0.092 when full.

While this is well below the value of 1/8 or 0.125 used in our
degree-independent simulations, it is high if digest tables are cal-
ibrated with respect to router degree. Luckily, by increasing the
number of digesting functions, Bloom filters are able to achieve sig-
nificantly lower false-positive rates with slight increases in capacity.
For instance, a false-positive rate of 0.00314, which corresponds to
our degree-dependent simulation, P = p/d, with p = 1/8 for
routers with as many as 40 neighbors, can be achieved using 8 di-
gesting functions and memory factor of only 12—slightly greater
than twice what we suggest.

SPIE’s memory needs are determined by the number of packets
processed. Hence, we consider an average-sized packet of approx-
imately 1000 bits, and describe link speeds in terms of packets per
second. We combine this with the Bloom filter factor of 5 from
above to compute a rule of thumb: SPIE requires roughly 0.5% of
the total link capacity in digest table storage. For a typical low-end
router with four OC-3 links, this results in roughly 47MB of stor-
age. On the very high end, a core router with 32 OC-192 links3

has a maximum capacity of about 640Mpkts/sec which would re-
quire roughly 3.125Gb/sec of digest table memory or 23.4GB for
one minute’s worth of storage. In practice, however, the size of a
digest table will be limited by the type of memory required.

Capacity is not the only memory consideration, however—access
times turn out to be equally important. Packets must be recorded
in the digest table at a rate commensurate with their arrival. Even
given an optimistic DRAM cycle time of 50ns per read-modify-
write cycle, routers processing more than 20Mpkts/sec (roughly 1

3Current production routers support at most one OC-192 link.

OC-192 link, or 4 OC-48s) require an SRAM digest table. Cur-
rent SRAM technology limits digest tables to 16Mb which must be
paged to SDRAM in order to store a minute’s worth of digests as
described in section 6. Hence, an entire minute’s worth of traffic
can only be stored in one (unpaged) digest table at low link speeds.

7.3 Timing uncertainties

In the OC-192 scenario described above, 16Mb would hold roughly
5ms of traffic data; hence, the history buffer would store 12,000
individual digest tables. This observation gives rise to another im-
portant issue: imperfect timing may cause SPIE to need to examine
multiple packet digests at a particular router. The more digests that
must be considered, the greater the chance of false positives, so it is
advantageous to make the digest tables as large as possible. For rea-
sonable link speeds, the memory access time becomes slow enough
that SDRAM can be used which, using current technology, would
allow 256Mb digest tables, with a capacity of roughly 50Mpkts.

It may be the case that the approximate packet service time can-
not be confined to an interval covered by one digest table. In that
case, we expect the false-positive rate to increase linearly with the
number of digest tables examined. For high-speed routers, it is es-
pecially important to maintain precise timing synchronization be-
tween adjacent routers. We have not yet examined the impact of
typical NTP clock skew on SPIE’s performance, but believe syn-
chronization can be maintained to within a small number of digest-
ing intervals, not significantly impacting our false-positive rate.

8 DISCUSSION

There are several issues that must be dealt with for a SPIE query to
succeed. First, traceback operations will often be requested when
the network is unstable (likely due to the attack that triggered the
traceback); SPIE communications must succeed in a timely fash-
ion even in the face of network congestion and instability. The best
solution is to provide SPIE with an out-of-band channel, possibly
through either physically or logically separate (ATM VCs) links.
But even without private channels, it is still possible to ensure suc-
cessful transmission by granting sufficient priority to SPIE traffic.

SPIE’s usefulness increases greatly with widespread deployment
because SPIE can only construct an attack graph for that portion of
the packet’s path within the SPIE domain. However, it is likely that
independent ISPs may lack sufficient levels of technical or political
cooperation to unite their SPIE infrastructure. Instead, many ISPs
will prefer to have their own STM responsible for all queries within
their network. In such a case, one ISP’s STM must be granted the
authority to issue queries to adjacent ISPs’ STMs in order to com-
plete the traceback.

In very rare cases, one may not wish to expose the content of a
packet yet still wish to employ SPIE. In such a case, it might be
possible to support call-backs from SCARs which would provide
the querying IDS with the applicable digesting function and trans-
formation information and ask it to do actual digesting. This is an
expensive operation, but the existence of such a case implies the
querying IDS has grave cause for concern in the first place and is
likely willing to dedicate a great deal of resources to the traceback.

Finally, transformations raise several additional issues, some re-
lated to performance, others to policy. In particular, assuming that

13

packet transformations represent a small percentage of the overall
IP traffic traversing a router, an efficient SPIE implementation can
easily handle the resource requirements of logging transformation
information. Attackers, though, may view packet transformations
as a method of denial of service attack on SPIE. The number of
transformations that are recorded during a given time interval is
bounded by the rate at which the router is able to process the packet
transformations. Therefore, SPIE aims to handle packet transfor-
mations at a rate equal or greater than the router. As a result, the
router rather than SPIE is the bottleneck in processing packet trans-
formations. This task is made easier when one realizes that the vast
majority of transformations occur only at low-to-medium speed
routers. Sophisticated transformations such as tunneling, NATing,
and the like are typically done at customer premises equipment.
Further, many ISPs turn off standard transformation handing, often
even ICMP processing, at their core routers.

9 CONCLUSION & FUTURE WORK

Developing a traceback system that can trace a single packet has
long been viewed as impractical due to the tremendous storage re-
quirements of saving packet data and the increased eavesdropping
risks the packet logs posed. We believe that SPIE’s key contribu-
tion is to demonstrate that single packet tracing is feasible. SPIE
has low storage requirements and does not aid in eavesdropping.
Furthermore, SPIE is a complete, practical system. It deals with the
complex problem of transformations and can be implemented in
high-speed routers (often a problem for proposed tracing schemes).

The most pressing challenges for SPIE are increasing the window of
time in which a packet may be successfully traced and reducing the
amount of information that must be stored for transformation han-
dling. One possible way to extend the length of time queries can be
conducted without linearly increasing the memory requirements is
by relaxing the set of packets that can be traced. In particular, SPIE
can support traceback of large packet flows for longer periods of
time in a fashion similar to probabilistic marking schemes—rather
than discard packet digests as they expire, discard them probabilis-
tically as they age. For large packet flows, odds are quite high some
constituent packet will remain traceable for longer periods of time.

ACKNOWLEDGEMENTS

We are indebted to Walter Milliken for his assistance in ensuring
our architecture was implementable in today’s high-speed routers,
and for designing the initial DGA hardware prototype shown in fig-
ure 8. David Karger first pointed out we could generalize our hash-
ing technique through Bloom filters to decrease memory require-
ments, and Michael Mitzenmacher and Ron Rivest provided advice
on appropriate digesting functions. We thank Christine Alvarado,
David Andersen, John Jannotti, Allen Miu, and the anonymous re-
viewers for their feedback on earlier drafts.

References
[1] BAKER, F. Requirements for IP version 4 routers. RFC 1812, IETF,

June 1995.

[2] BELLOVIN, S. M. ICMP traceback messages. Internet Draft,
IETF, Mar. 2000. draft-bellovin-itrace-05.txt (work in
progress).

[3] BLACK, J., HALEVI, S., KRAWCZYK, J., KROVETZ, T., AND RO-
GAWAY, P. UMAC: fast and secure message authentication. In Proc.
Advances in Cryptology — CRYPTO ’99 (Aug. 1999), pp. 216–233.

[4] BLOOM, B. H. Space/time trade-offs in hash coding with allowable
errors. Communications of ACM 13, 7 (July 1970), 422–426.

[5] BURCH, H., AND CHESWICK, B. Tracing anonymous packets to their
approximate source. In Proc. USENIX LISA ’00 (Dec. 2000).

[6] CARTER, L., AND WEGMAN, M. Universal classes of hash functions.
Journal of Computer and System Sciences (1979), 143–154.

[7] DUFFIELD, N. G., AND GROSSGLAUSER, M. Trajectory sampling
for direct traffic observation. In Proc. ACM SIGCOMM ’00 (Aug.
2000), pp. 271–282.

[8] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Z. Summary
cache: a scalable wide-area web cache sharing protocol. ACM Trans.
on Networking 8, 3 (2000), 281–293.

[9] FERGUSON, P., AND SENIE, D. Network ingress filtering: Defeating
denial of service attacks which employ IP source address spoofing.
RFC 2267, IETF, Jan. 1998.

[10] HALEVI, S., AND KRAWCZYK, H. MMH: Software message au-
thentication in the Gbit/second rates. In Proc. 4th Workshop on Fast
Software Encryption (1997), pp. 172–189.

[11] KRAWCZYK, H. LFSR-Based hashing and authentication. In Proc.
Advances in Cryptology — CRYPTO ’94 (Aug. 1994), pp. 129–139.

[12] MCCREARY, S., AND CLAFFY, K. Trends in wide area IP traffic pat-
terns: A view from Ames Internet exchange. In ITC Specialist Semi-
nar on IP Traffic Modeling, Measurement and Management (2000).

[13] MICROSOFT CORPORATION. Stop 0A in tcpip.sys when receiving
out of band (OOB) data. http://support.microsoft.com/
support/kb/articles/Q143/4/78.asp.

[14] NATIONAL LABORATORY FOR APPLIED NETWORK RESEARCH

(NLANR). Network traffic packet header traces. http://
moat.nlanr.net/Traces/Traces/20000720/FLA-
964095596.crl.enc.

[15] PAXSON, V. End-to-end internet path dynamics. ACM Trans. on
Networking 7, 3 (1999), 277–292.

[16] POSTEL, J. Internet Control Message Protocol. RFC 792, IETF, Sept.
1981.

[17] POSTEL, J. Internet Protocol. RFC 791, IETF, Sept. 1981.

[18] RIVEST, R. The MD5 message-digest algorithm. RFC 1321, IETF,
Apr. 1992.

[19] SAGER, G. Security fun with OCxmon and cflowd. Internet 2
Working Group Meeting, Nov. 1998. http://www.caida.org/
projects/NGI/content/security/1198.

[20] SANCHEZ, L. A., MILLIKEN, W. C., SNOEREN, A. C., TCHAK-
OUNTIO, F., JONES, C. E., KENT, S. T., PARTRIDGE, C., AND

STRAYER, W. T. Hardware support for a hash-based IP traceback. In
Proc. Second DARPA Information Survivability Conference and Ex-
position (June 2001).

[21] SAVAGE, S., WETHERALL, D., KARLIN, A., AND ANDERSON, T.
Practical network support for IP traceback. In Proc. ACM SIGCOMM
’00 (Aug. 2000), pp. 295–306.

[22] SCHNACKENBERG, D., DJAHANDARI, K., AND STERNE, D. Infras-
tructure for intrusion detection and response. In Proc. First DARPA
Information Survivability Conference and Exposition (Jan. 2000).

[23] SONG, D. X., AND PERRIG, A. Advanced and authenticated marking
schemes for IP traceback. In Proc. IEEE Infocom ’01 (Apr. 2001).

[24] STONE, R. CenterTrack: An IP overlay network for tracking DoS
floods. In Proc. USENIX Security Symposium ’00 (Aug. 2000).

[25] WU, S. F., ZHANG, L., MASSEY, D., AND MANKIN, A. Intention-
driven ICMP trace-back. Internet Draft, IETF, Feb. 2001. draft-
wu-itrace-intention-00.txt (work in progress).

14

6th ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom ’00)

An End-to-End Approach to Host Mobility

Alex C. Snoeren and Hari Balakrishnan
MIT Laboratory for Computer Science

Cambridge, MA 02139
{snoeren, hari}@lcs.mit.edu

Abstract

We present the design and implementation of an end-to-end ar-
chitecture for Internet host mobility using dynamic updates to the
Domain Name System (DNS) to track host location. Existing TCP
connections are retained using secure and efficient connection mi-
gration, enabling established connections to seamlessly negotiate a
change in endpoint IP addresses without the need for a third party.
Our architecture is secure—name updates are effected via the se-
cure DNS update protocol, while TCP connection migration uses
a novel set ofMigrate options—and provides a pure end-system
alternative to routing-based approaches such as Mobile IP.

Mobile IP was designed under the principle that fixed Internet
hosts and applications were to remain unmodified and only the un-
derlying IP substrate should change. Our architecture requires no
changes to the unicast IP substrate, instead modifying transport pro-
tocols and applications at the end hosts. We argue that this is not a
hindrance to deployment; rather, in a significant number of cases, it
allows for an easier deployment path than Mobile IP, while simul-
taneously giving better performance. We compare and contrast the
strengths of end-to-end and network-layer mobility schemes, and
argue that end-to-end schemes are better suited to many common
mobile applications. Our performance experiments show that hand-
off times are governed by TCP migrate latencies, and are on the
order of a round-trip time of the communicating peers.

1 Introduction

The proliferation of mobile computing devices and wireless net-
working products over the past decade has made host and service
mobility on the Internet an important problem. Delivering data to
a mobile host across a network address change without disrupting
existing connections can be tackled by introducing a level of indi-

This research was supported in part by DARPA (Grant No.
MDA972-99-1-0014), NTT Corporation, and IBM. Alex C. Sno-
eren is supported by a National Defense Science and Engineering
Graduate (NDSEG) Fellowship.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MobiCom 2000 08/2000 Boston, MA

c© 2000 ACM

rection in the routing system. This is the approach taken by Mobile
IP [27, 29], which deploys a home agent that intercepts packets des-
tined for a host currently away from its home network, and delivers
it to the mobile host via a foreign agent in the foreign network. This
approach does not require any changes to the fixed (correspondent)
hosts in the Internet, but does require changing the underlying IP
substrate to effect thistriangle routing, and an authentication proto-
col to ensure that connections are not hijacked by a malicious party.
Mobile IP is a “pure” routing solution, a network-layer scheme that
requires no changes to any higher layer of the Internet protocol
stack.

There are many classes of mobile applications [16]: those where
other hosts originate connections to a mobile host and can benefit
from both host location and handoff support (e.g., a mobile Web
server, mobile telephony); those where the mobile host originates
all connections, which do not require host location services but can
benefit from handoff support (e.g., mail readers, Web browsers);
and those where an application-level retry suffices if the network
address changes unexpectedly during a short transaction, which
need neither to work well (e.g., DNS resolution). We believe that a
good end-to-end architecture for host mobility will support all these
modes, and empower applications to make the choice best suited to
their needs. Our architecture is motivated by, and meets, this goal.
It is an end-to-end approach; no changes to the IP substrate are re-
quired.

In our mobility architecture, the decision of whether to support
transparent connectivity across network address changes (espe-
cially useful for mobile servers) or not (not needed for short client-
server transactions) is left to the application. While Mobile IP-style,
fully-transparent mobility support is general and sufficient for mo-
bile applications, this generality comes at significant cost, complex-
ity, and performance degradation.

To locate mobile hosts as they change their network attachment
point, we take advantage of the widely-deployed Domain Name
System (DNS) [20] and its ability to support secure dynamic up-
dates [8, 35]. Because most Internet applications resolve hostnames
to an IP address at the beginning of a transaction or connection, this
approach is viable for initiating new sessions with mobile hosts.
When a host changes its network attachment point (IP address), it
sends a secure DNS update to one of the name servers in its home
domain updating its current location. The name-to-address map-
pings for these hosts are uncacheable by other domains, so stale
bindings are eliminated.

The ability to support continuous communication during periods of
mobility without modifying the IP substrate is a more challenging
problem. Because TCP is a connection-oriented reliable protocol,

many TCP applications reasonably expect this service model in the
face of losses and transient link failures, route changes, or mobility.
The two communicating peers must securely negotiate a change in
the underlying network-layer IP address and then seamlessly con-
tinue communication. Furthermore, an approach thatrequireseither
communicating peer to learn about the new network-layer address
before a move occurs is untenable because network-layer moves
may be quite sudden and unpredictable.

We design a new end-to-end TCP option to support the secure
migration of an established TCP connection across an IP address
change. Using this option, a TCP peer can suspend an open con-
nection and reactivate it from another IP address, transparent to an
application that expects uninterrupted reliable communication with
the peer. In this protocol, security is achieved through the use of a
connection identifier, ortoken, which may be secured by a shared
secret key negotiated through an Elliptic Curve Diffie-Hellman
(ECDH) key exchange [36] during initial connection establishment.
It requires no third party to authenticate migration requests, thereby
allowing the end points to use whatever authentication mechanism
they choose to establish a trust relationship. Although we only de-
scribe details for TCP migration, we find that this idea is general
and can be implemented in a like manner for specific UDP-based
protocols such as the Real-time Transport Protocol (RTP) to achieve
seamless mobility for those protocols as well.

One way of thinking of our work is in the context of the end-to-end
argument [32], which observes that functionality is often best im-
plemented in a higher layer at an end system, where it can be done
according to the application’s specific requirements. We show that it
is possible to implement mobility as an end-to-end service without
network-layer support, while providing multiple mobility modes. In
this sense, this is akin to applications deciding between UDP and
TCP as a transport protocol; many opt for UDP’s simplicity and
timeliness over TCP’s reliability. In the same fashion, applications
should be able to select the mobility mode of their choice.

The other significant advantage of handling mobility on an end-to-
end basis is that it enables higher layers like TCP and HTTP to learn
about mobility and adapt to it. For example, it is a good idea after a
network route change to restart TCP transmissions from slow start
or a window-halving [13] since the bottleneck might have changed,
or adapt the transmitted content to reflect new network conditions.
These optimizations can be made naturally if mobility is handled
end-to-end, since no extra signalling is needed. Indeed, the large
body of work in mobile-aware applications [15, 22, 25] can benefit
from our architecture.

Experience with previous end-to-end enhancements such as various
TCP options (e.g., SACK [19]), path MTU discovery, HTTP/1.1,
etc., has shown that such techniques often meet with less resistance
to widespread deployment than changes to the IP substrate. This
supports our belief that, in addition to the flexibility it offers, an
end-to-end approach may be successfully deployed.

We have implemented this mobility architecture in Linux 2.2 and
have conducted several experiments with it. We are encouraged by
the ease with which seamless mobility can be achieved, the flexibil-
ity it provides, and the lack of performance degradation. Since our
scheme does not impose any triangle routing anomalies, end-to-end
latency for active connections is better than standard Mobile IP, and
similar to Mobile IP with route optimization.

The rest of this paper describes the technical details of our ap-
proach. In Section 2, we survey related work in the area of mo-
bility support. We describe our architecture in Section 3, and detail
our new Migrate TCP option in Section 4. We discuss the security
ramifications of our approach in Section 5 and our implementation
and performance results in Section 6. We address some deployment
issues in Section 7 and conclude in Section 8.

2 Related work

The problem of Internet host mobility has been approached from
many angles in the literature, but they can be classified into two
categories. Some techniques attempt to handle host relocation in
a completely transparent fashion, hiding any changes in network
structure from the end hosts. We term these techniquesnetwork-
layer mobility. By contrast, many other approaches attempt to han-
dle relocation at a higher level in the end host.

2.1 Network-layer mobility

Mobile IP (RFC 2002) [29] is the current IETF standard for sup-
porting mobility on the Internet. It provides transparent support for
host mobility by inserting a level of indirection into the routing ar-
chitecture. By elevating the mobile host’shome addressfrom its
function as an interface identifier to anend-point identifier(EID),
Mobile IP ensures the delivery of packets destined to a mobile
host’s home address, independent of the host’s physical point of at-
tachment to the Internet, as reflected in itscare-of address. Mobile
IP does this by creating a routing tunnel between a mobile host’s
home network and its care-of address.

Such routing tunnels need to be implemented with care because
advertising explicit host routes into the wide-area routing tables de-
stroys routing scalability. Mobile IP uses ahome agentphysically
attached to the mobile host’s home network to intercept and tunnel
packets to the mobile host. Hence, packets undergotriangle rout-
ing, which is often longer than the optimal unicast path.

Further compounding the problem is the widespread deployment
of ingress filters [9], ratified in February 2000 by the IETF as a
“Best Current Practice” to combat denial-of-service attacks. With
this mechanism, a router does not forward packets with a source
address foreign to the local network, which implies that a packet
sent by a mobile host in a foreign network with its source address
set to its home address will not be forwarded. The solution to this
is to usereverse tunneling, which tunnels packets originating at the
mobile host first to the host’s home agent (using the host’s care-of
address as a source address), and then from there on to the desti-
nation using the home address as the source address. Thus, routing
anomalies occur in both directions.

Perkins and Johnson present a route optimization option for Mo-
bile IP to avoid triangle routing [28]. Here, correspondent hosts
cache the care-of address of mobile hosts, allowing communication
to proceed directly. It requires an authenticated message exchange
from the home agent to the correspondent host [26]. The resulting
Mobile IP scheme achieves performance almost equivalent to ours,
but requires modifications to the end hosts’ IP layer1 as well as the

1In fact, the draft allows on-path routers to cache the care-of
addresses instead of the end host, but this requires modifying yet
another level of infrastructure.

2

infrastructure. In contrast, our approach achieves secure, seamless
connection migration without a third-party home agent. It also pro-
vides a mobile host the ability to pick a mobility mode based on the
needs of its applications.

IPv6 provides native support for multiple simultaneous host ad-
dresses, and Mobile IPv6 provides mobility support for IPv6 in
much the same fashion as Mobile IP for IPv4. IPv6 extensions allow
for the specification of a care-of address, which explicitly separates
the role of the EID (the host’s canonical IP address) and routing
location (the care-of address). Gupta and Reddy propose a similar
redirection mechanism for IPv4 through the use of ICMP-like con-
trol messages which establish care-of bindings at the end hosts [10].

Mysore and Bharghavan propose an interesting approach to
network-layer mobility [23], where each mobile host is issued a per-
manent Class D IP multicast address that can serve as a unique EID.
If multicast were widely deployed, this is a promising approach; be-
cause a Class D EID has the benefit of being directly routable by
the routing infrastructure, it removes the need for an explicit care-of
address. However, this scheme requires a robust, scalable, and effi-
cient multicast infrastructure for a large number of sparse groups.

2.2 Higher-layer methods

The home-agent-based approach has also been applied at the trans-
port layer, as in MSOCKS [18], where connection redirection was
achieved using a split-connection proxy.

The general idea of using names as a level-of-indirection to handle
object and node mobility is part of computer systems folklore. For
some years now, people have talked about using the DNS to effect
the level-of-indirection needed to support host mobility, but to our
knowledge ours is the first specific and complete architecture that
uses the DNS to support Internet host mobility. Recently, Adjie-
Winotoet al.proposed the integration of name resolution and mes-
sage routing in an Intentional Naming System to implement a “late
binding” option that tracks highly mobile services and nodes [1],
and it seems possible to improve the performance of that scheme
using our connection migration approach.

Our approach differs fundamentally from EID/locator techniques
since it requires no additional level of global addressing or indi-
rection, but only a (normally pre-existing) DNS entry and a shared
connection key between the two end hosts. Furthermore, unlike pre-
vious connection-ID draft proposals such as Huitema’s ETCP [11]
for TCP connection re-addressing, it requires no modification to
the TCP header, packet format, or semantics.2 Instead, it uses an
additional TCP option and the inserts an additional field into the
Transmission Control Block (TCB).

There is a large body of work relating to improving TCP perfor-
mance in wireless and mobile environments [5, 6]. While not the
focus of our work, our adherence to standard TCP semantics allows
these schemes to continue to work well in our architecture. Fur-
thermore, since end hosts are explicitly notified of mobility, signif-
icant performance enhancements can be achieved at the application
level [25].

2Special RST handling is required on some networks that may
rapidly reassign IP addresses; Section 4.5 discusses this issue.

3 An end-to-end architecture

In this section, we describe our end-system mobility architecture.
There are three important components in this system: addressing,
mobile host location, and connection migration. By giving the mo-
bile host explicit control over its mobility mode, we remove the
need for an additional (third-party) home-agent to broker packet
routing. The DNS already provides a host location service, and any
further control is managed by the communicating peers themselves,
triggered by the mobile host when it changes network location.

We assume, like most mobility schemes, that mobile hosts do not
change IP addresses more than a few times a minute. We believe
this is a reasonable assumption for most common cases of mobil-
ity. We emphasize that this does not preclude physical mobility at
rapid velocities across a homogeneous link technology, since that
can be handled at the physical and link layers, e.g., via link-layer
bridging [12].

The rest of this section discusses addressing in a foreign network
and host location using the DNS. Section 4 is devoted to a detailed
description of TCP connection migration.

3.1 Addressing

The key to the scalability of the Internet architecture is that the IP
address serves as a routing locator, reflecting the addressee’s point
of attachment in the network topology. This enables aggregation
based on address prefixes and allows routing to scale well. Our mo-
bility architecture explicitly preserves this crucial property of Inter-
net addressing.

Like Mobile IP, we separate the issues of obtaining an IP address
in a foreign domain from locating and seamlessly communicating
with mobile hosts. Any suitable mechanism for address allocation
may be employed, such as manual assignment, the Dynamic Host
Configuration Protocol (DHCP) [7], or an autoconfiguration proto-
col [34].

While IP addresses fundamentally denote a point of attachment in
the Internet topology and say nothing about the identity of the host
that may be connected to that attachment point, they have implic-
itly become associated with other properties as well. For example,
they are often used to specify security and access policies as in the
case of ingress filtering to alleviate denial-of-service attacks. Our
architecture works without violating this trust model and does not
require any form of forward or reverse tunneling to maintain seam-
less connectivity. In a foreign network, a mobile host uses a locally
obtained interface address valid in the foreign domain as its source
address while communicating with other Internet hosts.

3.2 Locating a mobile host

Once a mobile host obtains an IP address, there are two ways in
which it can communicate with correspondent hosts. First, as a
client, when it actively opens connections to the correspondent host.
In this case, there is no special host location task to be performed
in our architecture; using the DNS as before works. However, if
the mobile host were to move to another network attachment point
during a connection, a new address would be obtained as described
in the previous section, and the current connection would continue
seamlessly via a secure negotiation with the communicating peer as

3

described in Section 4. If a mobile host were always a client (not
an uncommon case today), then no updates need to be made to any
third party such as a home agent or the DNS.

To support mobile servers and other applications where Internet
hosts actively originate communication with a mobile host, we use
the DNS to provide a level of indirection between a host’s current
location and an invariant end-point identifier. In Mobile IP, a host’s
home address is the invariant, and all routing (in the absence of
route optimization) occurs via the home agent that intercepts pack-
ets destined to this invariant. Ours is not a network-layer solution
and we can therefore avoid the indirection for every packet trans-
mission. We take advantage of the fact that a hostname lookup is
ubiquitously done by most applications that originate communica-
tion with a network host, and use the DNS name as the invariant.
We believe that this is a good architectural model: a DNS name
identifies a host and does not assume anything about the network
attachment point to which it may currently be attached, and the in-
direction occurs only when the initial lookup is done via a control
message (a DNS lookup).

This implies that when the mobile host changes its attachment
point, it must detect this and change the hostname-to-address (“A-
record”) mapping in the DNS. Fortunately, both tasks are easy to
accomplish, the former by using a user-level daemon as in Mobile
IP, and the latter by using the well-understood and widely avail-
able secure DNS update protocol [8, 35]. We note that some DHCP
servers today issue a DNS update at client boot time when handing
out a new address to a known client based on a static MAC-to-DNS
table. This augurs well for the incremental deployability of our ar-
chitecture, since DNS update support is widely available.

The DNS provides a mechanism by which name resolvers can cache
name mappings for some period of time, specified in the time-to-
live (TTL) field of the A-record. To avoid a stale mapping from be-
ing used from the name cache, we set the time-to-live (TTL) field
for the A-record of the name of the mobile host tozero, which pre-
vents this from being cached.3 Contrary to what some might expect,
this does not cause a significant scaling problem; name lookups for
an uncached A-record do not have to start from a root name server,
because in general the “NS-record” (name server record) of the mo-
bile host’s DNS name is cacheable for a long period of time (many
hours by default). This causes the name lookup to start at the name
server of the mobile host’s domain, which scales well because of
administrative delegation of the namespace and DNS server replica-
tion in any domain. We note that some content distribution networks
for Web server replication of popular sites use the same approach
of small-to-zero TTL values to redirect client requests to appropri-
ate servers (e.g., Akamai [2]). There is no central hot spot because
the name server records for a domain are themselves cacheable for
relatively long periods of time.

Even with uncacheable DNS entries there still exists a possible race
condition where a mobile host moves between when a correspon-
dent host receives the result of its DNS query and when it initiates a
TCP connection. Assuming a mobile host updates its DNS entry im-
mediately upon reconnection, the chances of such an occurrence are
quite small, but non-zero, especially for a mobile host that makes
frequent moves. In this case, the correspondent host will attempt to

3Modern versions of BIND honor this correctly.

open a TCP connection to the mobile host’s old address, and has no
automatic fail-over mechanism.

In this case, the application must perform another DNS lookup to
find the new location of the mobile host. We note that the trend
towards dynamic DNS records has caused such application-level
retries to find their way into applications already—for instance,
current FreeBSDtelnet and rsh applications try alternate ad-
dresses if an initial connection fails to a host that has multiple DNS
A-records. It seems to be only a minor addition to refresh DNS
bindings if connection establishment fails.

4 TCP connection migration

A TCP connection [31] is uniquely identified by a 4-tuple:〈source
address, source port, dest address, dest port〉. Packets addressed to
a different address, even if successfully delivered to the TCP stack
on the mobile host, must not be demultiplexed to a connection es-
tablished from a different address. Similarly, packets from a new
address are also not associated with connections established from a
previous address. This is crucial to the proper operation of servers
on well-known ports.

We propose a newMigrateTCP option, included in SYN segments,
that identifies a SYN packet as part of a previously established con-
nection, rather than a request for a new connection. This Migrate
option contains atokenthat identifies a previously established con-
nection on the same destination〈address, port〉 pair. The token is
negotiated during initial connection establishment through the use
of a Migrate-Permittedoption. After a successful token negotia-
tion, TCP connections may be uniquely identified by either their
traditional〈source address, source port, dest address, dest port〉 4-
tuple, or a new〈source address, source port, token〉 triple on each
host.

A mobile host may restart a previously-established TCP connection
from a new address by sending a special Migrate SYN packet that
contains the token identifying the previous connection. The fixed
host will than re-synchronize the connection with the mobile host at
the new end point. A migrated connection maintains the same con-
trol block and state (with a different end point, of course), including
the sequence number space, so any necessary retransmissions can
be requested in the standard fashion. This also ensures that SACK
and any similar options continue to operate properly. Furthermore,
any options negotiated on the initial SYN exchange remain in ef-
fect after connection migration, and need not be resent in a Migrate
SYN.4

Since SYN segments consume a byte in the TCP sequence number
space, Migrate SYNs are issued with the same sequence number as
the last transmitted byte of data. This results in two bytes of data
in a migrated TCP connection with the same sequence number (the
new SYN and the previously-transmitted actual data), but this is not
a problem since the Migrate SYN segment need never be explicitly
acknowledged. Any packet received from the fixed host by a mi-
grating host at the mobile host’s new address that has a sequence
number in the appropriate window for the current connection im-
plicitly acknowledges the Migrate SYN. Similarly, any further seg-

4They can be, if needed. For example, it might be useful to rene-
gotiate a new maximum segment size (MSS) reflecting the proper-
ties of the new path. We have not yet explored this in detail.

4

SYN 531521:531521(0)〈migrateOk km〉, 〈timestamp Tm〉, . . .

SYN 083521:083521(0)

ack 531522, 〈migrateOk kf 〉, 〈timestamp Tf 〉, . . .

ack 083522

545431:545967(53
6)

ack 092398

SYN 092397:092397(0)〈migrate T ,R〉

SYN 545967:545967(0)

ack 092398

ack 545968

mobile fixed

1

2

3

4

5

6

7

Figure 1: TCP Connection Migration

ments from the mobile host provide the fixed host an implicit ac-
knowledgement of its SYN/ACK. Thus, there is exactly one byte in
the sequence space that needs explicit acknowledgement even when
the Migrate SYN is used.

4.1 An example

Figure 1 shows a sample connection where a mobile client con-
nects to a fixed host and later moves to a new address. The mobile
client initiates the TCP connection in standard fashion in message
1, including a Migrate-Permitted option in the SYN packet. The
valueskm andTm are parameters used in the token negotiation, de-
scribed in Section 4.3. The fixed server, with a migrate-compliant
TCP stack, indicates its acceptance of the Migrate-Permitted option
by including the Migrate-Permitted option in its response (message
2). The client completes the three-way handshake with message 3,
an ACK. The connection then proceeds as any other TCP connec-
tion would, until message 4, the last packet from the fixed host to
the mobile host at its current address.

At some time later the mobile host moves to a new address, and
notifies the fixed server by sending a SYN packet from its new ad-
dress in message 5. This SYN includes the Migrate option, which
contains the previously computed connection token as part of a mi-
gration request. Note that the sequence number of this Migrate SYN
segment is the same as the last byte of transmitted data. The server
responds in kind in message 6, also using the sequence number of
its last transmitted byte of data. The ACK, however, is from the
same sequence space as the previous connection. While in this ex-
ample it acknowledges the same sequence number as the SYN that
generated it, it could be the case that segments were lost during
a period of disconnect while the mobile host moves, and that the
ACK will be a duplicate ACK for the last successfully received in-
sequence byte. Since it is addressed to the mobile host’s new lo-
cation, however, it serves as an implicit ACK of the SYN as well.

Upon receipt of this SYN/ACK, the mobile host similarly ACKs in
the previous sequence space, and the connection resumes as before.
All of the options negotiated on the initial SYN except the Migrate-
Permitted option are still in effect, and need not be replicated in this
or any subsequent migrations.

4.2 Securing the migration

It is possible to partially hijack TCP connections if an attacker
can guess the sequence space being used by the connection [21].
With the Migrate options, an attacker who can guess both the se-
quence space and the connection token can hijack the connection
completely. Furthermore, the ability to generate a Migrate SYN
from anywhere greatly increases the connection’s exposure. While
ingress filtering can be used to prevent connection hijacking by at-
tackers not on the path between the end hosts, such methods are
ineffective in our case. We must therefore take care to secure the
connection token.

The problem is relatively easy to solve if IP security (IPsec) [4]
were deployed. While the spectrum of approaches that could be
used is outside the scope of this paper, we note that IPsec pro-
vides sufficient mechanisms to secure migrateable connections.
Currently, however, IPsec has not found wide-spread deployment.
Hence, we provide a mechanism to self-secure the Migrate options.
End hosts may elect to secretly negotiate an unguessable connec-
tion token, which then reduces the security of a migrateable TCP
connection to that of a standard TCP connection, since no addi-
tional attacks are possible against a migrateable connection without
guessing the token, and any attack against a standard TCP connec-
tion clearly remains feasible against a migrateable TCP connection.

An unguessable connection token is secured with a secretconnec-
tion key. Since any host that obtains the connection key could fab-
ricate the token and issue a Migrate request, we select the key with
an Elliptic Curve Diffie-Hellman key exchange [36], as described
below. Hosts using IPsec, or unconcerned with connection security,
may choose to disable key negotiation to avoid excess computation.

4.3 Migrate-Permitted option

Hosts wishing to initiate a migrateable TCP connection send a
Migrate-Permitted option in the initial SYN segment. Similar to
the SACK-Permitted option [19], it should only be sent on SYN
segments, and not during an established connection. Additionally,
hosts wishing to cryptographically secure the connection token may
conduct an Elliptic Curve Diffie-Hellman (ECDH) key exchange
through the option negotiation. (Elliptic Curve Diffie-Hellman is
preferred to other methods of key establishment due to its high
security-to-bit-length ratio. Readers unfamiliar with Elliptic Curve
cryptography can find the necessary background material in [3].)

As seen in figure 2, the Migrate-Permitted option comes in two
variants—the insecure version, of length 3, and the secure version,
with length 20. The secure version is used to negotiate a secret con-
nection key, and contains an 8-bitCurve Nameand a 136-bitECDH
Public Keyfragment. The curve name field selects a particular set
of domain parameters (the curve, underlying finite field,F , and its
representation, the generating point,P , and the order ofP , n), as
specified in [3]. Use of the insecure version, which contains only a
Curve Name field (which must be set to zero) allows the end host

5

Kind: 15 Length = 3/20 Curve Name ECDH PK

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

ECDH Public Key (cont.)

Figure 2: TCP Migrate-Permitted option

to skip the key negotiation process. In that case, the connection key
is set to all zeros.

The secure variant of the Migrate-Permitted option also requires the
use of the Timestamp [14] option in order to store up to 200 bits of
ECDH keying material. The EDCH Public Key is encoded using
the compressed conversion routine described in [3, Section 4.3.6].
The 136 least-significant bits are stored in the EDCH Public Key
field of the Migrate-Permitted option, while the remaining 64 bits
of the key are encoded in the Timestamp option. The timestamp op-
tion, while often included, is not used on SYN segments. The Pro-
tection Against Wrapped Sequence Numbers (PAWS) [14] check
is only performed on synchronized connections, which by defini-
tion [31] includes only segments after the three-way handshake.
Similarly, the Round-Trip Time Measurement (RTTM) [14] pro-
cedure only functions when a timestamp has been echoed—clearly
this is never the case on an initial SYN segment. Hence the value of
the Timestamp option on SYN segments is entirely irrelevant to cur-
rent TCP stacks. Legacy TCP stacks will never receive a Migrate-
Permitted option on a SYN/ACK, hence the Timestamp option will
be processed normally. Special handling is only required for the
SYN/ACK and following ACK segment on connections that have
negotiated the Migrate-Permitted option, as Timestamp fields on
these segments will not contain timestamps. Hence the RTTM algo-
rithm must not be invoked for SYN/ACK or initial ACK segments
of connections that have negotiated the Migrate-Permitted option.

The TimestampTSValfield contains the 32 most-significant bits of
the public key, while theTSecrfield contains the next 32 most-
significant bits. These two components, combined with the 136-bit
EDCH Public Key field of the Migrate-Permitted option, constitute
the host’s public key,k. If the public key is less than 200 bits, it is
left-padded with zeros. For any host,i, ki is generated by selecting
a random number,Xi ∈ [1, n − 1], wheren is the order ofP , and
computing

ki = Xi ∗ P

The∗ operation is the scalar multiplication operation over the field
F . The security of the connection hinges on the secrecy of the ne-
gotiated key, henceXi should be randomly generated and stored in
the control block for each new connection. Any necessary retrans-
missions of the SYN or SYN/ACK must include identical values
for the Migrate-Permitted and Timestamp option.

Upon receipt of an initial SYN with a Migrate-Permitted option,
a host,j, with a compliant TCP stack must include a Migrate-
Permitted option (and a Timestamp option if the secure variant

Kind: 16 Length = 19 ReqNo

Token

Token (cont.)

Request

Request (cont.)

Figure 3: TCP Migrate option

is used) in its SYN/ACK segment. It similarly selects a random
Xj ∈ [1, n − 1] which it uses to constructkj , its public key, which
it sends in the same fashion.

After the initiating host’s reception of the SYN/ACK with the
Migrate-Permitted and Timestamp options, both hosts can then
compute a shared secret key,K, as specified in [36]:

K = ki ∗ Xj = kj ∗ Xi

This secret key is then used to compute a connection validation to-
ken. This token,T , is computed by hashing together the key and
the initial sequence numbersNi andNj using the Secure Hash Al-
gorithm (SHA-1) [24] in the following fashion (recall that hosti
initiated the connection with an active open, and hostj is perform-
ing a passive open):

T = SHA1(Ni, Nj , K)

While SHA-1 produces a 160-bit hash, all but the 64 most-
significant bits are discarded, resulting in a cryptographically-
secure 64-bit token that is unique to the particular connection. Since
SHA-1 is collision-resistant, the chance that another connection on
the same〈address, port〉 pair has an identical token is extremely
unlikely. If a collision is detected, however, the connection must be
aborted by sending a RST segment. (The host performing a passive
open can check for collisions before issuing a SYN/ACK, and se-
lect a new randomXj until a unique token is obtained. Hence the
only chance of collision occurs on the host performing the active
open.)

4.4 Migrate option

The Migrate option is used to request the migration of a currently
open TCP connection to a new address. It is sent in a SYN segment
to a host with which a previously-established connection already
exists (in the ESTABLISHED or FINWAIT states), over which the
Migrate-Permitted option has been negotiated.

There are two 64-bit fields in a Migrate option: atoken, and are-
quest. In addition, there is an 8-bit sequence number field,reqNo,
which must be monotonically increasing with each new migrate re-
quest issued by an end host for a connection. (The sequence num-
ber allows correspondent hosts to ensure Migrate SYNs were not
reordered by the network. Sequence space wrap-around is dealt
with in the standard fashion.) The token is simply the 64 most-
significant bits of the connection’s SHA-1 hash as computed in the
Migrate-Permitted option exchange. The request,R, is similarly

6

the 64 most-significant bits of a SHA-1 hash calculated from the
sequence number of the connection initial sequence numbersN ,
Migrate SYN segment,S, the connection key,K, and the request
sequence number,I .

R = SHA1(Ni, Nj , K, S, I)

SYN segments may now correctly arrive on a bound port not in
the LISTEN state. They should be processed only if they contain
the Migrate option as specified above. Otherwise, they should be
treated as specified in [31]. Upon receipt of a SYN packet with the
Migrate option, a TCP stack that supports migration attempts to
locate the connection on the receiving port with the corresponding
token. The token values for each connection were precomputed at
connection establishment, reducing the search to a hash lookup.

If the token is valid, meaning an established connection on this
〈address, port〉 pair has the same token, and thereqNo is greater
than any previously received migrate request, the fixed host then
computesR = SHA1(Ni, Nj , K, S, I) as described above, and
compares it with the value of the request in the Migrate SYN. If
the comparison fails, or the token was invalid, a RST is sent to the
address and port issuing the Migrate SYN, and the SYN ignored.
If, on the other hand, the token and request are valid, but the reqNo
is smaller than a previously received request, the SYN is assumed
to be out-of-order and silently discarded. If the reqNo is identical
to the most recently received migrate request this SYN is assumed
to be a duplicate of the most recently received SYN, and processed
accordingly.

Otherwise, the destination address and port5 associated with the
matching connection should be updated to reflect the source of the
Migrate SYN, and a SYN/ACK packet generated, with the ACK
field set to the last received contiguous byte of data, and the con-
nection placed in the SYNRCVD state. Upon receipt of an ACK,
the connection continues as before.

4.5 MIGRATE WAIT state

This section assumes that the reader is familiar with the TCP state
machine and transitions [33, Chapter 18].

Special processing of TCP RST messages is required with migrate-
able connections, as a mobile host’s old IP address may be reas-
signed before it has issued a migrate request to the fixed host. Figure
4 shows the modified TCP state transition diagram for connections
that have successfully negotiated the Migrate-Permitted option. The
receipt of a RST that passes the standard sequence number checks
in the ESTABLISHED state does not immediately terminate the
connection, as specified in [31]. Instead, the connection is placed
into a newMIGRATEWAITstate. (A similar, but far less likely sit-
uation can occur if the fixed host is in the FINWAIT1 state—the
application on the fixed host has closed the connection, but there
remains data in the connection buffer to be transmitted. For sim-
plicity, these additional state transitions are not shown in figure 4.)

Connections in the MIGRATEWAIT state function as if they were
in the ESTABLISHED state, except that they do not emit any seg-
ments (data or ACKs), and are moved to CLOSED if they remain

5Migrated connections will generally originate from the same
port as before. However, if the mobile host is behind a NAT, it is
possible the connection has been mapped to a different port.

CLOSED

LISTEN

SYN SENTSYN RCVD

ESTABLISHED

MIGRATE WAIT
2MSL timeout

ap
pl

:c
lo

se
or

ti
m

eo
ut

appl: passive open
send: 〈nothing〉 appl: active

open

send: SY
N

recv: SYN
send: SYN, ACK

recv: ACK

rec
v:S

YN,A
CK;se

nd
:A

CK

appl: send
data

send: SYNrec
v:

RST

rec
v:

SY
N; s

en
d:

SY
N, A

CK

recv: SYN 〈migrate
T ,R〉

send: SYN, ACK
ap

pl:
m
ig
ra
te

sen
d:

SY
N
〈migr

ate
T ,R

〉

rec
v:

RST

re
cv

:S
Y

N
〈m

ig
ra

te
T

,R
〉

se
nd

:
SY

N
,
A

C
K

Figure 4: Partial TCP state transition diagram with Migrate
transitions (adapted from [33, figure 18.12])

in MIGRATE WAIT for over a specified period of time. We recom-
mend using the2MSL([31] specifies a Maximum Segment Lifetime
(MSL) as 2 minutes, but common implementations also use values
of 1 minute or 30 seconds for MSL [33]) period of time specified
for the TIME WAIT state.

Any segments received while in the MIGRATEWAIT state should
be processed as in the ESTABLISHED state, except that no ACKs
should be generated. The only way a connection is removed from
the MIGRATE WAIT state is on the receipt of a Migrate SYN with
the corresponding connection key. The connection then responds in
the same fashion as if it were in the ESTABLISHED state when it
received the SYN.

The MIGRATE WAIT state prevents connections from being in-
advertently dropped if the address allocation policy on the mobile
host’s previous network reassigns the mobile host’s old IP address
before the mobile host has reconnected at a new location and had
a chance to migrate the connection. It also prevents the continued
retransmission of data to an unreachable host.

This passive approach to disconnection discovery is preferred over
an active, mobile-initiated squelch message because any such mes-
sage could be lost.6 Furthermore, a mobile host may not have suf-
ficient (if any) notice of address reassignment to issue such mes-
sages. As an added performance enhancement, however, mobile
hosts aware of an impending migration may themselves emit a
special RST to the peer, which will force the connection into MI-
GRATE WAIT, preventing additional packet transmission until the

6And any guaranteed-reliable transmission mechanism could
take unbounded time.

7

mobile host has successfully relocated, although such action in-
vokes the strict 2MSL time bound on the allowable delay for host
relocation and connection migration.

5 Security issues

An end-to-end approach to mobility simplifies the trust relation-
ships required to securely support end-host mobility compared to
network-layer approaches such as Mobile IP. In addition to the re-
lationship between a mobile host and any proxies or home agents,
several Mobile IP-based proposals require that a correspondent host
in communication with a mobile host assume the responsibility
of authenticating communication with an arbitrary set of foreign
agents. In their route optimization draft [28], Perkins and Johnson
state:

One of the most difficult aspects of Route Optimization
for Mobile IP in the Internet today is that of providing
authentication for all messages that affect the routing of
datagrams to a mobile node.

Since no third parties are required or even authorized to speak on
the mobile host’s behalf in an end-to-end architecture, the only trust
relationship required for secure relocation is between the mobile
and correspondent host. Clearly they already must have a level of
trust commensurate with the nature of their communications since
they chose to communicate in the first place.

Regardless of the simplicity of trust relationships, there remains the
possibility that untrusted parties could launch attacks against the
end hosts or connections between them utilizing either dynamic
DNS updates or the Migrate and Migrate-Permitted options. The
security of dynamic DNS updates is addressed in RFC 2137 [8],
resting on the strength of the digital signature scheme used to au-
thenticate mobile hosts.

Possible attacks against the Migrate TCP options include both
denial-of-service attacks and methods of migrating connections
away from their appropriate end hosts. We discuss these attacks
below, and either show why the Migrate options are not vulnerable,
or explain why the attack presents no additional threat in relation to
standard TCP.

5.1 Denial of service

SYN flooding is a common form of Denial-of-Service (DoS) at-
tack, and most modern TCP implementations have taken great care
to avoid consuming unnecessary resources unless a three-way hand-
shake is complete. To validate a Migrate request, the correspondent
host performs a significant computation (the SHA-1 hash), which
implies we need to be especially vigilant against DoS attacks that
attempt to deplete the CPU resources of a target host. The vali-
dation is not performed unless an attacker succeeds in guessing a
valid, pre-computable token (with a 1 in264 probability); since a
RST message is generated if either the token or the request is in-
valid, an attacker has no way to identify when it has found a valid
token. Because a would-be attacker would therefore have to issue
roughly263 Migrate SYNs to force a request validation, we argue
that the TCP Migrate option does not introduce any additional DoS
concerns above standard TCP.

5.2 Connection hijacking

Since a Migrate request contains a hash of both the SYN segment’s
sequence number and migrate request sequence number, a replayed
Migrate option can only be used until either a new byte of data or
another migrate connection is sent on the connection. Since self-
migration is not allowed, duplicate Migrate SYNs (received out-
side of the three-way handshake) are ignored by the peer TCP. If,
however, the mobile host moves rapidly to a another new location,
a replayed Migrate SYN could be used to migrate the connection
back to the mobile host’s previous IP, which may have been subse-
quently assumed by the attacker. In order to prevent this attack, the
Migrate Request option processing ignores the source address and
port in duplicate packets, as a valid request from a relocated mobile
host would include a higher request number.

More worrisome, however, is the fact that once a Migrate SYN has
been transmitted, the token is known by any hosts on the new path,
and denial-of-service attacks could be launched by sending bogus
Migrate SYNs with valid tokens. If a mobile host includes a new
Migrate-Permitted option in its Migrate SYN, however, the window
of opportunity when the previous connection token can be used (if
it was snooped) is quite small—only until the new three-way hand-
shake is successfully completed.

5.3 Key security

The connection key used by the Migrate option is negotiated via
Elliptic Curve Diffie-Hellman to make it extremely difficult even
for hosts that can eavesdrop on the connection in both directions
to guess the key. Without sufficient information to verify possible
keys off-line, an attacker would have to continually generate Mi-
grate SYNs and transmit them to one of the end hosts, hoping to
receive a SYN/ACK in response to a correct guess. Clearly such an
attack is of little concern in practice, as the expected263 SYN pack-
ets required to successfully guess the key would generate sufficient
load as to be a DoS problem in and of themselves.

Hosts that lie on the path between end hosts, however, have suf-
ficient information (namely the two Elliptic Curve Diffie-Hellman
components) to launch an attack against the Elliptic Curve system
itself. The best known attack is a distributed version of Pollard’s
rho-algorithm [30], which [17] uses to show that a 193-bit EC sys-
tem would require8.52·1014 MIPS years, or about1.89·1012 years
on a 450Mhz Pentium II, to defeat.

While this seems more than secure against ordinary attackers, an
extremely well-financed attacker might be able to launch such an at-
tack on a long-running connection in the not-too-distant future. The
obvious response is to increase the key space. Unfortunately, we
are restricted by the 40-byte limitation on TCP options. Given the
prevalence of the MSS (4 bytes), Window Scale (3 bytes), SACK
Permitted (2 bytes), and Timestamp (10 bytes) options (of which
we are already using 8 bytes) in today’s SYN segments, the 20-byte
Migrate-Permitted option is already as large as is feasible. We argue
that further securing the connection key against brute-force attacks
from hosts on the path between the two end hosts is largely irrel-
evant, given the ability of such hosts to launch man-in-the-middle
attacks against TCP with much less difficulty!

The security of TCP connections, migrateable or not, continues to
remain with the authentication of end hosts, and the establishment

8

of strong session keys to authenticate ongoing communication. Al-
though we have taken care to ensure the Migrate option does not
further decrease the security of TCP connections, the latter are
inherently insecure, as IP address spoofing and sequence number
guessing are not very difficult. Hence we strongly caution users
concerned with connection security to use additional application-
layer cryptographic techniques to authenticate end points and the
payload traffic.

5.4 IPsec

When used in conjunction with IPsec [4], there are additional is-
sues raised by the use of the Migrate options. IPsec Security As-
sociations (SAs) are established on an IP-address basis. When a
connection with an associated SA is migrated, a new SA must be
established with the new destination address before communica-
tion is resumed. If the establishment of a this new SA conflicts with
existing policy, the connection is dropped. This seemingly unfor-
tunate result is actually appropriate. Since IPsec’s Security Policy
Database (SPD) is keyed on IP network address, the policies speci-
fied within speak to a belief about the trustworthiness of a particular
portion of the network.

If a mobile host attaches to a foreign network, any security assump-
tions based on its normal point of attachment are invalid. If the end
host itself continues to have sufficient credentials independent of its
point of attachment, an end-to-end authentication method should be
used, and a secure tunnel established for communication over the
untrusted network. A discussion of such techniques is outside of
the scope of this document.

6 Implementation

We have implemented this architecture in the Linux 2.2.15 kernel,
using Bind 8.2.2-P3 as the name server for mobile hosts. The IPv4
TCP stack has been modified to support the Migrate options. Con-
nection migration can be affected through two methods. Applica-
tions with open connections may explicitly request a migration by
issuing anioctl() on the connection’s file descriptor specify-
ing the address to migrate to. Most current applications, however,
lack a notification method so the system can inform them the host
has moved. Hence we also provide a mechanism for processes to
migrate open connections, regardless of whether they have the file
descriptor open or not.

This is done through the Linux/proc file system. A directory
/proc/net/migrate contains files of the formsource ad-
dress: source port-> dest address: dest portfor each open connec-
tion that has successfully negotiated the Migrate-Permitted option.
These files are owned by the user associated with the process that
opened the connection. Any process with appropriate permissions
can then write a new IP address to these files, causing the corre-
sponding connection to be migrated to the specified address. This
method has the added benefit of being readily accessed by a user
directly through the command line.

It is expected that mobile hosts will run a mobility daemon that
tracks current points of network attachment, and migrates open con-
nections based on some policy about the user’s preference for cer-
tain methods of attachment. For instance, when an 802.11 interface
comes up on a laptop that previously established connections on

Fixed
Host

Fixed
Basestation

Mobile
Location 1

Mobile
Location 2

100Mbps Ethernet

19.2Kbps
Modem

19.2Kbps
Modem

Figure 5: Network topology used for migration experiments

a CDPD link, it seems likely that the user would opt to migrate
most open connections to the address associated with the 802.11
link. Similarly the daemon could watch for address changes on at-
tached interfaces (possibly as a result of DHCP lease expirations
and renewals) and migrate connections appropriately. We plan to
implement such a daemon in the near future.

6.1 Experiments

Figure 5 shows the network topology used to gather the TCP traces
shown in figures 6 and 7. The traces were collected at the fixed
basestation, which is on the path between the fixed host and both
mobile host locations. We conducted TCP bulk transfers from a
server on the fixed host to a client on the mobile host. The client
initiates the connection from one location, and migrates to another
location at some later point. Both mobile host locations use iden-
tical connections, a 19.2Kbps serial link with≈100ms round-trip
latency. The basestation and fixed host are on a 100Mbps Ether-
net segment, hence the link to the mobile host is the connection
bottleneck. This topology is intentionally simple in order to isolate
the various subtleties of migrating TCP connections, as discussed
below.

Figure 6 shows the TCP sequence trace of a migrated TCP connec-
tion. At time t ≈ 4.9s the mobile host moved to a new address
and issued a Migrate SYN, as depicted by the dotted line. Since
the host is no longer attached at its previous address, all of the en-
queued segments at the bottleneck are lost. (The amount of lost data
is bounded by the advertised receive window of the mobile host. A
host that moves frequently across low-bandwidth connections may
wish to advertise a smaller receive window to reduce the number of
wasted segments.) Finally, att ≈ 6.8s the fixed host’s SYN/ACK
passes through the bottleneck, and is ACKed by the fixed host a
RTT later.

The fixed host does not immediately restart data transmissions
because the TCP Migrate options do not change the congestion-
avoidance or retransmission behavior of TCP. The sender is still
waiting for ACKs for the lost segments; as far as it is concerned,
it has only received two (identical) ACKs—the original ACK, and
one duplicate as part of the Migrate SYN three-way handshake.

9

70000

72000

74000

76000

78000

80000

82000

84000

86000

0 2 4 6 8 10 12

S
eq

ue
nc

e
N

um
be

r
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

Figure 6: A TCP connection sequence trace showing the migra-
tion of an open connection

68000

70000

72000

74000

76000

78000

80000

82000

84000

22 24 26 28 30 32 34

S
eq

ue
nc

e
N

um
be

r
(b

yt
es

)

Time (secs)

Before: Data
ACKs

Host Migration
After: Data

ACKs

Figure 7: A TCP Migrate connection (with SACK) sequence
trace with losses just before migration

Finally, at t ≈ 7.8s the retransmission timer expires (the inter-
val is from the first ACK, sent earlier att ≈ 4.9s) and the fixed
host retransmits the first of the lost segments. It is immediately ac-
knowledged by the mobile host, and TCP resumes transmission in
slow-start after the timeout.

Figure 7 shows the TCP sequence trace of a similar migrate TCP
connection. As before, the dashed line indicates the mobile host is-
sued a migrate request at timet ≈ 27.1s. This time, however, there
were additional losses on the connection that occurred just before
the migration, as can be seen att ≈ 24.9s. These segments are fast-
retransmitted, and pass through the bottleneck att ≈ 28s due to the
DUP-ACKs generated by the remaining SYNs. Unfortunately, this
is after the mobile host has migrated, so they, along with all the seg-
ments addressed to the mobile host’s initial address aftert ≈ 27.1s,
are lost.

At t ≈ 29s, the Migrate SYN/ACK makes it out of the queue
at the bottleneck, and the mobile host immediately generates an
ACK. As in the previous example, however, the fixed host is still
awaiting ACKs for previously transmitted segments. It is only at
t ≈ 31s that the timer expires and the missing segments are re-

transmitted. Notice that because SACK prevents the retransmission
of the previously-received segments, only those segments lost due
to the mobile host’s address change are retransmitted, and the con-
nection continues as before. The success of this trace demonstrates
that the Migrate options work well with SACK due to the consis-
tency of the sequence space across migrations.

6.2 Performance enhancements

Several enhancements can be made by implementations to improve
overall connection throughput during connection migration. The
most obvious of these is issuing three DUP-ACKs immediately af-
ter a migrate request, thereby triggering the fast-retransmit algo-
rithm and avoiding the timeout seen in the previous example [6].
By preempting the timeout, the connection further avoids dropping
into slow-start and congestion avoidance.

Such techniques should be used with care, however, as they assume
the available bandwidth of the new path between mobile and fixed
host is on the same order-of-magnitude as the previous path. For
migrations across homogeneous technologies this may be a reason-
able assumption. When moving from local to wide-area technolo-
gies, however, there may be order-of-magnitude discrepancies in
the available bandwidth. Hence we do not include such speed-ups
in the TCP Migrate specification, and leave it to particular imple-
mentations to responsibly evaluate the circumstances and provide
behavior compatible with standard TCP.

7 Deployment Issues

As with any scheme for mobility support, there are some deploy-
ment issues to be addressed. By pushing the implementation of mo-
bility mechanisms—connection migration in particular—to the end
points, our system requires changes to each transport protocol. For-
tunately, our TCP connection migration protocol can be generalized
to other UDP-based protocols with little difficulty. Significant ex-
amples include streaming protocols such as RTP and proprietary
protocols like Real, Quicktime and Netshow. We note that most of
these already have a control channel used for congestion and quality
control, and such applications would likely wish to be informed of
changes due to mobility as well. Furthermore, we argue that not all
applicationsrequirenetwork-layer mobility, especially those char-
acterized by short transactions where an application-level retry of
the transaction is easy to perform; we therefore make the case using
the end-to-end argument that mobility might be best implemented
as a higher-level, end-to-end function just like reliability.

Perhaps the biggest limitation of our approach is that both peers
cannot movesimultaneously.7 Because our scheme has no anchor
point like Mobile IP’s home agent, any IP address change must be
completed before the other can proceed. We do not view this as
a serious limitation to the widespread applicability of the protocol,
since we are primarily targeting infrastructure-based rather than ad-
hoc network topologies in this work.

In addition to these two limitations, there are several issues that
crop up when one considers presently-deployed applications. While
it is currently possible for Internet hosts to be re-addressed while

7“Simultaneously” is defined as whenever the intervals between
address change and the (would-be) reception of the Migrate SYN
by the corresponding host for both end hosts overlap.

10

operating (due to a DHCP lease expiration or similar event), it is
quite rare. Hence some applications have made assumptions about
the stability of network addresses, which are no longer valid in our
architecture. We discuss some of these issues below.

7.1 Address caching

There is a class of applications that store IP addresses within the ap-
plication, and communicate these addresses to a remote host. Such
applications would not function properly under our architecture.
They are readily identifiable, however, as another currently widely-
deployed technology also breaks such applications: Network Ad-
dress Translators (NATs). While the wisdom of Network Address
Translation is a hotly debated topic, there is little chance it will dis-
appear any time soon. Hence most applications designed today take
care not to transmit addresses as part of the application-layer com-
munication, and therefore will also work in our architecture. In fact,
one can make the case that such applications are broken, since IP
addresses are only identifiers of attachment points, not hosts.

Another, larger class of applications cache the results ofgethost-
byname(), and may not perform further hostname resolution.8 Fur-
thermore, DNS resolvers themselves cache hostname bindings as
discussed in Section 3. Unfortunately many older name servers en-
force a local TTL minimum, often set to five minutes. Since newer
versions of popular name servers adhere to the TTL specified in the
returned resource record, this problem should disappear as upgrades
are made.

7.2 Proxies and NATs

Proxies actually help the deployment of our scheme, as we only
need to modify the proxy itself, and all communications through
the proxy will support mobility. Similarly, NATs can also provide
transparent support without remote system modification. In fact, a
NAT doesn’t even need a modified TCP stack. It need only snoop on
TCP SYNs (which it does anyway), note the presence of a Migrate-
Permitted option, and snoop for the SYN/ACK (which it does any-
way). If the SYN/ACK does not contain a Migrate-Permitted op-
tion, the NAT can support connection migration internal to its net-
work by inserting a corresponding Migrate-Permitted option, and
continuing to snoop the flow looking for any Migrate SYNs. It need
only fabricate a corresponding SYN/ACK and update its address-
to-port mappings, without passing anything to the end host. Further,
by avoiding any explicit addressing in migrate requests, the Migrate
options function properly though legacy NATs, and even allow a
mobile host to move between NATs, as connections may change
not only address but port as well.

7.3 Non-transactional UDP applications

Many UDP applications are transactional in nature. UDP is, by def-
inition, a datagram protocol, and an inopportune change of IP ad-
dress is only one of many reasons for an unsuccessful UDP trans-
action. The transaction will need to be retried, although a new host-
name binding should be obtained first.

There exists at least one glaring exception to this rule. The Network
File System protocol (NFS) represents one of the most prevalent

8Some popular Web browsers display this behavior.

UDP applications in use today and uses IP addresses in its mount
points.9 We believe, given the characteristics of network links likely
to be encountered by mobile hosts, it is likely that NFS-over-TCP
is a better choice than UDP. Otherwise, a mobile host would need
to dismount and re-mount NFS filesystems upon reconnection.

8 Conclusion

This paper presents an end-to-end architecture for Internet host mo-
bility that makes no changes to the underlying IP communication
substrate. It uses secure updates to the DNS upon an address change
to allow Internet hosts to locate a mobile host, and a set of connec-
tion migration options to securely and efficiently negotiate a change
in the IP address of a peer without breaking the end-to-end connec-
tion. We have implemented this architecture in the Linux operat-
ing system and are encouraged by the ease with which mobility
can be achieved without any router support, the flexibility to mo-
bile hosts provided by it, and performance comparable to Mobile
IP with route optimization.

Our architecture allows end systems to choose a mobility mode
best suited to their needs. Routing paths are efficient with no tri-
angle routing, and any connection involving the mobile host shares
fate only with the communicating peer and not with any other en-
tity like a home agent. When a mobile host is in a foreign network
and communicating with another host, the disruption in connec-
tivity caused by a sudden IP address change is proportional to the
round-trip time of the connection. When a mobile host accepts no
passive connections, the protocol does not require even the DNS
update notification, and seamless connectivity across host mobility
is achieved using completely end-to-end machinery.

The security of our approach is based on a combination of the well-
documented secure DNS update protocol in conjunction with a new
secure connection migration mechanism. Our architecture and im-
plementation function across a variety of other components of the
Internet architecture, including firewalls, NATs, proxies, IPsec, and
IPv6. We believe that our architecture scales well even when most
Internet hosts become mobile because lookups and updates are dis-
tributed across administratively-delegated, replicated DNS servers.

We note that our connection migration scheme, the MI-
GRATE WAIT state in particular, avoids address assignment race
conditions, but doesnot support host disconnectivity. Hence, as
with Mobile IP and other mobility schemes, TCP connections may
be lost if the mobile host’s relocation is accompanied by a pro-
longed period of disconnectivity. We are hopeful our end-to-end
approach may be extended to support general host disconnectivity
as well.

Acknowledgements

We thank John Ankcorn, Frans Kaashoek, Eddie Kohler, Robert
Morris, Srinivasan Seshan, Tim Sheppard, and Karen Sollins for
helpful comments on earlier drafts of this paper. We are indebted to
David Andersen, who helped improve the security of our initial Mi-
grate scheme, and David Mazieres, who suggested we use Elliptic
Curve Diffie-Hellman key exchange for additional key strength.

9We note that most other advanced file systems, such as
Coda [22] and newer versions of NFS use TCP, which gives good
congestion control and reliability behavior.

11

References
[1] A DJIE-WINOTO, W., SCHWARTZ, E., BALAKRISHNAN , H.,

AND LILLEY, J. The design and implementation of an inten-
tional naming system. InProc. ACM SOSP ’99(Dec. 1999),
pp. 186–201.

[2] A KAMAI TECHNOLOGIES, INC. http://www.akamai.
com.

[3] A MERICAN NATIONAL STANDARDS INSTITUTE. Public key
cryptography for the financial service industry: The elliptic
curve digital signature algorithm. ANSI X9.62 - 1998, Jan.
1999.

[4] ATKINSON, R. Security architecture for the internet protocol.
RFC 1825, IETF, Aug. 1995.

[5] BALAKRISHNAN , H., SESHAN, S., AND KATZ, R. H. Im-
proving reliable transport and handoff performance in cellular
wireless networks.ACM Wireless Networks 1, 4 (Dec. 1995),
469–481.

[6] CACERES, R., AND IFTODE, L. Improving the performance
of reliable transport protocols in mobile computing environ-
ments.IEEE JSAC 13, 5 (June 1995).

[7] DROMS, R. Dynamic Host Configuration Protocol.
RFC 2131, IETF, Mar. 1997.

[8] EASTLAKE, 3RD, D. E. Secure domain name system dy-
namic update. RFC 2137, IETF, Apr. 1997.

[9] FERGUSON, P., AND SENIE, D. Network ingress filtering:
Defeating denial of service attacks which employ IP source
address spoofing. RFC 2267, IETF, Jan. 1998.

[10] GUPTA, S.,AND REDDY, A. L. N. A client oriented, IP level
redirection mechanism. InProc. IEEE Infocom ’99(Mar.
1999).

[11] HUITEMA , C. Multi-homed TCP. Internet Draft, IETF, May
1995. (expired).

[12] IEEE. Wireless medium access control (MAC) and physical
layer (PHY) specifications. Standard 802.11, 1999.

[13] JACOBSON, V. Congestion avoidance and control. InProc.
ACM SIGCOMM ’88(Aug. 1988), pp. 314–329.

[14] JACOBSON, V., BRADEN, R., AND BORMAN, D. TCP ex-
tensions for high performance. RFC 1323, IETF, May 1992.

[15] JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK, M. F.
Mobile computing with the rover toolkit. IEEE Trans. on
Computers 46, 3 (Mar. 1997), 337–352.

[16] KARN, P. Qualcomm white paper on mobility and IP
addressing. http://people.qualcomm.com/karn/
papers/mobility.html , Feb. 1997.

[17] LENSTRA, A. K., AND VERHEUL, E. R. Selecting cryp-
tographic key sizes.http://www.cryptosavvy.com ,
Nov. 1999.

[18] MALTZ , D., AND BHAGWAT, P. MSOCKS: An architecture
for transport layer mobility. InProc. IEEE Infocom ’98(Mar.
1998).

[19] MATHIS, M., MAHDAVI , J., FLOYD, S., AND ROMANOW,
A. TCP selective acknowledgment options. RFC 2018, IETF,
Oct. 1996.

[20] MOCKAPETRIS, P. V., AND DUNLAP, K. Development of
the domain name system. InProc. ACM SIGCOMM ’88(Aug.
1988), pp. 123–133.

[21] MORRIS, R. T. A weakness in the 4.2BSD UNIX TCP/IP
software. Computing science technical report 117, AT&T Bell
Laboratories, Murray Hill, New Jersey, Feb. 1985.

[22] MUMMERT, L. B., EBLING, M. R., AND SATYA -
NARAYANAN , M. Exploiting weak connectivity for mobile
file access. InProc. ACM SOSP ’95(Dec. 1995), pp. 143–
155.

[23] MYSORE, J., AND BHARGHAVAN , V. A new multicasting-
based architecture for internet host mobility. InProc.
ACM/IEEE Mobicom ’97(Sept. 1997), pp. 161–172.

[24] NATIONAL INSTITUTE OF STANDARDS AND TECHNOL-
OGY. The Secure Hash Algorithm (SHA-1). NIST FIPS PUB
180-1, U.S. Department of Commerce, Apr. 1995.

[25] NOBLE, B. D., SATYANARAYANAN , M., NARAYANAN , D.,
TILTON, J. E., FLINN , J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. InProc. ACM
SOSP ’97(Oct. 1997), pp. 276–287.

[26] PERKINS, C. E., AND CALHOUN, P. R. Mobile IP chal-
lenge/response extensions. Internet Draft, IETF, Feb. 2000.
draft-ietf-mobileip-challenge-09.txt (work
in progress).

[27] PERKINS, C. E.,AND JOHNSON, D. B. Mobility support in
IPv6. InProc. ACM/IEEE Mobicom ’96(Nov. 1996), pp. 27–
37.

[28] PERKINS, C. E., AND JOHNSON, D. B. Route optimiza-
tion in mobile IP. Internet Draft, IETF, Feb. 2000.draft-
ietf-mobileip-optim-09.txt (work in progress).

[29] PERKINS, ED., C. E. IP mobility support. RFC 2002, IETF,
Oct. 1996.

[30] POLLARD, J. Monte carlo methods for index computation
mod p.Mathematics of Computation 32(1978), 918–924.

[31] POSTEL, ED., J. Transmission Control Protocol. RFC 793,
IETF, Sept. 1981.

[32] SALTZER, J. H., REED, D. P., AND CLARK , D. D. End-
to-end arguments in system design.ACM TOCS 2, 4 (Nov.
1984), 277–288.

[33] STEVENS, W. R. TCP/IP Illustrated, Volume 1: The Proto-
cols. Addison Wesley, Reading, Massachusetts, 1994.

[34] THOMSON, S.,AND NARTEN, T. IPv6 stateless address au-
toconfiguration. RFC 2462, IETF, Dec. 1998.

[35] VIXIE , P., THOMSON, S., REKHTER, Y., AND BOUND, J.
Dynamic updates in the domain name system (DNS UP-
DATE). RFC 2136, IETF, Apr. 1997.

[36] ZUCCHERATO, R., AND ADAMS, C. Using elliptic curve
Diffie-Hellman in the SPKM GSS-API. Internet Draft, IETF,
Aug. 1999. draft-ietf-cat-ecdh-spkm-00.txt
(work in progress).

12

18th ACM Symposium on Operating System Principles (SOSP ’01)

Mesh-Based Content Routing using XML

Alex C. Snoeren, Kenneth Conley, and David K. Gifford
MIT Laboratory for Computer Science

Cambridge, MA 02139

{snoeren, conley, gifford}@lcs.mit.edu

Abstract

We have developed a new approach for reliably multicasting time-
critical data to heterogeneous clients over mesh-based overlay
networks. To facilitate intelligent content pruning, data streams
are comprised of a sequence of XML packets and forwarded by
application-level XML routers. XML routers perform content-
based routing of individual XML packets to other routers or clients
based upon queries that describe the information needs of down-
stream nodes. Our PC-based XML router prototype can route an 18
Mbit per second XML stream.

Our routers use a novel Diversity Control Protocol (DCP) for
router-to-router and router-to-client communication. DCP reassem-
bles a received stream of packets from one or more senders using
the first copy of a packet to arrive from any sender. When each
node is connected ton parents, the resulting network is resilient
to (n − 1) router or independent link failures without repair. As-
sociated mesh algorithms permit the system to recover to(n − 1)
resilience after node and/or link failure. We have deployed a dis-
tributed network of XML routers that streams real-time air traffic
control data. Experimental results show multiple senders improve
reliability and latency when compared to tree-based networks.

1 Introduction

Our research is motivated by an interest in highly reliable data dis-
tribution technologies that can deliver information to end clients
with low latency in the presence of both node and link failures. Low
latency can be crucial for certain data that are extremely time crit-
ical. For example, real-time trading systems rely upon the timely
arrival of current security prices, air-traffic control systems require
up-to-the-second data on aircraft position and status, and gaps or
delay in live network video and audio feeds can be distracting. In

This research was supported in part by DARPA (Grant No. F30602-
97-1-0283). Alex C. Snoeren was supported by a National Defense
Science and Engineering Graduate (NDSEG) Fellowship.

such environments, even a sub-second pause in a data feed while a
delivery network retransmits or reconfigures may be unacceptable.
Recent studies have shown the Internet recovers from failures on a
much slower scale, often on the order of minutes [2, 20].

We observe that the achievable latency of a reliable data stream is
bounded by the packet loss-recovery mechanism. Packet losses can
be handled by retransmission or redundant coding. Retransmission
methods limit recovery time to the round-trip delay between com-
municating nodes. In order to avoid retransmission in the face of
loss redundant data must be sent.

This work is based upon the assumption that, in certain cases, the
value of reliable and timely data delivery may justify increased
transport costs if the cost increase allows us to meet a desired reli-
ability goal. Systems often try to avoid the delay penalty by using
loss-resistant coding schemes which encode redundant information
into the data stream. We extend this redundancy to network deliv-
ery paths and senders. Recent work in overlay networks has shown
that multiple, distinct paths often exist between hosts on the In-
ternet [2]. We attempt to leverage these redundant network links.
While some may consider this additional bandwidth wasteful, we
believe the system described herein presents an interesting and el-
egant method of utilizing additional network resources to achieve
levels of reliability and latency previously difficult to obtain.

Our basic approach is to construct a content distributionmesh,
where every node is connected ton parents, receiving duplicate
packet streams from each of its parents. The value ofn is a config-
uration parameter that is used to select the desired trade-off between
latency, reliability, and transport costs. By maintaining an acyclic
mesh, this approach guarantees that the minimum cut of the mesh
is n nodes or independent links. Thus, a mesh is resilient to(n−1)
node or(n− 1) independent link failures (we say(n− 1) resilient)
without repair. If a mesh failure occurs, recovery algorithms restore
the mesh to(n − 1) resilience in a few seconds.

Our architecture is based upon an overlay network that transports
XML streams. AnXML packet is a single independent XML docu-
ment [7]. AnXML stream is a sequence of XML packets, and each
XML packet in a stream can have a different document type def-
inition (DTD). When clients join an overlay network they specify
an XML query that describes the XML packets they would like to
receive. It is the job of the overlay network to configure itself to
deliver the desired XML stream to a client at reasonable cost given
reliability goals. Queries are expressed in a general language such
as XQuery [11].

Our overlay network is implemented by XML routers. AnXML
router is a node that receives XML packets on one or more input

1

links and forwards a subset of the XML packets it receives to each
output link. Each output link has a query that describes the por-
tion of the router’s XML stream that should be sent to the host on
that link. XML routers are components in a distributed publish-
subscribe network and implement the selective forwarding of XML
packets according to subscriptions described by queries.

XML has a number of advantages over a byte stream for multicast
delivery. First, XML permits the network to interpret client data
needs in terms of well-defined XML queries. Second, XML pack-
ets suggest what logical units of data will be processed together by
a client and thus can aid network scheduling. Third, many tools and
standards exist for XML making it easy for both the data originator
and receiver to build robust applications. Finally, our approach al-
lows applications and databases to push part of their processing into
the network fabric. We expect that query languages such as XQuery
will become standardized, allowing a single language to be used to
describe data requirements. This standardization will permit appli-
cations to program our network fabric to deliver the data they need
in a simple, consistent fashion.

The primary disadvantage of XML is often thought to be the in-
creased number of bytes required to represent the same information
in XML when compared to an application specific encoding. How-
ever, our experimental results suggest that conventional data com-
pression eliminates this disadvantage. While an XML stream must
be decompressed and recompressed at any router that wishes to do
query matching, a router that passes all packets to every client can
bypass the XML switch component entirely, and no decompression
or compression need be performed. Thus, routers can include a
fast-path for clients that subscribe to the unfiltered XML stream.

This paper makes three distinct, novel contributions:

• XML Routing. To the best of our knowledge, we describe the
first packet-based network XML router to support arbitrary
content routing. We believe that systems for XML routing
will be useful in a wide variety of contexts and will be ef-
ficient because XML wrapper overhead can be removed by
appropriate use of data compression technology.

• Mesh-based overlay networks. We describe the first over-
lay network to use multiple, redundant paths for simultane-
ous transport of multicast streams. Our mesh approach offers
better latency performance than tree-based approaches.

• Diversity Control Protocol. We describe a novel protocol that
uses source-independent sequence numbers to reliably recon-
struct a sequenced packet stream from multiple sources. DCP
reduces latency and improves reliability when compared with
conventional single-sender approaches.

The remainder of this paper describes our current XML routing in-
frastructure in the following sections:

• Previous work (Section 2)

• Architecture of our XML routing system (Section 3)

• Mesh algorithms and distribution protocol (Section 4)

• Experimental results and our air traffic control application
(Section 5)

• Issues involved in routing XML over a mesh (Section 6)

• Conclusions (Section 7)

2 Previous work

Our work on XML routers and DCP builds on a large body of past
work in reliable multicast and overlay networks. We consider re-
lated work in four areas: reliable multicast, overlay networks, re-
dundant coding and transmission schemes, and publish-subscribe
networks.

2.1 Reliable multicast

Reliable multicast systems send a stream of packets to a set of
receivers. Reliable multicast systems are often built on IP Multi-
cast [3]. IP Multicast packets are duplicated by the network layer
as late as possible to minimize the network resources consumed to
deliver a single packet to multiple receivers. Acknowledgments are
required to make IP Multicast reliable. If a packet is damaged in
transmit or is lost, either a receiver will send a negative acknowl-
edgment to the sender [14, 22, 27, 41, 43], or the lack of a positive
acknowledgment from a receiver will cause the sender to retrans-
mit [17, 22, 43]. Express [15] is a single-source multicast system
that simplifies IP Multicast in the face of multiple data sources but
is still integrated with the network fabric.

Of particular note is RMX [12], which shares similar goals with
our work. RMX provides real-time reliable multicast to hetero-
geneous clients through the use of application-specific transcoding
gateways. For example, it supports re-encoding images using lossy
compression to service under-provisioned clients. By using self-
describing XML tags, our architecture allows similar functionality
to be provided in a general fashion by having clients with differ-
ent resource constraints subscribe to different (likely non-disjoint)
portions of the data stream.

2.2 Overlay networks

An overlay network is a virtual network fabric that is implemented
by application level routers that communicate with each other and
end clients using normal IP network facilities. Overlay networks
typically use reliable point-to-point byte streams, such as TCP,
to implement reliable multicast. The goal of an overlay network
is typically to provide increased robustness [2, 35] or additional,
sophisticated network services, such as wide-area stream broad-
cast [16, 30, 37], without underlying network assistance. In fact,
network operators may be unaware that such services are running
on their network.

One advantage of building our network as an overlay is that it
is easy to modify and deploy without the cooperation of network
providers. We have adopted the use of overlay networks as an ef-
fective way to build a robust mesh that can effectively route XML
packets. End-system-multicast [13] is an overlay-based multicast
system that constructs meshes during spanning tree discovery but
does not use redundant mesh links for information delivery.

2.3 Redundant encoding and transmission

Loss-tolerant encoding schemes (often termed erasure, tornado, or
forward error correcting (FEC) codes) use redundant information
to support the reconstruction of a data stream in the face of a cer-
tain amount of packet loss [25]. For example, in Digital Fountain’s
Meta-Content protocol [9] packets are encoded to allow a receiver

2

to recover a data stream even if a certain fraction of Meta-Content
packets are never received.

Our approach to redundancy is based on sender and channel diver-
sity while loss-tolerant encoding schemes typically use only packet
diversity [9, 33]. We use channel diversity because experimen-
tal data suggests that Internet packet errors are highly path depen-
dent [2, 29, 35]. We use sender diversity because in single-sender
systems a sender failure is likely to cause a stream gap during recov-
ery [30]. Based on these assumptions, we believe that, with appro-
priately configured levels of mesh redundancy, sender and channel
diversity can provide lower loss rates and latency than packet diver-
sity, albeit at a higher cost.

Several previous systems have leveraged channel diversity, sender
diversity, or both in an end-to-end fashion. Dispersity routing [24]
and IDA [31] split the transfer of information over multiple net-
work paths to provide enhanced reliability and performance. Sim-
ulation results and analytic studies have shown the benefits of this
approach [5, 6]. In addition, tornado codes have been suggested
to combine parallel downloads to improve reliability and perfor-
mance [8]. Application-level dispersity routing, IDA, and parallel
downloads use multiple network paths but do not provide for any
loss recovery along a single path within the network fabric. Our
use of application-level routers allows us to perform loss recovery
inside of the network fabric and, thus, improve loss resilience. Fur-
ther, the block encoding scheme used by Digital Fountain may add
additional latency during decoding. We discuss our loss resilience
results in Section 5.

2.4 Publish-subscribe systems

Publish-subscribe networks, such as Tibco’s TIBTMRendezvous
[28], Elvin4 [36], Siena [10], Gryphon [4], and XMLBlaster [1]
permit receivers to specify the portion of a data stream that they
would like to receive. Receivers typically subscribe to messages
using a query that summarizes their interests. Streams may be en-
coded such that the same content, but in varying levels of fidelity,
may be requested by each client [26, 42]. Siena and Gryphon both
provide distributed implementations of singly connected graphs for
information distribution, but neither provides XML-based routing.

XMLBlaster [1] is a publish-subscribe system based on XML
packet streams, but it only permits queries over a specific header
field. Our semantics permit queries over any field in an XML
packet. We believe that the overhead of making each XML packet
a fully formatted document is a small price to pay for the result-
ing flexibility and rational query semantics. This is especially the
case when data compression causes the markup overhead in each
XML packet to become negligible. To our knowledge, no existing
stream-based publish-subscribe network uses redundant meshes for
reliability or performance enhancement.

3 Resilient mesh networks

As shown in Figure 1, a typical overlay network for routing an XML
stream contains one or more root routers (R1-R2), a variable num-
ber of internal routers (I1-I3), and a variable number of edge clients
(C1-C3). Root routers are the origin of data and are assumed to
have independent means of generating their XML stream. Internal
routers receive the XML stream from their parent routers and for-

R1 R2

I3I2I1

C1 C2 C3

Figure 1: A mesh network comprising root routers (R1-R2), inner
XML routers (I1-I3) and clients (C1-C3).

ward elements of the stream to their children as required. Clients
connect to routers and provide a query that describes the portions
of the XML stream they would like to receive.

The content carried by routers in a mesh can be statically or dynam-
ically configured. Typically, with static configuration the internal
routers carry all of the XML packets available from the root routers.
Thus, with a static approach to content configuration clients have a
wide choice of routers that can service their request without recon-
figuration delay. Unfortunately, such a mesh requires a fixed band-
width capacity throughout. We can leverage the expressive power
of XML to better control bandwidth usage.

Dynamic content configuration allows a router to carry only the
packet stream necessary to service its children. In this case, a router
disjoins all of the queries it receives from its children and forwards
the resulting query to its parent routers. Note that since each router
combines the queries of each of its children when subscribing to
its parent routers, each router need only store queries for its imme-
diate children. This results in significant bandwidth savings when
clients are uninterested in the full contents of the data stream. The
disadvantage of this scheme is that the mesh may not have a suf-
ficient number of routers that currently carry the traffic needed by
a node searching for an additional parent during mesh construction
or repair. If a client requests information that is not available in that
portion of the mesh, there will be a delay while the mesh readjusts
to supply the required information although this additional startup
delay is tolerable in most situations. During reconstruction, the data
should be available from the current parent set. During initializa-
tion, it simply adds a slight additional startup latency.

Clients wishing to join an(n − 1)-resilient mesh perform four dis-
tinct operations: (1) composing an XML query that describes the
data desired, (2) contactingn existing routers that can service the
query, (3) sending thesen routers the XML query it has composed,
and (4) receiving the XML stream described by the query. One par-
ticular algorithm for discovering routers is described in Section 4.

Each router includes a query table that describes the portion of the
XML stream each of its children wishes to receive. Thus, each
router functions as a splitter that takes a single XML stream and
refines it for each child. Often a child is only interested in a subset
of a stream (such as all air traffic landing in Seattle). Expressing this
desire to routers saves last-mile bandwidth and end-host processing.

3

Our architecture also admits XMLcombining routers. A combining
router merges XML feeds from different sources into a single XML
feed. This can be accomplished by simply forwarding unmodified
packets from both sources, or it can involve application-specific
processing. For example, in our air traffic control application we
are investigating merging our XML stream of air traffic data with
an XML stream of runway conditions.

We will call a nodek-resilient when any combination ofk other
nodes and independent links in the mesh can fail and the node will
still receive its XML stream. We say a mesh isk-resilient when
all of its nodes arek-resilient. The level of resilience in a network
can vary according to the needs of end clients. Although we hereto-
fore have described a uniform mesh architecture with a fixed router
fan-in ofn, it is entirely possible to build meshes with non-uniform
fan-in. The only constraint is that in order to assure a desired level
of resilience all the way to the root, the resilience of a child’s par-
ents must be equal to, or greater than the child’s desired resilience.
For example, one could build a core network that is 2-resilient, and
certain clients could choose to be 1-resilient. The failure of a core
router will most likely reduce the resilience level of many periph-
eral routers and clients until the mesh can reconfigure, but the mesh
will continue to provide service to all clients except those clients
directly connected only to the failed node. Thus, in certain circum-
stances, it may make sense to improve the resilience only of key
portions of a network that provide service to many clients. We are
investigating issues surrounding optimal mesh configuration.

4 Algorithms and protocols

An XML router implements three key algorithms and protocols:

• XML router core. The XML core is the engine that receives
and forwards packets according to queries. Its job is to effi-
ciently evaluate each received XML packet against all output
link queries.

• Diversity Control Protocol (DCP). DCP implements resilient
mesh communication by allowing a receiver to reassemble a
packet stream from diverse sources.

• Mesh initialization and maintenance. A set of algorithms au-
tomatically organizes routers and clients into a mesh and re-
pairs the mesh when faults occur.

4.1 XML router core

Figure 2 shows the internal structure of an XML router. An XML
router consists of three major components:

• An input component that acquires XML streams for presen-
tation to the XML switch. The input component is respon-
sible for maintaining DCP connections to the parents of the
router and implementing the mesh initialization and recon-
figuration algorithms. In addition, the input component im-
plements data decompression. Our input component can also
connect to TCP XML streams for compatibility.

Although, in many instances, the input component will ac-
quire a single XML stream for routing, an input component
could connect to distinct meshes and merge multiple XML
streams for routing. The input component is also responsible
for forwarding the disjunction of its link queries to its parents.

DCP TCP

Input

XML
Switch

Output

DCP TCP

Link
Query

Figure 2: The internal architecture of an XML router comprises the
input component, XML switch, and output component. Output link
queries control XML packet forwarding.

• An XML switch that compares received packets against link
queries, and forwards matching packets to the requesting
links. An efficient XML switch attempts to combine distinct
link queries into a single state machine that matches all of the
link queries in a single pass over an incoming packet.

• An output component that forwards packets on output links
using DCP. In addition, the output component is responsible
for handling join requests from prospective children and im-
plements link-based data compression. Our output compo-
nent additionally can produce TCP XML streams for potential
compatibility with non-DCP children.

4.2 Diversity control protocol

TheDiversity control protocol (DCP) is so named because of the in-
herent sender diversity that it implements. The essential idea behind
DCP is that a receiver can reassemble a packet stream from diverse
senders. In DCP, the same stream of packets is sent to a receiver by
multiple sources where the desired level of redundancy may vary
between nodes in a mesh. As shown in Figure 3, a DCP receiver
reassembles the packet stream using the first error-free packet re-
ceived from any source.

4.2.1 Sequencing

Proper in-order packet stream reassembly requires that all DCP
packets be assigned identifiers that admit a total ordering and that
the total ordering must be known to the participants. DCP further
requires identifiers obey the following invariants:

• For a given content stream, packet identifiers must be associ-
ated only with packet content and not be sender specific. This
allows receivers to properly reassemble a stream based upon
identifiers alone.

• Since packets may travel through a variable number of inter-
mediate router hops, the identifiers with a particular stream
must be selected at root routers and remain identifiable

4

A B

C

3

1
3

2

1

2

3

Figure 3: The Diversity Control Protocol (DCP) reassembles a
packet stream from diverse senders.

throughout the mesh. Thus, the set of root routers for a partic-
ular stream must originate the same packet stream and assign
the same identifiers to the same packets. This must be true
even if the root routers do not generate the stream at precisely
the same time or rate.

• Receiver identifier processing must admit gaps. Since inter-
mediate routers may not forward packets containing content
that was not requested by a particular receiver, the identifiers
of these packets will not be received.

Our approach to satisfying these three invariants is to assign a
monotonically increasing 32-bit application serial number (AN) to
every DCP packet when the packet is created at a root router. Ev-
ery router that forwards DCP packets maintains the last packet AN
sent on each output link. The last AN sent on a link is included in
the next packet along with the next packet’s current AN number.
Including a client-specific previous AN in each packet permits a re-
ceiver to reassemble the stream of packets from a sender in the pres-
ence of missing ANs. In our application, missing ANs are caused
by filtered XML packets.

While routers may remove packets from the datagram stream, DCP
itself is a reliable transport protocol. Hence, any missing datagram
(as indicated by a hole in the AN sequence chain) will be retrans-
mitted. In order to maintain redundancy invariants throughout the
mesh, retransmissions are requested at each hop rather than end-
to-end. Similarly, packets are buffered and transmitted in-order at
each hop. This ensures that every node can consider each parent
an independent source of ordered datagrams. We return to consider
the implications of out-of-order forwarding in section 6.4.

DCP currently uses UDP as a transport mechanism to facilitate de-
ployment at the application layer. Distinct DCP streams are cur-
rently transmitted on separate UDP ports. In our application, one
DCP packet is used to transport one XML packet. This is possible
because our XML packets are relatively small. If XML packets do
not fit into a single IP packet envelope, an AN could describe both
the XML packet number being transmitted and the IP packet within
the XML packet. The important invariant is that an AN be based
upon the content of a packet and not on when or by whom it was
generated.

Ver. Flags Checksum

AN

Previous AN

Figure 4: DCP Packet Header

Figure 4 shows the layout of a DCP packet. In addition to the ANs
we have already mentioned, a DCP packet includes a 4-bit version
number to allow DCP to evolve and a set of 8 bit flags. The flags
permit a sender to request an acknowledgment, a receiver to send an
acknowledgment or request a retransmission, and for the exchange
of keep-alive and connection-establishment and tear-down informa-
tion. The entire packet is covered by a 16-bit checksum which may
be optionally disabled if encapsulated in UDP or when carrying
streams insensitive to corruption.

While our use of DCP is as a datagram protocol, DCP is equally
well-suited for the transmission of byte streams. A bit in the flags
field is used to indicate that DCP is operating in stream mode.
When used as a stream protocol, the AN simply refers to the se-
quence number of the first byte of the datagram, as in TCP. Simi-
larly, the previous AN refers to the last byte of the previous packet
in stream mode. Note that this construction allows for fragmenta-
tion or reframing of DCP packets if desired, albeit at the expense of
additional complexity and buffering at the receivers. Additionally,
if multiple root servers are in use each server must take care to se-
quence the data identically. Datagram and streaming mode cannot
be used during the same DCP connection.

4.2.2 Retransmission

When a receiver joins multiple DCP senders, it waits for the first
packet to arrive from any one of the hosts and uses the AN of this
packet as its current AN. Packets that are subsequently received
with a lower AN than the current AN are discarded and packets
that are received with an AN in the future are buffered. A packet
with the current AN in the previous AN field is considered the next
packet in the reassembled stream and the current AN is updated. If
a receiver does not receive an appropriate packet after a fixed in-
terval, it sends a negative acknowledgment (NACK) to all senders
with its current AN. This retransmission is sent only to the receiver
requesting it. In a fashion similar to TCP’s fast retransmit, a NACK
is generated after a much shorter timeout if a packet with a subse-
quent AN is received, indicating either a lost or reordered packet.
This NACK serves as a request for all senders to retransmit all pack-
ets after the receiver’s current AN.

Assuming a regular mesh construction (equal numbers of parents
and children), the negative acknowledgment process does not suffer
from ACK implosion even with high degree. An individual receiver
only generates a NACK if an AN is not received from any of its
parents. Due to the (assumed) pairwise independence of packet
loss between distinct senders and receivers, this probability drops
exponentially with degree as discussed in section 5.1.2. Hence, the
probability that a sender receives any NACKs at all decreases with
increasing degree, avoiding the NACK implosion problem.

5

Senders transmit packets in order to a receiver and request an ac-
knowledgment from a receiver from time to time. Our current im-
plementation requests positive acknowledgment after a fixed num-
ber of packets has been sent. A receiver responds to a request
for acknowledgment with an acknowledgment that contains the last
AN (or last byte in streaming mode) it has processed. This serves
to limit the amount of buffering required at each node and allows
for rapid resynchronization of senders and receivers. If the current
sender has not yet sent that AN (byte), it squelches its transmissions
until after that AN (byte). A receiver can also send an unsolicited
acknowledgment to squelch a sender that is behind. In contrast, if
a receiver continually fails to respond to acknowledgment requests,
or persistently lags behind the sequence space (indicating insuffi-
cient bandwidth between sender and receiver), the connection is
terminated. The receiver must then reconnect to a new point in the
mesh (presumably with a higher-bandwidth link).

4.3 Mesh formation and maintenance

A mesh begins life as a set of root routers that are all capable of sup-
plying an XML stream of interest. We assume that failures of root
routers are independent and, thus, each has an independent means
of deriving the XML stream. As noted above, however, roots must
be uniform in their DCP packetization and sequence number selec-
tion. Additional roots may be added to a mesh at any time provided
they have a mechanism to synchronize their content stream with the
existing root nodes.

Mesh discovery is outside the scope of this document, but one
method of distributing the set of root nodes for a particular content
stream is through DNS. All of the IP addresses for the root routers
for a service could be stored in a DNS address record. For example,
stream.asdi.faa.gov might be a DNS name that maps to a
set of root routers that supply an XML stream of air traffic control
data for North America.

4.3.1 Adding routers and clients

When a new internal router is added to a mesh, it can either be
statically configured with a set of parents or the new router can
select its own parents based upon performance experiments. A wide
variety of automatic configuration algorithms can be used to form
the mesh depending on the particular desires of the node. These
may vary widely depending upon whether the mesh is controlled by
a single administrative entity concerned with overall characteristics
of the mesh such as its resilience or depth, or the new node has a
more specific purpose. Clients join the mesh in the same fashion.

Rather than specify a particular algorithm or policy, we admit a host
of possibilities by providing a set of mesh primitives that new nodes
can use to discover the topology of the mesh and locate themselves
within it. Each router supports the following primitives:

• Join (Q): A new node is added as a child of the router with
queryQ provided the current node is willing to admit a child
with such a query.

• Children (Q): The router responds with its children that sub-
scribe to a subset ofQ. A full child list may be elicited by
specifying a query that matches the entire stream.

• Parents: The router responds with its parent set.

1. Initialize the set S to be the root routers.

2. For each node in S, send a join request and
remove the node from S.

3. If a node accepts the join, add it to the parent
set P . If n nodes are in P , quit.

4. If a node declines the join, ask it for a list of its
children, and add them to S.

5. If S is not empty, go to Step 2.

Figure 5: Parent selection algorithm. Each node runs this algorithm
to construct an(n − 1)-resilient mesh.

Using these three operations, it is possible for a new node to com-
pletely walk a mesh to determine its optimal location. We note that
the optimum location may vary depending on the particular desires
of the joining node. We have currently implemented a very simple
algorithm for automatic parent selection for a client seeking(n−1)
resilience shown in Figure 5.

This simple algorithm seeks to find a set of routers that are closest
to the root routers and uses the timing of responses to select among
candidates. The algorithm also assumes that potential parents are
configured to reject join requests when they are at maximum de-
sired capacity or they do not wish to service a requested query. We
contemplate additional research on improved algorithms that are
based upon both depth in the mesh and observed packet latency to
select optimal parents for a new child.

Routers may refuse to serve as parents for policy reasons, if they
are not receiving the portion of the XML feed necessary to service
a new child’s query, or if they are over-subscribed. If a prospective
parent is not receiving part of the feed necessary for a new child, the
prospective parent may be configured to push an expanded query up
to its parent, thus propagating the information request up the mesh.

4.3.2 Mesh repair

Our mesh repair algorithm recovers from parent failures. If one
of the parents of a node fails, the node actively attempts to join a
new parent. The method used to obtain a new parent is currently
identical to that used to obtain initial parents with one caveat. To
guarantee that a mesh is acyclic, each router maintains a level num-
ber that is one greater than the maximum level of all of its parents.
A router’s level number is established when a router first joins the
network. During mesh recovery, a router will only join parents that
have a level number that is less than its own level number. If this is
not possible during recovery, then a router must disconnect from all
of its children and do a cold re-initialization to return to its desired
level of resilience.

Our repair algorithm recovers(n − 1) resilience of the mesh if a
non-root router fails. As discussed earlier,(n − 1) resilience is a
fundamental property of any acyclic mesh where each child hasn
parents. This can be seen by forming an acyclic graph that is a dual
of a mesh. In this dual graph each child is represented as a vertex
that has directed edges to all of the child’s parents. The min-cut of
this graph isn vertices or edges if each vertex has out degreen.
Thus(n − 1) nodes or(n − 1) distinct paths can fail and a node
will still be connected to a root.

6

Due to occasional internal node failures, a mesh repaired using our
algorithm will have a tendency to flatten out over time as nodes
are forced to select parents with lower level numbers during each
repair process. If the mesh structure is to serve extremely long-
running streams, it may be necessary for nodes to occasionally re-
move themselves from the mesh and select an entirely new location
in order to preserve the depth of the mesh and prevent overloading
of root nodes. We have not yet explored efficient algorithms for
determining when to start this process.

5 Evaluation

We have developed two separate implementations of our XML
router. Our full-featured, multi-threaded Java implementation uses
DCP for router-to-router and router-to-client communication. We
have also implemented a prototype high-performance router based
on Click [19]. The goal of our Java implementation was to ad-
equately support our air traffic control application and it does
not attempt to maximize absolute performance. In contrast, the
Click router attempts to achieve production-grade performance us-
ing freely available XML parsing technology. Below, we report
our experiences with both routers. We are mainly interested in un-
derstanding how routers will behave in a mesh under varying con-
figurations. Thus, our evaluation focuses on the effects of mesh
redundancy on DCP reliability and performance. We also provide
performance results from our Click-based XML router.

5.1 DCP performance

The Diversity Control Protocol has several attractive features in-
dependent of the format of the data stream. In particular, DCP-
based meshes can achieve substantially lower effective loss rates
and latency than tree-based distribution networks. Further, the re-
dundancy can be utilized to absorb unexpected decreases in the link
capacity between nodes. In this section, we quantify these effects
using our Java XML router. All results presented in this section rep-
resent the average of several experiments each consisting of 1000
to 10000 XML-encoded ASDI packets.

5.1.1 Experimental design

The experimental setup consisted of four 600MHz PIIIs, two run-
ning Linux 2.2.14, and two running FreeBSD 4.0. Each machine
used 100Mbit Intel EtherExpress Pro100 Ethernet controllers and
128 Mbytes of memory. The roots and all intermediate XML router
nodes were run on one Linux machine using Sun’s JDK version
1.3. The XML client node was run on the other Linux machine,
also with Sun’s JDK version 1.3.

For each experiment, the root node received an XML feed contain-
ing a 1Kbyte per second substream of the live ASDI flight data
described in the following section. While each node in our experi-
mental topology requests the entire test XML stream, it does so by
specifying an XML query predicate, hence each packet is parsed
by the intermediate nodes as part of the forwarding process. The
intermediate nodes connect to the root over the loopback interface,
so there was no packet loss. The desired link loss rates between
intermediate and client nodes were obtained by routing each DCP
connection through one of the FreeBSD machines which passed
the packets through an appropriately configured Dummynet [32]
tunnel.

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
ffe

ct
iv

e
lo

ss
 r

at
e

at
 c

lie
nt

Avg. per-parent loss rate

n = 1
n = 2
n = 3
n = 4

Figure 6: Loss rates experienced by a client as a function of indi-
vidual parent loss rates and the number of parents.

The one-way latency between the client and parent nodes was negli-
gible (0.1ms) with respect to the millisecond granularity of the Java-
based timing mechanisms we used to measure packet latency. Vari-
ability in the observed latency of XML packets can be attributed
both to the inherent non-uniformity of XML parsing times and to
thread scheduling uncertainties of the JDK.

5.1.2 Redundancy reduces loss exponentially

We assume that packet loss is independent across parents. This
assumption is false if a problematic portion of the communication
path to a set of parents is shared. In our ideal model, if each parent
has an identical loss rate,p, a node withn parents should expect
a combined loss rate ofpn. Figure 6 verifies this experimentally,
showing the DCP loss rate experienced at clients with 2, 3, and 4
parents where the loss rate at each parent is independently identi-
cally distributed (i.i.d.) with uniform probabilityp varying from
[0, 0.5].

For a traditional tree-based distribution network, the loss rate ex-
perienced at the client corresponds directly to the loss rate of its
parent. The graph shows, however, that a mesh topology is able to
provide acceptable delivery rates over even extremely lossy chan-
nels. A node with four parents can expect a loss rate of less than
5% even if each of the parents individually experiences a loss rate
of up to45%.

Most Internet links do not experience extremely high loss rates. In
fact, typical long-term average loss rates are on the order of 2–5%
with substantially higher burst rates [29]. In such cases, a mesh
with n = 2 still limits the loss rate at the client to substantially less
than1%. Decreased loss rate is not the only gain from multiple
parents, however.

5.1.3 Latency

Even in cases where acceptable loss rates can be provided by a tree-
based network (reliability may be assured by retransmission), sig-
nificant improvements in latency can be achieved by increasing re-
dundancy. In DCP, loss is not detected until the receipt of a later
packet since each individual packet is not acknowledged. However,

7

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2

A
vg

. l
at

en
cy

 a
t c

lie
nt

 (
m

s)

Avg. per-parent packet loss rate

n = 1
n = 2
n = 3
n = 4

Figure 7: Average per-packet latency from root to client as a func-
tion of individual parent loss rates and the number of parents.

0

5

10

15

20

25

0% 1% 2% 3% 4% 5%

A
vg

. l
at

en
cy

 a
t c

lie
nt

 (
m

s)

Effective loss rate at client

n = 1
n = 2
n = 3
n = 4

Figure 8: Average per-packet latency from root to client for a range
of effective loss rates. Effective loss rates for each level of redun-
dancy are taken from Figure 6.

because we expect the Internet to reorder packets [29], a packet is
not assumed lost until some time after its successor arrives (cur-
rently 5ms).

In order to magnify the effects of retransmissions in a LAN envi-
ronment with short round-trip times, our test XML feed was specif-
ically constructed to have relatively long inter-packet intervals. In
our experiments, a single retransmission adds approximately 300ms
to the latency for the lost packet. In practice, streams are likely to
have a shorter inter-arrival period but longer RTTs, resulting in a
similar effect. As can be seen in Figure 7, packet loss significantly
impacts the average packet latency at the client for non-redundant
configurations. Meshes with higher levels of redundancy perform
much better.

A redundant topology performs even better than the effective loss
rate of Figure 5 suggests. This is because clients with multiple par-
ents use thefirst copy of each XML packet they receive. In general,
the expected minimum of multiple samples from any distribution

S

I

C

TCP

S1 S2

I2I1

C

DCP

S

C

Erasure Coding

Figure 9: Experimental multi-tier topologies. A two-hop TCP path
with a TCP splice in the middle, a 1-resilient DCP mesh of depth
two, and an erasure code using two disjoint paths of length two with
simple forwarding at the intermediate nodes. The loss rates on all
links is identical.

is guaranteed to be at least as good as expected value of a single
sample. Figure 8 shows the average latency for several levels of
redundancy with respect toeffective loss rates.

5.1.4 Multi-tier meshes

The improvement in latency and throughput becomes even more
dramatic as the the depth of the mesh increases. We demonstrate
this by measuring the throughput performance of a two-tier mesh
using both DCP and TCP and analytically derive the expected per-
formance of a carousel-based erasure code scheme. As shown in
Figure 9, our experimental 1-resilient DCP mesh has five nodes:
two servers delivering identical streams, two intermediate nodes,
and one client. In the case of TCP, the mesh has only three nodes:
a server, client, and one intermediate node that splices the two sep-
arate TCP connections. In both cases, the client, server, and in-
termediate nodes are connected with point-to-point Ethernet links.
We analyze the performance of erasure coding over a hypothetical
topology consisting of a server and client connected by two disjoint,
two-hop paths. The nodes in the middle simply forward packets
and, unlike TCP and DCP, do not request retransmissions of lost
packets.

In our experiments we used Dummynet to limit the bandwidth of
each link to 75Kbits per second and set the server to transmit data in
262-byte bursts at a rate of 19Kbits per second—significantly under
link capacity. Each link in the mesh has a one-way latency of 10ms.
Figure 10 shows the throughput observed at the client as the loss
rate is adjusted for all links uniformly. Note that TCP’s throughput
drops rapidly as the loss rate increases. The redundant links are of
no use to TCP as a duplicate TCP connection on a redundant path
would suffer the same fate. DCP, on the other hand, is able to utilize
both links at the same time to provide successful transfer at much
higher loss rates.

We note that in the case of multi-hop networks with sufficient band-
width, DCP outperforms carousel-based erasure coding techniques
such as those used by Digital Fountain [9]. Such schemes do not
retransmit lost packets. Instead, they encode the data stream at a
fixed rate using an erasure code which enables any lost packets to
be recovered by simply receiving an additional number of encoding

8

0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25

T
hr

ou
gh

pu
t (

by
te

s
pe

r
se

co
nd

)

Avg. per-parent packet loss rate

DCP
TCP

Erasure Coding

Figure 10: Observed throughput of a two-tier mesh with uniform
link loss rates using both 1-resilient DCP and TCP. The stream is
served in 262-byte chunks at a rate of 2381 bytes per second. DCP
downloads utilize two parents at each tier while TCP can support
only one at each tier. We also plot the expected performance of
a simple carousel-based erasure code using two disjoint, two-hop
paths.

packets. A maximum-distance-separable erasure code requires that
the client simply receive as many packets as comprised the origi-
nal data stream, regardless of which packets they are. In practice,
many codes (including those used by Digital Fountain) are not quite
maximum-distance-separable, requiring a few additional packets.

Because carousel erasure coding is typically deployed end-to-end
with no retransmissions within the network, the loss rates at each
hop are cumulative. Whereas, DCP reassembles the stream and re-
transmits a full set of redundant packets at each tier of the mesh.
A naive carousel-based distribution network could support appli-
cations such as ours by ensuring each packet contains all the data
necessary to decode the current input packet plus any additional
redundant data required to support the erasure code.

A carousel erasure code can utilize redundant links by sending
an encoded version of each data packet down all available links.
Hence, we can calculate an upper bound on the performance of
such an erasure code by assuming only one packet of any encoding
set must be received. Given a distribution network withn separate
paths, each comprised ofl hops with link loss ratep, it is easy to
see that each path successfully delivers the packet with probability
(1 − p)l. In the best case, each data packet can be successfully de-
coded by the client if only one of the encoding packets is received,
which occurs with probability1 − (1 − (1 − p)l)n. To recover
lost packets, the client must receive additional encoding packets
which are lost with the same probability. Hence, the throughput of
such a scheme can be computed by simply multiplying the input
data rate by the effective reception rate. Using this formula, Fig-
ure 10 shows the expected performance of a sufficiently low-rate
maximum-distance-separable erasure code over the two-tier topol-
ogy shown in Figure 9.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
up

ut
 r

at
e

(p
ac

ke
ts

 p
er

 s
ec

on
d)

Input rate (packets per second)

16
8
4
2
1

Figure 11: Forwarding rates for a Click-based XML router with a
varying number of children. Each child requested the entire input
XML stream specified through a trivial XPath expression.

5.2 XML routing performance

Figure 11 shows the forwarding rates achieved by our Click XML
router installed as a kernel module. We measured the forwarding
capacity by generating a constant stream of identical UDP packets
containing a 262-byte XML-encoded ASDI flight update (similar to
the one in Figure 12) at a fixed rate and sending them to our XML
router. The router parses each XML packet, applies the appropri-
ate child predicates, and forwards the packet to the children with
matching predicates.

The tests were conducted on an 800Mhz dual-processor Intel PIII
in uni-processor mode with two Ethernet controllers: an on-board
Intel EtherExpress PRO 100Mbit/s PCI controller and an Intel
PRO/1000 Gigabit Ethernet PCI card. We use uni-processor mode
because our XML parsing code is not known to be SMP-safe. Pack-
ets were received on the 100Mbit interface and forwarded out the
Gigabit interface. Because Click does not support polling on the
100Mbit controller packet input was interrupt driven.

The maximum loss-free forwarding rate varies with the number of
children. Additional children add processing overhead for addi-
tional link queries. With only one client and a simple query expres-
sion, our implementation is able to forward slightly more than 9,000
262-byte packets per second, or about 19 Mbit/second. The more
complicated the packet and expression, the slower the forwarding
rate.

In order to better understand the impact of query complexity, we
timed the XML parser and query evaluator separately. Our Click
XML router uses the Gnome XML library,libxml. The library pro-
vides both an XML parser and an XPath (a subset of XQuery) eval-
uator. We have made no attempts to optimize the performance of
this library. Thus, our measured performance represents a lower
bound, and we expect an efficient implementation could perform
much better. Table 1 shows the time taken to apply a variety of
queries to the same 262-byte sample XML flight packet. We find
that complex expressions can take over twice the time to evaluate in
the context of an XML packet than simple ones. In all cases, packet
processing cost is dominated by XML parsing time.

9

XQuery Time (µs)
Parse 64.2

true() 4.5
/flight/flightleg/altitude > 300 7.1
starts-with(string(/flight/id),’TWA’) 8.9
substring-before(string(/flight/flightleg \

/coordinate/lat),’N’) > 2327 14.5

Table 1: Time to evaluate various queries in an 800Mhz PIII. Pars-
ing a standard 262-byte XML flight update requires 64.2µs. The
four XQuery expressions shown here select the entire feed, flights
above 30,000 feet, Trans World Airlines flights, and flights cur-
rently north of the Tropic of Cancer, respectively.

5.3 Experience with air traffic control data

Our original motivation for developing XML routers was to build
an infrastructure for distributing and processing real-time air traf-
fic control data. Our laboratory receives the Aircraft Situational
Display to Industry (ASDI) [40] feed via a private IP intranet con-
nection to the U.S. Department of Transportation (DOT). The ASDI
feed provides detailed information about the state of North Amer-
ican airspace. ASDI messages include information on flight plans,
departures, flight location, and landings. A position update is re-
ceived approximately once a minute for all enroute aircraft. The
ASDI feed is directly distributed to most major airlines and is used
for collaborative planning between the FAA and the airlines.

The ASDI feed as distributed by the DOT is encoded in ASCII with
a specific compact character encoding for each ASDI message type.
Efforts were made to make native ASDI messages a compressed
format by virtue of their terseness. The ASDI feed is the union of
feeds from multiple Air Route Traffic Control Centers (ARTCCs)
and countries (USA & Canada). Unfortunately, messages that can-
not be parsed using the ASDI specification arise. Thus, at the outset
of our work, we built an ASDI feed parser and carefully gathered
examples of non-standard messages. We slowly tuned our ASDI
feed parser to handle undocumented cases and, today, still find the
occasional new message format.

Early in our work, we decided to convert each ASDI message into a
corresponding XML packet to create an XML packet stream. This
decision guaranteed that all of our applications would have an easy
to parse and well-defined XML DTD to consume. Furthermore,
it centralized our interpretation of the ASDI feed so that it could
be updated as new undocumented message types were identified.
We call the XML stream that is created from the ASDI feed the
XML ATC stream. Figure 12 shows a sample flight in both ASDI
encoding and our XML encoding.

The XML-encoded ASDI packets contain widely varying amounts
of data depending on the type of event being reported: flight de-
partures, arrivals, position updates, or other auditing information.
Packet size ranges from around 250 bytes to almost 1000 bytes, for
an average of about 350 bytes per packet. The stream is diurnal,
peaking in the early evening with an average packet inter-arrival
time of about 14ms, resulting in an XML data stream of about 25
Kbytes per second.

ASDI Format:

153014022245CCZVTZ UAL1021 512 290 4928N/12003W

XML Format:

<?xml version="1.0"?>
<messageid>153014022245CCZVTZ</messageid>
<flight>

<id>UAL1021</id>
<flightleg status="active">
<speed type="ground">512</speed>
<altitude type="reported" mode="plain">

290
</altitude>
<coordinate>

<lat>4928N</lat>
<lon>12003W</lon>

</coordinate>
</flightleg>

</flight>

Figure 12: The same flight data formatted in ASDI and XML. In
practice, we omit the Message ID field from the XML encoding.

0

5000

10000

15000

20000

25000

30000

06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

B
yt

es
 p

er
 s

ec
on

d

Time of day

XML
ASDI

Figure 13: Average bandwidth utilization of the full XML stream
and the native ASDI format vs. time of day. In both cases the
Message ID field (see Figure 12) is removed from all packets at the
root nodes.

Our primary concern in converting the ASDI feed to XML was
potential bandwidth bloat. Figure 13 shows the bandwidth of the
ASDI feed in both native and XML formats averaged over five
minute intervals. Simply converting the feed to XML results in
approximately a four-fold increase in bandwidth when compared
to the native ASDI feed. We ran both the XML and native ASDI
streams through a Lempel-Ziv [21] data compressor. Figure 14
shows the bandwidth of compressed forms of the same streams
shown in Figure 13. While the ASDI feed compresses over a factor
of two, the XML feed compresses over a factor of 10. The net re-
sult is a compressed XML ATC stream is only slightly larger than a
compressed ASDI feed and more efficient than the raw ASDI feed.

10

0

500

1000

1500

2000

2500

06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

B
yt

es
 p

er
 s

ec
on

d

Time of day

XML
ASDI

Figure 14: Average bandwidth utilization of the compressed XML
stream and the compressed ASDI format vs. time of day. Again, in
both cases the Message ID field is removed from all packets at the
root nodes.

We have run mesh networks with two root routers and four internal
routers but a single root router is more typical. This is because
our DOT link is a single point of failure and terminates at our root
router(s). We are adding a second communication line to the DOT
to connect to their backup ASDI system. This will enable us to
have two root routers with independent failure modes. Application
serial numbers (ANs) in our ATC application are provided by the
FAA. Hence, synchronizing multiple roots is straightforward. Each
ASDI message includes a Message ID that we use as the AN of the
corresponding XML packet.

Figure 15 shows one interface to the XML ATC stream. This graph-
ical client implements DCP and connects to our XML router mesh.
The panel on the left of the screen can be used to control the display
of aircraft information. Different colors are used to depict aircraft
altitude and the client will coast the position of an aircraft between
position updates. For our particular application domain of air traffic
control data, XML proved to be a robust and efficient mechanism
for distribution. We anticipate adding new types of clients, includ-
ing an XML stream recorder, to our current system.

6 Discussion

This section considers the strengths and weaknesses of our ap-
proach to content routing using XML. While we believe that many
of the techniques we developed for our ATC application are widely
applicable, we would like to make our assumptions clear.

6.1 AN generation

One difficulty in providing redundant packet sources is providing a
standardized sequence space for packet streams that obey the three
invariants we outlined in Section 4.2.1. Often, application-specific
solutions will present themselves, such as source-derived sequence
numbers or time codes. However, in the absence of application-
provided sequence numbers, it is necessary to use other approaches,
such as cumulative byte counts, block fingerprint matching [23, 38,
39], or other derived metrics.

Figure 15: Java-based client for XML ATC stream showing con-
trols and air traffic.

When a combining router merges XML streams, packets in the
combined stream must have appropriate ANs. Simply using the
ANs from the original uncombined packets for packets in the com-
bined stream will typically not work as packets from different
streams will in general have incomparable ANs. One solution is
for the combining router to become the root of a new stream and
establish its own totally ordered AN space. However, this would
create a single point of failure if sequence assignments in this space
are not coordinated with another combining router. Another ap-
proach is to make AN space partially ordered. For example, the
AN space for a combined stream could be a pair of the AN of the
source packet in its original stream along with an integer suffix that
identifies the source XML stream. Packets with ANs from different
source streams would not be sequenced across streams, but a client
could recover the ordering of XML packets within each stream.

6.2 Flow control

Nodes are responsible for monitoring the loss rate of streams from
their parent and adjusting their predicates appropriately. Limited
per-child buffering is available at each node, and clients may be
disconnected if they are consequently unable to consume the data
stream at an acceptable rate.

The squelching mechanism of DCP allows parents to avoid wast-
ing bandwidth sending packets to a child that the child has already
received. If a child is unable to keep up with the long-term aver-
age rate of the stream, however, queues will build up and action
must be taken. If the client is able to subsist with a smaller sub-
set of the data stream, it may wish to conduct join experiments in
order to determine the appropriate XML query for its bandwidth
constraints [26, 42]. Otherwise, clients persistently unable to keep
up with the data stream will be disconnected by their parents.

11

6.3 Redundancy

We expect that most mesh networks will usen = 2. This level of
redundancy allows for single points of failure and allows mesh re-
pair to proceed without stream flow interruption. We expect that as
future networks increase in capacity a moderate amount of packet
redundancy will be acceptable for high-value streams to achieve
specific reliability and performance goals. Secondary storage is of-
ten replicated for similar reasons.

We have assumed in our analysis that errors from different par-
ents are independent. This assumption can be violated in numerous
ways, but the most likely reason will be shared communication path
components from a child to its parents. In addition, network-wide
effects, such as distributed-denial-of-service attacks, could cause
independent parents to have dependent packet losses. To maximize
link independence, we plan to explore using routers in distinct In-
ternet autonomous systems (ASs) and ensuring that last-mile band-
width is adequate to each AS. In certain applications, it may also be
possible to use private intranets to better control error assumptions.

6.4 Router XML stream reassembly

Each of our routers recreates the original XML stream before it is
processed by the XML switch. We do this to guarantee that every
XML packet is forwarded by every router, to allow a client to ask
for retransmissions from any of its parents, and to potentially allow
the XML switch to keep stream-dependent state between packets
that could be used by queries. The amount of buffering required
is bounded by requiring positive acknowledgments as discussed in
section 4.2.2.

If XML packets are forwarded out-of-order by an XML switch then
a router does not necessarily need to buffer packets or recreate
the original sequenced XML stream. This is, indeed, the case in
our ATC application, although in our ATC application every XML
router does recreate the original XML stream. If an XML router
need not recreate the original XML stream, a router could process
each received packet independently and would not need to process
every packet in an XML stream. In this scenario, a client places in-
creasing reliance upon the redundancy of the mesh to ensure timely
delivery of packets that are not received from a particular router.
In particular, since all levels may forward out of sequence, the la-
tency induced by a retransmission request from the client may be
large. Hence, we have not yet considered how to handle reliable,
out-of-order delivery with bounded latency.

6.5 Packet acknowledgments

For asynchronous, variable-bandwidth data streams, packet loss
can be detected either by the lack of packet acknowledgments at a
sender or by a gap in packet sequence at a receiver. DCP currently
relies upon the latter technique. If inter-arrival times are large, per-
packet ACKs may be required to provide the appropriate level of
responsiveness. Unfortunately, positive acknowledgment schemes
admit a well-known implosion problem where the sender is flooded
with acknowledgments from each of its children.

While our implementation currently uses unicast UDP to transport
DCP packets, DCP could employ IP Multicast where available. The
negative acknowledgment system we describe is capable of han-
dling IP Multicast packet losses. If IP Multicast were employed, a

DCP output component would send a single packet to an appropri-
ate multicast group of its children based upon the children’s queries.

6.6 Dynamic timer adjustment

A robust DCP implementation should be able to automatically ad-
just its timers to the characteristics of the link between nodes. In
particular, the negative acknowledgment timer should be set only
long enough to admit observed packet reordering, which clearly
depends on the inter-packet arrival of the flow. Being too slow re-
sults in poor latency, being too jumpy results in wasted bandwidth.
Similarly, several timers relating to mesh liveliness would benefit
from automatic refinement. In particular, nodes expect to receive
data from their parents every so often. If no data is available in that
interval, the parent sends a keep-alive message. A similar mecha-
nism is employed by the parent to insure the continued presence of
its children. Clearly the timer should be proportional to the stream
data rate, in order to avoid excessive probing. We are currently
exploring applying known techniques to these problems [18].

7 Conclusions and future work

This paper presented three key ideas. First, we introduced the idea
of XML routers that switch self-describing XML packets based
upon any field. Second, we showed how XML routers can be or-
ganized into a resilient overlay network that can tolerate both node
and link failures without reconfiguration and without interrupting
real-time data transport. Finally, we introduced the Diversity Com-
munication Protocol as a way for peers to use redundant packet
transmissions to reduce latency and improve reliability.

A wide variety of extensions can be made to the work presently
reported, both in protocol refinements and additional functionality.
We are actively investigating methods of DCP self-tuning, both for
adaptive timers and sophisticated flow control. DCP can also can
be used for uninterpreted byte streams. Thus, DCP-like ideas may
find application in contexts outside of XML routers. For example,
contemporary work on reliable overlay networks (RONs) could use
DCP as a RON communication protocol to maximize performance
and reliability [2].

Just as secondary storage has become viewed as expendable in pur-
suit of enhanced functionality and performance [34], we believe
that, for certain tightly-constrained applications, network band-
width across multiple paths may be similarly viewed as well-spent
in return for substantial gains in reliability and latency. It is un-
likely that multiple disjoint paths with excess capacity will always
exist on the last mile to a client. Hence, many installations may
benefit from meshes that change to lower levels of redundancy at
critical network points such as points-of-presence before last mile
cable.

Within the scope of XML routing, our current XML routers could
be extended to support.

• More sophisticated XML mesh building and maintenance al-
gorithms.

• Combiners that integrate multiple XML streams for multicast
transport as a single stream.

• Using XML routers for duplex communication.

12

• Other XML network components, such as stream storage and
replay.

• Transcoding XML routers that produce output packets that are
derivatives of input packets, based upon client queries.

Even in its current form, however, we believe our architecture
demonstrates XML is a viable mechanism for content distribution,
providing a natural way to encapsulate related data, and a conve-
nient semantic framing mechanism for intelligent network transport
and routing.

Acknowledgments

We would like to thank Qian Z. Wang and Micah Gutman for their
work on an early version of the XML router and the graphical ASDI
client shown in Figure 15. The DCP experiements were conducted
at emulab.net, the Utah Network Emulation Testbed, which is pri-
marily supported by NSF grant ANI-00-82493 and Cisco Systems.
We are indebted to Benjie Chen and the members of the Click
project for assistance with benchmarking our Click-based XML
router. This paper greatly benfited from comments on earlier drafts
by Chuck Blake, Frans Kaashoek, the anonymous reviewers, and
our shepherd, Maurice Herlihy. We also remember Jochen Liedtke,
Bruce Jay Nelson, and Mark Weiser as great life forces and friends.

References
[1] XMLBlaster. http://www.xmlblaster.org/.

[2] A NDERSEN, D. G., BALAKRISHNAN , H., KAASHOEK,
M. F., AND MORRIS, R. T. Resilient overlay networks. In
Proc. ACM SOSP (Oct. 2001).

[3] A RMSTRONG, S., ET AL. Multicast transport protocol.
RFC 1301, Internet Engineering Task Force, 1992.

[4] BANAVAR , G., CHANDRA, T., MUKHERJEE, B., NAGARA-
JARAO, J., STROM, R., AND STURMAN, D. An efficient
multicast protocol for content-based publish-subscribe sys-
tems. InProc. Int’l Conf. on Dist. Comp. Systems (ICDCS)
(May 1999).

[5] BANERJEA, A. Simulation study of the capacity effects of
dispersity routing for fault tolerant realtime channels. InProc.
ACM SIGCOMM (Aug. 1996), pp. 194–205.

[6] BESTAVROS, A. An adaptive information dispersal algorithm
for time-critical reliable communication. InNetwork Manage-
ment and Control, Volume II, I. Frish, M. Malek, and S. Pan-
war, Eds. Plenum Publishing Co., New York, New York,
1994, pp. 423–438.

[7] BRAY, T., ET AL. Extensible markup language 1.0 (second
edition). http://www.w3.org/TR/REC-xml/, W3C
Recommendation, 2000.

[8] BYERS, J. W., LUBY, M., AND MITZENMACHER, M. Ac-
cessing multiple mirror sites in parallel: Using tornado codes
to speed up downloads. InProc. IEEE Infocom (Mar. 1999),
pp. 275–283.

[9] BYERS, J. W., LUBY, M., MITZENMACHER, M., AND

REGE, A. A digital fountain approach to reliable distribu-
tion of bulk data. InProc. ACM SIGCOMM (Sept. 1998),
pp. 56–67.

[10] CARZANIGA , A., ROSENBLUM, D. S., AND WOLF, A. L.
Achieving scalability and expressiveness in an Internet-scale
event notification service. InProc. ACM PODC (July 2000),
pp. 219–227.

[11] CHAMBERLIN , D., ET AL. XQuery 1.0: An XML query
language. http://www.w3.org/TR/xquery/, W3C
Working Draft, 2001.

[12] CHAWATHE, Y., MCCANNE, S., AND BREWER, E. RMX:
Reliable multicast for heterogeneous networks. InProc. IEEE
Infocom (Mar. 2000), pp. 795–804.

[13] CHU, Y., RAO, S. G.,AND ZHANG, H. The case for end
system multicast. InProc. ACM SIGMETRICS (June 2000),
pp. 1–12.

[14] FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. A reliable multicast framework for light-
weight sessions and application level framing.IEEE/ACM
Trans. on Networking 5, 6 (Dec. 1997), 784–803.

[15] HOLBROOK, H. W., AND CHERITON, D. R. IP multicast
channels: EXPRESS support for large-scale single-source ap-
plications. InProc. ACM SIGCOMM (Aug. 1999), pp. 65–78.

[16] JANNOTTI , J., GIFFORD, D. K., JOHNSON, K.,
KAASHOEK, M. F., AND O’TOOLE, J. Overcast: Re-
liable multicasting with an overlay network. InProc.
USENIX OSDI (Oct. 2000), pp. 197–212.

[17] KADANSKY, M., CHIU, D., AND WESLEY, J. Tree-based
reliable multicast [TRAM]. Technical report TR-98-66, Sun
Microsystems Lab, 1998.

[18] KARN, P., AND PARTRIDGE, C. Improving round-trip time
estimates in reliable transport protocols.ACM CCR 17, 5
(Aug. 1987), 2–7.

[19] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI , J., AND

KAASHOEK, M. F. The click modular router.ACM Trans. on
Computer Systems 18, 3 (Aug. 2000), 263–297.

[20] LABOVITZ , C., AHUJA, A., ABOSE, A., AND JAHANIAN , F.
Routing stability and convergence. InProc. ACM SIGCOMM
(Aug. 2000), pp. 115–126.

[21] LEMPEL, A., AND ZIV, J. A universal algorithm for sequen-
tial data compression.IEEE Trans. on Information Theory 23,
3 (May 1977), 337–343.

[22] L IN, J.-C.,AND PAUL , S. RMTP: A reliable multicast trans-
port protocol. InProc. IEEE Infocom (Mar. 1996), pp. 1414–
1424.

[23] MANBER, U. Finding similar files in a large file system. In
Proc. Winter USENIX (Jan. 1994), pp. 1–10.

[24] MAXEMCHUK , N. F. Dispersity Routing in Store and For-
ward Networks. PhD thesis, University of Pennsylvania, May
1975.

[25] MCAULEY, A. J. Reliable broadband communication using
a burst erasure correcting code. InProc. ACM SIGCOMM
(Sept. 1990), pp. 297–306.

[26] MCCANNE, S.,AND JACOBSON, V. Receiver-driven layered
multicast. InProc. ACM SIGCOMM (Aug. 1996), pp. 117–
130.

13

[27] MOSER, L., MELLIAR -SMITH , P., AGARWAL, D., BUD-
HIA , R., AND LINGLEY-PAPADOPOULOS, C. Totem: A
fault-tolerant multicast group communication system.C.
ACM 39, 4 (Apr. 1996), 54–63.

[28] OKI , B., PFLUEGL, M., SIEGEL, A., AND SKEEN, D. The
information bus — an architecture for extensible distributed
systems. InProc. ACM SIGOPS (Dec. 1993), pp. 58–68.

[29] PAXSON, V. End-to-end internet packet dynamics.
IEEE/ACM Trans. on Networking 7, 3 (June 1999), 277–292.

[30] PENDARAKIS, D., SHI, S., VERMA, D., AND WALDVOGEL,
M. ALMI: An application level multicast infrastructure. In
Proc. USENIX Symp. on Internet Technologies and Systems
(USITS) (Mar. 2001), pp. 49–60.

[31] RABIN , M. O. Efficient dispersal of information for security,
load balancing and fault tolerance.J. ACM 36, 2 (Apr. 1989),
335–348.

[32] RIZZO, L. Dummynet: a simple approach to the evaluation
of network protocols.ACM CCR 27, 1 (Jan. 1997).

[33] RIZZO, L., AND VICISANO, L. A reliable multicast data
distribution protocol based on software FEC techniques. In
Proc. IEEE HPCS (June 1997).

[34] SANTRY, D. J., FEELEY, M. J., HUTCHINSON, N. C., AND

VEITCH, A. C. Elephant: The file system that never for-
gets. InProc. Workshop on Hot Topics in Operating Systems
(HotOS-VII) (Mar. 1999).

[35] SAVAGE, S., ANDERSON, T., AGGARWAL, A., BECKER,
D., CARDWELL, N., COLLINS, A., HOFFMAN, E., SNELL,
J., VAHDAT, A., VOELKER, J.,AND ZAHORJAN, J. Detour:
a case for informed internet routing and transport.IEEE Mi-
cro 19, 1 (Jan. 1999), 50–59.

[36] SEGALL, B., ARNOLD, D., BOOT, J., HENDERSON, M.,
AND PHELPS, T. Content based routing with Elvin4. InProc.
AUUG2K (June 2000).

[37] STOICA, I., NG, T. S. E.,AND ZHANG, H. Reunite: A re-
cursive unicast approach to multicast. InProc. IEEE Infocom
(Mar. 2000), pp. 1644–1653.

[38] TRIDGELL, A. Efficient Algorithms for Sorting and Synchro-
nization. PhD thesis, Australian National University, Apr.
2000.

[39] TRIDGELL, A., AND MACKERRAS, P. The rsync algo-
rithm. Tech. Rep. TR-CS-96-05, Australian National Univer-
sity, 1997.

[40] VOLPE NATIONAL TRANSPORTATIONCENTER, AUTOMA-
TION APPLICATIONSDIVISION. Aircraft situation display to
industry functional description and interfaces. DTS-56 report,
Aug. 2000.

[41] WHETTEN, B., AND TASKALE, G. An overview of reli-
able multicast transport protocol II.IEEE Network 14, 1 (Jan.
2000), 37–47.

[42] WU, L., SHARMA , R., AND SMITH , B. Thin streams: An
architecture for multicasting layered video. InProcİEEE Int’l
Workshop on Network and Operating System Support for Dig-
ital Audio and Video (May 1997).

[43] YAVATKAR , R., GRIFFIOEN, J., AND SUDAN, M. A reli-
able dissemination protocol for interactive collaborative ap-
plications. InProc. ACM Conf. on Multimedia (Nov. 1995),
pp. 371–372.

14

In Proceedings of IEEE GlobeCom. Rio de Janeiro, December 1999

ADAPTIVE INVERSE MULTIPLEXING FOR WIDE-AREA WIRELESS NETWORKS

Alex C. Snoeren

snoeren@lcs.mit.edu

Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract

The limited bandwidth of current wide-area wireless
access networks (WWANs) is often insufficient for
demanding applications, such as streaming audio or video,
data mining applications, or high-resolution imaging.
Inverse multiplexing is a standard application-transparent
method used to provide higher end-to-end bandwidth by
splitting traffic across multiple physical links, creating a
single logical channel. While commonly used in ISDN
and analog dialup installations, current implementations
are designed for private links with stable channel
characteristics.

Unfortunately, most WWAN technologies use shared
channels with highly variable link characteristics,
including bandwidth, latency, and loss rates. This paper
presents an adaptive inverse multiplexing scheme for
WWAN environments, termed Link Quality Balancing,
which uses relative performance metrics to adjust traffic
scheduling across bundled links. By exchanging loss rate
information, we compute relative short-term available
bandwidths for each link. We discuss the challenges of
adaptation in a WWAN network, CDPD in particular, and
present performance measurements of our current
implementation of Wide-Area Multi-Link PPP (WAMP)
for CDPD modems under both Constant Bit Rate (CBR)
and TCP loads.

1 Introduction

A large number of wide-area wireless access network
(WWAN) technologies have recently emerged, including
Metricom’s Ricochet Packet Radio network, Global
System Mobile (GSM) [13], IS-95 [10], and Cellular
Digital Packet Data (CDPD) [15]. The defining
characteristic of WWANs is their use of a shared channel
with long and variable round-trip times (RTTs), typically
on the order of 500ms, coupled with a relatively low and
variable bandwidth (usually in the tens of Kb/s).
Additionally, many of these wireless technologies support
link-level ARQ schemes for reliable transmission. While

This work was supported in part by Defense Advanced Projects Research Agency
(DARPA) contract number DAAN02-98-K0003. The author is also supported by a
National Defense Science and Engineering Graduate (NDSEG) Fellowship.

such mechanisms provide better line error characteristics,
they combine with channel access contention to introduce
significant delay variability.

The low bandwidths provided by WWAN technologies are
often insufficient to support demanding applications, such
as voice recognition and high-resolution imaging. In these
contexts, one obvious solution is to spread connections
over multiple physical links. By striping data over many
physical channels (called a bundle), possibly by breaking
packets up into fragments, it is possible to present a single
logical channel with increased available bandwidth. When
using such techniques, however, variations in the channel
characteristics of any particular link can have catastrophic
impact on the performance of the bundle as a whole. In
particular, variations in the perceived transmission delay of
an individual member link may cause delays in
demultiplexing and packet assembly. In the absence of
sophisticated scheduling techniques to balance delay,
bandwidth variability between member links can cause the
performance of many transport protocols to be throttled by
the slowest member link, even when traffic is allocated in
proportion to link speeds. Similarly, losses on one link
may prevent packet reassembly, increasing loss rates
markedly. These amplification effects motivate our design
of an adaptive inverse multiplexing algorithm in WWAN
networks. In this paper, we study the Bell Atlantic Mobile
CDPD network, but we believe our work is applicable to
all WWAN technologies, and, more generally, to any
shared links with variable characteristics.

Inverse multiplexing is fairly common in current network
technologies. Most implementations, however, assume
physical transport mechanisms with constant bit rates and
stable link characteristics such as those found in circuit
switched networks [1, 6, 7]. This is not the case with
CDPD. Commercial CDPD networks use an IP-based
transport mechanism such as TCP or UDP to transport
data. These mechanisms are subject not only to the
expected loss and delay characteristics of the Internet, but
additional WWAN-specific issues as well, such as
increased round-trip times and delay variability. The
added synchronization requirements of an inverse
multiplexing scheme only compound any losses or
variability in bandwidth or delay.

Reliable transport protocols require reasonable limits on
packet reordering, jitter, and loss in order to function
optimally. In particular, TCP has been shown to be
extremely sensitive to variations in delay, as they affect
both its ACK-based clock and RTT estimates for packet
retransmission [3, 4, 5]. The Fast Retransmit algorithm
[RFC2001] also makes assumptions about the level of
packet reordering, and induces spurious retransmissions in
the face of excessive reordering. It is therefore important
to ensure that any multi-link scheme limit packet
reordering and delay jitter as much as possible.

The multiplexor must then schedule packet fragments so
that they are received and reassembled in roughly the same
order they arrived, with a minimum of added delay. This
requires balancing the fragment distribution according to
the current bandwidth*delay product of each individual
link. Due to the depth of network queues relative to the
bandwidth*delay product, and channel access asymmetries
inherent in CDPD, it is extremely difficult to obtain
accurate measurements. Instead, we use relative
performance metrics to adjust the traffic distribution
between links, and allow the end-to-end transport
protocol’s bandwidth probing algorithm to function as it
would normally. We term this dynamic adaptation Link
Quality Balancing.

The rest of this paper is organized as follows. Section 2
details related work on improving performance in similar
WWAN environments. Section 3 sets forth the
assumptions made concerning the CDPD network used in
our study. In Section 4 describes the details of our inverse
multiplexing scheme. We examine the factors affecting
TCP performance over multiplexed CDPD links in Section
5, and discuss possible techniques for addressing them.
Section 6 provides details of our sample implementation,
built using the techniques discussed in Sections 4 and 5.
Finally, we present our conclusions in Section 7.

2 Related Work

Many commercially available network devices support
inverse multiplexing using special hardware at the sender
and receiver. The BONDING consortium [6] specifies
techniques for packet striping on 56 and 64kbps circuit
switched channels. More general inverse multiplexing
schemes, as surveyed in [7], often fail to provide fair
bandwidth allocation in the presence of variable size
packets, or introduce significant reordering. The strIPe
protocol [1] addresses these shortcomings, providing a
general mechanism for fair bandwidth allocation with
limited packet reordering, but does not adapt to changing
channel capacity.

Previous work has shown Wireless TCP throughput to be
sub-optimal due to interactions between the link layer and
transport layer protocols. Asymmetry in media access, as
found in CDPD up-channels, causes ACK-compression,
and large delay variations due to a reliable link layer
mechanism conspire to confound the TCP congestion
control mechanisms [5]. While many of these problems
have previously been studied and understood, most
solutions assume a basestation paradigm, where agents are
inserted at the interface between the wired and wireless
links [3, 4]. In a commercial CDPD environment,
however, users do not have access to the Mobile Data Base
Stations (MDBS), and therefore cannot completely control
the buffering, queuing, and retransmission mechanisms
being used.

Inverse multiplexing restores the basestation view, as one
can consider the entire path from multiplexor to
demultiplexor to be one logical link. Traffic shaping and
other known techniques can (and should) be employed,
considering the multiplexor as the basestation. In
particular, we believe split-connection methods similar to
I-TCP [2] may be especially well-suited; there is little
additional benefit to be gained from a transparent agent in
this case, since network connectivity is lost in the event of
a multiplexor failure. By terminating the connection at
both ends, attention can be focused exclusively on the
WWAN portion of the overall path, perhaps utilizing novel
transport protocols specially designed or tuned for
WWANs [9, 11, 14, RFC2488]. Alternatively, mechanisms
such as Snoop agents [4] could be used if a transparent
solution was desired in some particular environment.

Rather than cloud our results with additional factors by
considering various proposals for transport protocols, we
instead use the performance of standard TCP as a
benchmark for our multi-link implementation.
Performance gains achieved through the use of different
transport protocols over individual WWAN links should
transfer directly to our multi-link environment.

3 Assumpt ions

We assume each of the CDPD links in the bundle traverses
the same wired path. This allows us to remove congestion
control from each individual link and deal with the end-to-
end congestion in totality (see Section 4.2.3). This
assumption is flawed; each CDPD modem in the bundle
may be operating in a separate cell1, so the paths may
diverge at some point. Close examination of the topology
has shown, however, that this point is well within the

1 Bell Atlantic (and, to our knowledge, most present CDPD carriers) deployed its
CDPD network with one dedicated data channel per cell. It is therefore necessary
for each modem to operate in a separate cell to realize any increase in available
bandwidth.

CDPD network itself, and therefore insulated from non-
CDPD cross traffic.

We further assume that the CDPD modems remain
stationary. This is an implementation issue caused by the
standard CDPD channel acquisition algorithm, which
causes each modem to select the “best” channel. Clearly
when they are co-located, roaming causes the modems to
converge to the same channel, competing with each other
for the same bandwidth. We are currently working to
modify the channel selection algorithm to support
mobility.

4 Multi-Link Ch aracteristics

The method used for inverse multiplexing IP packets is
standard. We stripe each packet across some number
(possibly only one) of outgoing links, encapsulating it with
a PPP Multi-Link (ML) header [RFC1990]. The resulting
fragments are then sent using a transport mechanism over
IP to the demultiplexor, where they are reassembled. The
reconstructed packet is then forwarded to the appropriate
destination.

IP

TCP

WAMP

TP

IP

PPP

ML

TP

IP

PPP

ML

IP

WAMP

TP

IP

PPP

ML

TP

IP

PPP

ML

IPIP

TCP

Figure 1: The WAMP Architecture

As can be seen in Figure 1, the end-to-end TCP packets are
fragmented by the multiplexor and tunneled through
multiple CDPD links using ML PPP over a link layer
transfer protocol (TP). An inverse multiplexing strategy of
this type has two main components: a fragmentation and
scheduling mechanism and a transport protocol. In this
section, we examine the possible choices for each, and
discuss how the various alternatives affect reliable
transport performance.

4.1 Scheduling Techniques

Once packets have been fragmented, the multiplexor must
decide how to assign fragments to the available links: that
is when and in what order to transmit them. This problem
is more commonly studied in the inverse, when multiple
links are multiplexed across a single, shared resource. As
noted in [1], however, the problem maps directly to our
situation. The obvious Round Robin approach allocates
fragments amongst all the available links in an ordered
fashion. In the long run, Round Robin scheduling provides
a perfectly fair distribution of fragments. When these
fragments are of roughly the same size, this translates into
a balanced spread of bandwidth.

An entire class of scheduling mechanisms attempts to
compensate for Round Robin’s deficiencies in scheduling
packets of varying sizes. Various fair queuing strategies
select the appropriate link for the next fragment based
upon the fragment’s size and the queue lengths at the
outgoing interfaces (see, for example, [8]). Unfortunately,
many techniques of this flavor require accurate queue
length information, which is difficult to obtain in a CDPD
network. Furthermore, such techniques often lead to
significant packet reordering when used with variable
length packets.

A crucial property of WWANs, and CDPD networks in
particular, is that while all of the links may be physically
identical, their performance at any point in time is highly
variable. Since each modem is operating in a separate cell,
with possibly widely differing signal characteristics, some
variation in channel throughput may be experienced even
in the absence of channel contention. Furthermore, if
additional CDPD modems are operating on some of the
same channels, the link bandwidth available to our
modems is reduced.

We propose a novel scheduling technique, similar to
Weighted Round Robin, based on the ratio of short-term
averages of observed throughput for each of the member
links in a bundle. Link Quality Balancing dynamically
adjusts the MTU of each link in proportion to the available
bandwidth. By splitting packets into fragments that can be
transmitted in roughly the same amount of time by each
link, reassembly can proceed without delay.

In order to ensure traffic is actually distributed as intended,
the fragmentation algorithm fragments each packet to
ensure that the entire MTU of the current link is utilized
before moving to the next link. If the last fragment of the
previous packet did not fully utilize the relative MTU of
the current link, the first fragment of the new packet is
sized to fill the MTU, and scheduled accordingly. Note the
two fragments are actually sent separately, so transmission
of the previous packet is not delayed. In the case of
uniformly sized packets, whose length is a multiple of the
link MTU, this scheduling discipline reduces to Round
Robin for bundles of identically performing links.

4.2 Link Layer Transport

Unlike many traditional multi-link applications, we do not
have exclusive access to the physical links in question.
Instead, we are forced to tunnel data over the Internet to
the CDPD network, where it is sent across the cellular
network to the modems. Empirical evidence shows the
selection of an appropriate transport mechanism is critical
to achieving acceptable performance. The fundamental
design decision is whether to provide reliable transport
and/or congestion control.

4.2.1 Reliability

This can be done through a reliable PPP connection,
perhaps built using Numbered Mode [RFC1663], or by
tunneling PPP over a reliable transport protocol. While
arguments can be made for either choice, we claim an
unreliable mechanism is superior in the multi-link
environment, as it allows us to dispense with link layer
congestion control, and reduces jitter in packet reassembly.

If a reliable transport mechanism is selected for each link,
it requires a congestion control/avoidance scheme, since
retransmitted fragments will travel over the shared Internet
for a portion of their journey. Previous work has shown
introducing an additional retransmission layer below TCP
degrades overall performance [3].

4.2.2 Cached Retransmission

In some cases, however, the path between multiplexor and
demultiplexor may be sufficiently lossy as to benefit from
a Snoop-like [4] scheme to realize the savings of link-layer
retransmission in the absence of a reliable transport
mechanism. In such cases, PPP Numbered Mode
[RFC1663] can be used. The multiplexor already tags
each fragment with a Multi-Link (ML) identifier for
reassembly. We propose to extend it with a hash of the
flow ID and TCP sequence number, allowing the
demultiplexor to associate it with a particular TCP packet
even if reassembly fails. Then, if the end-to-end TCP
requests a packet retransmission, the demultiplexor can
identify exactly those fragments that are necessary to
complete reassembly, and requests only their
retransmission by referencing the Numbered Mode ID.
We term this a Lost Fragment Request, or LFR.

For its part, the multiplexor simply caches each fragment.
It snoops on the return path, observing ACK sequence
numbers. Since TCP only transmits a window’s worth of
data unacknowledged, the amount of data that needs to be
sent before a cached fragment can be verified to have been
safely received is bounded and small. Recall the
bandwidth*delay product of CDPD links is itself small—
on the order of two or three packets. Further study of the
performance impact of LFRs is ongoing work; the results
reported here do not reflect the benefit of fragment
caching.

4.2.3 Congestion Control

If retransmissions are triggered only by the end-to-end
transport protocol (either in the absence of a reliable link
level, or using LFRs as described above), congestion
control is unnecessary at the link level, and is effectively
dealt with by end-to-end transport protocols.

Under our single path assumption, any congested
bottleneck (except the final cell-specific MDBS)
encountered by one link is also traversed by the other

links. When one link receives notice of congestion
(through packet loss), the appropriate response is for all of
the links to respond by reducing their rate. Since loss is
exposed to the upper level transport protocol, the logical
link is determined to be congested, and the transport
layer’s estimate of the available bandwidth is adjusted
appropriately. This adjustment affects all of the links
equally (by equally, we mean in proportion to their
measured throughput as a function of our scheduling
policy).

Care must be taken, however, to ensure one lossy link does
not limit the throughput of the bundle. In the case of
transient Internet congestion, the individual links drop
packets with equal probability. If congestion is occurring
in a particular cell, packet losses will be concentrated on
the associated link. While the individual fragment losses
will indeed cause the end-to-end transport layer to slow,
the demultiplexor records the relative loss rates of each
link. It exchanges this information periodically with the
multiplexor, allowing the scheduler to reduce its usage of
each link in proportion to the estimated available channel
throughput. As the end-to-end transport protocol continues
to probe for bandwidth, the logical link places less demand
on the physical link that previously failed, which leads to
stable behavior.

4.3 Link Quality Metric

The effectiveness of such an adaptive technique hinges on
the selection of a reliable metric for available link
throughput. One approach might be to monitor the queue
lengths at the outgoing interface, similar to weighted or
fair queuing schemes described previously. While
effective for the mobile multiplexor (which is directly
connected to the CDPD modems), this method is
fundamentally flawed if applied at the wired multiplexor.
Recall that packets must first traverse some section of the
Internet before entering the CDPD network. In this work,
we assume the path to every CDPD modem is the same, up
until some point well within the CDPD network (where it
must diverge to reach separate cells). Therefore any inter-
channel variability is only evident in queues far into the
network, and would not be exposed at the local interface.

Instead, we passively monitor each link’s performance
using an extension to PPP’s Link Quality Monitoring
(LQM) standard [RFC1989]. By exchanging information
about the loss rates and perceived throughput of each link,
both multiplexors are able to make an informed and
independent evaluation of channel performance (due to
MAC contention on the cellular up-link and obvious
discrepancies in transmitter power between the modem and
tower, performance may be markedly different in opposite
directions).

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350

T
h
r
o
u
g
h
p
u
t

(
b
i
t
s

p
e
r

s
e
c
)

Time (secs)

Channels
Logical

Modem 1
Actual 1

Modem 2
Actual 2

Modem 3
Actual 3

Modem 4
Actual 4

Figure 2: Link Quality Balancing across four CDPD modems

The obvious metric, as in traditional wired networks, is
loss rate. Figure 2 shows an approximate Constant Bit
Rate (CBR) source transmitting across the WAMP logical
link. Initially the traffic is split equally across all four
available CDPD links. At approximately T+75s, a fifth
modem begins transmitting at a CBR of 6000bps on the
same channel as modem 1. Almost immediately the
throughput can be seen to drop at the demultiplexor. Due
to the deep network buffers, however, no disproportional
loss is perceived until T+125s, when excessive fragment
loss on modem 1 causes the multiplexor to multiplicatively
decrease its utilization of the link by some specified
amount, δ.

The decrease in utilization of link 1 causes a proportional
increase in the use of links 2-4, since the offered load is
steady. The net effect, then, is a multiplicative decrease
whose magnitude depends the utilization of the remaining
links. WAMP continues to decrease its usage of the lossy
link until the error rate returns to within an acceptable
threshold, at which point utilization stabilizes.

At T+325s the CBR source terminates, and bandwidth
utilization on all links drops off proportionately as traffic
decreases. Note that even if the competing CBR source is
removed, relative utilization of link 1 may not increase. If
the remaining links are not saturated (which, in fact, they
are not), and error rates remain tolerable, WAMP has no
incentive to continually probe for additional bandwidth on
link 1. Only when additional load arrives on the logical
link (whether through a new connection or bandwidth
probing of the end-to-end transport protocol), which over-
saturates the remaining links, does WAMP increase
utilization of link 1.

Note that WAMP never actually explicitly increases
utilization of a link. Instead, as it decreases utilization of
congested links, reliance on alternate links increases

proportionately. This allows the end-to-end congestion
control algorithms to operate as designed, without
additional loss caused by bandwidth probing. While
WAMP could generate synthetic traffic with which to
probe links, CDPD networks do not support priority
queuing, so packet loss is uniform. Hence any additional
traffic, synthetic or not, may cause losses in the real
traffic.

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500

T
h
r
o
u
g
h
p
u
t

(
b
i
t
s

p
e
r

s
e
c
)

Time (secs)

Channels
Logical

Modem 1
Actual 1

Modem 2
Actual 2

Figure 3: Link Quality Balancing across two CDPD modems

Figure 3 shows a similar experiment using only two links,
which produces a much more dramatic effect. In this
scenario, the CBR source provides an offered load of
13000bps. At T+75s a third modem begins to generate
cross traffic on the same channel as modem 1, using a
CBR stream of 5000bps. The decrease in available
bandwidth becomes noticeable almost immediately, with
the first loss event occurring at T+175s. WAMP then
begins to decrease the utilization as before, leading to
stable long-term behavior.

5 TCP Pathologies

We now turn our attention to the performance of a reliable
transport protocol, TCP in particular, over our Multi-Link
channel. This section identifies the difficulties in adapting
link utilization for TCP flows, and suggests methods for
improvement

5.1 Deep Buffering

TCP adapts to drastic changes in bandwidth by detecting
losses. The assumption is that in the face of sudden
changes in available bandwidth, packets will queue up and
be dropped. Unfortunately, in a CDPD environment with
few flows, the buffers are very deep compared to the
receive windows. So sudden changes in bandwidth are
often not detected by losses, but instead simply space out
the ACKs from the receiver, which slows TCP’s
transmission rate down to the speed of the ACKs.

While TCP’s bandwidth probing algorithm will continue to
increase the window size one packet per (its estimation of
the) RTT (which, as discussed in [3] and [5], is likely to be
much larger than accurate), the decreased rate of ACKs
will cause this to take longer than it should. Furthermore,
the next loss event will occur with a smaller window (since
TCP’s congestion avoidance algorithm converges), so the
network buffers are even more likely to be able to absorb
the excessive traffic for long enough to slow the ACK
clock down.

Figure 4 shows a single TCP sender operating over a
WAMP link with two separate channels. The
characteristic saw-tooth pattern of TCP’s window probing
algorithm is readily apparent. As before, at time T+125s,
an additional modem began sending a CBR flow at 5000
bps on the same cellular channel as modem 2. The drop in
available bandwidth is noticeable almost immediately, as a
loss event occurs, and the saw-tooth turns downward.
Finally, at T+175s the loss rates become disproportionate,
and the multiplexor begins to decrease its utilization of
link 2. Notice this occurs two probing periods later, after
TCP has markedly decreased its sending rate due to the
slower rate of returning ACKs.

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400

T
h
r
o
u
g
h
p
u
t

(
b
i
t
s

p
e
r

s
e
c
)

Time (secs)

Channels
Logical

Modem 1
Actual 1

Modem 2
Actual 2

Figure 4: Link Quality Balancing across two links for a single
TCP sender.

As WAMP continues to decrease utilization of the
congested link, TCP can be seen to succeed in trying larger
and larger window sizes. While this process will
eventually converge, due to the stability properties of
TCP’s linear increase, multiplicative decrease congestion
avoidance, it occurs over a very large time span. The
transfer concludes at T+375s with an overall throughput
approximately 85% of the theoretical maximum (if WAMP
had adjusted instantaneously to the available channel
bandwidth).

While this effect disappears rapidly as additional flows are
established (since they are each asymmetrically probing

for additional bandwidth), it is reasonable to assume the
number of simultaneous flows will be small, given the low
link bandwidth. This motivates our search for an alternate
metric that could enable rapid adaptation to changes in
available link throughput, without waiting for the network
queues to admit a loss event.

Even if such a metric existed, considerable control issues
arise when one attempts to make sudden, significant
changes. In order to avoid the TCP problem, the decrease
would have to be significant. Clearly false triggers would
be catastrophic. Furthermore, care would need to be taken
to ensure sufficient time for stabilization before additional
adaptations were made. Relative short-term throughput
averages, inter-packet separation averages, and inter-
packet deviations have all initially proved too unstable for
use. We are continuing to investigate dampening methods
that might allow their use.

5.2 Packet Reordering

Depending on the scheduling policy in use, the top level
TCP stack often may receive packets out of order due to
the relative delay of individual channels. Our study of
individual CDPD links shows that reordering frequency is
similar to that expected in the general Internet [12], but
very rarely by more than one packet.

If, as a general rule, we assume packets will be reordered
at most once on each link, we can then examine the effect
of striping fragments. Some scheduling policies then
admit bounds on reordering. For our modified Round
Robin techniques, reordering on the logical link is clearly
just a function of packet size versus the number of links.

5.2.1 Fast Retransmit Modifications

TCP’s fast retransmit algorithm exists to trigger rapid
retransmission of lost packets. As specified, the receipt of
three or more out of order packets signals packet loss,
causing immediate retransmission. The value of three
DUPACKs was arrived at empirically, and seems to
function well for the wired Internet [12].

In our case, however, we can use any bounds provided by
our scheduling mechanism to modify the retransmit
algorithm. If, for instance, we are guaranteed never
(actually with high probability, based on our assumption
the individual links only reorder by one packet) to receive
more than one out of order packet, we could reduce the
number of DUPACKs to two, thereby causing a faster
retransmission, improving throughput. If, on the other
hand, our scheduling algorithm were such that packets
were regularly delivered more than two packets out of
order, the standard fast retransmit algorithm would
incorrectly assume packet loss and cause spurious

retransmissions. In this case, it is clearly beneficial to
adjust the number of DUPACKs up to the higher value.

Given the large timeout delays caused by not triggering the
fast retransmit algorithm, it may be desirable to be a bit
more aggressive in setting the DUPACK level than one
would be on a wired network. For the purposes of this
paper, however, we choose not to modify the algorithm to
preserve standard TCP semantics.

5.3 Loss Amplification

The major drawback of multi-link operation is that all of
the characteristics of the underlying channel, both positive
and negative, are amplified. Take the case of packet loss
for example. The probability of successful packet
transmission for the logical link, pt, can be expressed in
terms of the loss probabilities for each of the n constituent
links, pi: pt = 1 – (1 – p1)(1- p2)…(1- pn). Splitting a
packet across four links with 10% packet loss probability
results in an incomplete packet 35% of the time. This
lowest common denominator effect becomes increasingly
evident when conditions deteriorate.

This effect implies there exists a point at which a link’s
membership in the bundle detracts from the overall
bundle’s performance. Consider, for example, the case of
three links operating optimally, with one link dropping
packets at a rate of 50% (not unheard of during peak hours
in our CDPD network). Regardless of the retransmission
mechanism used on the lossy link, the added delay caused
by the required retransmission of lost data fragments
causes TCP throughput on the logical link to be lower than
it would be if it just used the three perfect links.

We are already monitoring link quality for use in our
scheduling mechanism, so the data is available. The
difficult part is determining at exactly what point to
remove a link. There are obviously many factors,
including the relative performance of a link to the others in
the bundle, the absolute performance of the link, and so on.
It is not clear how to calculate its exact value on-line.
Instead, we suggest empirically computing a reasonable
default threshold, and basing a link’s membership in the
bundle on that specified value. There is no danger in
setting the value too low, as the resulting performance is
no worse than the unmodified system. Care needs to be
taken, however, not to set the value too high. Determining
the optimum value for this threshold is ongoing work.

6 Implementat ion

The inverse multiplexor described herein was deployed
using Sierra Wireless MP200 CDPD modems. The
modems are connected via a Specialix SIO serial board to
a PII/400 running FreeBSD 2.2.7. The other end of the
virtual link is a Pentium-class machine running FreeBSD

3.2. This machine connects directly to the Bell Atlantic
CDPD network over a 56K PVC Frame-Relay circuit.

WAMP is implemented as a user-level PPP daemon that
runs PPP [RFC1661] with HDLC framing [RFC1662] over
UDP. The CDPD modems operate on Bell Atlantic
Mobile’s digital cellular network. During initialization,
the mobile multiplexor scans for available CDPD channels,
and allocates the four best channels to the MP200s. Each
modem locks on its prescribed channel, and begins PPP
link establishment negotiation with the wired
multiplexor/demultiplexor.

6.1 Tuning

Several aspects of our inverse multiplexing algorithm
require constants to be set at appropriate values for the
current operating environment.

6.1.1 LQM Interval

The current WAMP implementation exchanges LQM
information every 5 seconds. Each LQM packet is 56
bytes, so this translates to an overhead of ~10 bytes/sec per
link, on the order of 1% of the channel capacity. Shorter
intervals not only increase overhead, but also provide less
stability in the scheduling mechanism. Internet traffic is
by nature bursty. When one considers the typical user’s
traffic on the CDPD network (mail clients, web browsers,
and the like), it can be expected to be especially bursty.
We clearly don’t want to be too quick to predict a link’s
performance.

Given current CDPD speeds, one 576-byte packet (our
MTU) requires on the order of half a second, five seconds
allows for approximately 10 packets to be transmitted
between LQM exchanges. Loss rates become less useful at
lower intervals, as the granularity becomes too coarse.
Furthermore, when multiple flows are active, we are likely
to have significant buffering, so any changes will take
several seconds to propagate through the channel anyway.

6.1.2 Loss Threshold & Decrease Delta

Loss thresholds and decrease deltas must be tightly
correlated if stability is to be achieved. The higher the loss
rate threshold, the slower WAMP adapts to long-term
changes in available throughput. At the same time, it will
be more resilient to transient bursts. Due to the
asymmetric nature of CDPD’s channel access, different
values are required for each direction. For the down
channel, where there is no media contention, empirical
evidence suggests that during off hours, most bursts can be
accommodated in the network and modem buffers, and any
loss exposed to the link layer is significant. For the up
channel, on the other hand, losses are much more common,
due to the CSMA/CD channel access method.

At present, we manually adjust the loss threshold to current
operating conditions, but are investigating methods for
separating load-induced loss with load-independent loss.
We have found thresholds of 2% during evening hours and
5% during peak hours work reasonably well.

Optimum values of the decrease parameter, δ, however,
have proved to be considerably more stable over long time
frames. A decrease factor of .85 is the largest factor that
leads to stable behavior with reasonable reaction times.
While this is a considerably smaller decrease than found in
TCP Reno, one must recall that scheduling is relative.
Hence any decrease in one link leads to an increase in the
others. Small values of δ lead to huge oscillations in link
scheduling, especially when few links are involved, as
well-behaved links are driven into overload by the
increased load caused by the sudden decrease in utilization
of a lossy link.

7 Conclusions

We have presented an adaptive approach to inverse
multiplexing reliable transport protocols in WWAN
environments based upon three key observations. First,
when the component links share a path to the CDPD
network, we note that congestion control is appropriately
and effectively handled by the upper level transport
protocol, and is impeded by additional control at the link
layer. This does not, however, imply the individual links
could not provide some form of enhanced reliability, as
proposed by our LFR scheme.

Secondly, we argue that optimum fragment scheduling
requires knowledge of the current channel characteristics
of each link. By adapting fragment size to the current
effective throughput of each link, we enable packet
reassembly and delivery with a minimum of delay, thereby
preventing slow links from throttling the performance of
the entire bundle.

Finally, while obtaining accurate measurements of
instantaneous channel transmission delay is problematic,
we note that relative channel performance is sufficient,
since the transport protocol’s congestion control algorithm
will appropriately increase or decrease bandwidth
utilization. LQM loss data sent from the receiver at
regular intervals is sufficient to maintain a stable short-
term approximation of relative throughput. Determining
optimum sampling intervals is ongoing work.

8 Acknowledg ements

Rusty Hemenway and his colleagues at Bell Atlantic
Mobile provided invaluable assistance in setting up the
experimental testbed. Ty Sealy and Ron Wiken aided in
the installation of the mobile equipment. We are indebted

to John Wroclawski and Hari Balakrishnan for their
constructive criticism and willingness to support this work.

9 References

[1] H. ADISESHU, G. PARULKAR, AND G. VARGHESE. A
Reliable and Scalable Striping Protocol. In Proc.of ACM
SIGCOMM, August 1996

[2] A. BAKRE AND B. BADRINATH. I-TCP: Indirect TCP for
Mobile Hosts. In Proc. of ICDCS, May 1995.

[3] B. BAKSHI, P. KRISHNA, N. VAIDYA , AND D. K. PRADHAN.
Improving Performance of TCP over Wireless Networks.
In Proc. of ICDCS, May 1997.

[4] H. BALAKRISHNAN , S. SESHAN, E. AMIR, AND R. KATZ.
Improving TCP/IP Performance over Wireless Networks.
In Proc. of ACM MOBICOM, November 1995.

[5] H. BALAKRISHNAN , V. PADMANABHAN , AND R. KATZ. The
Effects of Asymmetry on TCP Performance. In Proc. of
ACM/IEEE MOBICOM, September 1997.

[6] Bandwidth ON Demand Interoperability Group.
Interoperability Requirements for Nx56/64 kbit/s Calls,
September 1992.

[7] C. BRENDAN, S. TRAW, AND J. SMITH. Striping within the
Network Subsystem. IEEE Network, 1995.

[8] A. DEMERS, S. KESHAV, AND S. SHENKER. Analysis of a
Fair Queuing Algorithm, Journal of Internetworking
Research and Experience, September 1989.

[9] R. DURST, G. MILLER, AND E. TRAVIS. TCP Extensions for
Space Communications. In Proc. of ACM/IEEE
MOBICOM, September 1996.

[10] Electronic Industry Alliance/Telecommunications Industry
Association. IS-95: Mobile Station-Base Station
Compatibility Standard for Dual-Mode Wideband Spread
Spectrum Cellular System, 1993.

[11] M. MEHTA AND N. VAIDYA . Delayed Duplicate-
Acknowledgements: A Proposal to Improve Performance of
TCP on Wireless Links. Technical Report, Computer
Science Dept., Texas A&M University, February 1999.

[12] V. PAXSON. End-to-End Internet Packet Dynamics. In
Proc. of ACM SIGCOMM, September 1997.

[13] M. RAHNEMA. An Overview of the GSM System and
Protocol Architecture. IEEE Communications Magazine:
31, April 1993.

[14] P. SINHA, N. VENKITARAMAN , R. SIVAKUMAR , AND V.
BHARGHAVAN. WTCP: A Reliable Transport Protocol for
Wireless Wide-Area Networks. In Proc. of ACM/IEEE
MOBICOM, August 1999.

[15] Wireless Data Forum. Cellular Digital Packet Data System
Specification, Release 1.1, January 1995.

